Next Issue
Previous Issue

Table of Contents

Antioxidants, Volume 6, Issue 4 (December 2017)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story (view full-size image) We investigated the use of MnTE-2-PyP, a mimic of superoxide dismutase (SOD), to prevent [...] Read more.
View options order results:
result details:
Displaying articles 1-32
Export citation of selected articles as:
Open AccessReview The Role of Nicotinamide Adenine Dinucleotide Phosphate Oxidases in Lung Architecture Remodeling
Antioxidants 2017, 6(4), 104; https://doi.org/10.3390/antiox6040104
Received: 13 November 2017 / Revised: 8 December 2017 / Accepted: 14 December 2017 / Published: 19 December 2017
PDF Full-text (656 KB) | HTML Full-text | XML Full-text
Abstract
Chronic lung disorders, such as pulmonary artery hypertension (PAH), chronic obstructive pulmonary disease (COPD), asthma and neonatal bronchopulmonary dysplasia (BPD), are characterized by airway and/or vascular remodeling. Despite differences in the pathology, reactive oxygen species (ROS) have been highlighted as a critical contributor
[...] Read more.
Chronic lung disorders, such as pulmonary artery hypertension (PAH), chronic obstructive pulmonary disease (COPD), asthma and neonatal bronchopulmonary dysplasia (BPD), are characterized by airway and/or vascular remodeling. Despite differences in the pathology, reactive oxygen species (ROS) have been highlighted as a critical contributor to the initiation and development of airway and vascular remodeling. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox) appear to play a pivotal role in lung signaling, leading to marked changes in pulmonary airway and vascular cell phenotypes, including proliferation, hypertrophy and apoptosis. In this review, we summarized the current literature regarding the role of Nox in the airway and vascular remodeling. Full article
(This article belongs to the Special Issue ROS Derived from NADPH Oxidase (NOX) in Angiogenesis)
Figures

Figure 1

Open AccessArticle Co-Enzyme Q10 and n-3 Polyunsaturated Fatty Acid Supplementation Reverse Intermittent Hypoxia-Induced Growth Restriction and Improved Antioxidant Profiles in Neonatal Rats
Antioxidants 2017, 6(4), 103; https://doi.org/10.3390/antiox6040103
Received: 7 November 2017 / Revised: 8 December 2017 / Accepted: 14 December 2017 / Published: 16 December 2017
PDF Full-text (1950 KB) | HTML Full-text | XML Full-text
Abstract
Neonatal intermittent hypoxia (IH) increases the risk for many morbidities in extremely low birth weight/gestational age (ELBW/ELGA) neonates with compromised antioxidant systems and poor growth. We hypothesized that supplementation with coenzyme Q10 (CoQ10, ubiquinol) or n-3 polyunsaturated fatty acids (PUFAs) during neonatal
[...] Read more.
Neonatal intermittent hypoxia (IH) increases the risk for many morbidities in extremely low birth weight/gestational age (ELBW/ELGA) neonates with compromised antioxidant systems and poor growth. We hypothesized that supplementation with coenzyme Q10 (CoQ10, ubiquinol) or n-3 polyunsaturated fatty acids (PUFAs) during neonatal IH improves antioxidant profiles and somatic growth in neonatal rats. Newborn rats were exposed to two IH paradigms at birth (P0): (1) 50% O2 with brief hypoxic episodes (12% O2); or (2) room air (RA) with brief hypoxia, until P14 during which they received daily oral CoQ10 in olive oil, n-3 PUFAs in fish oil, or olive oil only from P0 to P14. Pups were studied at P14 or placed in RA until P21 for recovery from IH (IHR). Body weight and length; organ weights; and serum antioxidants and growth factors were determined at P14 and P21. Neonatal IH resulted in sustained reductions in somatic growth, an effect that was reversed with n-3 PUFAs. Improved growth was associated with higher serum growth factors. CoQ10 decreased superoxide dismutase (SOD) and glutathione, but increased catalase, suggesting reduced oxidative stress. Further studies are needed to determine the synergistic effects of CoQ10 and n-3 PUFA co-administration for the prevention of IH-induced oxidative stress and postnatal growth deficits. Full article
(This article belongs to the Special Issue Antioxidants: Infant Nutrition)
Figures

Figure 1

Open AccessArticle In Vitro and In Vivo Antioxidant and Anti-Hyperglycemic Activities of Moroccan Oat Cultivars
Antioxidants 2017, 6(4), 102; https://doi.org/10.3390/antiox6040102
Received: 13 September 2017 / Revised: 24 October 2017 / Accepted: 24 October 2017 / Published: 6 December 2017
PDF Full-text (5272 KB) | HTML Full-text | XML Full-text
Abstract
Improvement of oat lines via introgression is an important process for food biochemical functionality. This work aims to evaluate the protective effect of phenolic compounds from hybrid Oat line (F11-5) and its parent (Amlal) on hyperglycemia-induced oxidative stress and to establish the possible
[...] Read more.
Improvement of oat lines via introgression is an important process for food biochemical functionality. This work aims to evaluate the protective effect of phenolic compounds from hybrid Oat line (F11-5) and its parent (Amlal) on hyperglycemia-induced oxidative stress and to establish the possible mechanisms of antidiabetic activity by digestive enzyme inhibition. Eight phenolic acids were quantified in our samples including ferulic, p-hydroxybenzoic, caffeic, salicylic, syringic, sinapic, p-coumaric and chlorogenic acids. The Oat extract (2000 mg/kg) ameliorated the glucose tolerance, decreased Fasting Blood Glucose (FBG) and oxidative stress markers, including Superoxide dismutase (SOD), Catalase (CAT), Glutathione peroxidase (GPx), Glutathione (GSH) and Malondialdehyde (MDA) in rat liver and kidney. Furthermore, Metformin and Oat intake prevented anxiety, hypercholesterolemia and atherosclerosis in diabetic rats. In vivo anti-hyperglycemic effect of Oat extracts has been confirmed by their inhibitory activities on α-amylase (723.91 μg/mL and 1027.14 μg/mL) and α-glucosidase (1548.12 μg/mL & 1803.52 μg/mL) enzymes by mean of a mixed inhibition. Full article
(This article belongs to the Special Issue Dietary Antioxidants and Prevention of Non-Communicable Diseases)
Figures

Figure 1

Open AccessArticle Tempol Supplementation Restores Diaphragm Force and Metabolic Enzyme Activities in mdx Mice
Antioxidants 2017, 6(4), 101; https://doi.org/10.3390/antiox6040101
Received: 17 October 2017 / Revised: 19 November 2017 / Accepted: 28 November 2017 / Published: 6 December 2017
Cited by 1 | PDF Full-text (900 KB) | HTML Full-text | XML Full-text
Abstract
Duchenne muscular dystrophy (DMD) is characterized by striated muscle weakness, cardiomyopathy, and respiratory failure. Since oxidative stress is recognized as a secondary pathology in DMD, the efficacy of antioxidant intervention, using the superoxide scavenger tempol, was examined on functional and biochemical status of
[...] Read more.
Duchenne muscular dystrophy (DMD) is characterized by striated muscle weakness, cardiomyopathy, and respiratory failure. Since oxidative stress is recognized as a secondary pathology in DMD, the efficacy of antioxidant intervention, using the superoxide scavenger tempol, was examined on functional and biochemical status of dystrophin-deficient diaphragm muscle. Diaphragm muscle function was assessed, ex vivo, in adult male wild-type and dystrophin-deficient mdx mice, with and without a 14-day antioxidant intervention. The enzymatic activities of muscle citrate synthase, phosphofructokinase, and lactate dehydrogenase were assessed using spectrophotometric assays. Dystrophic diaphragm displayed mechanical dysfunction and altered biochemical status. Chronic tempol supplementation in the drinking water increased diaphragm functional capacity and citrate synthase and lactate dehydrogenase enzymatic activities, restoring all values to wild-type levels. Chronic supplementation with tempol recovers force-generating capacity and metabolic enzyme activity in mdx diaphragm. These findings may have relevance in the search for therapeutic strategies in neuromuscular disease. Full article
(This article belongs to the Special Issue Exercise Induced Muscle Damage and Oxidative Stress)
Figures

Figure 1

Open AccessArticle Effects of the Macular Carotenoid Lutein in Human Retinal Pigment Epithelial Cells
Antioxidants 2017, 6(4), 100; https://doi.org/10.3390/antiox6040100
Received: 7 November 2017 / Revised: 30 November 2017 / Accepted: 1 December 2017 / Published: 4 December 2017
Cited by 3 | PDF Full-text (2481 KB) | HTML Full-text | XML Full-text
Abstract
Retinal pigment epithelial (RPE) cells are central to retinal health and homoeostasis. Oxidative stress-induced damage to the RPE occurs as part of the pathogenesis of age-related macular degeneration and neovascular retinopathies (e.g., retinopathy of prematurity, diabetic retinopathy). The xanthophyll carotenoids, lutein and zeaxanthin,
[...] Read more.
Retinal pigment epithelial (RPE) cells are central to retinal health and homoeostasis. Oxidative stress-induced damage to the RPE occurs as part of the pathogenesis of age-related macular degeneration and neovascular retinopathies (e.g., retinopathy of prematurity, diabetic retinopathy). The xanthophyll carotenoids, lutein and zeaxanthin, are selectively taken up by the RPE, preferentially accumulated in the human macula, and transferred to photoreceptors. These macular xanthophylls protect the macula (and the broader retina) via their antioxidant and photo-protective activities. This study was designed to investigate effects of various carotenoids (β-carotene, lycopene, and lutein) on RPE cells subjected to either hypoxia or oxidative stress, in order to determine if there is effect specificity for macular pigment carotenoids. Using human RPE-derived ARPE-19 cells as an in vitro model, we exposed RPE cells to various concentrations of the specific carotenoids, followed by either graded hypoxia or oxidative stress using tert-butyl hydroperoxide (tBHP). The results indicate that lutein and lycopene, but not β-carotene, inhibit cell growth in undifferentiated ARPE-19 cells. Moreover, cell viability was decreased under hypoxic conditions. Pre-incubation of ARPE-19 cells with lutein or lycopene protected against tBHP-induced cell loss and cell co-exposure of lutein or lycopene with tBHP essentially neutralized tBHP-dependent cell death at tBHP concentrations up to 500 μM. Our findings indicate that lutein and lycopene inhibit the growth of human RPE cells and protect the RPE against oxidative stress-induced cell loss. These findings contribute to the understanding of the protective mechanisms attributable to retinal xanthophylls in eye health and retinopathies. Full article
(This article belongs to the Special Issue Carotenoids—Antioxidant Properties)
Figures

Figure 1

Open AccessReview Recent Advances in our Understanding of Tocopherol Biosynthesis in Plants: An Overview of Key Genes, Functions, and Breeding of Vitamin E Improved Crops
Antioxidants 2017, 6(4), 99; https://doi.org/10.3390/antiox6040099
Received: 31 October 2017 / Revised: 19 November 2017 / Accepted: 23 November 2017 / Published: 1 December 2017
Cited by 1 | PDF Full-text (629 KB) | HTML Full-text | XML Full-text
Abstract
Tocopherols, together with tocotrienols and plastochromanols belong to a group of lipophilic compounds also called tocochromanols or vitamin E. Considered to be one of the most powerful antioxidants, tocochromanols are solely synthesized by photosynthetic organisms including plants, algae, and cyanobacteria and, therefore, are
[...] Read more.
Tocopherols, together with tocotrienols and plastochromanols belong to a group of lipophilic compounds also called tocochromanols or vitamin E. Considered to be one of the most powerful antioxidants, tocochromanols are solely synthesized by photosynthetic organisms including plants, algae, and cyanobacteria and, therefore, are an essential component in the human diet. Tocochromanols potent antioxidative properties are due to their ability to interact with polyunsaturated acyl groups and scavenge lipid peroxyl radicals and quench reactive oxygen species (ROS), thus protecting fatty acids from lipid peroxidation. In the plant model species Arabidopsis thaliana, the required genes for tocopherol biosynthesis and functional roles of tocopherols were elucidated in mutant and transgenic plants. Recent research efforts have led to new outcomes for the vitamin E biosynthetic and related pathways, and new possible alternatives for the biofortification of important crops have been suggested. Here, we review 30 years of research on tocopherols in model and crop species, with emphasis on the improvement of vitamin E content using transgenic approaches and classical breeding. We will discuss future prospects to further improve the nutritional value of our food. Full article
(This article belongs to the Special Issue Vitamin E) Printed Edition available
Figures

Figure 1

Open AccessArticle Differential Effects of Superoxide Dismutase Mimetics after Mechanical Overload of Articular Cartilage
Antioxidants 2017, 6(4), 98; https://doi.org/10.3390/antiox6040098
Received: 19 October 2017 / Revised: 20 November 2017 / Accepted: 28 November 2017 / Published: 30 November 2017
PDF Full-text (1610 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Post-traumatic osteoarthritis can develop as a result of the initial mechanical impact causing the injury and also as a result of chronic changes in mechanical loading of the joint. Aberrant mechanical loading initiates excessive production of reactive oxygen species, oxidative damage, and stress
[...] Read more.
Post-traumatic osteoarthritis can develop as a result of the initial mechanical impact causing the injury and also as a result of chronic changes in mechanical loading of the joint. Aberrant mechanical loading initiates excessive production of reactive oxygen species, oxidative damage, and stress that appears to damage mitochondria in the surviving chondrocytes. To probe the benefits of increasing superoxide removal with small molecular weight superoxide dismutase mimetics under severe loads, we applied both impact and overload injury scenarios to bovine osteochondral explants using characterized mechanical platforms with and without GC4403, MnTE-2-PyP, and MnTnBuOE-2-PyP. In impact scenarios, each of these mimetics provides some dose-dependent protection from cell death and loss of mitochondrial content while in repeated overloading scenarios only MnTnBuOE-2-PyP provided a clear benefit to chondrocytes. These results support the hypothesis that superoxide is generated in excess after impact injuries and suggest that superoxide production within the lipid compartment may be a critical mediator of responses to chronic overload. This is an important nuance distinguishing roles of superoxide, and thus superoxide dismutases, in mediating damage to cellular machinery in hyper-acute impact scenarios compared to chronic scenarios. Full article
(This article belongs to the Special Issue Superoxide Dismutase (SOD) Enzymes, Mimetics and Oxygen Radicals)
Figures

Figure 1

Open AccessArticle The Subcellular Distribution of Alpha-Tocopherol in the Adult Primate Brain and Its Relationship with Membrane Arachidonic Acid and Its Oxidation Products
Antioxidants 2017, 6(4), 97; https://doi.org/10.3390/antiox6040097
Received: 3 November 2017 / Revised: 21 November 2017 / Accepted: 23 November 2017 / Published: 26 November 2017
Cited by 1 | PDF Full-text (700 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
The relationship between α-tocopherol, a known antioxidant, and polyunsaturated fatty acid (PUFA) oxidation, has not been directly investigated in the primate brain. This study characterized the membrane distribution of α-tocopherol in brain regions and investigated the association between membrane α-tocopherol and PUFA content,
[...] Read more.
The relationship between α-tocopherol, a known antioxidant, and polyunsaturated fatty acid (PUFA) oxidation, has not been directly investigated in the primate brain. This study characterized the membrane distribution of α-tocopherol in brain regions and investigated the association between membrane α-tocopherol and PUFA content, as well as brain PUFA oxidation products. Nuclear, myelin, mitochondrial, and neuronal membranes were isolated using a density gradient from the prefrontal cortex (PFC), cerebellum (CER), striatum (ST), and hippocampus (HC) of adult rhesus monkeys (n = 9), fed a stock diet containing vitamin E (α-, γ-tocopherol intake: ~0.7 µmol/kg body weight/day, ~5 µmol/kg body weight/day, respectively). α-tocopherol, PUFAs, and PUFA oxidation products were measured using high performance liquid chromatography (HPLC), gas chromatography (GC) and liquid chromatography-gas chromatography/mass spectrometry (LC-GC/MS) respectively. α-Tocopherol (ng/mg protein) was highest in nuclear membranes (p < 0.05) for all regions except HC. In PFC and ST, arachidonic acid (AA, µg/mg protein) had a similar membrane distribution to α-tocopherol. Total α-tocopherol concentrations were inversely associated with AA oxidation products (isoprostanes) (p < 0.05), but not docosahexaenoic acid oxidation products (neuroprostanes). This study reports novel data on α-tocopherol accumulation in primate brain regions and membranes and provides evidence that α-tocopherol and AA are similarly distributed in PFC and ST membranes, which may reflect a protective effect of α-tocopherol against AA oxidation. Full article
(This article belongs to the Special Issue Vitamin E) Printed Edition available
Figures

Figure 1

Open AccessReview Carotenoids from Marine Organisms: Biological Functions and Industrial Applications
Antioxidants 2017, 6(4), 96; https://doi.org/10.3390/antiox6040096
Received: 27 September 2017 / Revised: 10 November 2017 / Accepted: 17 November 2017 / Published: 23 November 2017
Cited by 4 | PDF Full-text (4879 KB) | HTML Full-text | XML Full-text
Abstract
As is the case for terrestrial organisms, carotenoids represent the most common group of pigments in marine environments. They are generally biosynthesized by all autotrophic marine organisms, such as bacteria and archaea, algae and fungi. Some heterotrophic organisms also contain carotenoids probably accumulated
[...] Read more.
As is the case for terrestrial organisms, carotenoids represent the most common group of pigments in marine environments. They are generally biosynthesized by all autotrophic marine organisms, such as bacteria and archaea, algae and fungi. Some heterotrophic organisms also contain carotenoids probably accumulated from food or partly modified through metabolic reactions. These natural pigments are divided into two chemical classes: carotenes (such as lycopene and α- and β-carotene) that are composed of hydrogen and carbon; xanthophylls (such as astaxanthin, fucoxanthin and lutein), which are constituted by hydrogen, carbon and oxygen. Carotenoids, as antioxidant compounds, assume a key role in the protection of cells. In fact, quenching of singlet oxygen, light capture and photosynthesis protection are the most relevant biological functions of carotenoids. The present review aims at describing (i) the biological functions of carotenoids and their benefits for human health, (ii) the most common carotenoids from marine organisms and (iii) carotenoids having large success in pharmaceutical, nutraceutical and cosmeceutical industries, highlighting the scientific progress in marine species cultivation for natural pigments production. Full article
(This article belongs to the Special Issue Carotenoids—Antioxidant Properties)
Open AccessReview Vitamin E Bioavailability: Mechanisms of Intestinal Absorption in the Spotlight
Antioxidants 2017, 6(4), 95; https://doi.org/10.3390/antiox6040095
Received: 31 October 2017 / Revised: 14 November 2017 / Accepted: 16 November 2017 / Published: 22 November 2017
Cited by 2 | PDF Full-text (382 KB) | HTML Full-text | XML Full-text
Abstract
Vitamin E is an essential fat-soluble micronutrient whose effects on human health can be attributed to both antioxidant and non-antioxidant properties. A growing number of studies aim to promote vitamin E bioavailability in foods. It is thus of major interest to gain deeper
[...] Read more.
Vitamin E is an essential fat-soluble micronutrient whose effects on human health can be attributed to both antioxidant and non-antioxidant properties. A growing number of studies aim to promote vitamin E bioavailability in foods. It is thus of major interest to gain deeper insight into the mechanisms of vitamin E absorption, which remain only partly understood. It was long assumed that vitamin E was absorbed by passive diffusion, but recent data has shown that this process is actually far more complex than previously thought. This review describes the fate of vitamin E in the human gastrointestinal lumen during digestion and focuses on the proteins involved in the intestinal membrane and cellular transport of vitamin E across the enterocyte. Special attention is also given to the factors modulating both vitamin E micellarization and absorption. Although these latest results significantly improve our understanding of vitamin E intestinal absorption, further studies are still needed to decipher the molecular mechanisms driving this multifaceted process. Full article
(This article belongs to the Special Issue Vitamin E) Printed Edition available
Figures

Figure 1

Open AccessMeeting Report Symposium on Vitamin C, 15th September 2017; Part of the Linus Pauling Institute’s 9th International Conference on Diet and Optimum Health
Antioxidants 2017, 6(4), 94; https://doi.org/10.3390/antiox6040094
Received: 12 November 2017 / Revised: 17 November 2017 / Accepted: 18 November 2017 / Published: 21 November 2017
PDF Full-text (176 KB) | HTML Full-text | XML Full-text
Abstract
The Linus Pauling Institute’s 9th International Conference on Diet and Optimum Health took place on 13–15 September 2017 in Corvallis, OR, USA, on the beautiful Oregon State University campus [...]
Full article
(This article belongs to the Special Issue Vitamin C: Current Concepts in Human Physiology)
Open AccessReview Tocotrienols: A Family of Molecules with Specific Biological Activities
Antioxidants 2017, 6(4), 93; https://doi.org/10.3390/antiox6040093
Received: 24 October 2017 / Revised: 8 November 2017 / Accepted: 16 November 2017 / Published: 18 November 2017
Cited by 2 | PDF Full-text (802 KB) | HTML Full-text | XML Full-text
Abstract
Vitamin E is a generic term frequently used to group together eight different molecules, namely: α-, β-, γ- and δ-tocopherol and the corresponding tocotrienols. The term tocopherol and eventually Vitamin E and its related activity was originally based on the capacity of countering
[...] Read more.
Vitamin E is a generic term frequently used to group together eight different molecules, namely: α-, β-, γ- and δ-tocopherol and the corresponding tocotrienols. The term tocopherol and eventually Vitamin E and its related activity was originally based on the capacity of countering foetal re-absorption in deficient rodents or the development of encephalomalacia in chickens. In humans, Vitamin E activity is generally considered to be solely related to the antioxidant properties of the tocolic chemical structure. In recent years, several reports have shown that specific activities exist for each different tocotrienol form. In this short review, tocotrienol ability to inhibit cancer cell growth and induce apoptosis thanks to specific mechanisms, not shared by tocopherols, such as the binding to Estrogen Receptor-β (ERβ) and the triggering of endoplasmic reticulum (EndoR) stress will be described. The neuroprotective activity will also be presented and discussed. We propose that available studies strongly indicate that specific forms of tocotrienols have a distinct mechanism and biological activity, significantly different from tocopherol and more specifically from α-tocopherol. We therefore suggest not pooling them together within the broad term “Vitamin E” on solely the basis of their putative antioxidant properties. This option implies obvious consequences in the assessment of dietary Vitamin E adequacy and, probably more importantly, on the possibility of evaluating a separate biological variable, determinant in the relationship between diet and health. Full article
(This article belongs to the Special Issue Vitamin E) Printed Edition available
Figures

Graphical abstract

Open AccessArticle MnSOD and Cyclin B1 Coordinate a Mito-Checkpoint during Cell Cycle Response to Oxidative Stress
Antioxidants 2017, 6(4), 92; https://doi.org/10.3390/antiox6040092
Received: 29 September 2017 / Revised: 8 November 2017 / Accepted: 14 November 2017 / Published: 17 November 2017
PDF Full-text (3369 KB) | HTML Full-text | XML Full-text
Abstract
Communication between the nucleus and mitochondrion could coordinate many cellular processes. While the mechanisms regulating this communication are not completely understood, we hypothesize that cell cycle checkpoint proteins coordinate the cross-talk between nuclear and mitochondrial functions following oxidative stress. Human normal skin fibroblasts,
[...] Read more.
Communication between the nucleus and mitochondrion could coordinate many cellular processes. While the mechanisms regulating this communication are not completely understood, we hypothesize that cell cycle checkpoint proteins coordinate the cross-talk between nuclear and mitochondrial functions following oxidative stress. Human normal skin fibroblasts, representative of the G2-phase, were irradiated with 6 Gy of ionizing radiation and assayed for cyclin B1 translocation, mitochondrial function, reactive oxygen species (ROS) levels, and cytotoxicity. In un-irradiated controls, cyclin B1 was found primarily in the nucleus of G2-cells. However, following irradiation, cyclin B1 was excluded from the nucleus and translocated to the cytoplasm and mitochondria. These observations were confirmed further by performing transmission electron microscopy and cell fractionation assays. Cyclin B1 was absent in mitochondria isolated from un-irradiated G2-cells and present in irradiated G2-cells. Radiation-induced translocation of cyclin B1 from the nucleus to the mitochondrion preceded changes in the activities of mitochondrial proteins, that included decreases in the activities of aconitase and the mitochondrial antioxidant enzyme, manganese superoxide dismutase (MnSOD), and increases in complex II activity. Changes in the activities of mito-proteins were followed by an increase in dihydroethidium (DHE) oxidation (indicative of increased superoxide levels) and loss of the mitochondrial membrane potential, events that preceded the restart of the stalled cell cycle and subsequently the loss in cell viability. Comparable results were also observed in un-irradiated control cells overexpressing mitochondria-targeted cyclin B1. These results indicate that MnSOD and cyclin B1 coordinate a cross-talk between nuclear and mitochondrial functions, to regulate a mito-checkpoint during the cell cycle response to oxidative stress. Full article
(This article belongs to the Special Issue Superoxide Dismutase (SOD) Enzymes, Mimetics and Oxygen Radicals)
Figures

Figure 1a

Open AccessReview Bioactive Components in Moringa Oleifera Leaves Protect against Chronic Disease
Antioxidants 2017, 6(4), 91; https://doi.org/10.3390/antiox6040091
Received: 20 October 2017 / Revised: 9 November 2017 / Accepted: 15 November 2017 / Published: 16 November 2017
Cited by 2 | PDF Full-text (589 KB) | HTML Full-text | XML Full-text
Abstract
Moringa Oleifera (MO), a plant from the family Moringacea is a major crop in Asia and Africa. MO has been studied for its health properties, attributed to the numerous bioactive components, including vitamins, phenolic acids, flavonoids, isothiocyanates, tannins and saponins, which
[...] Read more.
Moringa Oleifera (MO), a plant from the family Moringacea is a major crop in Asia and Africa. MO has been studied for its health properties, attributed to the numerous bioactive components, including vitamins, phenolic acids, flavonoids, isothiocyanates, tannins and saponins, which are present in significant amounts in various components of the plant. Moringa Oleifera leaves are the most widely studied and they have shown to be beneficial in several chronic conditions, including hypercholesterolemia, high blood pressure, diabetes, insulin resistance, non-alcoholic liver disease, cancer and overall inflammation. In this review, we present information on the beneficial results that have been reported on the prevention and alleviation of these chronic conditions in various animal models and in cell studies. The existing limited information on human studies and Moringa Oleifera leaves is also presented. Overall, it has been well documented that Moringa Oleifera leaves are a good strategic for various conditions associated with heart disease, diabetes, cancer and fatty liver. Full article
(This article belongs to the Special Issue Dietary Antioxidants and Prevention of Non-Communicable Diseases)
Figures

Figure 1

Open AccessReview Nox, Reactive Oxygen Species and Regulation of Vascular Cell Fate
Antioxidants 2017, 6(4), 90; https://doi.org/10.3390/antiox6040090
Received: 2 October 2017 / Revised: 21 October 2017 / Accepted: 7 November 2017 / Published: 14 November 2017
Cited by 4 | PDF Full-text (2483 KB) | HTML Full-text | XML Full-text
Abstract
The generation of reactive oxygen species (ROS) and an imbalance of antioxidant defence mechanisms can result in oxidative stress. Several pro-atherogenic stimuli that promote intimal-medial thickening (IMT) and early arteriosclerotic disease progression share oxidative stress as a common regulatory pathway dictating vascular cell
[...] Read more.
The generation of reactive oxygen species (ROS) and an imbalance of antioxidant defence mechanisms can result in oxidative stress. Several pro-atherogenic stimuli that promote intimal-medial thickening (IMT) and early arteriosclerotic disease progression share oxidative stress as a common regulatory pathway dictating vascular cell fate. The major source of ROS generated within the vascular system is the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family of enzymes (Nox), of which seven members have been characterized. The Nox family are critical determinants of the redox state within the vessel wall that dictate, in part the pathophysiology of several vascular phenotypes. This review highlights the putative role of ROS in controlling vascular fate by promoting endothelial dysfunction, altering vascular smooth muscle phenotype and dictating resident vascular stem cell fate, all of which contribute to intimal medial thickening and vascular disease progression. Full article
(This article belongs to the Special Issue ROS Derived from NADPH Oxidase (NOX) in Angiogenesis)
Figures

Figure 1

Back to Top