Patient-Derived Cancer Models from Basic Study to Clinical Application

A special issue of Cells (ISSN 2073-4409).

Deadline for manuscript submissions: closed (31 May 2019) | Viewed by 186138

Special Issue Editor


E-Mail Website
Guest Editor
Division of Pharmacoproteomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
Interests: rare cancer research; sarcoma; proteogenomics; applications of patient-derived cancer model
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Patient-derived cancer models are essential tools in both basic cancer research and pre-clinical studies. Such models are generated either by inoculating tumor tissues into experimental animals, such as mouse and chicken egg, or by maintaining tumor cells under in vitro tissue culture conditions. Patient-derived cancer models have been used extensively in cancer research, and our current understanding of tumor biology is largely based on the results of experiments using these models. Moreover, based on the assumption that patient-derived cancer models can faithfully reflect the therapeutic response of human cancers, these models have been used in the screening and evaluation of drug candidates and in the investigation of novel drugs’ indications. These models may also be potent to predict the response of individual patients to various treatments, thereby facilitating clinical trials and contributing to precision medicine. Although the utility of such models is obvious in basic research and seems promising in clinical applications, they have several limitations. For example, global gene and protein studies have revealed significant similarities but also dissimilarities between clinical tumors and their models. This suggests that the models may not represent the clinical and biological characteristics of each cancer sufficiently. Moreover, the take rate of common subcutaneous xenografts varies across different cancers and is less than 50% on average. Therefore, the current cancer models may not be applicable to routine clinical practice. Taken together, we need to understand the characteristics of cancer, optimize the specifics of cancer models, and generate novel models that faithfully reproduce the critical clinical features of various cancers. This Special Issue of Cells should improve our understanding of the possibilities and limitations of patient-derived cancer models by including works from investigators both performing cancer research using patient-derived cancer models and engaged in developing novel cancer models. I hope that this Special issue of Cells will contribute to the advance of cancer research through patient-derived cancer models and lead to the development of novel therapies for patients with cancer in the future.

Dr. Tadashi Kondo
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Cells is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • patient-derived cancer model
  • xenograft
  • cell line
  • organoid
  • omics study
  • drug sensitivity
  • clinical trial

Published Papers (25 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 1283 KiB  
Article
Synergistic and Pharmacotherapeutic Effects of Gemcitabine and Cisplatin Combined Administration on Biliary Tract Cancer Cell Lines
by Yasunari Sakamoto, Seri Yamagishi, Takuji Okusaka and Hidenori Ojima
Cells 2019, 8(9), 1026; https://doi.org/10.3390/cells8091026 - 03 Sep 2019
Cited by 2 | Viewed by 3424
Abstract
Gemcitabine (GEM) and cisplatin (CDDP) combination therapy (GC) is the standard chemotherapy for advanced biliary tract cancer (BTC); however, its pharmacotherapeutic efficacy remains unclear. To investigate the effects of GC, we selected 11 from 17 BTC cell lines, according to their GEM sensitivity, [...] Read more.
Gemcitabine (GEM) and cisplatin (CDDP) combination therapy (GC) is the standard chemotherapy for advanced biliary tract cancer (BTC); however, its pharmacotherapeutic efficacy remains unclear. To investigate the effects of GC, we selected 11 from 17 BTC cell lines, according to their GEM sensitivity, to be assessed using the MTS assay. The presence of synergistic effects of GC was determined using the Bliss additivism model (BM) and the combination index (CI) at a GEM:CDDP molar ratio of 7:1; this ratio was based on the respective human renal clearances of the two drugs. The pharmacotherapeutic effects were evaluated by comparing the IC50 values for administrations of GEM alone and GC in combination. All cell lines showed synergistic effects when analyzed using the BM. Based on the CI values, strong synergism, synergism, and additive effects were seen in four, five, and two cell lines, respectively. For all four GEM-resistant cell lines, on which GC had strong synergistic effects, the pharmacotherapeutic effects of GC were disappointing, with all IC50 values > 1 µM. For the GEM-effective cell lines, on which GC had synergistic or additive effects, the IC50 values were all <1 µM, and the differences were small between the IC50s for administration of GEM alone and GC in combination. Our results suggest that GC has synergistic effects on BTC cell lines but that its pharmacotherapeutic effects are inadequate. Full article
Show Figures

Figure 1

19 pages, 3372 KiB  
Article
Induction of Acquired Resistance towards EGFR Inhibitor Gefitinib in a Patient-Derived Xenograft Model of Non-Small Cell Lung Cancer and Subsequent Molecular Characterization
by Julia Schueler, Cordula Tschuch, Kerstin Klingner, Daniel Bug, Anne-Lise Peille, Leanne de Koning, Eva Oswald, Hagen Klett and Wolfgang Sommergruber
Cells 2019, 8(7), 740; https://doi.org/10.3390/cells8070740 - 18 Jul 2019
Cited by 12 | Viewed by 4828
Abstract
In up to 30% of non-small cell lung cancer (NSCLC) patients, the oncogenic driver of tumor growth is a constitutively activated epidermal growth factor receptor (EGFR). Although these patients gain great benefit from treatment with EGFR tyrosine kinase inhibitors, the development of resistance [...] Read more.
In up to 30% of non-small cell lung cancer (NSCLC) patients, the oncogenic driver of tumor growth is a constitutively activated epidermal growth factor receptor (EGFR). Although these patients gain great benefit from treatment with EGFR tyrosine kinase inhibitors, the development of resistance is inevitable. To model the emergence of drug resistance, an EGFR-driven, patient-derived xenograft (PDX) NSCLC model was treated continuously with Gefitinib in vivo. Over a period of more than three months, three separate clones developed and were subsequently analyzed: Whole exome sequencing and reverse phase protein arrays (RPPAs) were performed to identify the mechanism of resistance. In total, 13 genes were identified, which were mutated in all three resistant lines. Amongst them the mutations in NOMO2, ARHGEF5 and SMTNL2 were predicted as deleterious. The 53 mutated genes specific for at least two of the resistant lines were mainly involved in cell cycle activities or the Fanconi anemia pathway. On a protein level, total EGFR, total Axl, phospho-NFκB, and phospho-Stat1 were upregulated. Stat1, Stat3, MEK1/2, and NFκB displayed enhanced activation in the resistant clones determined by the phosphorylated vs. total protein ratio. In summary, we developed an NSCLC PDX line modelling possible escape mechanism under EGFR treatment. We identified three genes that have not been described before to be involved in an acquired EGFR resistance. Further functional studies are needed to decipher the underlying pathway regulation. Full article
Show Figures

Figure 1

18 pages, 6512 KiB  
Article
Impact of Tumour Hypoxia on Evofosfamide Sensitivity in Head and Neck Squamous Cell Carcinoma Patient-Derived Xenograft Models
by Julia K. Harms, Tet-Woo Lee, Tao Wang, Amy Lai, Dennis Kee, John M. Chaplin, Nick P. McIvor, Francis W. Hunter, Andrew M. J. Macann, William R. Wilson and Stephen M.F. Jamieson
Cells 2019, 8(7), 717; https://doi.org/10.3390/cells8070717 - 13 Jul 2019
Cited by 15 | Viewed by 4286
Abstract
Tumour hypoxia is a marker of poor prognosis and failure of chemoradiotherapy in head and neck squamous cell carcinoma (HNSCC), providing a strategy for therapeutic intervention in this setting. To evaluate the utility of the hypoxia-activated prodrug evofosfamide (TH-302) in HNSCC, we established [...] Read more.
Tumour hypoxia is a marker of poor prognosis and failure of chemoradiotherapy in head and neck squamous cell carcinoma (HNSCC), providing a strategy for therapeutic intervention in this setting. To evaluate the utility of the hypoxia-activated prodrug evofosfamide (TH-302) in HNSCC, we established ten early passage patient-derived xenograft (PDX) models of HNSCC that were characterised by their histopathology, hypoxia status, gene expression, and sensitivity to evofosfamide. All PDX models closely resembled the histology of the patient tumours they were derived from. Pimonidazole-positive tumour hypoxic fractions ranged from 1.7–7.9% in line with reported HNSCC clinical values, while mRNA expression of the Toustrup hypoxia gene signature showed close correlations between PDX and matched patient tumours, together suggesting the PDX models may accurately model clinical tumour hypoxia. Evofosfamide as a single agent (50 mg/kg IP, qd × 5 for three weeks) demonstrated antitumour efficacy that was variable across the PDX models, ranging from complete regressions in one p16-positive PDX model to lack of significant activity in the three most resistant models. Despite all PDX models showing evidence of tumour hypoxia, and hypoxia being essential for activation of evofosfamide, the antitumour activity of evofosfamide only weakly correlated with tumour hypoxia status determined by pimonidazole immunohistochemistry. Other candidate evofosfamide sensitivity genes—MKI67, POR, and SLFN11—did not strongly influence evofosfamide sensitivity in univariate analyses, although a weak significant relationship with MKI67 was observed, while SLFN11 expression was lost in PDX tumours. Overall, these data confirm that evofosfamide has antitumour activity in clinically-relevant PDX tumour models of HNSCC and support further clinical evaluation of this drug in HNSCC patients. Further research is required to identify those factors that, alongside hypoxia, can influence sensitivity to evofosfamide and could act as predictive biomarkers to support its use in precision medicine therapy of HNSCC. Full article
Show Figures

Figure 1

15 pages, 5386 KiB  
Article
A Novel Assay for Profiling GBM Cancer Model Heterogeneity and Drug Screening
by Christian T. Stackhouse, James R. Rowland, Rachael S. Shevin, Raj Singh, G. Yancey Gillespie and Christopher D. Willey
Cells 2019, 8(7), 702; https://doi.org/10.3390/cells8070702 - 11 Jul 2019
Cited by 5 | Viewed by 4249
Abstract
Accurate patient-derived models of cancer are needed for profiling the disease and for testing therapeutics. These models must not only be accurate, but also suitable for high-throughput screening and analysis. Here we compare two derivative cancer models, microtumors and spheroids, to the gold [...] Read more.
Accurate patient-derived models of cancer are needed for profiling the disease and for testing therapeutics. These models must not only be accurate, but also suitable for high-throughput screening and analysis. Here we compare two derivative cancer models, microtumors and spheroids, to the gold standard model of patient-derived orthotopic xenografts (PDX) in glioblastoma multiforme (GBM). To compare these models, we constructed a custom NanoString panel of 350 genes relevant to GBM biology. This custom assay includes 16 GBM-specific gene signatures including a novel GBM subtyping signature. We profiled 11 GBM-PDX with matched orthotopic cells, derived microtumors, and derived spheroids using the custom NanoString assay. In parallel, these derivative models underwent drug sensitivity screening. We found that expression of certain genes were dependent on the cancer model while others were model-independent. These model-independent genes can be used in profiling tumor-specific biology and in gauging therapeutic response. It remains to be seen whether or not cancer model-specific genes may be directly or indirectly, through changes to tumor microenvironment, manipulated to improve the concordance of in vitro derivative models with in vivo models yielding better prediction of therapeutic response. Full article
Show Figures

Figure 1

15 pages, 3160 KiB  
Article
An Ex-Vivo Culture System of Ovarian Cancer Faithfully Recapitulating the Pathological Features of Primary Tumors
by Farhana Ishrat Ghani, Kasumi Dendo, Reiko Watanabe, Kenji Yamada, Yuki Yoshimatsu, Takashi Yugawa, Tomomi Nakahara, Katsuyuki Tanaka, Hiroshi Yoshida, Masayuki Yoshida, Mitsuya Ishikawa, Naoki Goshima, Tomoyasu Kato and Tohru Kiyono
Cells 2019, 8(7), 644; https://doi.org/10.3390/cells8070644 - 26 Jun 2019
Cited by 8 | Viewed by 5125
Abstract
The success rate of establishing human cancer cell lines is not satisfactory and the established cell lines often do not preserve the molecular and histological features of the original tissues. In this study, we developed a novel culture method which can support proliferation [...] Read more.
The success rate of establishing human cancer cell lines is not satisfactory and the established cell lines often do not preserve the molecular and histological features of the original tissues. In this study, we developed a novel culture method which can support proliferation of almost all primary epithelial ovarian cancer cells, as well as primary normal human oviductal epithelial cells. Cancer cells from fresh or frozen specimens were enriched by the anti-EpCAM antibody-conjugated magnetic beads, plated on Matrigel-coated plate and cultivated under the optimized culture conditions. Seventeen newly established ovarian cancer cell lines, which included all four major histotypes of ovarian cancer, were confirmed to express histotype-specific markers in vitro. Some of the cell lines from all the four histotypes, except mucinous type, generated tumors in immune-deficient mice and the xenograft tumor tissues recapitulated the corresponding original tissues faithfully. Furthermore, with poorly tumorigenic cell lines including mucinous type, we developed a novel xenograft model which could reconstruct the original tissue architecture through forced expression of a set of oncogenes followed by its silencing. With combination of the novel culture method and cell-derived xenograft system, virtually every epithelial ovarian cancer can be reconstituted in mice in a timely fashion. Full article
Show Figures

Figure 1

18 pages, 1648 KiB  
Article
Development of Personalized Therapeutic Strategies by Targeting Actionable Vulnerabilities in Metastatic and Chemotherapy-Resistant Breast Cancer PDXs
by Simona Punzi, Marine Meliksetian, Laura Riva, Federica Marocchi, Giancarlo Pruneri, Carmen Criscitiello, Franco Orsi, Lorenzo Spaggiari, Monica Casiraghi, Paolo Della Vigna, Lucilla Luzi, Giuseppe Curigliano, Pier Giuseppe Pelicci and Luisa Lanfrancone
Cells 2019, 8(6), 605; https://doi.org/10.3390/cells8060605 - 18 Jun 2019
Cited by 12 | Viewed by 4484
Abstract
Human breast cancer is characterized by a high degree of inter-patients heterogeneity in terms of histology, genomic alterations, gene expression patterns, and metastatic behavior, which deeply influences individual prognosis and treatment response. The main cause of mortality in breast cancer is the therapy-resistant [...] Read more.
Human breast cancer is characterized by a high degree of inter-patients heterogeneity in terms of histology, genomic alterations, gene expression patterns, and metastatic behavior, which deeply influences individual prognosis and treatment response. The main cause of mortality in breast cancer is the therapy-resistant metastatic disease, which sets the priority for novel treatment strategies for these patients. In the present study, we demonstrate that Patient Derived Xenografts (PDXs) that were obtained from metastatic and therapy-resistant breast cancer samples recapitulate the wide spectrum of the disease in terms of histologic subtypes and mutational profiles, as evaluated by whole exome sequencing. We have integrated genomic and transcriptomic data to identify oncogenic and actionable pathways in each PDX. By taking advantage of primary short-term in vitro cultures from PDX tumors, we showed their resistance to standard chemotherapy (Paclitaxel), as seen in the patients. Moreover, we selected targeting drugs and analyzed PDX sensitivity to single agents or to combination of targeted and standard therapy on the basis of PDX-specific genomic or transcriptomic alterations. Our data demonstrate that PDXs represent a suitable model to test new targeting drugs or drug combinations and to prioritize personalized therapeutic regimens for pre-clinal and clinical tests. Full article
Show Figures

Graphical abstract

14 pages, 4295 KiB  
Article
Establishment of Novel Gastric Cancer Patient-Derived Xenografts and Cell Lines: Pathological Comparison between Primary Tumor, Patient-Derived, and Cell-Line Derived Xenografts
by Takeshi Kuwata, Kazuyoshi Yanagihara, Yuki Iino, Teruo Komatsu, Atsushi Ochiai, Shigeki Sekine, Hirokazu Taniguchi, Hitoshi Katai, Takahiro Kinoshita and Atsushi Ohtsu
Cells 2019, 8(6), 585; https://doi.org/10.3390/cells8060585 - 14 Jun 2019
Cited by 24 | Viewed by 4177
Abstract
Patient-derived xenograft (PDX) models have been recognized as being more suitable for predicting therapeutic efficacy than cell-culture models. However, there are several limitations in applying PDX models in preclinical studies, including their availability—especially for cancers such as gastric cancer—that are not frequently encountered [...] Read more.
Patient-derived xenograft (PDX) models have been recognized as being more suitable for predicting therapeutic efficacy than cell-culture models. However, there are several limitations in applying PDX models in preclinical studies, including their availability—especially for cancers such as gastric cancer—that are not frequently encountered in Western countries. In addition, the differences in morphology between primary, PDX, and tumor cell line-derived xenograft (CDX) models have not been well established. In this study, we aimed to establish a series of gastric cancer PDXs and cell-lines from a relatively large number of gastric cancer patients. We also investigated the clinicopathological factors associated with the establishment of PDX and CDX models, and compared the histology between the primary tumor, PDX, and CDX that originated from the same patient. We engrafted 232 gastric cancer tissues into immune-deficient mice subcutaneously and successfully established 35 gastric cancer PDX models (15.1% success rate). Differentiated type adenocarcinomas (DAs, 19.4%) were more effectively established than poorly differentiated type adenocarcinomas (PDAs, 10.8%). For establishing CDXs, the success rate was less influenced by histological differentiation grade (DA vs. PDA, 12.1% vs. 9.8%). In addition, concordance of histological differentiation grade between primary tumors and PDXs was significant (p < 0.01), while concordance between primary tumors and CDXs was not. Among clinicopathological factors investigated, pathological nodal metastasis status (pN) was significantly associated with the success rate of PDX establishment. Although establishing cell lines from ascites fluid was more efficient (41.2%, 7/17) than resected tissues, it should be noted that all CDXs from ascites fluid had the PDA phenotype. In conclusion, we established 35 PDX and 32 CDX models from 249 gastric cancer patients; among them, 21 PDX/CDX models were established from the same patients. Our findings may provide helpful insights for establishing PDX and CDX models not only from gastric but from other cancer types, as well as select preclinical models for developing new therapeutics. Full article
Show Figures

Figure 1

17 pages, 6551 KiB  
Article
An Effective Primary Head and Neck Squamous Cell Carcinoma In Vitro Model
by Felix Oppel, Senyao Shao, Matthias Schürmann, Peter Goon, Andreas E. Albers and Holger Sudhoff
Cells 2019, 8(6), 555; https://doi.org/10.3390/cells8060555 - 07 Jun 2019
Cited by 17 | Viewed by 4422
Abstract
Head and neck squamous cell carcinoma is a highly malignant disease and research is needed to find new therapeutic approaches. Faithful experimental models are required for this purpose. Here, we describe the specific cell culture conditions enabling the efficient establishment of primary cell [...] Read more.
Head and neck squamous cell carcinoma is a highly malignant disease and research is needed to find new therapeutic approaches. Faithful experimental models are required for this purpose. Here, we describe the specific cell culture conditions enabling the efficient establishment of primary cell culture models. Whereas a classical 10% serum-containing medium resulted in the growth of fibroblast-like cells that outcompeted epithelial cells, we found that the use of specific culture conditions enabled the growth of epithelial tumor cells from HPV+ and HPV− head and neck cancer tissue applicable for research. EpCAM and high Thy-1 positivity on the cell surface were mutually exclusive and distinguished epithelial and fibroblast-like subpopulations in all primary cultures examined and thus can be used to monitor stromal contamination and epithelial cell content. Interestingly, cells of an individual patient developed tumor spheroids in suspension without the use of ultra-low attachment plates, whereas all other samples exclusively formed adherent cell layers. Spheroid cells were highly positive for ALDH1A1 and hence displayed a phenotype reminiscent of tumor stem cells. Altogether, we present a system to establish valuable primary cell culture models from head and neck cancer tissue at high efficiency that might be applicable in other tumor entities as well. Full article
Show Figures

Figure 1

13 pages, 6847 KiB  
Article
Patient-Derived Non-Muscular Invasive Bladder Cancer Xenografts of Main Molecular Subtypes of the Tumor for Anti-Pd-l1 Treatment Assessment
by Ekaterina Blinova, Dmitry Roshchin, Evgenya Kogan, Elena Samishina, Tatiana Demura, Olga Deryabina, Irina Suslova, Dmitry Blinov, Pavel Zhdanov, Usif Osmanov, Mikhail Nelipa and Andrey Kaprin
Cells 2019, 8(6), 526; https://doi.org/10.3390/cells8060526 - 31 May 2019
Cited by 14 | Viewed by 3527
Abstract
Background: Establishment of heterotopic patient-derived xenografts of primary and relapsed non-muscular invasive bladder cancer (NMIBC) to explore the biological property of PD-L1 signaling that may impact bladder tumor growth in humanized animals. Methods: Tumor cells of luminal, basal, and p53 subtypes of primary [...] Read more.
Background: Establishment of heterotopic patient-derived xenografts of primary and relapsed non-muscular invasive bladder cancer (NMIBC) to explore the biological property of PD-L1 signaling that may impact bladder tumor growth in humanized animals. Methods: Tumor cells of luminal, basal, and p53 subtypes of primary and relapsed NMIBC were engrafted to irradiated (3.5 Gy) NOG/SCID female mice along with intraperitoneal transplantation of human lymphocytes (5 × 107 cells/mouse); a role of PD-L1 signaling pathway inhibition for bladder cancer growth was assessed in humanized animals that carried PD-L1-expressing main molecular subtypes of bladder carcinoma patient-derived xenografts (PDX) and provided with selective anti-PD-L1 treatment. We used two-tailed Student’s t test to explore differences between main and control subgroups. Significance of intergroup comparison was measured with one-way ANOVA followed by the Tukey’s or Newman–Keul’s criterion. Survival curves were analyzed with the Gehan’s criterion with the Yate’s correction. The Spearman’s correlation was used to assess the link between CD8+ expression and sPD-L1 serum level. Differences were considered statistically significant at p < 0.05. Results: Heterotopic primary and relapsed luminal, basal, and p53 subtypes of NMIBC PDXs were established. More than 25% of counted tumor cells of all PDX specimens expressed PD-L1, so the tumors were ranged as PD-L1 positive. Anti-PD-L1 intervention increased survival of the animals that carried both primary and relapsed luminal noninvasive, muscular invasive, and relapsed luminal bladder cancer xenografts. There was significant retardation of tumor volume duplication time in aforementioned subgroups correlated with PD-L1 expression. Bad response of p53 mutant subtypes of NMIBC on specific anti-PD-L1 treatment may be associated with low CD8+ cells representation into the tumors tissue. Conclusions: Established PD-L1-positive NMIBC PDXs differently replied on anti-PD-L1 treatment due to both NMIBC molecular subtype and tumor T-suppressors population. The results may have major implications for further clinical investigations. Full article
Show Figures

Graphical abstract

13 pages, 2870 KiB  
Article
Improved Oxygen Supply to Multicellular Spheroids Using A Gas-permeable Plate and Embedded Hydrogel Beads
by Hirotaka Mihara, Mai Kugawa, Kanae Sayo, Fumiya Tao, Marie Shinohara, Masaki Nishikawa, Yasuyuki Sakai, Takeshi Akama and Nobuhiko Kojima
Cells 2019, 8(6), 525; https://doi.org/10.3390/cells8060525 - 31 May 2019
Cited by 12 | Viewed by 4914
Abstract
Culture systems for three-dimensional tissues, such as multicellular spheroids, are indispensable for high-throughput screening of primary or patient-derived xenograft (PDX)-expanded cancer tissues. Oxygen supply to the center of such spheroids is particularly critical for maintaining cellular functions as well as avoiding the development [...] Read more.
Culture systems for three-dimensional tissues, such as multicellular spheroids, are indispensable for high-throughput screening of primary or patient-derived xenograft (PDX)-expanded cancer tissues. Oxygen supply to the center of such spheroids is particularly critical for maintaining cellular functions as well as avoiding the development of a necrotic core. In this study, we evaluated two methods to enhance oxygen supply: (1) using a culture plate with a gas-permeable polydimethylsiloxane (PDMS) membrane on the bottom, and; (2) embedding hydrogel beads in the spheroids. Culturing spheroids on PDMS increased cell growth and affected glucose/lactate metabolism and CYP3A4 mRNA expression and subsequent enzyme activity. The spheroids, comprised of 5000 Hep G2 cells and 5000 20 µm-diameter hydrogel beads, did not develop a necrotic core for nine days when cultured on a gas-permeable sheet. In contrast, central necrosis in spheroids lacking hydrogel beads was observed after day 3 of culture, even when using PDMS. These results indicate that the combination of gas-permeable culture equipment and embedded hydrogel beads improves culture 3D spheroids produced from primary or PDX-expanded tumor cells. Full article
Show Figures

Figure 1

15 pages, 4203 KiB  
Article
Establishment of Highly Transplantable Cholangiocarcinoma Cell Lines from a Patient-Derived Xenograft Mouse Model
by Kulthida Vaeteewoottacharn, Chawalit Pairojkul, Ryusho Kariya, Kanha Muisuk, Kanokwan Imtawil, Yaovalux Chamgramol, Vajarabhongsa Bhudhisawasdi, Narong Khuntikeo, Ake Pugkhem, O-Tur Saeseow, Atit Silsirivanit, Chaisiri Wongkham, Sopit Wongkham and Seiji Okada
Cells 2019, 8(5), 496; https://doi.org/10.3390/cells8050496 - 23 May 2019
Cited by 26 | Viewed by 6247
Abstract
Cholangiocarcinoma (CCA) is a deadly malignant tumor of the liver. It is a significant health problem in Thailand. The critical obstacles of CCA diagnosis and treatment are the high heterogeneity of disease and considerable resistance to treatment. Recent multi-omics studies revealed the promising [...] Read more.
Cholangiocarcinoma (CCA) is a deadly malignant tumor of the liver. It is a significant health problem in Thailand. The critical obstacles of CCA diagnosis and treatment are the high heterogeneity of disease and considerable resistance to treatment. Recent multi-omics studies revealed the promising targets for CCA treatment; however, limited models for drug discovery are available. This study aimed to develop a patient-derived xenograft (PDX) model as well as PDX-derived cell lines of CCA for future drug screening. From a total of 16 CCA frozen tissues, 75% (eight intrahepatic and four extrahepatic subtypes) were successfully grown and subpassaged in Balb/c Rag-2-/-/Jak3-/- mice. A shorter duration of PDX growth was observed during F0 to F2 transplantation; concomitantly, increased Oct-3/4 and Sox2 were evidenced in 50% and 33%, respectively, of serial PDXs. Only four cell lines were established. The cell lines exhibited either bile duct (KKK-D049 and KKK-D068) or combined hepatobiliary origin (KKK-D131 and KKK-D138). These cell lines acquired high transplantation efficiency in both subcutaneous (100%) and intrasplenic (88%) transplantation models. The subcutaneously transplanted xenograft retained the histological architecture as in the patient tissues. Our models of CCA PDX and PDX-derived cell lines would be a useful platform for CCA precision medicine. Full article
Show Figures

Figure 1

18 pages, 19224 KiB  
Article
An In Vitro System for Evaluating Molecular Targeted Drugs Using Lung Patient-Derived Tumor Organoids
by Nobuhiko Takahashi, Hirotaka Hoshi, Arisa Higa, Gen Hiyama, Hirosumi Tamura, Mayu Ogawa, Kosuke Takagi, Kazuhito Goda, Naoyuki Okabe, Satoshi Muto, Hiroyuki Suzuki, Kenju Shimomura, Shinya Watanabe and Motoki Takagi
Cells 2019, 8(5), 481; https://doi.org/10.3390/cells8050481 - 20 May 2019
Cited by 36 | Viewed by 9911
Abstract
Patient-derived tumor organoids (PDOs) represent a promising preclinical cancer model that better replicates disease, compared with traditional cell culture models. We have established PDOs from various human tumors to accurately and efficiently recapitulate the tissue architecture and function. Molecular targeted therapies with remarkable [...] Read more.
Patient-derived tumor organoids (PDOs) represent a promising preclinical cancer model that better replicates disease, compared with traditional cell culture models. We have established PDOs from various human tumors to accurately and efficiently recapitulate the tissue architecture and function. Molecular targeted therapies with remarkable efficacy are currently in use against various tumors. Thus, there is a need for in vitro functional-potency assays that can be used to test the efficacy of molecular targeted drugs and model complex interactions between immune cells and tumor cells to evaluate the potential for cancer immunotherapy. This study represents an in vitro evaluation of different classes of molecular targeted drugs, including small-molecule inhibitors, monoclonal antibodies, and an antibody-drug conjugate, using lung PDOs. We evaluated epidermal growth factor receptor and human epidermal growth factor receptor 2 (HER2) inhibitors using a suitable high-throughput assay system. Next, the antibody-dependent cellular cytotoxicity (ADCC) activity of an anti-HER2 monoclonal antibody was evaluated to visualize the interactions of immune cells with PDOs during ADCC responses. Moreover, an evaluation system was developed for the immune checkpoint inhibitors, nivolumab and pembrolizumab, using PDOs. Our results demonstrate that the in vitro assay systems using PDOs were suitable for evaluating molecular targeted drugs under conditions that better reflect pathological conditions. Full article
Show Figures

Figure 1

13 pages, 2654 KiB  
Article
Systematic Generation of Patient-Derived Tumor Models in Pancreatic Cancer
by Karl Roland Ehrenberg, Jianpeng Gao, Felix Oppel, Stephanie Frank, Na Kang, Tim Kindinger, Sebastian M. Dieter, Friederike Herbst, Lino Möhrmann, Taronish D. Dubash, Erik R. Schulz, Hendrik Strakerjahn, Klara M. Giessler, Sarah Weber, Ava Oberlack, Eva-Maria Rief, Oliver Strobel, Frank Bergmann, Felix Lasitschka, Jürgen Weitz, Hanno Glimm and Claudia R. Balladd Show full author list remove Hide full author list
Cells 2019, 8(2), 142; https://doi.org/10.3390/cells8020142 - 10 Feb 2019
Cited by 10 | Viewed by 5424
Abstract
In highly aggressive malignancies like pancreatic cancer (PC), patient-derived tumor models can serve as disease-relevant models to understand disease-related biology as well as to guide clinical decision-making. In this study, we describe a two-step protocol allowing systematic establishment of patient-derived primary cultures from [...] Read more.
In highly aggressive malignancies like pancreatic cancer (PC), patient-derived tumor models can serve as disease-relevant models to understand disease-related biology as well as to guide clinical decision-making. In this study, we describe a two-step protocol allowing systematic establishment of patient-derived primary cultures from PC patient tumors. Initial xenotransplantation of surgically resected patient tumors (n = 134) into immunodeficient mice allows for efficient in vivo expansion of vital tumor cells and successful tumor expansion in 38% of patient tumors (51/134). Expansion xenografts closely recapitulate the histoarchitecture of their matching patients’ primary tumors. Digestion of xenograft tumors and subsequent in vitro cultivation resulted in the successful generation of semi-adherent PC cultures of pure epithelial cell origin in 43.1% of the cases. The established primary cultures include diverse pathological types of PC: Pancreatic ductal adenocarcinoma (86.3%, 19/22), adenosquamous carcinoma (9.1%, 2/22) and ductal adenocarcinoma with oncocytic IPMN (4.5%, 1/22). We here provide a protocol to establish quality-controlled PC patient-derived primary cell cultures from heterogeneous PC patient tumors. In vitro preclinical models provide the basis for the identification and preclinical assessment of novel therapeutic opportunities targeting pancreatic cancer. Full article
Show Figures

Figure 1

Review

Jump to: Research

24 pages, 5274 KiB  
Review
Conditional Reprogramming for Patient-Derived Cancer Models and Next-Generation Living Biobanks
by Nancy Palechor-Ceron, Ewa Krawczyk, Aleksandra Dakic, Vera Simic, Hang Yuan, Jan Blancato, Weisheng Wang, Fleesie Hubbard, Yun-Ling Zheng, Hancai Dan, Scott Strome, Kevin Cullen, Bruce Davidson, John F. Deeken, Sujata Choudhury, Peter H. Ahn, Seema Agarwal, Xuexun Zhou, Richard Schlegel, Priscilla A. Furth, Chong-Xian Pan and Xuefeng Liuadd Show full author list remove Hide full author list
Cells 2019, 8(11), 1327; https://doi.org/10.3390/cells8111327 - 27 Oct 2019
Cited by 56 | Viewed by 8822
Abstract
Traditional cancer models including cell lines and animal models have limited applications in both basic and clinical cancer research. Genomics-based precision oncology only help 2–20% patients with solid cancer. Functional diagnostics and patient-derived cancer models are needed for precision cancer biology. In this [...] Read more.
Traditional cancer models including cell lines and animal models have limited applications in both basic and clinical cancer research. Genomics-based precision oncology only help 2–20% patients with solid cancer. Functional diagnostics and patient-derived cancer models are needed for precision cancer biology. In this review, we will summarize applications of conditional cell reprogramming (CR) in cancer research and next generation living biobanks (NGLB). Together with organoids, CR has been cited in two NCI (National Cancer Institute, USA) programs (PDMR: patient-derived cancer model repository; HCMI: human cancer model initiatives. HCMI will be distributed through ATCC). Briefly, the CR method is a simple co-culture technology with a Rho kinase inhibitor, Y-27632, in combination with fibroblast feeder cells, which allows us to rapidly expand both normal and malignant epithelial cells from diverse anatomic sites and mammalian species and does not require transfection with exogenous viral or cellular genes. Establishment of CR cells from both normal and tumor tissue is highly efficient. The robust nature of the technique is exemplified by the ability to produce 2 × 106 cells in five days from a core biopsy of tumor tissue. Normal CR cell cultures retain a normal karyotype and differentiation potential and CR cells derived from tumors retain their tumorigenic phenotype. CR also allows us to enrich cancer cells from urine (for bladder cancer), blood (for prostate cancer), and pleural effusion (for non-small cell lung carcinoma). The ability to produce inexhaustible cell populations using CR technology from small biopsies and cryopreserved specimens has the potential to transform biobanking repositories (NGLB: next-generation living biobank) and current pathology practice by enabling genetic, biochemical, metabolomic, proteomic, and biological assays, including chemosensitivity testing as a functional diagnostics tool for precision cancer medicine. We discussed analyses of patient-derived matched normal and tumor models using a case with tongue squamous cell carcinoma as an example. Last, we summarized applications in cancer research, disease modeling, drug discovery, and regenerative medicine of CR-based NGLB. Full article
Show Figures

Figure 1

19 pages, 1965 KiB  
Review
Patient-Derived Glioma Models: From Patients to Dish to Animals
by Cintia Carla da Hora, Markus W. Schweiger, Thomas Wurdinger and Bakhos A. Tannous
Cells 2019, 8(10), 1177; https://doi.org/10.3390/cells8101177 - 30 Sep 2019
Cited by 85 | Viewed by 11648
Abstract
Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults associated with a poor survival. Current standard of care consists of surgical resection followed by radiation and chemotherapy. GBMs are highly heterogeneous, having a complex interaction among different cells within [...] Read more.
Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults associated with a poor survival. Current standard of care consists of surgical resection followed by radiation and chemotherapy. GBMs are highly heterogeneous, having a complex interaction among different cells within the tumor as well as the tumor microenvironment. One of the main challenges in the neuro-oncology field in general, and GBM in particular, is to find an optimum culture condition that maintains the molecular genotype and phenotype as well as heterogeneity of the original tumor in vitro and in vivo. Established cell lines were shown to be a poor model of the disease, failing to recapitulate the phenotype and harboring non-parental genotypic mutations. Given the growing understanding of GBM biology, the discovery of glioma cancer stem-like cells (GSCs), and their role in tumor formation and therapeutic resistance, scientists are turning more towards patient-derived cells and xenografts as a more representative model. In this review, we will discuss the current state of patient-derived GSCs and their xenografts; and provide an overview of different established models to study GBM biology and to identify novel therapeutics in the pre-clinical phase. Full article
Show Figures

Figure 1

18 pages, 2753 KiB  
Review
Application of Highly Immunocompromised Mice for the Establishment of Patient-Derived Xenograft (PDX) Models
by Seiji Okada, Kulthida Vaeteewoottacharn and Ryusho Kariya
Cells 2019, 8(8), 889; https://doi.org/10.3390/cells8080889 - 13 Aug 2019
Cited by 161 | Viewed by 17534
Abstract
Patient-derived xenograft (PDX) models are created by engraftment of patient tumor tissues into immunocompetent mice. Since a PDX model retains the characteristics of the primary patient tumor including gene expression profiles and drug responses, it has become the most reliable in vivo human [...] Read more.
Patient-derived xenograft (PDX) models are created by engraftment of patient tumor tissues into immunocompetent mice. Since a PDX model retains the characteristics of the primary patient tumor including gene expression profiles and drug responses, it has become the most reliable in vivo human cancer model. The engraftment rate increases with the introduction of Non-obese diabetic Severe combined immunodeficiency (NOD/SCID)-based immunocompromised mice, especially the NK-deficient NOD strains NOD/SCID/interleukin-2 receptor gamma chain(IL2Rγ)null (NOG/NSG) and NOD/SCID/Jak3(Janus kinase 3)null (NOJ). Success rates differ with tumor origin: gastrointestinal tumors acquire a higher engraftment rate, while the rate is lower for breast cancers. Subcutaneous transplantation is the most popular method to establish PDX, but some tumors require specific environments, e.g., orthotropic or renal capsule transplantation. Human hormone treatment is necessary to establish hormone-dependent cancers such as prostate and breast cancers. PDX mice with human hematopoietic and immune systems (humanized PDX) are powerful tools for the analysis of tumor–immune system interaction and evaluation of immunotherapy response. A PDX biobank equipped with patients’ clinical data, gene-expression patterns, mutational statuses, tumor tissue architects, and drug responsiveness will be an authoritative resource for developing specific tumor biomarkers for chemotherapeutic predictions, creating individualized therapy, and establishing precise cancer medicine. Full article
Show Figures

Figure 1

17 pages, 597 KiB  
Review
Patient-Derived Xenograft Models of Breast Cancer and Their Application
by Takahiko Murayama and Noriko Gotoh
Cells 2019, 8(6), 621; https://doi.org/10.3390/cells8060621 - 20 Jun 2019
Cited by 86 | Viewed by 12344
Abstract
Recently, patient-derived xenograft (PDX) models of many types of tumors including breast cancer have emerged as a powerful tool for predicting drug efficacy and for understanding tumor characteristics. PDXs are established by the direct transfer of human tumors into highly immunodeficient mice and [...] Read more.
Recently, patient-derived xenograft (PDX) models of many types of tumors including breast cancer have emerged as a powerful tool for predicting drug efficacy and for understanding tumor characteristics. PDXs are established by the direct transfer of human tumors into highly immunodeficient mice and then maintained by passaging from mouse to mouse. The ability of PDX models to maintain the original features of patient tumors and to reflect drug sensitivity has greatly improved both basic and clinical study outcomes. However, current PDX models cannot completely predict drug efficacy because they do not recapitulate the tumor microenvironment of origin, a failure which puts emphasis on the necessity for the development of the next generation PDX models. In this article, we summarize the advantages and limitations of current PDX models and discuss the future directions of this field. Full article
Show Figures

Graphical abstract

12 pages, 3518 KiB  
Review
Efficacy of Tumor-Targeting Salmonella typhimurium A1-R against Malignancies in Patient-Derived Orthotopic Xenograft (PDOX) Murine Models
by Takashi Murakami, Yukihiko Hiroshima, Kentaro Miyake, Tasuku Kiyuna, Itaru Endo, Ming Zhao and Robert M. Hoffman
Cells 2019, 8(6), 599; https://doi.org/10.3390/cells8060599 - 16 Jun 2019
Cited by 19 | Viewed by 3957
Abstract
We developed tumor-targeting Salmonella typhimurium (S. typhimurium) A1-R, a facultative anaerobe that is an auxotroph of leucine and arginine. The tumor-targeting efficacy of S. typhimurium A1-R was demonstrated in vivo and vitro using several malignant cell lines including melanoma, sarcoma, glioma, [...] Read more.
We developed tumor-targeting Salmonella typhimurium (S. typhimurium) A1-R, a facultative anaerobe that is an auxotroph of leucine and arginine. The tumor-targeting efficacy of S. typhimurium A1-R was demonstrated in vivo and vitro using several malignant cell lines including melanoma, sarcoma, glioma, breast, pancreatic, colon, cervical, prostate, and ovarian cancers. Our laboratory also developed a patient-derived orthotopic xenograft (PDOX) model by implanting patient-derived malignant tumor fragments into orthotopic sites in mice. We reviewed studies of S. typhimurium A1-R against recalcitrant cancers. S. typhimurium A1-R was effective against all PDOX tumor models tested and showed stronger efficacies than chemotherapy or molecular-targeting therapy against some tumors. Furthermore, the synergistic efficacy of S. typhimurium A1-R when combined with chemotherapeutic agents, molecular-targeting agents, or recombinant methioninase was also demonstrated. We suggest potential clinical uses of this S. typhimurium A1-R treatment. Full article
Show Figures

Figure 1

17 pages, 941 KiB  
Review
Current Status of Patient-Derived Ovarian Cancer Models
by Yoshiaki Maru and Yoshitaka Hippo
Cells 2019, 8(5), 505; https://doi.org/10.3390/cells8050505 - 25 May 2019
Cited by 68 | Viewed by 7422
Abstract
Ovarian cancer (OC) is one of the leading causes of female cancer death. Recent studies have documented its extensive variations as a disease entity, in terms of cell or tissue of origin, pre-cancerous lesions, common mutations, and therapeutic responses, leading to the notion [...] Read more.
Ovarian cancer (OC) is one of the leading causes of female cancer death. Recent studies have documented its extensive variations as a disease entity, in terms of cell or tissue of origin, pre-cancerous lesions, common mutations, and therapeutic responses, leading to the notion that OC is a generic term referring to a whole range of different cancer subtypes. Despite such heterogeneity, OC treatment is stereotypic; aggressive surgery followed by conventional chemotherapy could result in chemo-resistant diseases. Whereas molecular-targeted therapies will become shortly available for a subset of OC, there still remain many patients without effective drugs, requiring development of groundbreaking therapeutic agents. In preclinical studies for drug discovery, cancer cell lines used to be the gold standard, but now this has declined due to frequent failure in predicting therapeutic responses in patients. In this regard, patient-derived cells and tumors are gaining more attention in precise and physiological modeling of in situ tumors, which could also pave the way to implementation of precision medicine. In this article, we comprehensively overviewed the current status of various platforms for patient-derived OC models. We highly appreciate the potentials of organoid culture in achieving high success rate and retaining tumor heterogeneity. Full article
Show Figures

Figure 1

16 pages, 693 KiB  
Review
Application of Cancer Organoid Model for Drug Screening and Personalized Therapy
by Jumpei Kondo and Masahiro Inoue
Cells 2019, 8(5), 470; https://doi.org/10.3390/cells8050470 - 17 May 2019
Cited by 133 | Viewed by 14271
Abstract
Drug screening—i.e., testing the effects of a number of drugs in multiple cell lines—is used for drug discovery and development, and can also be performed to evaluate the heterogeneity of a disease entity. Notably, intertumoral heterogeneity is a large hurdle to overcome for [...] Read more.
Drug screening—i.e., testing the effects of a number of drugs in multiple cell lines—is used for drug discovery and development, and can also be performed to evaluate the heterogeneity of a disease entity. Notably, intertumoral heterogeneity is a large hurdle to overcome for establishing standard cancer treatment, necessitating disease models better than conventional established 2D cell lines for screening novel treatment candidates. In the present review, we outline recent progress regarding experimental cancer models having more physiological and clinical relevance for drug screening, which are important for the successful evaluation of cellular response to drugs. The review is particularly focused on drug screening using the cancer organoid model, which is emerging as a better physiological disease model than conventional established 2D cell lines. We also review the use of cancer organoids to examine intertumor and intratumor heterogeneity, and introduce the perspective of the clinical use of cancer organoids to enable precision medicine. Full article
Show Figures

Figure 1

8 pages, 9446 KiB  
Review
Patient Derived Chicken Egg Tumor Model (PDcE Model): Current Status and Critical Issues
by Aoi Komatsu, Kotaro Matsumoto, Tomoki Saito, Manabu Muto and Fuyuhiko Tamanoi
Cells 2019, 8(5), 440; https://doi.org/10.3390/cells8050440 - 10 May 2019
Cited by 38 | Viewed by 6317
Abstract
Chorioallantoic membrane assay (CAM assay) using fertilized chicken eggs has been used for the study of tumor formation, angiogenesis and metastasis. Recently, there is growing realization that this system provides a valuable assay for a patient-derived tumor model. Several reports establish that tumor [...] Read more.
Chorioallantoic membrane assay (CAM assay) using fertilized chicken eggs has been used for the study of tumor formation, angiogenesis and metastasis. Recently, there is growing realization that this system provides a valuable assay for a patient-derived tumor model. Several reports establish that tumor samples from cancer patients can be used to reproduce tumor in the chicken egg. High transplantation efficiency has been achieved. In this review, we discuss examples of transplanting patient tumors. We then discuss critical issues that need to be addressed to pursue this line of experiments. The patient-derived chicken egg model (PDcE model) has an advantage over other models in its rapid tumor formation. This raises the possibility that the PDcE model is valuable for identifying optimum drug for each individual patient. Full article
Show Figures

Figure 1

18 pages, 1035 KiB  
Review
Systematic Review of Patient-Derived Xenograft Models for Preclinical Studies of Anti-Cancer Drugs in Solid Tumors
by Yoshikatsu Koga and Atsushi Ochiai
Cells 2019, 8(5), 418; https://doi.org/10.3390/cells8050418 - 06 May 2019
Cited by 71 | Viewed by 7093
Abstract
Patient-derived xenograft (PDX) models are used as powerful tools for understanding cancer biology in PDX clinical trials and co-clinical trials. In this systematic review, we focus on PDX clinical trials or co-clinical trials for drug development in solid tumors and summarize the utility [...] Read more.
Patient-derived xenograft (PDX) models are used as powerful tools for understanding cancer biology in PDX clinical trials and co-clinical trials. In this systematic review, we focus on PDX clinical trials or co-clinical trials for drug development in solid tumors and summarize the utility of PDX models in the development of anti-cancer drugs, as well as the challenges involved in this approach, following the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Recently, the assessment of drug efficacy by PDX clinical and co-clinical trials has become an important method. PDX clinical trials can be used for the development of anti-cancer drugs before clinical trials, with their efficacy assessed by the modified response evaluation criteria in solid tumors (mRECIST). A few dozen cases of PDX models have completed enrollment, and the efficacy of the drugs is assessed by 1 × 1 × 1 or 3 × 1 × 1 approaches in the PDX clinical trials. Furthermore, co-clinical trials can be used for personalized care or precision medicine with the evaluation of a new drug or a novel combination. Several PDX models from patients in clinical trials have been used to assess the efficacy of individual drugs or drug combinations in co-clinical trials. Full article
Show Figures

Figure 1

13 pages, 1817 KiB  
Review
Efficacy of Recombinant Methioninase (rMETase) on Recalcitrant Cancer Patient-Derived Orthotopic Xenograft (PDOX) Mouse Models: A Review
by Kei Kawaguchi, Qinghong Han, Shukuan Li, Yuying Tan, Kentaro Igarashi, Takashi Murakami, Michiaki Unno and Robert M. Hoffman
Cells 2019, 8(5), 410; https://doi.org/10.3390/cells8050410 - 02 May 2019
Cited by 42 | Viewed by 4542
Abstract
An excessive requirement for methionine (MET), termed MET dependence, appears to be a general metabolic defect in cancer and has been shown to be a very effective therapeutic target. MET restriction (MR) has inhibited the growth of all major cancer types by selectively [...] Read more.
An excessive requirement for methionine (MET), termed MET dependence, appears to be a general metabolic defect in cancer and has been shown to be a very effective therapeutic target. MET restriction (MR) has inhibited the growth of all major cancer types by selectively arresting cancer cells in the late-S/G2 phase, when they also become highly sensitive to cytotoxic agents. Recombinant methioninase (rMETase) has been developed to effect MR. The present review describes the efficacy of rMETase on patient-derived orthotopic xenograft (PDOX) models of recalcitrant cancer, including the surprising result that rMETase administrated orally can be highly effective. Full article
Show Figures

Figure 1

15 pages, 683 KiB  
Review
Systematic Review of the Current Status of Human Sarcoma Cell Lines
by Emi Hattori, Rieko Oyama and Tadashi Kondo
Cells 2019, 8(2), 157; https://doi.org/10.3390/cells8020157 - 13 Feb 2019
Cited by 28 | Viewed by 5191
Abstract
Sarcomas are rare mesenchymal malignant tumors with unique biological and clinical features. Given their diversity, heterogeneity, complexity, and rarity, the clinical management of sarcomas is quite challenging. Cell lines have been used as indispensable tools for both basic research and pre-clinical studies. However, [...] Read more.
Sarcomas are rare mesenchymal malignant tumors with unique biological and clinical features. Given their diversity, heterogeneity, complexity, and rarity, the clinical management of sarcomas is quite challenging. Cell lines have been used as indispensable tools for both basic research and pre-clinical studies. However, empirically, sarcoma cell lines are not readily available. To understand the present status of sarcoma cell lines and identify their current challenges, we systematically reviewed reports on sarcoma cell lines. We searched the cell line database, Cellosaurus, and categorized the sarcoma cell lines according to the WHO classification. We identified the number and availability of sarcoma cell lines with a specific histology. We found 844 sarcoma cell lines in the Cellosaurus database, and 819 of them were named according to the WHO classification. Among the 819 cell lines, 36 multiple and nine single cell lines are available for histology. No cell lines were reported for 133 of the histological subtypes. Among the 844 cell lines, 148 are currently available in public cell banks, with 692 already published. We conclude that there needs to be a larger number of cell lines, with various histological subtypes, to better benefit sarcoma research. Full article
Show Figures

Graphical abstract

27 pages, 581 KiB  
Review
Application of Prostate Cancer Models for Preclinical Study: Advantages and Limitations of Cell Lines, Patient-Derived Xenografts, and Three-Dimensional Culture of Patient-Derived Cells
by Takeshi Namekawa, Kazuhiro Ikeda, Kuniko Horie-Inoue and Satoshi Inoue
Cells 2019, 8(1), 74; https://doi.org/10.3390/cells8010074 - 20 Jan 2019
Cited by 114 | Viewed by 19831
Abstract
Various preclinical models have been developed to clarify the pathophysiology of prostate cancer (PCa). Traditional PCa cell lines from clinical metastatic lesions, as exemplified by DU-145, PC-3, and LNCaP cells, are useful tools to define mechanisms underlying tumorigenesis and drug resistance. Cell line-based [...] Read more.
Various preclinical models have been developed to clarify the pathophysiology of prostate cancer (PCa). Traditional PCa cell lines from clinical metastatic lesions, as exemplified by DU-145, PC-3, and LNCaP cells, are useful tools to define mechanisms underlying tumorigenesis and drug resistance. Cell line-based experiments, however, have limitations for preclinical studies because those cells are basically adapted to 2-dimensional monolayer culture conditions, in which the majority of primary PCa cells cannot survive. Recent tissue engineering enables generation of PCa patient-derived xenografts (PDXs) from both primary and metastatic lesions. Compared with fresh PCa tissue transplantation in athymic mice, co-injection of PCa tissues with extracellular matrix in highly immunodeficient mice has remarkably improved the success rate of PDX generation. PDX models have advantages to appropriately recapitulate the molecular diversity, cellular heterogeneity, and histology of original patient tumors. In contrast to PDX models, patient-derived organoid and spheroid PCa models in 3-dimensional culture are more feasible tools for in vitro studies for retaining the characteristics of patient tumors. In this article, we review PCa preclinical model cell lines and their sublines, PDXs, and patient-derived organoid and spheroid models. These PCa models will be applied to the development of new strategies for cancer precision medicine. Full article
Show Figures

Graphical abstract

Back to TopTop