Mangrove Conservation

A special issue of Diversity (ISSN 1424-2818). This special issue belongs to the section "Marine Diversity".

Deadline for manuscript submissions: closed (28 February 2015) | Viewed by 131689

Special Issue Editor


E-Mail Website
Guest Editor
Centre for Coastal Management, Southern Cross University, Lismore, NSW 2480, Australia
Interests: mangrove ecology and conservation; mangrove genetics

Special Issue Information

Dear Colleagues,

Worldwide estimates of losses from mangrove areas are around 1% per year. These losses come at a time when knowledge is accruing of the rich biodiversity supported by mangrove systems in different parts of the world, and the important ecological services provided by mangrove systems. This conundrum highlights the increasing importance and urgency of mangrove conservation around the world. Conservation approaches must be based on an ecological understanding of mangrove systems: this includes studying the ecological processes that maintain the system and appreciating the biodiversity associated with these systems, the threats to these systems, the management of these systems (particularly protected area management), and the value of these systems to those communities that are dependent on mangroves. Hopefully, a wide range of studies will enhance our ecological understanding of mangrove systems and facilitate mangrove conservation. Collectively then, the contributions to this Special Issue will hopefully serve as blueprints for a scientifically informed program of mangrove conservation around the world.

Prof. Dr. Peter Saenger
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Diversity is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • ecological processes
  • threats
  • over-exploitation
  • monitoring
  • remote sensing
  • status
  • research needs
  • protected areas
  • silviculture
  • rehabilitation

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

6221 KiB  
Article
Mangroves on the Edge: Anthrome-Dependent Fragmentation Influences Ecological Condition (Turbo, Colombia, Southern Caribbean)
by Juan Felipe Blanco-Libreros and Edgar Andrés Estrada-Urrea
Diversity 2015, 7(3), 206-228; https://doi.org/10.3390/d7030206 - 26 Jun 2015
Cited by 21 | Viewed by 8747
Abstract
Marine protected areas are commonly seen as the most effective strategy for protecting mangroves from external human pressures but little is known about the role of public land-tenure contexts (dense settlements, agricultural or range lands and wild anthromes) on clearing rates, patch properties, [...] Read more.
Marine protected areas are commonly seen as the most effective strategy for protecting mangroves from external human pressures but little is known about the role of public land-tenure contexts (dense settlements, agricultural or range lands and wild anthromes) on clearing rates, patch properties, and ecological condition. We addressed the following questions using a peri-urban to wild gradient along the anthropogenic coastal-scape in Turbo Municipality (Colombia, Southern Caribbean): Do the different deforestation rates observed under peri-urban, rural, military-protected and wild land-use-and-tenure contexts, promote distinctive fragmentation patterns? Do these patterns influence loggers’ access and ultimately ecosystem ecological condition? Loss rate (1938–2009) was the greatest peri-urban mangroves and positively correlated with urban edge and patch density. Pasture edge was highest in rural mangroves while mean patch area was higher in protected and wild mangroves. An Anthropogenic Disturbance Index (ADI) was strongly correlated with reduced mean patch area and increased patch density, due to increased trampling and logging, that ultimately promoted high densities of thin (diameter: <5 cm) Laguncularia racemosa trees but had no significant effect on the presence of a dominant benthic gastropod. In conclusion, both protection and remoteness were effective in reducing anthropogenic edges and fragmentation, and thus contributed to a high ecological condition in mangroves at a major deforestation hotspot. Full article
(This article belongs to the Special Issue Mangrove Conservation)
Show Figures

Figure 1

5079 KiB  
Article
The Indian Sundarban Mangrove Forests: History, Utilization, Conservation Strategies and Local Perception
by Aditya Ghosh, Susanne Schmidt, Thomas Fickert and Marcus Nüsser
Diversity 2015, 7(2), 149-169; https://doi.org/10.3390/d7020149 - 22 May 2015
Cited by 164 | Viewed by 40877
Abstract
Covering approximately 10,000 km2 the Sundarbans in the Northern Bay of Bengal is the largest contiguous mangrove forest on earth. Mangroves forests are highly productive and diverse ecosystems, providing a wide range of direct ecosystem services for resident populations. In addition, mangroves [...] Read more.
Covering approximately 10,000 km2 the Sundarbans in the Northern Bay of Bengal is the largest contiguous mangrove forest on earth. Mangroves forests are highly productive and diverse ecosystems, providing a wide range of direct ecosystem services for resident populations. In addition, mangroves function as a buffer against frequently occurring cyclones; helping to protect local settlements including the two most populous cities of the world, Kolkata and Dhaka, against their worst effects. While large tracts of the Indian Sundarbans were cleared, drained and reclaimed for cultivation during the British colonial era, the remaining parts have been under various protection regimes since the 1970s, primarily to protect the remaining population of Bengal tigers (Panthera tigris ssp. tigris). In view of the importance of such forests, now severely threatened worldwide, we trace the areal change that the Indian Sundarbans have undergone over the last two-and-a-half centuries. We apply a multi-temporal and multi-scale approach based on historical maps and remote sensing data to detect changes in mangrove cover. While the mangroves’ areal extent has not changed much in the recent past, forest health and structure have. These changes result from direct human interference, upstream development, extreme weather events and the slow onset of climate change effects. Moreover, we consider the role of different management strategies affecting mangrove conservation and their intersection with local livelihoods. Full article
(This article belongs to the Special Issue Mangrove Conservation)
Show Figures

Figure 1

678 KiB  
Article
Assessing the Fauna Diversity of Marudu Bay Mangrove Forest, Sabah, Malaysia, for Future Conservation
by Mohamed Zakaria and Muhammad Nawaz Rajpar
Diversity 2015, 7(2), 137-148; https://doi.org/10.3390/d7020137 - 30 Apr 2015
Cited by 36 | Viewed by 10479
Abstract
Mangrove is an evergreen, salt tolerant plant community, which grows in inter-tidal coastal zones of tropical and subtropical regions of the world. They are ecologically important for many fauna species and are rich in food resources and consist of many different vegetation structures. [...] Read more.
Mangrove is an evergreen, salt tolerant plant community, which grows in inter-tidal coastal zones of tropical and subtropical regions of the world. They are ecologically important for many fauna species and are rich in food resources and consist of many different vegetation structures. They serve as ideal foraging and nursery grounds for a wide array of species such as birds, mammals, reptiles, fishes and aquatic invertebrates. In spite of their crucial role, around 50% of mangrove habitats have been lost and degraded in the past two decades. The fauna diversity of mangrove habitat at Marudu Bay, Sabah, East Malaysia was examined using various methods: i.e. aquatic invertebrates by swap nets, fish by angling rods and cast nets, reptiles, birds, and mammals through direct sighting. The result showed that Marudu Bay mangrove habitats harbored a diversity of fauna species including 22 aquatic invertebrate species (encompassing 11 crustacean species, six mollusk species and four worm species), 36 fish species, 74 bird species, four reptile species, and four mammal species. The wide array of fauna species could be due to the availability of complex vegetation structures, sheltered beaches and tidal mudflats, which are rich in food resources and also offer safe foraging and breeding grounds for them. These heterogeneous habitats must be protected in a sustainable way in order to ensure the continued presence of aquatic and terrestrial fauna species for future generations. Full article
(This article belongs to the Special Issue Mangrove Conservation)
Show Figures

Figure 1

292 KiB  
Article
The Role of Habitat Heterogeneity in Structuring Mangrove Bird Assemblages
by Jayasilan Mohd-Azlan, Richard A. Noske and Michael J. Lawes
Diversity 2015, 7(2), 118-136; https://doi.org/10.3390/d7020118 - 20 Apr 2015
Cited by 36 | Viewed by 9331
Abstract
Mangrove habitats are under severe land use pressure throughout the world and Australia is no exception. Here we describe the heterogeneity of mangrove habitat and its relationship with mangrove bird diversity. We examined the role of mangrove habitat complexity in determining the richness [...] Read more.
Mangrove habitats are under severe land use pressure throughout the world and Australia is no exception. Here we describe the heterogeneity of mangrove habitat and its relationship with mangrove bird diversity. We examined the role of mangrove habitat complexity in determining the richness of avian mangrove dependent species (MDS) and interior species, overall bird species richness and density. High species richness (overall and MDS) and density in the mangroves was associated with plant species richness, the density of the understory and food resource distribution. Furthermore, habitat heterogeneity rather than patch area per se was a more important predictor of species richness in the mangroves. These findings stress the importance of habitat diversity and quality to the diversity and density of birds in mangroves. Thus, habitat heterogeneity within mangroves is a crucial patch characteristic, independent of mangrove patch size, for maintaining diverse avian species assemblages. Full article
(This article belongs to the Special Issue Mangrove Conservation)
Show Figures

Figure 1

828 KiB  
Communication
Analysis of Genetic Diversity of Two Mangrove Species with Morphological Alterations in a Natural Environment
by Catarina Fonseca Lira-Medeiros, Mônica Aires Cardoso, Ricardo Avancini Fernandes and Paulo Cavalcanti Gomes Ferreira
Diversity 2015, 7(2), 105-117; https://doi.org/10.3390/d7020105 - 17 Apr 2015
Cited by 10 | Viewed by 5631
Abstract
Mangrove is an ecosystem subjected to tide, salinity and nutrient variations. These conditions are stressful to most plants, except to mangrove plants that are well-adapted. However, many mangrove areas have extremely stressful conditions, such as salt marshes, and the plants nearby usually present [...] Read more.
Mangrove is an ecosystem subjected to tide, salinity and nutrient variations. These conditions are stressful to most plants, except to mangrove plants that are well-adapted. However, many mangrove areas have extremely stressful conditions, such as salt marshes, and the plants nearby usually present morphological alterations. In Sepetiba Bay, two species of mangrove plants, Avicennia schaueriana and Laguncularia racemosa, have poor development near a salt marsh (SM) compared to plants at the riverside (RS), which is considered a favorable habitat in mangroves. The level of genetic diversity and its possible correlation with the morphological divergence of SM and RS plants of both species were assessed by AFLP molecular markers. We found moderate genetic differentiation between A. schaueriana plants from SM and RS areas and depleted genetic diversity on SM plants. On the other hand, Laguncularia racemosa plants had no genetic differentiation between areas. It is possible that a limited gene flow among the studied areas might be acting more intensely on A. schaueriana plants, resulting in the observed genetic differentiation. The populations of Laguncularia racemosa appear to be well connected, as genetic differentiation was not significant between the SM and RS populations. Gene flow and genetic drift are acting on neutral genetic diversity of these two mangrove species in the studied areas, and the observed genetic differentiation of A. schaueriana plants might be correlated with its morphological variation. For L. racemosa, morphological alterations could be related to epigenetic phenomena or adaptive loci polymorphism that should be further investigated. Full article
(This article belongs to the Special Issue Mangrove Conservation)
Show Figures

Figure 1

1130 KiB  
Article
Variations of Bacterial Community Structure and Composition in Mangrove Sediment at Different Depths in Southeastern Brazil
by Lucas William Mendes and Siu Mui Tsai
Diversity 2014, 6(4), 827-843; https://doi.org/10.3390/d6040827 - 11 Dec 2014
Cited by 47 | Viewed by 8714
Abstract
Tropical mangroves are considered one of the most productive ecosystems of the world, being characterized as nurseries and food sources for fish and other animals. Microorganisms play important roles in these environments, and the study of bacterial communities is of paramount importance for [...] Read more.
Tropical mangroves are considered one of the most productive ecosystems of the world, being characterized as nurseries and food sources for fish and other animals. Microorganisms play important roles in these environments, and the study of bacterial communities is of paramount importance for a better comprehension of mangrove dynamics. This study focused on the structure and composition of bacterial communities in mangrove sediments at different depths and points, located in Southeastern Brazil. Terminal Restriction Fragment Length Polymorphism (T-RFLP) was used to determine the community structure, and 16S rRNA gene pyrosequencing was used to characterize the community composition. Redundancy analysis of T-RFLP patterns revealed differences in bacterial community structure according to soil attributes and depth. The parameters K and depth presented significant correlation with general community structure. Most sequences were classified into the phylum Proteobacteria (88%), which presented differences according to the depth, where the classes Betaproteobacteria (21%) and Deltaproteobacteria (16%) were abundant at 10 cm and Epsilonproteobacteria (35%) was abundant at 40 cm depth. Clear differences were observed in community composition as shown by the differential distribution of the phyla Firmicutes (1.13% and 3.8%, for 10 cm and 40 cm respectively), Chloroflexi (2.8% and 0.75%), and Acidobacteria (2.75% and 0.57%) according to the depth. Bacterial diversity measurements indicated higher diversity in shallow samples. Taken together, our findings indicate that mangrove holds a diverse bacterial community, which is shaped by the variations found in the ecosystem, such as sediment properties and depth. Full article
(This article belongs to the Special Issue Mangrove Conservation)
Show Figures

Figure 1

Review

Jump to: Research

3891 KiB  
Review
Bangladesh Sundarbans: Present Status of the Environment and Biota
by Abdul Aziz and Ashit Ranjan Paul
Diversity 2015, 7(3), 242-269; https://doi.org/10.3390/d7030242 - 10 Jul 2015
Cited by 98 | Viewed by 37527
Abstract
The Sundarbans is a deltaic mangrove forest, formed about 7000 years ago by the deposition of sediments from the foothills of the Himalayas through the Ganges river system, and is situated southwest of Bangladesh and south of West Bengal, India. However, for the [...] Read more.
The Sundarbans is a deltaic mangrove forest, formed about 7000 years ago by the deposition of sediments from the foothills of the Himalayas through the Ganges river system, and is situated southwest of Bangladesh and south of West Bengal, India. However, for the last 40 years, the discharge of sediment-laden freshwater into the Bay of Bengal through the Bangladesh part of the Sundarbans Mangrove Forests (BSMF) has been reduced due to a withdrawal of water during the dry period from the Farakka Barrage in India. The result is two extremes of freshwater discharge at Gorai, the feeding River of the BSMF: a mean minimum monthly discharge varies from 0.00 to 170 m3·s−1 during the dry period with a mean maximum of about 4000 to 8880 m3·s−1 during the wet period. In the BSMF, about 180 km downstream, an additional low discharge results in the creation of a polyhaline environment (a minimum of 194.4 m3·s−1 freshwater discharge is needed to maintain an oligohaline condition) during the dry period. The Ganges water carries 262 million ton sediments/year and only 7% is diverted in to southern distributaries. The low discharge retards sediment deposition in the forestlands’ base as well as the formation of forestlands. The increase in water flow during monsoon on some occasions results in erosion of the fragile forestlands. Landsat Satellite data from the 1970s to 2000s revealed a non-significant decrease in the forestlands of total Sundarbans by 1.1% which for the 6017 km2 BSMF is equivalent to 66 km2. In another report from around the same time, the estimated total forestland loss was approximately 127 km2. The Sundarbans has had great influence on local freshwater environments, facilitating profuse growth of Heritiera fomes (sundri), the tallest (at over 15 m) and most commercially important plant, but now has more polyhaline areas threatening the sundri, affecting growth and distribution of other mangroves and biota. Landsat images and GIS data from 1989 to 2010 at the extreme northern part of Khulna and Chandpai Ranges revealed the formation of a large number of small rivers and creeks some time before 2000 that reduce the 443 km2 forestland by 3.61%, approximately 16 km2, and decreasing H. fomes by 28.75% and total tree cover by over 3.0%. The number of the relatively low-priced plants Bruguiera sexangula, Excoecaria agallocha and Sonneratia apetala, has, on the other hand, increased. Similar degradation could be occurring in other ranges, thereby putting the survivability of the Bangladesh Sundarbans at risk. The growing stock of 296 plants per ha in 1959 had been reduced to 144 by 1996. Trend analysis using “Table Curve 2D Programme,” reveals a decreased number of 109 plants by the year 2020. The degradation of the Bangladesh Sundarbans has been attributed to reduced sediment-laden freshwater discharge through the BSMF river system since commissioning the Farakka Barrage on 21 April 1975 in India. To reduce salinity and forestland erosion, the maintenance of sediment-laden freshwater discharge through its river system has been suggested to re-create its pre-1975 environment for the growth of H. fomes, a true mangrove and the highest carbon-storing plant of the Sundarbans. This may possibly be achieved by proper sharing of the Ganges water from the Farakka Barrage, forming a consortium of India, Nepal, Bhutan and China, and converting parts or whole of the Ganges River into water reservoir(s). The idea is to implement the Ganges Barrage project about 33 km downstream, dredging sediments of the entire Gorai River and distributaries in the Ganges floodplain, thus allowing uniform sediment-laden freshwater flow to maintain an oligohaline environment for the healthy growth of mangroves. The system will also create healthy hinterlands of the Ganges floodplain with increased crop production and revenue. The expenditure may be met through carbon trading, as Bangladesh is a signatory of the Copenhagen Accord, UN Framework Convention on Climate Change. The total carbon reserve in the BSMF in 2010 was measured at about 56 million metric tons, valued at a minimum of US$ 280 million per year. The forest is rich in biodiversity, where over 65 species of mangroves and about 1136 wildlife species occur. The BSMF acts as a natural wall, saving property as well as millions of lives from natural disasters, the value of which is between 273 and 714 million US$. A 15 to 20 km band impact zone exists to the north and east of the BSMF, with a human settlement of about 3.5 million that is partly dependent on the forests. Three wildlife sanctuaries are to the south of the BSMF, the home of the great royal Bengal tigers, covering a total area of about 1397 km2. Construction of a coal-fired power plant at Rampal will be the largest threat to the Sundarbans. It is a reserve forest, declared as a Ramsar site of international importance and a UNESCO natural world heritage site. Full article
(This article belongs to the Special Issue Mangrove Conservation)
Show Figures

Figure 1

281 KiB  
Review
An International Assessment of Mangrove Management: Incorporation in Integrated Coastal Zone Management
by Haille N. Carter, Steffen W. Schmidt and Amy C. Hirons
Diversity 2015, 7(2), 74-104; https://doi.org/10.3390/d7020074 - 16 Apr 2015
Cited by 42 | Viewed by 9283
Abstract
Due to increasing recognition of the benefits provided by mangrove ecosystems, protection policies have emerged under both wetland and forestry programs. However, little consistency remains among these programs and inadequate coordination exists among sectors of government. With approximately 123 countries containing mangroves, the [...] Read more.
Due to increasing recognition of the benefits provided by mangrove ecosystems, protection policies have emerged under both wetland and forestry programs. However, little consistency remains among these programs and inadequate coordination exists among sectors of government. With approximately 123 countries containing mangroves, the need for global management of these ecosystems is crucial to sustain the industries (i.e., fisheries, timber, and tourism) and coastal communities that mangroves support and protect. To determine the most effective form of mangrove management, this review examines management guidelines, particularly those associated with Integrated Coastal Zone Management (ICZM). Five case studies were reviewed to further explore the fundamentals of mangrove management. The management methodologies of two developed nations as well as three developing nations were assessed to encompass comprehensive influences on mangrove management, such as socioeconomics, politics, and land-use regulations. Based on this review, successful mangrove management will require a blend of forestry, wetland, and ICZM programs in addition to the cooperation of all levels of government. Legally binding policies, particularly at the international level, will be essential to successful mangrove management, which must include the preservation of existing mangrove habitat and restoration of damaged mangroves. Full article
(This article belongs to the Special Issue Mangrove Conservation)
Back to TopTop