Next Issue
Volume 16, May
Previous Issue
Volume 16, March
 
 

Diversity, Volume 16, Issue 4 (April 2024) – 62 articles

Cover Story (view full-size image): The karst areas of the Balkans are one of the world’s most important hotspots of subterranean biodiversity. This paper presents the results of a three-year study on the diversity of hypogean terrestrial arthropods in Resava Cave in eastern Serbia. To date, a total of 107 species of terrestrial arthropods (4 troglobitic, 16 troglophilic and 87 trogloxenic) have been found in the cave: 66 hexapods, 27 chelicerates, 11 myriapods and 3 crustaceans. The most significant inhabitants of the cave are certainly troglobitic species, including the completely blind and depigmented millipede Serbosoma kucajense (cover photo), a member of the genus Serbosoma, which is endemic to several caves and pits on the Kučajske Planine Mts. and Mt. Beljanica in eastern Serbia. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
10 pages, 1607 KiB  
Article
Associations between Epiphytic Orchids and Their Hosts and Future Perspectives of These in the Context of Global Warming
by Binu Timsina, Zuzana Münzbergová, Pavel Kindlmann, Bishnu Prasad Bhattarai, Bikram Shrestha, Bhakta B. Raskoti and Maan B. Rokaya
Diversity 2024, 16(4), 252; https://doi.org/10.3390/d16040252 - 22 Apr 2024
Viewed by 599
Abstract
Epiphytic species are ecologically important and a significant component of biodiversity. To ensure their efficient conservation, we need to understand their ecology and host plant associations. It is also important to investigate how the predicted temperature change will affect their future distribution. Here, [...] Read more.
Epiphytic species are ecologically important and a significant component of biodiversity. To ensure their efficient conservation, we need to understand their ecology and host plant associations. It is also important to investigate how the predicted temperature change will affect their future distribution. Here, we use data collected in Nepal to investigate how epiphytic orchids are associated with host species, their distribution patterns, and how they may be threatened by the predicted increase in temperature towards the end of the 21st century. We used the phi coefficient (Φ) of association to calculate the associations of epiphytic orchid species with plants and rarefaction to describe the diversity of orchids associated with a particular host species. We used interpolation to estimate the distribution of epiphytic orchids and their host species along altitudinal gradients. The phi (Φ) coefficient of association revealed that 30 species of host plants showed more association with different orchid species than expected. The number of epiphytic orchids increased with the number of host individuals. We predict that an increase in temperature by ~3 °C, which is a more moderate value of temperature increase by the end of the 21st century, will affect at least 52 narrow-ranged species of orchids and 58 narrow-ranged species of host plants. Therefore, we should make efforts to prevent many plant species from becoming extinct, as an increase in temperature is likely to affect their existence. Full article
(This article belongs to the Section Biogeography and Macroecology)
Show Figures

Figure 1

27 pages, 3827 KiB  
Review
Management Strategies of Prosopis juliflora in Eastern Africa: What Works Where?
by Hellen Wangechi Kamiri, Simon K. Choge and Mathias Becker
Diversity 2024, 16(4), 251; https://doi.org/10.3390/d16040251 - 22 Apr 2024
Viewed by 279
Abstract
Prosopis juliflora is a shrub/tree originating from the Americas. Since its introduction for fuel wood afforestation into eastern Africa, it has been invading crop- and rangelands with negative effects on the environment and on livelihoods. Understanding the management strategies for Prosopis and matching [...] Read more.
Prosopis juliflora is a shrub/tree originating from the Americas. Since its introduction for fuel wood afforestation into eastern Africa, it has been invading crop- and rangelands with negative effects on the environment and on livelihoods. Understanding the management strategies for Prosopis and matching them with ecological, social-cultural, and economic needs of the eastern African region is a pressing scientific issue. We analyzed management strategies of Prosopis, focusing on determinants and drivers of their choice of applied management strategies as well as their effectiveness. We identified 1917 scientific contributions published between 1970 and 2022. Following a multi-step screening, we reduced the references to 53 relevant (internationally) published papers with a focus on the management of Prosopis in the east African region. Analysis of the literature shows that factors driving invasion dynamics but also land users’ social-economic as well as cultural attributes determine the type of management strategy and shape local control actions. Main strategies comprise (1) physical containment of invasive spread, (2) chemical, mechanical and biological approaches to reduce stand densities, (3) complete eradication, (4) restoration of invaded land, and (5) economic use of Prosopis products. Adopted strategies are based on actual and perceived impacts of invasion, and the adoption and success of individual strategies is highly location specific. Full article
(This article belongs to the Special Issue Ecology and Evolution of Invasive Plant Species)
Show Figures

Figure 1

10 pages, 5616 KiB  
Article
Types and Fecundity of Neotenic Reproductives Produced in 5-Year-Old Orphaned Colonies of the Drywood Termite, Cryptotermes domesticus (Blattodea: Kalotermitidae)
by Wenjing Wu, Zhenyou Huang, Shijun Zhang, Zhiqiang Li, Bingrong Liu, Wenhui Zeng and Chuanguo Xia
Diversity 2024, 16(4), 250; https://doi.org/10.3390/d16040250 - 22 Apr 2024
Viewed by 239
Abstract
Orphaned colonies of Cryptotermes domesticus readily produce replacement reproductives and continue propagation. In this study, we aimed to investigate the production and fecundity of neotenic reproductives in 5-year-old colonies of C. domesticus after orphaning. All 15 experimental colonies were successfully re-established by the [...] Read more.
Orphaned colonies of Cryptotermes domesticus readily produce replacement reproductives and continue propagation. In this study, we aimed to investigate the production and fecundity of neotenic reproductives in 5-year-old colonies of C. domesticus after orphaning. All 15 experimental colonies were successfully re-established by the neotenic reproductive pair. Three types of neotenic reproductives with various wing-bud lengths were observed: type I with micro wing buds, type II with short wing buds, and type III with long wing buds. Four patterns of pairs made up of these neotenics, namely, type I + type II, type I + type III, type II + type II, and type II + type III, exhibited reproductive capacities similar to those of the primary reproductive pair. We speculated that these neotenic reproductives were derived from various nymphal instars. The 5-year-old colonies had three instars of nymphs, with the majority being in the second instar, followed by the first. Thus, the combination of neotenic reproductives with short wing buds and micro wing buds was the dominant differentiation pathway of the orphaned colonies. After the removal of the original primary reproductive pair, the nymphs matured into neotenic reproductives and took over reproduction in the colony in 107.40 ± 15.18 days. This study highlights the importance of quarantine and routine inspection of wood, as well as the significance of early prevention and control of C. domesticus infestation in wood. Moreover, this study confirms the high differentiation and reproductive capacities of C. domesticus. Full article
(This article belongs to the Special Issue Diversity and Ecology of Termites)
Show Figures

Figure 1

14 pages, 3332 KiB  
Article
Soil-Microbial CNP Content and Ecological Stoichiometry Characteristics of Typical Broad-Leaved Tree Communities in Fanjing Mountain in Spring
by Wenmin Luo, Xianliang Wu, Sheng Chen, Guiting Mu and Yingying Liu
Diversity 2024, 16(4), 249; https://doi.org/10.3390/d16040249 - 22 Apr 2024
Viewed by 240
Abstract
This study aims to investigate the impact of diverse forest stand types and soil depths on soil ecological stoichiometry characteristics, shedding light on nutrient limitations and cycling patterns within the mid-subtropical forest ecosystem in southwest China during spring. The research focused on four [...] Read more.
This study aims to investigate the impact of diverse forest stand types and soil depths on soil ecological stoichiometry characteristics, shedding light on nutrient limitations and cycling patterns within the mid-subtropical forest ecosystem in southwest China during spring. The research focused on four representative forest stands situated in Fanjing Mountain: Castanopsis fargesii (C. fargesii), Cyclobalanopsis multiervis (C. multiervis), Cyclobalanopsis argyrotricha (C. argyrotricha), and Rhododendron argyrophyllum Franch (R. argyrophyllum). Sample plots were established in these forest types, and soil samples were collected from the 0–20 cm and 20–40 cm soil layers in March, spring of 2023. Various soil parameters, including pH, soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), soil microbial biomass carbon (MBC), soil microbial nitrogen (MBN), and soil microbial phosphorus (MBP) were measured, and their stoichiometric ratios were calculated. The findings of the study were as follows: (1) In the 0–20 cm soil layer, C. argyrotricha exhibited the highest soil organic carbon, followed by C. fargesii, C. multiervis, and R. argyrophyllum with the lowest content. No significant differences in soil organic carbon were observed among the four forests in the 20–40 cm soil layer. Additionally, C. argyrotricha displayed a significantly higher soil C:N ratio compared to other forest types in different soil layers. In the typical broad-leaved forest area of Fanjing Mountain, the TP was classified as deficient. (2) In the 0–20 cm soil layer, the MBC of C. fargesii surpassed C. multiervis, C. argyrotricha, and R. argyrophyllum by 26.59%, 42.92%, and 24.67%, respectively. There were no significant differences in soil MBC:MBP ratio and MBN:MBP ratio, regardless of forest species and soil depths. The low availability of soil nitrogen in different forest stand types in Fanjing Mountain strongly limits soil microorganism biomass. (3) The correlation between SOC, TN, TP, and their stoichiometric ratios varied across different soil layers. Therefore, in managing the Fanjing Mountain forest area, attention should be paid to supplementing N and P in the soil. Full article
Show Figures

Figure 1

16 pages, 80710 KiB  
Article
Phylogenetic Trends in the Dissymmetrisation of Genitalia in Hadenini (Lepidoptera, Noctuidae)
by Zoltán Varga, Gábor Ronkay and László Ronkay
Diversity 2024, 16(4), 248; https://doi.org/10.3390/d16040248 - 22 Apr 2024
Viewed by 300
Abstract
The external genital appendages of Noctuidae represent correlated–coevolved elements of a complex structure. The pathways of changes are delimited by some constraints, and they are parallelly evolved in different phyletic lines. Asymmetrical male external genitalia were found in Hadenini, in Polia and its [...] Read more.
The external genital appendages of Noctuidae represent correlated–coevolved elements of a complex structure. The pathways of changes are delimited by some constraints, and they are parallelly evolved in different phyletic lines. Asymmetrical male external genitalia were found in Hadenini, in Polia and its closely related genera, but also in Anarta (s. l.). In Poliina, the asymmetry of the genital capsule is mostly expressed in the Holarctic Polia nebulosa species group, forming the basal split within Polia (s. str.). Higher species diversity, as a consequence of asymmetry connected with the split of functions between the right and left sides, was observed in Polia (s. str.) and in Anarta (s. l.). The highest level of expansivity was observed in the Holarctic Anarta, where some species are migrating and becoming invasive ones, while a bulk of species populates the steppic and mountainous habitats of North America and Central Asia. Parallelly, while some genera/subgenera of the subtribe Poliina are oligotypic and/or consist of strictly localised species, the sensu stricto Polia species with asymmetrical genital capsules are widely distributed. The diversification of the Hadulina phylogenetic line should have been initiated by the Messinian aridisation crisis. The core area of diversification of Poliina was connected with the Sino-Himalayan region, followed by expansion into the Holarctic boreo-nemoral zone. Full article
(This article belongs to the Special Issue Speciation, Phylogenetics and Taxonomy of Lepidoptera)
Show Figures

Figure 1

17 pages, 3001 KiB  
Article
Exploring the Influence of Soil Salinity on Microbiota Dynamics in Vitis vinifera cv. “Glera”: Insights into the Rhizosphere, Carposphere, and Yield Outcomes
by Andrea Colautti, Giovanni Mian, Diego Tomasi, Luke Bell and Patrick Marcuzzo
Diversity 2024, 16(4), 247; https://doi.org/10.3390/d16040247 - 20 Apr 2024
Viewed by 425
Abstract
In a world grappling with the severe effects induced by climate change, one of the most significant concerns affecting agriculture is the gradual decline in water quality for irrigation associated with reduced rainfalls and the consequent increase in soil salinity. This issue is [...] Read more.
In a world grappling with the severe effects induced by climate change, one of the most significant concerns affecting agriculture is the gradual decline in water quality for irrigation associated with reduced rainfalls and the consequent increase in soil salinity. This issue is particularly crucial for grapevine cultivation (Vitis vinifera L.) and the associated winemaking industry. The aroma of the resulting wines and the yield parameters can be influenced both directly by water quality and indirectly due to the effects exerted by salinity on the microbiota, which directly impacts plant health. To gain insights into this topic, our study aimed to analyse the changes induced in the microbiota of both the rhizosphere and the carposphere due to salt stress using a metabarcoding approach, focusing on Vitis vinifera cv. Glera. The control plants were irrigated with rainwater, while the treated plants were irrigated with water containing salt (NaCl). Our findings revealed significant differences in the microbiota (both fungi and bacteria) of the rhizosphere and carposphere between the two treatments. For instance, the Shannon diversity index (i.e., alpha diversity) was lower in the treated plants compared to the control not-treated ones, whilst the beta diversity did not show any differences. Several microbial phyla exhibited better resilience to this abiotic stress (e.g., Ascomycota, Saccharomycetes, Acidobacteria, Proteobacteria, Bacteroidetes), shedding light on their impact on crucial bacterial and fungal groups essential for the subsequent winemaking stages. Additionally, the salt stress negatively affected the yield parameters. This study contributes valuable insights to the viticultural community, providing a deeper understanding of the complex interplay between soil characteristics, microbial communities, and their influence on productivity. Full article
(This article belongs to the Section Microbial Diversity and Culture Collections)
Show Figures

Figure 1

15 pages, 6080 KiB  
Article
Ascochyta erotica sp. nov. Pathogenic on Convolvulus arvensis
by Maria Gomzhina and Elena Gasich
Diversity 2024, 16(4), 246; https://doi.org/10.3390/d16040246 - 20 Apr 2024
Viewed by 264
Abstract
Convolvulus arvensis is an herbaceous dicotyledonous plant in the Convolvulaceae family that is native to Europe and Asia. It is a perennial soboliferous plant and is one of the most harmful weeds. This weed is successful in many types of climates, including temperate, [...] Read more.
Convolvulus arvensis is an herbaceous dicotyledonous plant in the Convolvulaceae family that is native to Europe and Asia. It is a perennial soboliferous plant and is one of the most harmful weeds. This weed is successful in many types of climates, including temperate, tropical, and Mediterranean climates, but it is most troublesome for agriculture throughout the temperate zone. In this study, several pathogenic isolates were collected from this host. The internal transcribed spacer (ITS) and large subunit (28S) or ribosomal DNA, partial DNA-directed RNA polymerase II subunit (rpb2), and β-tubulin (tub2) genes were amplified and sequenced for all the isolates studied. Further, both a multilocus phylogenetic analysis of DNA sequences and an analysis of morphological features were implemented. Based on the results obtained, all the studied isolates were found to be distinct from any described species in the genus Ascochyta and are, therefore, described here as a new species Ascochyta erotica sp. nov. The pathogenicity of A. erotica sp. nov. was also tested and confirmed on leaf segments of C. arvensis. Full article
Show Figures

Figure 1

12 pages, 1568 KiB  
Article
Comparative Metagenomic Analysis of Marine eDNA Investigating the Production Crisis of Aquacultured Saccharina japonica
by Soyun Choi, Kwon Mo Yang, Dong Mun Choi, Yang Ho Choi, Xiuliang Wang, Lingxiu Wang, Xiaoyong Liu, Delin Duan, Hyun Park and Jeong Ha Kim
Diversity 2024, 16(4), 245; https://doi.org/10.3390/d16040245 - 19 Apr 2024
Viewed by 238
Abstract
Aquaculture farms cultivating Saccharina japonica are highly active in Wando, Korea, and Rongcheng, China. However, the yield of S. japonica significantly declined in the Rongcheng region in 2022 compared to previous records, whereas that in Wando remained at a normal level, presumably due [...] Read more.
Aquaculture farms cultivating Saccharina japonica are highly active in Wando, Korea, and Rongcheng, China. However, the yield of S. japonica significantly declined in the Rongcheng region in 2022 compared to previous records, whereas that in Wando remained at a normal level, presumably due to the presence of a pathogenic microbiome. We used environmental DNA (eDNA) metagenomic analysis to compare the microbial compositions of seawater from aquaculture farms in Wando and Rongcheng. Seawater samples were collected from one Korean site in Wando (WA) and two Chinese sites in Ailian Bay (AB) and Lidao Bay (LB). Metagenomic analysis focusing on the microbial 16S rRNA identified 38 phyla and 58 families of microbiomes in all regions. Potentially pathogenic bacterial groups associated with S. japonica in AB and LB were more abundant than in WA, suggesting their potential influence on mortality and the decline in the harvest yield of S. japonica. The microbial composition of WA was distinguished from those of the other two sites, which clustered together with higher similarity. Since the S. japonica aquaculture industry is important for both countries, this comparative eDNA monitoring is a valuable initiation towards the next step of problem-solving practices in coastal management in these two aquaculture systems. Full article
(This article belongs to the Special Issue Microbial Diversity in Aquatic Systems)
Show Figures

Figure 1

20 pages, 7639 KiB  
Article
Ecological Impacts of Introduced European Rabbits (Oryctolagus cuniculus) on Island Ecosystems in the Mediterranean
by Angelina Kossoff, Sheila Schueller, Hannah Nossan, Ian Slack, Pavlos Avramidis and Johannes Foufopoulos
Diversity 2024, 16(4), 244; https://doi.org/10.3390/d16040244 - 19 Apr 2024
Viewed by 308
Abstract
The Cyclades Islands (Aegean Sea, Greece) are part of the Mediterranean Basin biodiversity hotspot and harbor a plethora of endemic species. Plant communities on the smaller islands in this region have largely evolved in the absence of herbivory and frequently lack antiherbivore defenses. [...] Read more.
The Cyclades Islands (Aegean Sea, Greece) are part of the Mediterranean Basin biodiversity hotspot and harbor a plethora of endemic species. Plant communities on the smaller islands in this region have largely evolved in the absence of herbivory and frequently lack antiherbivore defenses. This study evaluates the short- and long-term effects of the European rabbit (Oryctolagus cuniculus), an herbivore that has been released on numerous islands in the region, by comparing islands that 1. have historically been rabbit-free (ungrazed); 2. are currently grazed by rabbits, and 3. have previously been grazed, but are now rabbit-free. Ecological impacts of rabbits on the Aegean Islands were investigated by assessing the abundance, composition, and diversity of plant and arthropod communities as well as soil characteristics. Our results indicate that ungrazed islands have more arthropod species, more specialized or endemic plant species, and less exposed soil than currently grazed islands. While ungrazed islands did not necessarily possess higher total plant species richness, they did harbor significantly more small-island endemic taxa relative to presently grazed islands. This study indicates that native plant communities on Mediterranean islets are not adapted to the presence of this introduced species and that the practice of intentionally releasing rabbits on islands has significant and lasting negative ecological impacts, especially on small islands. While a complete recovery of post-rabbit was not evident over the time span of our research, both arthropod and plant data indicate that partial recovery is possible once rabbits have been removed. Full article
Show Figures

Figure 1

18 pages, 8066 KiB  
Article
Taxonomic Insights into Caulerpa (Bryopsidales, Chlorophyta) Species in French Polynesia: Confirmation of 13 Species and Reinstatement of C. pickeringii Harvey & Bailey
by Laura Lagourgue, Thomas Sauvage, Mayalen Zubia, Stefano G. A. Draisma, Christophe Vieira, Aschwin Engelen and Claude E. Payri
Diversity 2024, 16(4), 243; https://doi.org/10.3390/d16040243 - 18 Apr 2024
Viewed by 343
Abstract
Caulerpa J.V. Lamouroux is a genus of green macroalgae belonging to the family Caulerpaceae in the order Bryopsidales. The genus comprises 104 currently accepted species, of which 51 have been recorded from Pacific Islands. Among these islands, French Polynesia is found in the [...] Read more.
Caulerpa J.V. Lamouroux is a genus of green macroalgae belonging to the family Caulerpaceae in the order Bryopsidales. The genus comprises 104 currently accepted species, of which 51 have been recorded from Pacific Islands. Among these islands, French Polynesia is found in the middle of the South Pacific Ocean and includes five archipelagos (i.e., the Austral, Gambier, Marquesas, Society, and Tuamotu Islands) where seaweed inventories have reported a total of 16 Caulerpa species so far based on morphology. Here, based on a sampling covering the five archipelagos of French Polynesia, we attempt to (i) verify the taxonomy of Caulerpa species present in these regions based on phylogeny, (ii) describe in more detail the specific diversity between the five archipelagos, and (iii) provide a morphological identification tool for these species. We successfully obtained 134 new tufA sequences for phylogenetic analyses, which corresponded to 13 species. We propose to resurrect C. pickeringii Harvey & Bailey for representatives of C. webbiana var. pickeringii and classify it in the Caulerpa subgenus Araucarioideae. We also transfer C. seuratii to C. pickeringii based on genetic results. A new morphological identification key is provided as well as an updated distribution of Caulerpa species across French Polynesia. Full article
(This article belongs to the Special Issue Diversity in 2024)
Show Figures

Figure 1

18 pages, 4898 KiB  
Article
Abundant Species Govern the Altitude Patterns of Bacterial Community in Natural and Disturbed Subalpine Forest Soils
by Chaonan Li, Haijun Liao, Dehui Li and Yanli Jing
Diversity 2024, 16(4), 242; https://doi.org/10.3390/d16040242 - 18 Apr 2024
Viewed by 336
Abstract
Abundant and rare bacteria exhibit unequal responses to environmental changes and disturbances, potentially resulting in differential contributions to the altitudinal characteristics of total community in natural and disturbed soils. Although the altitude patterns of soil bacteria have been widely studied, it remains unclear [...] Read more.
Abundant and rare bacteria exhibit unequal responses to environmental changes and disturbances, potentially resulting in differential contributions to the altitudinal characteristics of total community in natural and disturbed soils. Although the altitude patterns of soil bacteria have been widely studied, it remains unclear whether these patterns are consistent among bacteria with varying predominance levels, and which subpopulation contributes more to maintaining these patterns in natural and disturbed subalpine forest soils. In this study, we collected 18 natural subalpine forest soil samples and 18 disturbed ones from three altitudes (2900 m a.s.l., 3102 m a.s.l., and 3194 m a.s.l.) along the Wenma highway in Miyaluo, Lixian, Sichuan, Southwest China. By partitioning total bacterial communities based on species predominance, we found that bacteria with higher predominance levels tended to exhibit altitude patterns (α-diversity, community structure, and functional redundancy) similar to those of total bacteria in both natural and disturbed subalpine forest soils, although they only occupied a small portion of the community. Abundant bacteria might play critical roles in maintaining the regional ecological characteristics of total community across the altitude gradient, while the rare and hyper-rare ones might contribute more to local diversity and functional redundancy. In natural soils, the altitude patterns of α-diversity inferred from total, abundant, and rare bacteria were mainly shaped by NO3-N, while soil conductivity mainly drove the altitude patterns of α-diversity inferred from hyper-rare bacteria. Additionally, the community structures of total, abundant, rare, and hyper-rare bacteria were mainly shaped by NO3-N, while the altitude patterns of functional redundancy inferred from total, abundant, and rare bacteria were mainly shaped by soil conductivity in natural soils. In disturbed subalpine forest soils, the influences of NO3-N for the altitude patterns of α-diversity and community structure, and those of soil conductivity for functional redundancy, were relatively weak in total, abundant, rare, and hyper-rare bacteria. This study examined the roles of bacteria with varying predominance levels in maintaining the altitude pattern of bacteria in both natural and disturbed subalpine forest soils, providing novel insights for devising strategies to conserve biodiversity and ecologically restore disturbed soils in subalpine ecosystems. Full article
(This article belongs to the Special Issue Microbiota Diversity in Plants and Forest)
Show Figures

Figure 1

13 pages, 4852 KiB  
Article
Climate-Change-Driven Shifts in Aegilops tauschii Species Distribution: Implications for Food Security and Ecological Conservation
by Shirin Mahmoodi, Mohammad Jaffar Aghaei, Kourosh Ahmadi and Amir Naghibi
Diversity 2024, 16(4), 241; https://doi.org/10.3390/d16040241 - 18 Apr 2024
Viewed by 334
Abstract
Climate change has diverse effects on the planet’s environment, including changes and shifts in the distribution and abundance of species. In this paper, we present a robust prediction ensemble algorithm for the current and future species distribution of Aegilops tauschii. Four modeling [...] Read more.
Climate change has diverse effects on the planet’s environment, including changes and shifts in the distribution and abundance of species. In this paper, we present a robust prediction ensemble algorithm for the current and future species distribution of Aegilops tauschii. Four modeling approaches were trained using various environmental variables (bioclimatic and soil variables) to accurately predict the species distribution for future scenarios. The results showed that GBM and RF demonstrated the most accurate predictions with an Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) of 0.80 and 0.83, respectively. The results of variable importance depicted that the temperature seasonality (bio4) was the most important and effective factor in determining the habitat suitability of Ae. tauschii, followed closely by the precipitation seasonality (bioclimate 15) and the mean temperature of the warmest quarter (bio10). Then, the distribution maps of Ae. tauschii were produced under climate change scenarios for 2050 and 2070. The results showed that Ae. tauschii will lose some of its suitable habitats under climate change and that this loss will be more severe in the east part of the study area. The results of the present study have important implications for ecological conservation as they can assist in identifying critical habitats and inform conservation planning efforts. Our model provides a valuable tool for understanding the potential future distribution of Ae. tauschii and highlights the need for continuous monitoring and protection of this species. Full article
Show Figures

Figure 1

24 pages, 2638 KiB  
Article
Building the Resilience of Marginal Rural Areas Using a Complementary Characterization Approach: Possible Beneficial Health Effects and Stress Tolerance of Italian Common Bean (Phaseolus vulgaris L.) Landraces
by Martina Falcione, Alessandra Renella, Vadym Samukha, Mayra Colardo, Melissa Simiele, Gabriella Stefania Scippa, Marco Segatto and Dalila Trupiano
Diversity 2024, 16(4), 240; https://doi.org/10.3390/d16040240 - 17 Apr 2024
Viewed by 464
Abstract
Common bean landraces, besides contributing to the preservation of the social and cultural identity of the local communities of the production area, typically display adaptability to adverse agro-climatic conditions. This adapted germplasm is a repository of the gene pool and also shows typical [...] Read more.
Common bean landraces, besides contributing to the preservation of the social and cultural identity of the local communities of the production area, typically display adaptability to adverse agro-climatic conditions. This adapted germplasm is a repository of the gene pool and also shows typical phytochemical profiles, representing an essential source of bioactive components. However, genetic erosion is progressively affecting this genetic material, creating serious threats to its cultivation in marginal rural areas and use as a source of biodiversity and bioproducts. In the present work, a comprehensive approach was used to characterize the seed morpho-colorimetric traits, genetic diversity, and NMR metabolomic profiles of three Italian common bean landraces. Specific physiological and biochemical features (antioxidant molecules, osmolytes, structural reorganization of photosynthetic pigment, etc.), together with the accumulation of distinctive metabolites, contribute to the description of the observed diversity among the landraces in terms of the salt stress response and antiproliferative abilities on intestinal human cancer cells. This information could be useful in establishing their value in terms of environmental and/or human health “service”, both essential to translating landraces into competitive products, a prerequisite for envisioning appropriate strategies for their conservation and a driving force for the revitalization of marginal rural areas. Full article
(This article belongs to the Special Issue Advances in Crop Genetic Diversity: Challenges and Opportunities)
Show Figures

Graphical abstract

15 pages, 1465 KiB  
Article
Terrestrial Tardigrada (Water Bears) of the Słowiński National Park (Northern Poland)
by Tomasz Bartylak, Pushpalata Kayastha, Anastasiia Polishchuk, Milena Roszkowska, Magdalena Maria Bartylak, Tomasz Rutkowski, Michał Zacharyasiewicz and Łukasz Kaczmarek
Diversity 2024, 16(4), 239; https://doi.org/10.3390/d16040239 - 17 Apr 2024
Viewed by 292
Abstract
In this paper, samples of mosses, lichens and cryptogams (mosses mixed with lichens) collected from Słowiński National Park (northern Poland) were studied for water bears (Tardigrada). In total, 27 tardigrade taxa were identified: 21 to the species level, one identified as „cf. [...] Read more.
In this paper, samples of mosses, lichens and cryptogams (mosses mixed with lichens) collected from Słowiński National Park (northern Poland) were studied for water bears (Tardigrada). In total, 27 tardigrade taxa were identified: 21 to the species level, one identified as „cf.” and three to the genus level, with six species (Eremobiotus ginevrae, Hypsibius dujardini, Hypsibius scabropygus, Milnesium beasleyi, Minibiotus intermedius and Notahypsibius pallidoides) being new records for Poland. Two possibly new for science species were also found, belonging to genera Diphascon and Mesobiotus. Additionally, a very rare eutardigrade Pseudohexapodibius degenerans has been found in the samples analyzed in the present study for the first time outside of the type locality. The effects of habitat and substrate on species richness were also investigated and showed no significant differences between mosses and lichens, as well as all substrates except for concrete walls. Full article
(This article belongs to the Special Issue 2024 Feature Papers by Diversity’s Editorial Board Members)
Show Figures

Figure 1

13 pages, 3169 KiB  
Article
Outstanding Aggregation of the Atlantic Brisingid Hymenodiscus coronata (Sars, 1871) (Echinodermata: Asteroidea) in the Strait of Sicily
by Margherita Toma, Antonio Giova, Marzia Bo, Simonepietro Canese, Francesco Enrichetti, Teresa Romeo, Eva Salvati and Silvestro Greco
Diversity 2024, 16(4), 238; https://doi.org/10.3390/d16040238 - 17 Apr 2024
Viewed by 315
Abstract
The sea star Hymenodiscus coronata is the only Mediterranean representative of the deep-sea order Brisingida. In the North-eastern Atlantic Ocean, this species is known to create dense aggregations, while, in the Mediterranean basin, it is generally reported as scattered individuals. Through the analysis [...] Read more.
The sea star Hymenodiscus coronata is the only Mediterranean representative of the deep-sea order Brisingida. In the North-eastern Atlantic Ocean, this species is known to create dense aggregations, while, in the Mediterranean basin, it is generally reported as scattered individuals. Through the analysis of the video footage obtained from an extensive ROV campaign carried out in the northern Strait of Sicily in 2021, over 2850 specimens were counted. The specimens, observed between 310 m and 714 m depth, showed a large variability in size and number of arms. It was noted that 17% of the specimens displayed the peculiar “sail position”, with all the arms extended vertically in the water column, possibly increasing the filtration rate. Almost the totality of the individuals was noted on soft bottoms, in accordance with the ecological preferences of the species. The density of H. coronata in each site varied between 0.01 and 0.81 individuals m−2, with the highest densities reported in sites characterized by large muddy areas among rocky outcrops and turbulent hydrodynamic conditions. Although the trawling areas exploited in 2021 did not seem to interfere with the presence of H. coronata in the study area, a precautionary approach should be assumed to protect the largest ever reported Mediterranean aggregation of this poorly known species. Full article
(This article belongs to the Special Issue Diversity and Biogeography of Sea Stars (Echinodermata, Asteroidea))
Show Figures

Figure 1

17 pages, 2210 KiB  
Article
Molecular and Morphological Phylogenies of Spirorbinae (Serpulidae, Polychaeta, Annelida) and the Evolution of Brooding Modes
by Greg W. Rouse, Tara A. Macdonald and Elena K. Kupriyanova
Diversity 2024, 16(4), 237; https://doi.org/10.3390/d16040237 - 17 Apr 2024
Viewed by 362
Abstract
Spirorbinae, a ubiquitous group of marine calcareous tubeworms with a small body size as adults, have a fascinating diversity of brooding modes that form the basis for their taxonomic division into six tribes (traditionally subfamilies): in-tube incubation, with varying degrees of attachment to [...] Read more.
Spirorbinae, a ubiquitous group of marine calcareous tubeworms with a small body size as adults, have a fascinating diversity of brooding modes that form the basis for their taxonomic division into six tribes (traditionally subfamilies): in-tube incubation, with varying degrees of attachment to adult structures (four tribes), and external incubation in a modified radiole (opercular brood chambers; two tribes). We investigated the evolutionary transitions among these brooding modes. Phylogenetic reconstruction with molecular (28s and 18s rDNA) and morphological data (83 characters) among 36 taxa (32 ingroup spirorbins; 4 filogranin outgroups) of the combined data set, using maximum parsimony, maximum likelihood, and Bayesian analyses, inferred Spirorbinae to be monophyletic, with strong support for the monophyly for five tribes (Circeini, Januini, Romanchellini, Paralaeospirini and Spirorbini), but non-monophyly for Pileolariini. However, deeper relationships among some tribes remain unresolved. Neomicrorbis was found to be the sistergroup to all other Spirorbinae. Alternative coding strategies for assessing the ancestral state reconstruction for the reproductive mode allowed for a range of conclusions as to the evolution of tube and opercular brooding in Spirorbinae. Two of the transformations suggest that opercular brooding may be ancestral for Spirorbinae, and the tube-incubating tribes may have been derived independently from opercular-brooding ancestors. Full article
(This article belongs to the Special Issue Diversity in 2023)
Show Figures

Figure 1

20 pages, 4129 KiB  
Review
Anthropogenic Pressures on Gorillas: A Case of Grauer’s Gorillas in Maiko National Park, the Democratic Republic of Congo
by Kahindo Tulizo Consolee, Xiaofeng Luan and Li Cong
Diversity 2024, 16(4), 236; https://doi.org/10.3390/d16040236 - 16 Apr 2024
Viewed by 451
Abstract
Anthropogenic activities put biodiversity under pressure, adversely affecting the forest ecosystem and wildlife habitats. Habitat disturbance and modification are among the main threats to animal populations in tropical forests. In the Democratic Republic of Congo (DRC), Grauer’s gorillas (Gorilla beringei graueri) [...] Read more.
Anthropogenic activities put biodiversity under pressure, adversely affecting the forest ecosystem and wildlife habitats. Habitat disturbance and modification are among the main threats to animal populations in tropical forests. In the Democratic Republic of Congo (DRC), Grauer’s gorillas (Gorilla beringei graueri) are continuously threatened through forest encroachment for agricultural expansion, human settlements, new refugee camps, illegal logging, and mining across the country. Moreover, poaching and bushmeat trafficking continuously threaten gorillas’ existence. These drivers increase the proximity of humans and the risk of disease transmission. The emerging and existing zoonotic diseases, including Ebola, are continuously impacting gorillas’ lives. All of these pressures combined are disrupting natural behavior patterns and are leading to the decline in the Grauer’s gorillas’ population. Therefore, this review scrutinizes findings on the anthropogenic pressures on the habitats and survival of Grauer’s gorillas. Also, it is important to engage with people for the shared conservation role and ecotourism to support the conservation of forest biodiversity and Grauer’s gorillas’ habitats, particularly for the Maiko National Park in the DRC. Full article
Show Figures

Figure 1

14 pages, 5363 KiB  
Article
Effects of Land Use Change on Avian Diversity in the Semi-Arid Area of Longxi Loess Plateau
by Ruirui Mao, Dexi Zhang, Qian Zhou, Yizhu Wang and Lixun Zhang
Diversity 2024, 16(4), 235; https://doi.org/10.3390/d16040235 - 16 Apr 2024
Viewed by 402
Abstract
Biodiversity is under threat due to human-induced changes in land use. While various aspects of biodiversity are increasingly studied in response to these changes, there is limited understanding of their effects on the structure and composition of bird communities in dryland regions. We [...] Read more.
Biodiversity is under threat due to human-induced changes in land use. While various aspects of biodiversity are increasingly studied in response to these changes, there is limited understanding of their effects on the structure and composition of bird communities in dryland regions. We examined the impacts of land use change on birds in the semi-arid area of the Longxi Loess Plateau by considering taxonomic diversity, functional diversity, and phylogenetic diversity. We analyzed both the α- and β-diversity of avian communities across different dimensions of diversity and calculated functional and phylogenetic structures using the net relatedness index. Our findings revealed that species richness was highest in farmland and abandoned farmland, while artificial mixed forests exhibited the highest number of unique species. Functional and phylogenetic α-diversity was greater in farmland and abandoned farmland when compared to the other four land use types. Moreover, the taxonomic diversity in artificial mixed forests, artificial Caragana korshinskii forests, and artificial Platycladus orientalis forests surpassed that in typical grasslands, but no differences were observed in functional and phylogenetic diversity. Regarding β-diversity, turnover patterns dominated multidimensional dissimilarity, with taxonomic turnover and total dissimilarity lower than their functional counterparts but higher than phylogenetic counterparts. Based on the present findings, we emphasize the long-term cessation of ongoing silvicultural initiatives to safeguard bird diversity in the semi-arid region of the Longxi Loess Plateau. This is crucial for narrowly distributed species such as Alectoris magna, as they face heightened vulnerability to losses. Full article
Show Figures

Figure 1

25 pages, 11154 KiB  
Article
The Diversity of Subterranean Terrestrial Arthropods in Resava Cave (Eastern Serbia)
by Nikola Vesović, Christo Deltshev, Plamen Mitov, Dragan Antić, Dalibor Z. Stojanović, Dejan V. Stojanović, Katarina Stojanović, Milenka Božanić, Aleksandra Ignjatović-Ćupina and Srećko Ćurčić
Diversity 2024, 16(4), 234; https://doi.org/10.3390/d16040234 - 16 Apr 2024
Viewed by 432
Abstract
The Balkan region is rich in limestone deposits, which have created one of the largest hotspots of subterranean biodiversity. This paper gives an overview of the diversity of subterranean terrestrial arthropods in Resava Cave in eastern Serbia. This cave is protected and has [...] Read more.
The Balkan region is rich in limestone deposits, which have created one of the largest hotspots of subterranean biodiversity. This paper gives an overview of the diversity of subterranean terrestrial arthropods in Resava Cave in eastern Serbia. This cave is protected and has the status of a natural monument. At the same time, it is one of the most visited caves in Serbia and its surroundings. Our study comprises the results of three years of biospeleological investigations of the famous Serbian cave in combination with data from the few available literature sources on the arthropod fauna of the cave. The arthropod samples were collected both manually and with pitfall traps. A total of 107 arthropod species from the four major subphyla were registered in the cave: 66 species of Hexapoda, 27 species of Chelicerata, 11 species of Myriapoda and three species of Crustacea. For four troglobitic, 16 troglophilic and 87 trogloxenic species recorded in the cave, descriptions of their microhabitats and information on their distribution in the cave are given. Considering the medium size of Resava Cave and the lack of permanent water flow in the two main levels on the one hand, and the large number of arthropod species recorded on the other, the cave is relatively rich in hypogean terrestrial arthropod fauna compared to other caves in Serbia that have been biospeleologically studied so far. Full article
Show Figures

Figure 1

22 pages, 10066 KiB  
Article
Resilience of Aboveground Biomass of Secondary Forests Following the Abandonment of Gold Mining Activity in the Southeastern Peruvian Amazon
by Jorge Garate-Quispe, Marx Herrera-Machaca, Victor Pareja Auquipata, Gabriel Alarcón Aguirre, Sufer Baez Quispe and Edgar Eloy Carpio-Vargas
Diversity 2024, 16(4), 233; https://doi.org/10.3390/d16040233 - 15 Apr 2024
Viewed by 544
Abstract
Amazon rainforests are critical for providing a wide range of ecosystem services. In the Southeastern Peruvian Amazon; however, goldmining activities are causing severe soil degradation and forest loss. We analyzed aboveground biomass (AGB), forest structure, and species diversity recovery during secondary succession in [...] Read more.
Amazon rainforests are critical for providing a wide range of ecosystem services. In the Southeastern Peruvian Amazon; however, goldmining activities are causing severe soil degradation and forest loss. We analyzed aboveground biomass (AGB), forest structure, and species diversity recovery during secondary succession in 179 forest plots. Our study provides the first field-based quantification of AGB recovery following the abandonment by two types of goldmining (heavy machinery and suction pumping) in Madre de Dios (Peru). We found that successional secondary forests in areas subjected to suction pumping were more resilient than those in areas subjected to heavy machinery. After 20 years, mean AGB in suction pumping mining areas had reached 56% of reference forest AGB, while in areas of heavy machinery mining it was only 18%. Mining type, stand age, and distance from the forest edge had a significant effect on AGB. The influence of the distance from the forest edge on AGB varies according to mining type because the effects of species diversity on AGB are mediated by the distance from the forest edge. Our results clearly showed the dynamics of AGB recovery across a secondary succession after goldmining, and the contrasting responses of AGB between the two mining types. Our study disentangles the importance of key factors in forest recovery after mining and improves understanding of the resilience of biomass accumulation in these highly degraded ecosystems. Full article
(This article belongs to the Special Issue Plant Succession and Vegetation Dynamics)
Show Figures

Figure 1

18 pages, 2387 KiB  
Article
The Occurrence of the American Burying Beetle (Nicrophorus americanus) and Associated Silphid Beetle Community in South Dakota: Implications for Managed Relocation
by William Wyatt Hoback, Daniel G. Snethen, Melissa Reed and Michael C. Cavallaro
Diversity 2024, 16(4), 232; https://doi.org/10.3390/d16040232 - 13 Apr 2024
Viewed by 374
Abstract
The American burying beetle, Nicrophorus americanus Olivier (Coleoptera: Siliphidae), is a federally threatened species in the United States, occurring in less than 10% of its historic range. The continued monitoring of extant populations found in South Dakota, the northernmost edge of its confirmed [...] Read more.
The American burying beetle, Nicrophorus americanus Olivier (Coleoptera: Siliphidae), is a federally threatened species in the United States, occurring in less than 10% of its historic range. The continued monitoring of extant populations found in South Dakota, the northernmost edge of its confirmed range, is imperative to future conservation efforts, especially with the predicted loss of the species in southern regions because of climate change. Proposed strategies to preserve the species include the reintroduction or translocation of individuals from habitats that have become unsuitable. Beyond adequate habitat and carrion resource requirements, community-level silphid interactions may challenge these efforts because of competition. From 2018 to 2020, we used 80 carrion-baited pitfall traps per year to conduct two 5-day surveys in June and August. A total of 25,923 Silphidae belonging to 15 species were collected in 1200 trap nights. Cumulatively, 1150 N. americanus were captured and marked with 263 recaptures. Like past findings, N. americanus was concentrated in western Tripp County with limited occurrence in Gregory and Todd Counties, suggesting no expansion of their known range in the past decade. Generalized linear mixed-effects models indicated N. americanus abundance was significantly predicted by the co-occurrence of the carrion beetles Oieceoptoma inaequale F. and Oiceoptoma noveboracense Forster, whereas pitfall trap catches dominated by the burying beetle Nicrophorus marginatus F. had predictively less N. americanus. Collectively, these data provide insights into the existing, northernmost N. americanus population dynamics and silphid beetle communities. Concurrent with monitoring extant populations, the characterization of silphid communities that co-occur with N. americanus may provide much-needed information for managed relocation opportunities. Full article
(This article belongs to the Special Issue Genetic Diversity, Ecology and Conservation of Endangered Species)
Show Figures

Figure 1

16 pages, 5185 KiB  
Article
The Effects of Infectious Diseases on the Consequences of Interspecific Competition in Grassland Communities
by Yanli Chen, Yanping Liu, Xiaoni Liu, Zhengzhong Zhang and Feng Zhang
Diversity 2024, 16(4), 231; https://doi.org/10.3390/d16040231 - 12 Apr 2024
Viewed by 330
Abstract
As infectious diseases have a severe impact on the individual survival and competitive ability of host species in grassland communities, competition between relevant species may have different consequences, potentially influencing the species composition of grassland communities and the functioning of grassland ecosystems. Understanding [...] Read more.
As infectious diseases have a severe impact on the individual survival and competitive ability of host species in grassland communities, competition between relevant species may have different consequences, potentially influencing the species composition of grassland communities and the functioning of grassland ecosystems. Understanding the impact of infectious diseases on competition is thus crucial for the health management of grassland ecosystems. How do infectious diseases affect the competitive coexistence of grassland plant species? In this study, by drawing on Tilman’s multispecies competition model and incorporating the spread characteristics of grassland plant diseases, we built three spatial competition models of two grass species subject to infectious diseases, and we analyzed the invasion conditions of infectious diseases and how they impact the population dynamics and competitive consequences of the species. Our model revealed the following: (1) Diseases with high transmission rates and low virulence are more likely to invade populations, while the presence of non-host species is detrimental to disease invasion. (2) Disease promotes the coexistence of competing species, breaking down the original competition–compromise trade-off mechanism for species coexistence and greatly expanding the range of parameters within which the two species can coexist. (3) Pathogen infections indirectly weaken the suppression of inferior species by dominant species, which is similar to the cascade effect seen in trophic interactions. Our findings highlight the importance of disease in species coexistence and grassland biodiversity maintenance. Full article
Show Figures

Figure 1

11 pages, 1175 KiB  
Article
Comparative Prevalence and Intensity of Endoparasites in a Dynamic Boreal Ungulate Community
by Cassandra L. Andrew, Brent Wagner, N. Jane Harms, Emily J. Jenkins and Thomas S. Jung
Diversity 2024, 16(4), 230; https://doi.org/10.3390/d16040230 - 12 Apr 2024
Viewed by 437
Abstract
Surveillance of endoparasites at the host community level is rarely reported for ungulates. Yet, changes in the composition and abundance of species in ungulate assemblages, coupled with environmental and climate change, bring into focus the need for baseline data on endoparasite occurrence in [...] Read more.
Surveillance of endoparasites at the host community level is rarely reported for ungulates. Yet, changes in the composition and abundance of species in ungulate assemblages, coupled with environmental and climate change, bring into focus the need for baseline data on endoparasite occurrence in host species at the community level. We investigated the prevalence and intensity of eggs of endoparasites in feces of a dynamic boreal ungulate community in Yukon, Canada, that included reintroduced bison (Bison bison), as well as introduced elk (Cervus canadensis), naturally colonizing mule deer (Odocoileus hemionus), and resident populations of caribou (Rangifer tarandus), moose (Alces americanus), and thinhorn sheep (Ovis dalli). We also examined the change in endoparasite prevalence and intensity in bison fecal samples collected eight years apart. The prevalence of eggs detected in feces differed across species for most endoparasite groups. We also provide new records of several endoparasites in novel hosts or new geographic records. We detected a substantially greater prevalence and intensity of trichostrongyle-type eggs in bison feces between samples collected eight years apart. Our data emphasize the need for targeted pathogen surveillance programs to monitor the movement of various ungulate and associated endoparasites. This is particularly pertinent since our data potentially supports evidence for the continued northward expansion and host switching of protostrongylid species, which may have health implications for animals at a new interface. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

17 pages, 2951 KiB  
Article
Habitat Selection of Three Neotropical Grassland Birds Is Dependent on Vegetation Structure and Resources
by Jo Peacock, Ross Macleod, G. Matt Davies, Tjalle Boorsma and Christopher M. Tonra
Diversity 2024, 16(4), 229; https://doi.org/10.3390/d16040229 - 10 Apr 2024
Viewed by 590
Abstract
Grassland birds are globally imperiled. Those of endemic Neotropical savannas may be particularly threatened as knowledge of the ecology of many species is lacking, restricting our ability to take decisive conservation action. During the dry (non-breeding) season of 2010, we studied the population [...] Read more.
Grassland birds are globally imperiled. Those of endemic Neotropical savannas may be particularly threatened as knowledge of the ecology of many species is lacking, restricting our ability to take decisive conservation action. During the dry (non-breeding) season of 2010, we studied the population size, distribution, and habitat associations of the Cock-tailed Tyrant (Alectrurus tricolor), Black-masked Finch (Coryphaspiza melanotis), and Wedge-tailed Grass-finch (Emberiziodes herbicola) across a disturbance-mediated savanna–grassland gradient in Beni, Bolivia. We used distance sampling and surveyed structural and resource-specific habitat features at plots where birds were present versus random locations. Occupancy models identified fine-scale habitat associations. Cock-tailed Tyrant (7.1 ind./km2) specialized on open habitats in areas expected to be heavily inundated in the wet season, avoided trees, and selected tall grassy swards. Black-masked Finch (25.1 ind./km2) occurred across the gradient, associating with tall, forb-rich swards, sparse shrubs, and low levels of fruiting and seeding vegetation. Wedge-tailed Grass-finch (27.9 ind./km2) also occurred across the gradient, particularly associated with tall, forb-rich swards, abundant seeding grasses, and sparse shrubs. Our results offer the first quantitative abundance estimates for these species in Beni, provide vital baselines for future monitoring, and improve knowledge of the ecology and conservation management needs of these species. Importantly, our results suggest that populations of these three grassland birds may be best maintained in heterogenous, mosaic landscapes that can be produced by carefully managed burning and grazing. Further research in the breeding season would facilitate making stronger, more specific management recommendations. Full article
(This article belongs to the Special Issue Avian Diversity in Forest and Grassland)
Show Figures

Figure 1

13 pages, 1492 KiB  
Article
Genetic Variation in the Pallas’s Cat (Otocolobus manul) in Zoo-Managed and Wild Populations
by Joshua J. Robinson, Alexis D. Crichlow, Charlotte E. Hacker, Bariushaa Munkhtsog, Bayaraa Munkhtsog, Yuguang Zhang, William F. Swanson, Leslie A. Lyons and Jan E. Janecka
Diversity 2024, 16(4), 228; https://doi.org/10.3390/d16040228 - 10 Apr 2024
Viewed by 424
Abstract
The Pallas’s cat (Otocolobus manul) is one of the most understudied taxa in the Felidae family. The species is currently assessed as being of “Least Concern” in the IUCN Red List, but this assessment is based on incomplete data. Additional ecological [...] Read more.
The Pallas’s cat (Otocolobus manul) is one of the most understudied taxa in the Felidae family. The species is currently assessed as being of “Least Concern” in the IUCN Red List, but this assessment is based on incomplete data. Additional ecological and genetic information is necessary for the long-term in situ and ex situ conservation of this species. We identified 29 microsatellite loci with sufficient diversity to enable studies into the individual identification, population structure, and phylogeography of Pallas’s cats. These microsatellites were genotyped on six wild Pallas’s cats from the Tibet Autonomous Region and Mongolia and ten cats from a United States zoo-managed population that originated in Russia and Mongolia. Additionally, we examined diversity in a 91 bp segment of the mitochondrial 12S ribosomal RNA (MT-RNR1) locus and a hypoxia-related gene, endothelial PAS domain protein 1 (EPAS1). Based on the microsatellite and MT-RNR1 loci, we established that the Pallas’s cat displays moderate genetic diversity. Intriguingly, we found that the Pallas’s cats had one unique nonsynonymous substitution in EPAS1 not present in snow leopards (Panthera uncia) or domestic cats (Felis catus). The analysis of the zoo-managed population indicated reduced genetic diversity compared to wild individuals. The genetic information from this study is a valuable resource for future research into and the conservation of the Pallas’s cat. Full article
Show Figures

Figure 1

16 pages, 5161 KiB  
Article
Exploring Morphological Population Variability: Host Plant and Habitat Dependency in the Protected Moth Gortyna borelii (Lepidoptera, Noctuidae)
by László Rákosy, Mihai Alexandru Martin, Geanina Magdalena Sitar, Andrei Crișan and Cristian Sitar
Diversity 2024, 16(4), 227; https://doi.org/10.3390/d16040227 - 09 Apr 2024
Viewed by 940
Abstract
In this paper, we discuss the evolutionary implications of the correlation between different species of Peucedanum plants and the distribution of Gortyna borelii moth populations in Romania. We highlight geographic separation and isolation among these populations due to anthropogenic landscape fragmentation, which hinders [...] Read more.
In this paper, we discuss the evolutionary implications of the correlation between different species of Peucedanum plants and the distribution of Gortyna borelii moth populations in Romania. We highlight geographic separation and isolation among these populations due to anthropogenic landscape fragmentation, which hinders genetic exchange. A geometric morphometric analysis was utilized to visualize and compare the morphometric variations in relation to the environmental variables, particularly the host plant. Additionally, the distribution of G. borelii populations across Europe and in Romania that are correlated with the host plant was analyzed. The significant morphological and morphometric differences between the analyzed populations support our working hypothesis, according to which the use of different Peucedanum species by the larvae of G. borelii leads to an intraspecific diversification correlated with the host plant species. The newly discovered population of G. borelii in Romania holds substantial conservation importance, necessitating protection measures, including demarcating habitat areas and raising awareness among stakeholders. G. borelii is a protected species at the European level (Habitats Directive 92/43/EEC, Appendices II and IV), considered endangered due to the isolation of its populations and anthropogenic pressures exerted through agricultural practices. Understanding the impact of agricultural practices on their habitat is crucial for effective management strategies. Overall, this study sheds light on the complex interplay between ecological adaptation, host plant specialization, and speciation dynamics in phytophagous insects, emphasizing the importance of conservation efforts to preserve G. borelii populations and their habitats. Full article
(This article belongs to the Special Issue Speciation, Phylogenetics and Taxonomy of Lepidoptera)
Show Figures

Figure 1

7 pages, 1766 KiB  
Interesting Images
Large-Scale Re-Implantation Efforts for Posidonia oceanica Restoration in the Ligurian Sea: Progress and Challenges
by Chiara Robello, Stefano Acunto, Laura Marianna Leone, Ilaria Mancini, Alice Oprandi and Monica Montefalcone
Diversity 2024, 16(4), 226; https://doi.org/10.3390/d16040226 - 09 Apr 2024
Viewed by 437
Abstract
The Ligurian Sea (NW Mediterranean) has been a focal point for numerous interventions aimed at restoring Posidonia oceanica meadows. The success of pioneer restoration actions in France during the 1970s stimulated similar initiatives across the Mediterranean Sea. Early attempts in the Ligurian Sea [...] Read more.
The Ligurian Sea (NW Mediterranean) has been a focal point for numerous interventions aimed at restoring Posidonia oceanica meadows. The success of pioneer restoration actions in France during the 1970s stimulated similar initiatives across the Mediterranean Sea. Early attempts in the Ligurian Sea were implemented in 1993 and 1996 on limited seabed areas (i.e., tens of square meters) at the two coastal sites of Sori and Rapallo (Liguria, NW Italy). No further initiatives have been reported for the Ligurian Sea until 2022. In that year, a large-scale restoration project, which uses biodegradable mats coupled with metal mesh, began in Liguria. Different levels of anthropogenic pressure and wave exposure characterize the three investigated locations: (1) Portofino, on the eastern Liguria and on the border with the Portofino Marine Protected Area; (2) Bergeggi in the central Liguria and within the Isola di Bergeggi Marine Protected Area; and (3) Sanremo in the western Liguria, without any formal protection. Despite recent setbacks caused by severe storms in late 2023, which particularly damaged the Portofino site, ongoing monitoring revealed promising survival rates. Most notably, the site in Bergeggi displayed a 90% survival rate in September 2023. Although challenges to restore P. oceanica beds persist, such as mitigating damages caused by unpredictable events, this extensive re-implantation initiative offers the opportunity to evaluate the effectiveness of new basin-scale restoration strategies. This approach marks an important step in the conservation of Posidonia oceanica habitat. Full article
Show Figures

Figure 1

38 pages, 4089 KiB  
Review
The Fossil Record and Diversity of Pycnodontiform Fishes in Non-Marine Environments
by John J. Cawley and Jürgen Kriwet
Diversity 2024, 16(4), 225; https://doi.org/10.3390/d16040225 - 09 Apr 2024
Viewed by 1284
Abstract
Pycnodont fishes were a successful clade of neopterygian fishes that are predominantly found in shallow marine deposits. However, throughout their long 180 million year reign (Late Triassic–end Eocene), they made multiple incursions into both brackish and freshwater environments. This fossil record mostly consists [...] Read more.
Pycnodont fishes were a successful clade of neopterygian fishes that are predominantly found in shallow marine deposits. However, throughout their long 180 million year reign (Late Triassic–end Eocene), they made multiple incursions into both brackish and freshwater environments. This fossil record mostly consists of fragmentary dental material, but articulated specimens are known from Early Cretaceous lacustrine localities in Spain. This review article aims to document all non-marine occurrences of Pycnodontiformes throughout most of the Mesozoic and early Paleogene. This review highlights two interesting trends in the history of non-marine habitat colonization by pycnodonts: (1) a huge spike in non-marine occurrences during the Cretaceous; and (2) that most occurrences in non-marine localities occurred at the latest Cretaceous period, the Maastrichtian. The high number of colonization events within the Cretaceous lines up with extreme climatic events, such as high temperatures resulting in high sea levels which regularly flooded continental masses, allowing pycnodonts easier access to non-marine habitats. The increased presence of pycnodonts in brackish and freshwater habitats during the Maastrichtian might have played a role in their survival through the K/Pg extinction event. Freshwater habitats are not as vulnerable as marine ecosystems to environmental disturbance as the base of their food chain relies on detritus. Pycnodonts might have used such environments as a refuge and began to occupy marine waters after the K/Pg extinction event. Full article
(This article belongs to the Special Issue Diversity, Biogeography and Evolution of Actinopterygians)
Show Figures

Figure 1

15 pages, 4470 KiB  
Article
Dissimilarity among Species and Higher Taxa of Amphibians in a Hotspot of Biodiversity and Endemism in the Neotropics
by Jaime Manuel Calderón-Patrón, Karen Elizabeth Peña-Joya, Jorge Téllez-López and Eréndira Patricia Canales-Gómez
Diversity 2024, 16(4), 224; https://doi.org/10.3390/d16040224 - 09 Apr 2024
Viewed by 848
Abstract
The Mexican Republic ranks fifth in the world in terms of amphibian diversity, and within Mexico, the state of Oaxaca has the greatest amphibian richness and endemism. Unfortunately, various factors, such as land use change and global warming, have caused a global crisis [...] Read more.
The Mexican Republic ranks fifth in the world in terms of amphibian diversity, and within Mexico, the state of Oaxaca has the greatest amphibian richness and endemism. Unfortunately, various factors, such as land use change and global warming, have caused a global crisis that threatens the conservation of this class. In the face of these threats, an analysis of beta diversity provides information that can be applied to conservation strategies, since its study reveals the spatial scaling of diversity loss and clarifies the mechanisms of regional diversity maintenance. In this work, we analyzed the beta diversity at the species and higher taxa level (order, family, subfamily, genus and species) for the amphibians of Oaxaca and their replacement components and the differences in richness for anurans and caudates separately between physiographic subprovinces. Very high beta diversity was recorded, with higher diversity occurring among caudates (0.92) than among anurans (0.84). Species replacement was the component that most contributed to this result, and the subprovinces with substantial environmental differences had the most dissimilar amphibian communities. The results of this study show the need to implement conservation strategies in subprovinces with high amphibian richness and endemism levels, following the example of Sierra Madre de Oaxaca (SMO), where local communities have developed conservation actions in most of the territory. Full article
(This article belongs to the Section Animal Diversity)
Show Figures

Figure 1

14 pages, 2534 KiB  
Article
Bears into the Niche-Space: Phylogeography and Phyloclimatic Model of the Family Ursidae
by Carlos Luna-Aranguré and Ella Vázquez-Domínguez
Diversity 2024, 16(4), 223; https://doi.org/10.3390/d16040223 - 08 Apr 2024
Viewed by 1176
Abstract
Assessing niche evolution remains an open question and an actively developing area of study. The family Ursidae consists of eight extant species for which, despite being the most studied family of carnivores, little is known about the influence of climate on their evolutionary [...] Read more.
Assessing niche evolution remains an open question and an actively developing area of study. The family Ursidae consists of eight extant species for which, despite being the most studied family of carnivores, little is known about the influence of climate on their evolutionary history and diversification. We evaluated their evolutionary patterns based on a combined phylogeography and niche modeling approach. We used complete mitogenomes, estimated divergence times, generated ecological niche models and applied a phyloclimatic model to determine the species evolutionary and diversification patterns associated with their respective environmental niches. We inferred the family evolutionary path along the environmental conditions of maximum temperature and minimum precipitation, from around 20 million years ago to the present. Our findings show that the phyloclimatic niches of the bear species occupy most of the environmental space available on the planet, except for the most extreme warm conditions, in accordance with the wide geographic distribution of Ursidae. Moreover, some species exhibit broader environmental niches than others, and in some cases, they explore precipitation axes more extensively than temperature axes or vice versa, suggesting that not all species are equally adaptable to these variables. We were able to elucidate potential patterns of niche conservatism and evolution, as well as niche overlapping, suggesting interspecific competitive exclusion between some of the bear species. We present valuable insights into the ecological and evolutionary processes driving the diversification and distribution of the Ursidae. Our approach also provides essential information for guiding effective conservation strategies, particularly in terms of distribution limits in the face of climate change. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop