Molecular Genetics of Neurodevelopmental Disorders

A special issue of Genes (ISSN 2073-4425). This special issue belongs to the section "Human Genomics and Genetic Diseases".

Deadline for manuscript submissions: 15 June 2024 | Viewed by 4457

Special Issue Editors


E-Mail Website
Guest Editor
Autism Discovery and Treatment Foundation and Rossignol Medical Center, Phoenix, AZ, USA
Interests: neurodevelopmental disorders; metabolic disorders; genetic symptoms; epigenetics; gene regulation

E-Mail Website
Guest Editor
The Center for Neurological and Neurodevelopmental Health, Vorhees, NJ, USA
Interests: neurodevelopmental disorders; functional disorders; mitochondrial genetics; channelopathies; DNA sequencing
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
UK Healthcare, University of Kentucky, Lexington, KY, USA
Interests: autism spectrum disorder

Special Issue Information

Dear Colleagues,

Neurodevelopmental disorders affect a significant number of children during vulnerable periods of their lives and can have a substantial lifelong impact on them and their families. Despite intensive research, we have much to learn regarding the etiology of these disorders. In particular, although the genetic component is large and many genetic variants have been identified, the mechanism through which they predispose towards the autism phenotype and how treatments can mitigate the development process, remain unclear. The genetic component is highly complex, not only in terms of the number of genes known to be involved, but also in terms of multiple pathways, low penetrance/high prevalence variants versus the opposite, de novo versus inherited variants, polygenetic interaction, and microRNA gene regulation. In many cases, the severity appears to be triggered by physiological stressors, and thus environmental factors, epigenetic changes, and gene–environmental interactions must also be considered.

Our goal is to publish high-impact, cutting-edge articles focusing on the emerging understanding of how complex genetic processes and/or gene–environmental interactions can provide insight into the pathophysiological processes that underlie the etiology or pathophysiology of neurodevelopmental disorders.

We encourage the submission of manuscripts describing any of the above-listed factors that provide insight into the etiological or pathophysiological processes underlying neurodevelopmental disorders. We also encourage submissions improving the description of genetic variants or conditions that help elucidate underlying biological mechanisms. Concepts that translate into novel treatments are encouraged but not required.

We encourage the submission of manuscripts describing any genetic processes or genetic syndromes involved in the development of neurodevelopmental disorders.

Prof. Dr. Richard Eugene Frye
Dr. Richard G. Boles
Prof. Dr. Stephen G. Kahler
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Genes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • neurodevelopmental disorders
  • attention deficit hyperactivity disorder
  • intellectual disabilities
  • autism spectrum disorder
  • mitochondria
  • neuroinflammation
  • epigenetics
  • transcriptomics
  • genetic syndromes
  • polygenetic interactions

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

23 pages, 3682 KiB  
Article
Early Chronic Fluoxetine Treatment of Ts65Dn Mice Rescues Synaptic Vesicular Deficits and Prevents Aberrant Proteomic Alterations
by S. Hossein Fatemi, Elysabeth D. Otte, Timothy D. Folsom, Arthur C. Eschenlauer, Randall J. Roper, Justin W. Aman and Paul D. Thuras
Genes 2024, 15(4), 452; https://doi.org/10.3390/genes15040452 - 03 Apr 2024
Viewed by 533
Abstract
Down syndrome (DS) is the most common form of inherited intellectual disability caused by trisomy of chromosome 21, presenting with intellectual impairment, craniofacial abnormalities, cardiac defects, and gastrointestinal disorders. The Ts65Dn mouse model replicates many abnormalities of DS. We hypothesized that investigation of [...] Read more.
Down syndrome (DS) is the most common form of inherited intellectual disability caused by trisomy of chromosome 21, presenting with intellectual impairment, craniofacial abnormalities, cardiac defects, and gastrointestinal disorders. The Ts65Dn mouse model replicates many abnormalities of DS. We hypothesized that investigation of the cerebral cortex of fluoxetine-treated trisomic mice may provide proteomic signatures that identify therapeutic targets for DS. Subcellular fractionation of synaptosomes from cerebral cortices of age- and brain-area-matched samples from fluoxetine-treated vs. water-treated trisomic and euploid male mice were subjected to HPLC-tandem mass spectrometry. Analysis of the data revealed enrichment of trisomic risk genes that participate in regulation of synaptic vesicular traffic, pre-synaptic and post-synaptic development, and mitochondrial energy pathways during early brain development. Proteomic analysis of trisomic synaptic fractions revealed significant downregulation of proteins involved in synaptic vesicular traffic, including vesicular endocytosis (CLTA, CLTB, CLTC), synaptic assembly and maturation (EXOC1, EXOC3, EXOC8), anterograde axonal transport (EXOC1), neurotransmitter transport to PSD (SACM1L), endosomal-lysosomal acidification (ROGDI, DMXL2), and synaptic signaling (NRXN1, HIP1, ITSN1, YWHAG). Additionally, trisomic proteomes revealed upregulation of several trafficking proteins, involved in vesicular exocytosis (Rab5B), synapse elimination (UBE3A), scission of endocytosis (DBN1), transport of ER in dendritic spines (MYO5A), presynaptic activity-dependent bulk endocytosis (FMR1), and NMDA receptor activity (GRIN2A). Chronic fluoxetine treatment of Ts65Dn mice rescued synaptic vesicular abnormalities and prevented abnormal proteomic changes in adult Ts65Dn mice, pointing to therapeutic targets for potential treatment of DS. Full article
(This article belongs to the Special Issue Molecular Genetics of Neurodevelopmental Disorders)
Show Figures

Figure 1

22 pages, 6945 KiB  
Article
Variation of FMRP Expression in Peripheral Blood Mononuclear Cells from Individuals with Fragile X Syndrome
by Jamie L. Randol, Kyoungmi Kim, Matthew D. Ponzini, Flora Tassone, Alexandria K. Falcon, Randi J. Hagerman and Paul J. Hagerman
Genes 2024, 15(3), 356; https://doi.org/10.3390/genes15030356 - 13 Mar 2024
Viewed by 712
Abstract
Fragile X syndrome (FXS) is the most common heritable cause of intellectual disability and autism spectrum disorder. The syndrome is often caused by greatly reduced or absent protein expression from the fragile X messenger ribonucleoprotein 1 (FMR1) gene due to expansion [...] Read more.
Fragile X syndrome (FXS) is the most common heritable cause of intellectual disability and autism spectrum disorder. The syndrome is often caused by greatly reduced or absent protein expression from the fragile X messenger ribonucleoprotein 1 (FMR1) gene due to expansion of a 5′-non-coding trinucleotide (CGG) element beyond 200 repeats (full mutation). To better understand the complex relationships among FMR1 allelotype, methylation status, mRNA expression, and FMR1 protein (FMRP) levels, FMRP was quantified in peripheral blood mononuclear cells for a large cohort of FXS (n = 154) and control (n = 139) individuals using time-resolved fluorescence resonance energy transfer. Considerable size and methylation mosaicism were observed among individuals with FXS, with FMRP detected only in the presence of such mosaicism. No sample with a minimum allele size greater than 273 CGG repeats had significant levels of FMRP. Additionally, an association was observed between FMR1 mRNA and FMRP levels in FXS samples, predominantly driven by those with the lowest FMRP values. This study underscores the complexity of FMR1 allelotypes and FMRP expression and prompts a reevaluation of FXS therapies aimed at reactivating large full mutation alleles that are likely not capable of producing sufficient FMRP to improve cognitive function. Full article
(This article belongs to the Special Issue Molecular Genetics of Neurodevelopmental Disorders)
Show Figures

Figure 1

13 pages, 2044 KiB  
Article
KMT2D Deficiency Causes Sensorineural Hearing Loss in Mice and Humans
by Allison J. Kalinousky, Teresa R. Luperchio, Katrina M. Schrode, Jacqueline R. Harris, Li Zhang, Valerie B. DeLeon, Jill A. Fahrner, Amanda M. Lauer and Hans T. Bjornsson
Genes 2024, 15(1), 48; https://doi.org/10.3390/genes15010048 - 28 Dec 2023
Viewed by 1184
Abstract
Individuals with Kabuki syndrome type 1 (KS1) often have hearing loss recognized in middle childhood. Current clinical dogma suggests that this phenotype is caused by frequent infections due to the immune deficiency in KS1 and/or secondary to structural abnormalities of the ear. To [...] Read more.
Individuals with Kabuki syndrome type 1 (KS1) often have hearing loss recognized in middle childhood. Current clinical dogma suggests that this phenotype is caused by frequent infections due to the immune deficiency in KS1 and/or secondary to structural abnormalities of the ear. To clarify some aspects of hearing loss, we collected information on hearing status from 21 individuals with KS1 and found that individuals have both sensorineural and conductive hearing loss, with the average age of presentation being 7 years. Our data suggest that while ear infections and structural abnormalities contribute to the observed hearing loss, these factors do not explain all loss. Using a KS1 mouse model, we found hearing abnormalities from hearing onset, as indicated by auditory brainstem response measurements. In contrast to mouse and human data for CHARGE syndrome, a disorder possessing overlapping clinical features with KS and a well-known cause of hearing loss and structural inner ear abnormalities, there are no apparent structural abnormalities of the cochlea in KS1 mice. The KS1 mice also display diminished distortion product otoacoustic emission levels, which suggests outer hair cell dysfunction. Combining these findings, our data suggests that KMT2D dysfunction causes sensorineural hearing loss compounded with external factors, such as infection. Full article
(This article belongs to the Special Issue Molecular Genetics of Neurodevelopmental Disorders)
Show Figures

Figure 1

Review

Jump to: Research

21 pages, 355 KiB  
Review
Genetic Advancements in Infantile Epileptic Spasms Syndrome and Opportunities for Precision Medicine
by Hannah E. Snyder, Puneet Jain, Rajesh RamachandranNair, Kevin C. Jones and Robyn Whitney
Genes 2024, 15(3), 266; https://doi.org/10.3390/genes15030266 - 21 Feb 2024
Viewed by 1290
Abstract
Infantile epileptic spasms syndrome (IESS) is a devastating developmental epileptic encephalopathy (DEE) consisting of epileptic spasms, as well as one or both of developmental regression or stagnation and hypsarrhythmia on EEG. A myriad of aetiologies are associated with the development of IESS; broadly, [...] Read more.
Infantile epileptic spasms syndrome (IESS) is a devastating developmental epileptic encephalopathy (DEE) consisting of epileptic spasms, as well as one or both of developmental regression or stagnation and hypsarrhythmia on EEG. A myriad of aetiologies are associated with the development of IESS; broadly, 60% of cases are thought to be structural, metabolic or infectious in nature, with the remainder genetic or of unknown cause. Epilepsy genetics is a growing field, and over 28 copy number variants and 70 single gene pathogenic variants related to IESS have been discovered to date. While not exhaustive, some of the most commonly reported genetic aetiologies include trisomy 21 and pathogenic variants in genes such as TSC1, TSC2, CDKL5, ARX, KCNQ2, STXBP1 and SCN2A. Understanding the genetic mechanisms of IESS may provide the opportunity to better discern IESS pathophysiology and improve treatments for this condition. This narrative review presents an overview of our current understanding of IESS genetics, with an emphasis on animal models of IESS pathogenesis, the spectrum of genetic aetiologies of IESS (i.e., chromosomal disorders, single-gene disorders, trinucleotide repeat disorders and mitochondrial disorders), as well as available genetic testing methods and their respective diagnostic yields. Future opportunities as they relate to precision medicine and epilepsy genetics in the treatment of IESS are also explored. Full article
(This article belongs to the Special Issue Molecular Genetics of Neurodevelopmental Disorders)
Back to TopTop