Advances in Inorganic Micro/Nano-Composites: Synthesis, Characterization and Applications

A special issue of Inorganics (ISSN 2304-6740). This special issue belongs to the section "Inorganic Materials".

Deadline for manuscript submissions: closed (31 December 2023) | Viewed by 6535

Special Issue Editor

Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research, King Saud University, Riyadh 11421, Saudi Arabia
Interests: inorganic crystalline materials; hybrid and composites; graphene and related materials; polymer based nanocomposites; corrosion & electrochemistry
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue aims to address the current research on inorganic composites with an emphasis on their application in advanced technologies.

A composite material is formed by combining different materials to create a new material with enhanced properties. It typically consists of a matrix material that holds a reinforcement material, resulting in enhanced strength, durability, or other desired characteristics. When at least one of the components in the composite is of an inorganic nature, it is referred to as an inorganic composite. Inorganic composites offer unique advantages and find applications in various fields. 

The Special Issue will concentrate on the following aspects related to inorganic composites:

  • Novel synthesis methods for inorganic composites
  • Characterization techniques 
  • Structural and morphological analysis 
  • Metal matrix nanocomposites
  • Mechanical and thermal properties 
  • Electrical and magnetic properties 
  • Optical and photonic properties 
  • Functionalization and surface modification 
  • Hybrid inorganic-organic composites
  • Inorganic nanocomposites
  • Bio-inspired and biomimetic 
  • Environmental applications 
  • Inorganic composites for sensing and detection
  • Biomedical and healthcare applications 
  • Advances in computational modeling and simulation 
  • Challenges and future prospects in the field of inorganic composites.

We invite researchers to submit their original research articles and reviews related to these topics. We encourage contributions that present novel findings, innovative methodologies, and practical applications of inorganic composites.

Dr. Hany Abdo
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Inorganics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 3941 KiB  
Article
Effect of Sintering Time and Cl Doping Concentrations on Structural, Optical, and Luminescence Properties of ZnO Nanoparticles
by Arshad Khan, Soheir E. Mohamed, Tayseer I. Al-Naggar, Hasan B. Albargi, Jari S. Algethami and Ayman M. Abdalla
Inorganics 2024, 12(2), 53; https://doi.org/10.3390/inorganics12020053 - 4 Feb 2024
Cited by 1 | Viewed by 1277
Abstract
Zinc oxide (ZnO) nanoparticles were synthesized hydrothermally using zinc acetate dihydrate and sodium thiosulfate pentahydrate precursors. The synthesized powders were sintered in air at 600 °C for different durations with a Cl-doping concentration of 25 mg/g. The optimal sintering time was found to [...] Read more.
Zinc oxide (ZnO) nanoparticles were synthesized hydrothermally using zinc acetate dihydrate and sodium thiosulfate pentahydrate precursors. The synthesized powders were sintered in air at 600 °C for different durations with a Cl-doping concentration of 25 mg/g. The optimal sintering time was found to be 5 h, resulting in the successful formation of the ZnO phase with small particle sizes of around 90 nm, nominal atomic fractions of Zn and O (~50%, ~50%), and increased luminescence intensity. The ideal concentration of Cl was discovered to be 25 mg/g of ZnO, which resulted in the highest luminescence intensity. The ZnO luminescence characteristics were observed in emission bands peaking at approximately 503 nm attributed to the transition from oxygen vacancies. A considerable improvement in the emission intensity was observed with increased Cl doping concentration, up to eight orders of magnitude, compared to pristine ZnO nanoparticles. However, the luminescence intensity decreased in samples with higher concentrations of Cl doping due to concentration quenching. These preliminary outcomes suggest that Cl-doped ZnO nanoparticles could be used for radiation detector development for radon monitoring and other related applications. Full article
Show Figures

Figure 1

14 pages, 5509 KiB  
Article
Copper Oxide Nanoparticles Synthesized from Indigofera linnaei Ali and This Plant’s Biological Applications
by Nadarajan Prathap, Nagarajan Dravid, Srinivasan R. Kaarmukhilnilavan, Muthugounder Subaramanian Shivakumar, Srinivasan Venkatesan, Mohammed Rafi Shaik and Baji Shaik
Inorganics 2023, 11(12), 462; https://doi.org/10.3390/inorganics11120462 - 28 Nov 2023
Cited by 1 | Viewed by 1894
Abstract
The leaf extract of Indigofera linnaei Ali, an Indian medicinal plant, was utilized in the synthesis of copper oxide nanoparticles (CuO-NPs). Green chemistry is a safe and cost-effective method for the synthesis of nanoparticles using plant extracts. The synthesis of CuO NPs was [...] Read more.
The leaf extract of Indigofera linnaei Ali, an Indian medicinal plant, was utilized in the synthesis of copper oxide nanoparticles (CuO-NPs). Green chemistry is a safe and cost-effective method for the synthesis of nanoparticles using plant extracts. The synthesis of CuO NPs was confirmed using ultraviolet–visible (UV-visible) spectrum λ-max data with two peaks at 269 and 337 nm. Different functional groups were identified using Fourier-transform infrared spectroscopy (FT-IR). X-ray diffraction (XRD) was used to confirm the crystalline structure of the CuO-nanoparticles. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analyses were performed to examine the surface morphology and elemental composition of the biosynthesized CuO-NPs. Furthermore, the synthesized CuO-NPs exhibited antibacterial activity against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Enterococcus faecalis. Additionally, they exhibited a good insecticidal effect on Culex quinquefasciatus larvae, with low LC50 55.716 µg/mL and LC90 123.657 µg/mL values. The CuO-NPs inhibited human breast cancer cells in a concentration-dependent manner, with an IC50 value of 63.13 µg/mL. Full article
Show Figures

Figure 1

25 pages, 6803 KiB  
Article
Thiourea Derivative Metal Complexes: Spectroscopic, Anti-Microbial Evaluation, ADMET, Toxicity, and Molecular Docking Studies
by Ahmed T. F. Al-Halbosy, Adnan A. Hamada, Ahmed S. Faihan, Abdulrahman M. Saleh, Tarek A. Yousef, Mortaga M. Abou-Krisha, Mona H. Alhalafi and Ahmed S. M. Al-Janabi
Inorganics 2023, 11(10), 390; https://doi.org/10.3390/inorganics11100390 - 30 Sep 2023
Cited by 1 | Viewed by 1322
Abstract
The treatment of N-Phenylmorpholine-4-carbothioamide (HPMCT) with bivalent metal ions in a 2:1 mol ratio without a base present affords [MCl2(κ1S-HPMCT)2] {M = Cu(1), Pd(2), Pt(3), and Hg(4)} in [...] Read more.
The treatment of N-Phenylmorpholine-4-carbothioamide (HPMCT) with bivalent metal ions in a 2:1 mol ratio without a base present affords [MCl2(κ1S-HPMCT)2] {M = Cu(1), Pd(2), Pt(3), and Hg(4)} in a good yield. Furthermore, the reaction of two equivalents of HPMCT and one equivalent of bivalent metal ions in the presence of Et3N has afforded [M(κ2S,N-PMCT)2] {M = Ni(5), Cu(6), Pd(7), Pt(8), Zn(9), Cd(10), and Hg(11)}. Infrared, 1H, 13C Nuclear Magnetic Resonance molar conductivity, and elemental analysis were used to characterize the synthesized complexes. The results suggest that HPMCT is bonded as monodentate via an S atom in Complexes (14), whereas linkage as a bidentate chelating ligand via S and N atoms gives two chelate rings. Moreover, the synthesized ligand and the complexes were screened for antibacterial activity, which displayed that the very best antibacterial activities for Complexes (1), (6), and (3). In addition, the cytotoxic activity of the HPMCT ligand, [PdCl2(HPMCT)2] (2), and [PtCl2(HPMCT)2] (3) were screened on breast cancer cell lines (MCF-7), and Complex (3) reveals the most promising activity with an IC50 value 12.72 ± 0.4 μM. Using the B3LYP method and 6-311++G(d,p) basis sets for the ligand and the SDD basis set for the central metal, the synthesized complexes utilizing the prepared ligand were optimized. Various quantum parameters such as hardness, electron affinity, dipole moment, vibrational frequencies, and ionization energy for the ligand and its complexes have been calculated. In general, a favorable agreement was found between the experimental results and the obtained theoretical results. Full article
Show Figures

Figure 1

18 pages, 5716 KiB  
Article
Enhancing the Tribo-Mechanical Performance of LDPE Nanocomposites Utilizing Low Loading Fraction Al2O3/SiC Hybrid Nanostructured Oxide Fillers
by Ibrahim A. Alnaser, Ahmed Fouly, Muhammad Omer Aijaz, Jabair A. Mohammed, Mahmoud B. Elsheniti, Sameh A. Ragab and Hany S. Abdo
Inorganics 2023, 11(9), 354; https://doi.org/10.3390/inorganics11090354 - 29 Aug 2023
Cited by 2 | Viewed by 1184
Abstract
This research work highlights the tribomechanical investigations of using a low loading fraction of two ceramics combinations, Alumina (Al2O3) and Silicon Carbide (SiC) as reinforcement for Low-density Polyethylene (LDPE) matrix. The hybrid additives with different weight percentages (0.1 + [...] Read more.
This research work highlights the tribomechanical investigations of using a low loading fraction of two ceramics combinations, Alumina (Al2O3) and Silicon Carbide (SiC) as reinforcement for Low-density Polyethylene (LDPE) matrix. The hybrid additives with different weight percentages (0.1 + 0.1, 0.25 + 0.25 and 0.5 + 0.5 wt%) were mixed with LDPE matrix and the degree of homogeneity was controlled using double-screw extruder prior to fabricating the composite samples via the injection molding machine. The nanoparticles fillers were characterized by field emission scanning electron microscope (FESEM), EDX and particle size analyzer to check its morphology, composition and size distribution. Thermogravimetric analyzer (TGA) and melting flow index (MFI) were performed for the fabricated nanocomposites samples. The mechanical properties of the nanocomposite were evaluated by performing tensile test, bending test and Shore-D hardness test, while the tribological performance was investigated using a ball on desk apparatus under different applied loads and sliding times. Moreover, in order to confirm the load-carrying capability of the composite, contact stresses was measured via finite element model using ANSYS software. The results show that the incorporation of low fraction hybrid ceramic nanoparticles can contributed positively in the tribological and mechanical properties. Based on the experimental results, the maximum improvement in the tensile strength was 5.38%, and 8.15% for hardness LDPE with 0.5 Al2O3 and 0.5 SiC, while the lowest coefficient of friction was noticed under normal load of 10 N, which was approximately 12.5% for the same composition. The novel approach of incorporating low fraction hybrid ceramic nanoparticles as reinforcement for LDPE matrix is investigated, highlighting their positive contributions to the tribological and mechanical properties of the resulting nanocomposites. Full article
Show Figures

Figure 1

Back to TopTop