E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Special Issue "Soil Water Conservation: Dynamics and Impact"

A special issue of Water (ISSN 2073-4441).

Deadline for manuscript submissions: closed (27 November 2017)

Special Issue Editors

Guest Editor
Prof. Dr. Saskia Keesstra

Soil Physics and Land Management, Department of Environmental Sciences, Wageningen University, 6708PB Wageningen, The Netherlands
Website | E-Mail
Interests: water and sediment connectivity; catchment processes; nature based solutions; forest fire; sustainable land management
Guest Editor
Dr. Simone Di Prima

Agricultural Department, University of Sassari, Viale Italia, 39, 07100 Sassari, Italy
Website | E-Mail
Interests: soil physics; vadose zone hydrology; hydraulic conductivity; infiltration
Guest Editor
Dr. Mirko Castellini

Council for Agricultural Research and Economics Agriculture and Environment Research Center CREA-AA (Bari)
Website | E-Mail
Interests: soil physics; vadose zone hydrology; soil physical parameters; soil quality; spatial variability of soil properties; water retention
Guest Editor
Dr. Mario Pirastru

Agricultural Department, University of Sassari, Viale Italia, 39, 07100 Sassari, Italy
Website | E-Mail
Interests: soil hydrology; environmental monitoring; soil water dynamics modelling; hydrological processes in semi-arid environment

Special Issue Information

Dear Colleagues,

In this Special Issue we would like to invite papers addressing the state of the art of Soil and Water Conservation research. Practical, as well as process-based research, are welcome in this Special Issue. We would like to focus both on green and blue water: With the purpose of showing novel measuring and modeling approaches, including interactions between soil physical and hydraulic properties, soil water conservation and crop yield. In addition we would like to invite studies focussing on how we can develop adaptive strategies of soil water conservation to counteract the impacts of climate change.

Specific topics we would like to address in this special issue are:

  • Agricultural management: Effect of soil use and management on soil water conservation (no-tillage, minimum tillage, crop residue management, soil mulching) and how to achieve greater water use efficiency
  • Forest management: Effects of afforestation and deforestation on water yields, with specific focus on semi-arid climates and ecohydrology-based forest management as adaptive measure to global change
  • Scaling issues: Controls of the vegetation on soil water balance across the spatial scales: From pedon to basin scale.
  • Process understanding: Hydrological processes governing water dynamics in humid or semi-arid environments: monitoring and modelling.
  • Modelling applications for predicting climate or land use change impacts on water availability.
  • New technologies: Innovative methods for monitoring water dynamics and investigate soil properties governing hydrological processes.

Prof. Dr. Saskia Keesstra
Dr. Simone Di Prima
Dr. Mirko Castellini
Dr. Mario Pirastru
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Water is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Soil and water conservation
  • climate change adaptation
  • blue and green water
  • agricultural amendaments
  • forest management

Published Papers (5 papers)

View options order results:
result details:
Displaying articles 1-5
Export citation of selected articles as:

Research

Open AccessArticle Transient Modeling of Flow in Unsaturated Soils Using a Novel Collocation Meshless Method
Water 2017, 9(12), 954; doi:10.3390/w9120954
Received: 1 November 2017 / Revised: 1 December 2017 / Accepted: 4 December 2017 / Published: 7 December 2017
PDF Full-text (6392 KB) | HTML Full-text | XML Full-text
Abstract
In this paper, a novel meshless method for the transient modeling of subsurface flow in unsaturated soils was developed. A linearization process for the nonlinear Richards equation using the Gardner exponential model to analyze the transient flow in the unsaturated zone was adopted.
[...] Read more.
In this paper, a novel meshless method for the transient modeling of subsurface flow in unsaturated soils was developed. A linearization process for the nonlinear Richards equation using the Gardner exponential model to analyze the transient flow in the unsaturated zone was adopted. For the transient modeling, we proposed a pioneering work using the collocation Trefftz method and utilized the coordinate system in Minkowski spacetime instead of that in the original Euclidean space. The initial value problem for transient modeling of subsurface flow in unsaturated soils can then be transformed into the inverse boundary value problem. A numerical solution obtained in the spacetime coordinate system was approximated by superpositioning Trefftz basis functions satisfying the governing equation for boundary collocation points on partial problem domain boundary in the spacetime coordinate system. As a result, the transient problems can be solved without using the traditional time-marching scheme. The validity of the proposed method is established for several test problems. Numerical results demonstrate that the proposed method is highly accurate and computationally efficient. The results also reveal that it has great numerical stability for the transient modeling of subsurface flow in unsaturated soils. Full article
(This article belongs to the Special Issue Soil Water Conservation: Dynamics and Impact)
Figures

Figure 1

Open AccessArticle Measurement and Simulation of Soil Water Contents in an Experimental Field in Delta Plain
Water 2017, 9(12), 947; doi:10.3390/w9120947
Received: 8 October 2017 / Revised: 27 November 2017 / Accepted: 2 December 2017 / Published: 6 December 2017
PDF Full-text (4239 KB) | HTML Full-text | XML Full-text
Abstract
Variation in soil water content in the delta plain has its own particularity and is significant for agricultural improvement, the utilization of water resources and flood risk mitigation. In this study, experimental data collected from a plot of farmland located in the Taihu
[...] Read more.
Variation in soil water content in the delta plain has its own particularity and is significant for agricultural improvement, the utilization of water resources and flood risk mitigation. In this study, experimental data collected from a plot of farmland located in the Taihu Basin were used to investigate the temporal and vertical variation of soil water content, as well as the effects of individual rainfall on soil water and shallow groundwater and their interaction. The results showed that the variation of soil water content is dependent on the comprehensive influence of soil hydraulic properties, meteorological factors and shallow groundwater and the correlation to the groundwater table is the strongest due to the significant capillary action in the delta plain. A saturated-unsaturated three-dimensional soil water numerical model was developed for the study area in response to rainfall and evapotranspiration. Scenario simulations were performed with different soil depths for soil water content and the error source was analyzed to improve the model. The average RMSE, RE and R2 values of the soil water content at the five depths between the measured and simulated results were 0.0192 cm3·cm−3, 2.09% and 0.8119, respectively. The results indicated that the developed model could estimate vertical soil water content and its dynamics over time at the study site at an acceptable level. Moreover, further research and application to other sites in delta plains are necessary to verify and improve the model. Full article
(This article belongs to the Special Issue Soil Water Conservation: Dynamics and Impact)
Figures

Figure 1

Open AccessFeature PaperArticle Lateral Saturated Hydraulic Conductivity of Soil Horizons Evaluated in Large-Volume Soil Monoliths
Water 2017, 9(11), 862; doi:10.3390/w9110862
Received: 26 September 2017 / Revised: 21 October 2017 / Accepted: 2 November 2017 / Published: 6 November 2017
PDF Full-text (4710 KB) | HTML Full-text | XML Full-text
Abstract
Evaluating the lateral saturated hydraulic conductivity, Ks,l, of soil horizons is crucial for understanding and modelling the subsurface flow dynamics in many shallow hill soils. A Ks,l measurement method should be able to catch the effects of soil heterogeneities governing
[...] Read more.
Evaluating the lateral saturated hydraulic conductivity, Ks,l, of soil horizons is crucial for understanding and modelling the subsurface flow dynamics in many shallow hill soils. A Ks,l measurement method should be able to catch the effects of soil heterogeneities governing hydrological processes at the scale of interest, in order to yield Ks,l representative values over large spatial scales. This study aims to develop a field technique to determine spatially representative Ks,l values of soil horizons of an experimental hillslope. Drainage experiments were performed on soil monoliths of about 0.12 m3 volume, encased in situ with polyurethane foam. Median Ks,l of 2450 mm·h−1 and 552 mm·h−1 were estimated in the A and B horizon, respectively. In the upper part of the B horizon, the median Ks,l was 490 mm·h−1, whereas it mostly halved near the underlying restricting layer. The decline of Ks,l values with depth was consistent with the water-table dynamics observed at the same site in previous studies. Moreover, the Ks,l from the monoliths were in line with large spatial-scale Ks,l values reported from the hillslope in a prior investigation based on drain data analysis. This indicated that the large-scale hydrological effects of the macropore network were well represented in the investigated soil blocks. Our findings suggest that performing drainage experiments on large-volume monoliths is a promising method for characterizing lateral conductivities over large spatial scales. This information could improve our understanding of hydrological processes and can be used to parameterize runoff-generation models at hillslope and catchment scale. Full article
(This article belongs to the Special Issue Soil Water Conservation: Dynamics and Impact)
Figures

Figure 1

Open AccessArticle Optimization of Multiple Seepage Piping Parameters to Maximize the Critical Hydraulic Gradient in Bimsoils
Water 2017, 9(10), 787; doi:10.3390/w9100787
Received: 2 August 2017 / Revised: 30 September 2017 / Accepted: 3 October 2017 / Published: 15 October 2017
PDF Full-text (5328 KB) | HTML Full-text | XML Full-text
Abstract
Seepage failure in the form of piping can strongly influence the stability of block-in-matrix-soils (bimsoils), as well as weaken and affect the performance of bimsoil structures. The multiple-factor evaluation and optimization play a crucial role in controlling the seepage failure in bimsoil. The
[...] Read more.
Seepage failure in the form of piping can strongly influence the stability of block-in-matrix-soils (bimsoils), as well as weaken and affect the performance of bimsoil structures. The multiple-factor evaluation and optimization play a crucial role in controlling the seepage failure in bimsoil. The aim of this study is to improve the ability to control the piping seepage failure in bimsoil. In this work, the response surface method (RSM) was employed to evaluate and optimize the multiple piping parameters to maximize the critical hydraulic gradient (CHG), in combination with experimental modeling based on a self-developed servo-controlled flow-erosion-stress coupled testing system. All of the studied specimens with rock block percentage (RBP) of 30%, 50%, and 70% were produced as a cylindrical shape (50 mm diameter and 100 mm height) by compaction tests. Four uncertain parameters, such as RBP, soil matrix density, confining pressure, and block morphology were used to fit an optimal response of the CHG. The sensitivity analysis reveals the influential order of the studied factors to CHG. It is found that RBP is the most sensitive factor, the CHG decreases with the increase of RBP, and CHG increases with the increase of confining pressure, soil matrix density, and block angularity. Full article
(This article belongs to the Special Issue Soil Water Conservation: Dynamics and Impact)
Figures

Figure 1

Open AccessArticle Integrating Topography and Soil Properties for Spatial Soil Moisture Storage Modeling
Water 2017, 9(9), 647; doi:10.3390/w9090647
Received: 14 July 2017 / Revised: 15 August 2017 / Accepted: 24 August 2017 / Published: 30 August 2017
PDF Full-text (4108 KB) | HTML Full-text | XML Full-text
Abstract
The understanding of the temporal and spatial dynamics of soil moisture and hydraulic property of soil is crucial to the study of hydrological and ecological processes. The purpose of this study was to derive equations that describe spatial soil water storage deficit based
[...] Read more.
The understanding of the temporal and spatial dynamics of soil moisture and hydraulic property of soil is crucial to the study of hydrological and ecological processes. The purpose of this study was to derive equations that describe spatial soil water storage deficit based on topography and soil properties. This storage deficit together with the topographical index can be used to conclude the spatial distribution curve of storage capacity in a (sub-) basin for developing hydrological model. The established model was able to match spatial and temporal variations of water balance components (i.e., soil moisture content (SMC), evapotranspiration, and runoff) over the Ziluoshan basin. Explicit expression of the soil moisture storage capacity (SMSC) in the model reduced parameters, which provides a method for hydrological simulation in ungauged basins. Full article
(This article belongs to the Special Issue Soil Water Conservation: Dynamics and Impact)
Figures

Figure 1

Back to Top