Previous Issue
Volume 14, August
 
 

Geosciences, Volume 14, Issue 9 (September 2024) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
18 pages, 5530 KiB  
Article
Stress-Based Model for Interpreting Shear Wave Velocity from Seismic Cone Penetration Tests in Unsaturated Soil
by Tareq Abuawad, Gerald A. Miller and Kanthasamy K. Muraleetharan
Geosciences 2024, 14(9), 227; https://doi.org/10.3390/geosciences14090227 (registering DOI) - 24 Aug 2024
Abstract
Shear wave velocity is an important parameter for estimating soil properties used in analyzing the dynamic response of soil to seismic loading. This paper focuses on developing a model for predicting shear wave velocity in unsaturated soils. The model was developed primarily for [...] Read more.
Shear wave velocity is an important parameter for estimating soil properties used in analyzing the dynamic response of soil to seismic loading. This paper focuses on developing a model for predicting shear wave velocity in unsaturated soils. The model was developed primarily for the interpretation of seismic cone penetration tests (SCPTs) in unsaturated soil to account for seasonal variations in moisture conditions. In practice, SCPTs typically occur over a period of days without the option of choosing a wet or dry period. The question becomes, if tests are conducted during a dry period, how can shear wave velocity corresponding to a wetter period be predicted, or vice versa? Answering this question was the primary motivation of this work. The work involved field testing with the seismic cone penetrometer during wet and dry periods and a focused study at three sites involving comparison between field and laboratory testing for shear wave velocity. The model presented in this paper is built upon the significant work of many other researchers with reference to new experimental data obtained by the authors. It is demonstrated that a stress-based model incorporating matric suction can provide reasonable predictions of shear wave velocity and provides a method to interpret the impact of changing moisture content on shear wave velocities determined with SCPTs. Full article
Show Figures

Figure 1

16 pages, 4734 KiB  
Technical Note
Experimental Analysis of Rock Boulder Impacts on Brick Walls to Support Numerical Modelling of Building Damage
by Olga Mavrouli, Xuanmei Fan, Zhou Li, Dongpo Wang and Qiang Xu
Geosciences 2024, 14(9), 226; https://doi.org/10.3390/geosciences14090226 - 23 Aug 2024
Viewed by 154
Abstract
To estimate the expected damage due to rockfalls and debris flows for buildings and people, it is essential to assess the response of brick walls to boulder impacts. There are scarce physical tests of the impact of boulders on brick walls, which are [...] Read more.
To estimate the expected damage due to rockfalls and debris flows for buildings and people, it is essential to assess the response of brick walls to boulder impacts. There are scarce physical tests of the impact of boulders on brick walls, which are typical of residential buildings. A simple and low-cost experimental setup for investigating the damage of unreinforced brick walls that are subjected to a boulder’s impact is presented. The setup consists of a ramp that is adjusted with a light steel structure. Seven pilot tests for five single-leaf brick walls of a 1000 × 1000 mm2 area, hit by a 72.925 kg granite boulder, and from five release heights (0.25 m, 0.50, 1.00 m, 2.50 m, and 3.00 m) are performed. The observed damage indicates that wall breakthrough occurs for translational kinetic energies as low as 500 J. The prevalent failure mechanism is local shear damage. Additionally, a numerical model to simulate the physical tests was developed using the FEM. Using the same properties as in the physical testing, the numerical model is found to realistically reproduce the displacement of a node at the centre of the impact, as well as the translational impact velocity and energy, for the same five boulder release heights. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

Previous Issue
Back to TopTop