Previous Issue
Volume 8, August
 
 

Designs, Volume 8, Issue 5 (October 2024) – 6 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
26 pages, 11543 KiB  
Article
Research on Green Modular Disaster Prevention Product Design and Spatial Configuration Strategy Based on AHP-GIS
by Xinyi Wang, Yangyang Pan and Yu Liu
Designs 2024, 8(5), 89; https://doi.org/10.3390/designs8050089 - 5 Sep 2024
Viewed by 221
Abstract
Facing persistent natural catastrophes, the necessity for disaster prevention products in afflicted cities becomes paramount. Modular design has proven to be a viable method for streamlining transportation and manufacturing processes for disaster prevention products. However, existing post-disaster prevention products often fail to incorporate [...] Read more.
Facing persistent natural catastrophes, the necessity for disaster prevention products in afflicted cities becomes paramount. Modular design has proven to be a viable method for streamlining transportation and manufacturing processes for disaster prevention products. However, existing post-disaster prevention products often fail to incorporate the green modular concept, with limited research on spatial allocation strategies. In response to the current challenges, a new breed of green post-disaster prevention products is urgently warranted to mitigate the impact of major natural disasters and safeguard lives and property. To achieve the goal, this study employs a combined analytic hierarchy process (AHP) and geographic information systems (GIS) analysis to propose an inflatable cabin for emergency disaster prevention, specifically designed for flood scenarios. Using the inflatable cabin as an empirical case, this study introduces a layered design approach progressing from macro to meso and then to micro levels to construct an objective decision-making model to prioritize key design elements, develop spatial post-disaster prevention strategies, and analyze the mechanical performance. Results indicate that at a distance of 30 m from the base of the slope (SPIC), the impact force is most significant, reaching up to 1.8 × 10⁷ kN. As the distance increases from 30 m to 150 m, the maximum impact force decreases by an order of magnitude, and the average impact force decreases by approximately two orders of magnitude. Furthermore, this comprehensive approach, which starts from a holistic design perspective and culminates in optimizing individual disaster structures, offers practical significance for engineering design research. Full article
Show Figures

Figure 1

19 pages, 4211 KiB  
Article
Use of Historical Road Incident Data for the Assessment of Road Redesign Potential
by Konstantinos Gkyrtis and Maria Pomoni
Designs 2024, 8(5), 88; https://doi.org/10.3390/designs8050088 - 3 Sep 2024
Viewed by 337
Abstract
Drivers’ safety and overall road functionality are key triggers for deciding on road interventions. Because of the socioeconomical implications of traffic incidents, either fatal or no, continuous research has been dedicated over the previous decades on the assessment of factors contributing to crash [...] Read more.
Drivers’ safety and overall road functionality are key triggers for deciding on road interventions. Because of the socioeconomical implications of traffic incidents, either fatal or no, continuous research has been dedicated over the previous decades on the assessment of factors contributing to crash potential. Apart from the behavioral aspects of driving, which are commonly studied through simulation and advanced modelling techniques, the road infrastructure status is of equal or even higher significance. In this study, an approach is presented to discuss the road redesign potentials based on the evaluation of network-level historical incident records from road crashes in Greece. Based on total and fatal crash records, the following infrastructure-related aspects were assessed as critical for the discussion of the road redesign potential needs: the status of road’s surface (i.e., dry, wet, etc.), the issue of improving driving conditions near at-grade intersections, the presence and suitability of signage and/or lighting, and the consideration of particular geometric design features. Overall, it is deemed that intervention actions for at least one of these pillars should aim at enhancing the safety and functionality of roadways. Full article
Show Figures

Figure 1

16 pages, 5548 KiB  
Article
Optimizing Selective Laser Melting of Inconel 625 Superalloy through Statistical Analysis of Surface and Volumetric Defects
by Ali Shahrjerdi, Mojtaba Karamimoghadam, Reza Shahrjerdi, Giuseppe Casalino and Mahdi Bodaghi
Designs 2024, 8(5), 87; https://doi.org/10.3390/designs8050087 - 28 Aug 2024
Viewed by 377
Abstract
This article delves into optimizing and modeling the input parameters for the selective laser melting (SLM) process on Inconel 625. The primary aim is to investigate the microstructure within the interlayer regions post-process optimization. For this study, 100 layers with a thickness of [...] Read more.
This article delves into optimizing and modeling the input parameters for the selective laser melting (SLM) process on Inconel 625. The primary aim is to investigate the microstructure within the interlayer regions post-process optimization. For this study, 100 layers with a thickness of 40 µm each were produced. Utilizing the design of experiments (DOE) methodology and employing the Response Surface Method (RSM), the SLM process was optimized. Input parameters such as laser power (LP) and hatch distance (HD) were considered, while changes in microhardness and roughness, Ra, were taken as the responses. Sample microstructure and surface alterations were assessed via scanning electron microscopy (SEM) analysis to ascertain how many defects and properties of Inconel 625 can be controlled using DOE. Porosity and lack of fusion, which were due to rapid post-powder melting solidification, prompted detailed analysis of the flaws both on the surfaces of and in terms of the internal aspects of the samples. An understanding of the formation of these imperfections can help refine the process for enhanced integrity and performance of Inconel 625 printed material. Even slight directional changes in the columnar dendrite structures are discernible within the layers. The microstructural characteristics observed in these samples are directly related to the parameters of the SLM process. In this study, the bulk samples achieved a microhardness of 452 HV, with the minimum surface roughness recorded at 9.9 µm. The objective of this research was to use the Response Surface Method (RSM) to optimize the parameters to result in the minimum surface roughness and maximum microhardness of the samples. Full article
(This article belongs to the Special Issue Post-manufacturing Testing and Characterization of Materials)
Show Figures

Figure 1

15 pages, 5230 KiB  
Article
Numerical Investigations of Deckhouse Height to the Self-Righting Moment of the Patrol Boat
by Andi Trimulyono, Tuswan Tuswan, Haidar Farros Mawarizt Taqi, Parlindungan Manik, Good Rindo, Samuel Samuel, Ocid Mursid and Muhammad Iqbal
Designs 2024, 8(5), 86; https://doi.org/10.3390/designs8050086 - 27 Aug 2024
Viewed by 327
Abstract
The design of patrol boats, especially in Indonesian waters with extreme sea conditions, requires good stability capabilities and self-righting moments. These conditions require patrol boats to have anti-capsized capabilities where, with these capabilities, the patrol boat can return to an upright position at [...] Read more.
The design of patrol boats, especially in Indonesian waters with extreme sea conditions, requires good stability capabilities and self-righting moments. These conditions require patrol boats to have anti-capsized capabilities where, with these capabilities, the patrol boat can return to an upright position at extreme heeling angles. This study investigates how changing the center of gravity (CoG) due to the deckhouse height factor improves self-righting moment capabilities. Four different deckhouse heights are examined to find the optimal self-righting roll moment, with a deckhouse height in the 2.01–2.31 m range. In addition, the presence of the self-righting roll moment is also validated by the computational fluid dynamics (CFD) method using three different mesh sizes. The height of the deckhouse can significantly influence the ship’s stability. The initial investigation shows ships with minimum deckhouse heights of 2.06 m have positive righting lever arms at 170° and are classified as anti-capsized ships. It has been discovered that buoyancy and the center of gravity are crucial variables in obtaining the self-righting moment. The deckhouse’s height increases the stability of the ship’s righting arm by enhancing the metacenter point. The findings demonstrate that more excellent stability is achieved with a larger deckhouse height. Full article
Show Figures

Figure 1

20 pages, 2892 KiB  
Article
Revolutionizing Biomass Processing: The Design and Functionality of an Innovative Extruder for Sugarcane Bagasse Milling Pretreatment
by Paula Andrea Ramirez Cabrera, Alejandra Sophia Lozano Pérez, Juan José Lozada Castro, Fabio Emiro Sierra Vargas and Carlos Alberto Guerrero Fajardo
Designs 2024, 8(5), 85; https://doi.org/10.3390/designs8050085 - 27 Aug 2024
Viewed by 358
Abstract
Milling pretreatment is a crucial step in the bioconversion of lignocellulosic biomass such sugarcane bagasse because it facilitates access to cellulose for subsequent chemical treatments. However, most experiments have been conducted at the laboratory scale, where it has been identified that high energy [...] Read more.
Milling pretreatment is a crucial step in the bioconversion of lignocellulosic biomass such sugarcane bagasse because it facilitates access to cellulose for subsequent chemical treatments. However, most experiments have been conducted at the laboratory scale, where it has been identified that high energy is required for the processing of biomass. For this reason, it is proposed to implement the screw extruder technique for the processing of cellulose. This article focuses on the characteristics, types, and applications of milling pretreatment for sugarcane bagasse, with a particular emphasis on its role in lignin removal and the milling design. Milling pretreatment reduces the particle size of lignocellulose biomass through compression shear and tearing mechanisms, which enhances the accessibility of cellulose and hemicellulose to enzymes and chemicals, thereby improving the efficiency of bioconversion processes. Innovative mathematical modeling, a mechanical design in a CAD application, and an FEA analysis of the milling pretreatment equipment are presented, providing insights into the design and optimization of milling pretreatment processes. This article presents an innovative potential system for milling pretreatment in sugarcane bagasse for the production of bioethanol, heat and power, and other value-added products, contributing to a more sustainable and circular economy. Full article
(This article belongs to the Section Mechanical Engineering Design)
Show Figures

Figure 1

16 pages, 666 KiB  
Article
Energy-Efficient Hybrid Wireless Power Transfer Technique for Relay-Based IIoT Applications
by Vikash Singh, Roshan Kumar, Byomakesh Mahapatra and Chrompet Ramesh Srinivasan
Designs 2024, 8(5), 84; https://doi.org/10.3390/designs8050084 - 26 Aug 2024
Viewed by 403
Abstract
This paper introduces an innovative hybrid wireless power transfer (H-WPT) scheme tailored for IIoT networks employing multiple relay nodes. The scheme allows relay nodes to dynamically select their power source for energy harvesting based on real-time channel conditions. Our analysis evaluates outage probability [...] Read more.
This paper introduces an innovative hybrid wireless power transfer (H-WPT) scheme tailored for IIoT networks employing multiple relay nodes. The scheme allows relay nodes to dynamically select their power source for energy harvesting based on real-time channel conditions. Our analysis evaluates outage probability within decode-and-forward (DF) relaying and adaptive power splitting (APS) frameworks, while also considering the energy used by relay nodes for ACK signaling. A notable feature of the H-WPT scheme is its decentralized operation, enabling relay nodes to independently choose the optimal relay and power source using instantaneous channel gain. This approach conserves significant energy otherwise wasted in centralized control methods, where extensive information exchange is required. This conservation is particularly beneficial for energy-constrained sensor networks, significantly extending their operational lifetime. Numerical results demonstrate that the proposed hybrid approach significantly outperforms the traditional distance-based power source selection approach, without additional energy consumption or increased system complexity. The scheme’s efficient power management capabilities underscore its potential for practical applications in IIoT environments, where resource optimization is crucial. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop