Previous Issue
Volume 8, December
 
 

J. Compos. Sci., Volume 9, Issue 1 (January 2025) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
18 pages, 1652 KiB  
Article
Role of Cement Type on Properties of High Early-Strength Concrete
by Nader Ghafoori, Matthew O. Maler, Meysam Najimi, Ariful Hasnat and Aderemi Gbadamosi
J. Compos. Sci. 2025, 9(1), 3; https://doi.org/10.3390/jcs9010003 - 25 Dec 2024
Abstract
Properties of high early-strength concretes (HESCs) containing Type V, Type III, and rapid hardening calcium sulfoaluminate (CSA) cements were investigated at curing ages of opening time, 24 h, and 28 days. Investigated properties included the fresh (workability, setting time, air content, unit weight, [...] Read more.
Properties of high early-strength concretes (HESCs) containing Type V, Type III, and rapid hardening calcium sulfoaluminate (CSA) cements were investigated at curing ages of opening time, 24 h, and 28 days. Investigated properties included the fresh (workability, setting time, air content, unit weight, and released heat of hydration), mechanical (compressive and flexural strengths), transport (absorption, volume of permeable voids, water penetration, rapid chloride permeability, and accelerated corrosion resistance), dimensional stability (drying shrinkage), and durability (de-icing salt and abrasion resistance) properties. Test results revealed that the HESC containing Rapid-Set cement achieved the shortest opening time to attain the required minimum strength, followed by Type III and Type V cement HESCs. For the most part, Type V cement HESC produced the best transport and de-icing salt resistance, whereas Rapid-Set cement HESC displayed the best dimensional stability and wear resistance. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

13 pages, 5482 KiB  
Article
Chitosan/TiO2/Rosmarinic Acid Bio-Nanocomposite Coatings: Characterization and Preparation
by Pınar Kızılkaya and Mükerrem Kaya
J. Compos. Sci. 2025, 9(1), 2; https://doi.org/10.3390/jcs9010002 - 25 Dec 2024
Abstract
This study aimed to develop and characterize bio-nanocomposite coatings by incorporating titanium nanoparticles (TiO2 NPs) (30–50 nm) (10 mg/L), which have antimicrobial effects, and rosmarinic acid (RA) (0.005 mg/mL), which has strong antioxidant and antimicrobial activities, into the chitosan matrix using the [...] Read more.
This study aimed to develop and characterize bio-nanocomposite coatings by incorporating titanium nanoparticles (TiO2 NPs) (30–50 nm) (10 mg/L), which have antimicrobial effects, and rosmarinic acid (RA) (0.005 mg/mL), which has strong antioxidant and antimicrobial activities, into the chitosan matrix using the solvent casting method. The prepared bio-nanocomposite coatings were characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM-EDX), and atomic force microscopy (AFM). In the XRD analysis, the crystal structure of the bio-nanocomposite coating material was evaluated, but the absence of the expected TiO2 NPs diffraction peak in the coating containing TiO2 NPs was discussed in detail. The TiO2 NPs decreased the crystallinity, compared to the control film, while rosmarinic acid increased the order of the molecular matrix. FT-IR analysis showed the presences of O–H, C=O, and C–O bonds in the coating materials, and the changes in the positions and intensities of the bands observed in the FTIR spectra of the bio-nanocomposite coatings (CHT and CHTRA) proved that TiO2 NPs and RA were successfully integrated into the chitosan matrix. The broadening and flattening of the bands belonging to OH groups (3288–3356 cm−1) indicated that the hydrogen bonds in the chitosan matrix were strengthened during the formation of the bio-nanocomposite structure. The bands representing the C=O stretching vibrations at 1659 cm−1 (amide I) and the N–H bending vibrations at 1558 cm−1 (amide II) indicated protein-based features in the structure of chitosan and confirmed the existence of the bio-nanocomposite structure. The SEM-EDX analysis showed that TiO2 NPs were distributed homogeneously on the chitosan surface, but there was aggregation in places. The AFM images revealed that when TiO2 NPs and RA were added to the chitosan matrix, the surface topography became more homogeneous, and a topographic pattern was formed in the range of 0–20.4 nm. Therefore, it is concluded that these bio-nanocomposite coatings can be used in antimicrobial surfaces and food packaging areas and should be optimized with different antioxidant and nanoparticle combinations in the future. Full article
Show Figures

Figure 1

18 pages, 3979 KiB  
Article
Assessment of Wear and Surface Roughness Characteristics of Polylactic Acid (PLA)—Graphene 3D-Printed Composites by Box–Behnken Method
by Manjunath G. Avalappa, Vaibhav R. Chate, Nikhil Rangaswamy, Shriranganath P. Avadhani, Ganesh R. Chate and Manjunath Shettar
J. Compos. Sci. 2025, 9(1), 1; https://doi.org/10.3390/jcs9010001 - 24 Dec 2024
Abstract
The biodegradability and comparatively less harmful degradation of polylectic acid (PLA) make it an appealing material in many applications. The composite material is used as a feed for a 3D printer, consisting of PLA as a matrix and graphene (3 wt.%) as reinforcement. [...] Read more.
The biodegradability and comparatively less harmful degradation of polylectic acid (PLA) make it an appealing material in many applications. The composite material is used as a feed for a 3D printer, consisting of PLA as a matrix and graphene (3 wt.%) as reinforcement. The composite is extruded in the form of wires using a screw-type extruder machine. Thus, prepared wire is used to 3D print the specimens using fused deposition modeling (FDM) type additive manufacturing technology. The specimens are prepared by varying the different process parameters of the FDM machine. This study’s primary objective is to understand the tribological phenomena and surface roughness of PLA reinforced with graphene. Initially, pilot experiments are conducted to screen essential factors of the FDM machine and decide the levels that affect the response variables, such as surface roughness and wear. The three factors, viz., layer height, printing temperature, and printing speed, are considered. Further experiments and analysis are conducted using the Box–Beheken method to study the tribological behavior of 3D-printed composites and the effect of these parameters on surface roughness and wear loss. It is interesting to note that layer height is significant for surface roughness and wear loss. The optimum setting for minimum surface roughness is layer height at 0.16 mm, printing temperature at 180 °C, and printing speed at 60 mm/s. The optimum setting for minimum wear loss is layer height at 0.24 mm, printing temperature at 220 °C, and printing speed at 90 mm/s. The desirability function approach is used to optimize (multiobjective optimization) both surface roughness and wear loss. The layer height of 0.16 mm, printing temperature of 208 °C, and printing speed of 90 mm/s are the optimum levels for a lower surface roughness and wear loss. The SEM images reveal various wear mechanisms, viz., abrasive grooves, micro-fractures, and the presence of wear debris. The work carried out helps to make automobile door panels since they undergo wear due to excessive friction, aging, material degradation, and temperature fluctuations. These are taken care of by graphene addition in PLA with an optimized printing process, and a good surface finish helps with proper assembly. Full article
(This article belongs to the Special Issue Theoretical and Computational Investigation on Composite Materials)
Show Figures

Figure 1

Previous Issue
Back to TopTop