Natural Antioxidants and Oxidative Stress in Livestock and Poultry

A special issue of Antioxidants (ISSN 2076-3921).

Deadline for manuscript submissions: 30 September 2024 | Viewed by 2709

Special Issue Editors


E-Mail Website
Guest Editor
College of Animal Sciences, Zhejiang University, Hangzhou, China
Interests: inflammation; cell signaling pathway; autophagy; bovine

E-Mail Website
Guest Editor
College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
Interests: toxicology; nutrition; metabolism; dairy cows; animals

Special Issue Information

Dear Colleagues,

This Special Issue mainly focuses on research into animal nutrition and metabolic diseases, as well as their pathogenesis and prevention and treatment. Free radicals, antioxidants, and health have become important research topics in animal husbandry. Only by clearing free radicals and enhancing the body's antioxidant capacity can we avoid damage from free radicals to cells and tissues. Natural products contain abundant active ingredients (including iridoid compounds, lignans, phenylpropanoids, flavonoids, polysaccharides, etc.), which play an important role in improving immunity, antioxidation, and other aspects. The extracted components can promote the generation of antioxidant enzymes and enhance the clearance of reactive oxygen species. Scholars studying related content are welcome to submit to this journal.

Dr. Haichong Wu
Prof. Dr. Zhigang Zhang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antioxidants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • natural antioxidants and oxidative stress
  • metabolic diseases
  • nutrition
  • livestock

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

22 pages, 10883 KiB  
Article
Lianweng Granules Alleviate Intestinal Barrier Damage via the IL-6/STAT3/PI3K/AKT Signaling Pathway with Dampness-Heat Syndrome Diarrhea
by Jianyu Lv, Yuchen Fu, Yu Ga, Chao Han, Yimeng Fan, Yuanyuan Wei, Sijia Hao and Zhihui Hao
Antioxidants 2024, 13(6), 661; https://doi.org/10.3390/antiox13060661 - 28 May 2024
Viewed by 615
Abstract
Dampness-heat syndrome diarrhea (DHSD) is a common clinical disease with a high prevalence but still has no satisfactory therapeutic medicine, so the search for a safe and effective drug candidate is ongoing. This study aims to explore the efficacy and mechanisms of Lianweng [...] Read more.
Dampness-heat syndrome diarrhea (DHSD) is a common clinical disease with a high prevalence but still has no satisfactory therapeutic medicine, so the search for a safe and effective drug candidate is ongoing. This study aims to explore the efficacy and mechanisms of Lianweng granules (LWG) in the treatment of DHSD and to identify the blood transport components of LWG. We assessed the efficacy of LWG in DHSD by various in vivo metrics such as body weight, disease activity index (DAI), histopathologic examination, intestinal barrier function, levels of inflammatory, apoptotic biomarkers, and oxidative stress. We identified the blood components of LWG using ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry (UHPLC-MS/MS), and the resolved key components were used to explore the relevant targets. We next predicted the potential mechanisms of LWG in treating DHSD using network pharmacology and molecular docking based on the relevant targets. Finally, the mechanisms were validated in vivo using RT-qPCR, Western blotting, ELISA, and immunofluorescence and evaluated in vitro using Cell Counting Kit-8 (CCK-8), small interfering RNA, cellular enthusiasm transfer assay (CETSA), and drug affinity response target stability (DARTS). Ninety-one pharmacodynamic components of LWG enter the bloodstream and exert possible therapeutic effects. In vivo, LWG treatment improved body weight, reduced colonic injury and DAI scores, lowered inflammation, oxidative stress, and apoptosis markers, and partially restored intestinal barrier function in DHSD mice. Guided by network pharmacology and molecular docking, it is suggested that LWG may exert therapeutic effects by inhibiting IL-6/STAT3/PI3K/AKT signaling. LWG significantly decreased the expression of IL-6, p-STAT3, p-PI3K, p-AKT, and other proteins. These findings were supported by in vitro experiments, where CETSA, DARTS, and siRNA evidenced LWG’s targeting of STAT3. LWG targeted STAT3 to inhibit inflammation, oxidative stress, and apoptosis in the colon, thereby restoring the intestinal barrier function to some extent and exerting a therapeutic effect on DHSD. Full article
(This article belongs to the Special Issue Natural Antioxidants and Oxidative Stress in Livestock and Poultry)
Show Figures

Graphical abstract

23 pages, 4671 KiB  
Article
Dietary Supplementation with Naringin Improves Systemic Metabolic Status and Alleviates Oxidative Stress in Transition Cows via Modulating Adipose Tissue Function: A Lipid Perspective
by Liuxue Li, Sarula Bai, Huiying Zhao, Jian Tan, Ying Wang, Ao Zhang, Linshu Jiang and Yuchao Zhao
Antioxidants 2024, 13(6), 638; https://doi.org/10.3390/antiox13060638 - 24 May 2024
Viewed by 558
Abstract
Dairy cows face metabolic challenges around the time of calving, leading to a negative energy balance and various postpartum health issues. Adipose tissue is crucial for cows during this period, as it regulates energy metabolism and supports immune function. Naringin, one of the [...] Read more.
Dairy cows face metabolic challenges around the time of calving, leading to a negative energy balance and various postpartum health issues. Adipose tissue is crucial for cows during this period, as it regulates energy metabolism and supports immune function. Naringin, one of the main flavonoids in citrus fruit and their byproducts, is a potent antioxidant and anti-inflammatory phytoconstituent. The study aimed to evaluate the effects of supplemental naringin on performance, systemic inflammation, oxidative status, and adipose tissue metabolic status. A total of 36 multiparous Holstein cows (from ~21 d prepartum through 35 d postpartum) were provided a basal control (CON) diet or a CON diet containing naringin (NAR) at 30 g/d per cow. Supplemental NAR increased the yield of raw milk and milk protein, without affecting dry matter intake. Cows fed NAR showed significantly lower levels (p < 0.05) of serum non-esterified fatty acid (NEFA), C-reactive protein, IL-1β, IL-6, malonaldehyde, lipopolysaccharide (LPS), aspartate aminotransferase, and alanine aminotransferase, but increased (p < 0.05) glutathione peroxidase activity relative to those fed CON. Supplemental NAR increased (p < 0.05) adipose tissue adiponectin abundance, decreased inflammatory responses, and reduced oxidative stress. Lipidomic analysis showed that cows fed NAR had lower concentrations of ceramide species (p < 0.05) in the serum and adipose tissue than did the CON-fed cows. Adipose tissue proteomics showed that proteins related to lipolysis, ceramide biosynthesis, inflammation, and heat stress were downregulated (p < 0.05), while those related to glycerophospholipid biosynthesis and the extracellular matrix were upregulated (p < 0.05). Feeding NAR to cows may reduce the accumulation of ceramide by lowering serum levels of NEFA and LPS and increasing adiponectin expression, thereby decreasing inflammation and oxidative stress in adipose tissue, ultimately improving their systemic metabolic status. Including NAR in periparturient cows’ diets improves lactational performance, reduces excessive lipolysis in adipose tissue, and decreases systemic and adipose tissue inflammation and oxidative stress. Integrating lipidomic and proteomic data revealed that reduced ceramide and increased glycerophospholipids may alleviate metabolic dysregulations in adipose tissue, which in turn benefits systemic metabolic status. Full article
(This article belongs to the Special Issue Natural Antioxidants and Oxidative Stress in Livestock and Poultry)
Show Figures

Figure 1

Review

Jump to: Research

18 pages, 3304 KiB  
Review
Lycopene as a Therapeutic Agent against Aflatoxin B1-Related Toxicity: Mechanistic Insights and Future Directions
by Meng Li, Shusheng Tang, Xinyan Peng, Gaurav Sharma, Shutao Yin, Zhihui Hao, Jichang Li, Jianzhong Shen and Chongshan Dai
Antioxidants 2024, 13(4), 452; https://doi.org/10.3390/antiox13040452 - 11 Apr 2024
Cited by 1 | Viewed by 1175
Abstract
Aflatoxin (AFT) contamination poses a significant global public health and safety concern, prompting widespread apprehension. Of the various AFTs, aflatoxin B1 (AFB1) stands out for its pronounced toxicity and its association with a spectrum of chronic ailments, including cardiovascular disease, neurodegenerative disorders, and [...] Read more.
Aflatoxin (AFT) contamination poses a significant global public health and safety concern, prompting widespread apprehension. Of the various AFTs, aflatoxin B1 (AFB1) stands out for its pronounced toxicity and its association with a spectrum of chronic ailments, including cardiovascular disease, neurodegenerative disorders, and cancer. Lycopene, a lipid-soluble natural carotenoid, has emerged as a potential mitigator of the deleterious effects induced by AFB1 exposure, spanning cardiac injury, hepatotoxicity, nephrotoxicity, intestinal damage, and reproductive impairment. This protective mechanism operates by reducing oxidative stress, inflammation, and lipid peroxidation, and activating the mitochondrial apoptotic pathway, facilitating the activation of mitochondrial biogenesis, the endogenous antioxidant system, and the nuclear factor erythroid 2-related factor 2 (Nrf2)/kelch-like ECH-associated protein 1 (KEAP1) and peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) pathways, as well as regulating the activities of cytochrome P450 (CYP450) enzymes. This review provides an overview of the protective effects of lycopene against AFB1 exposure-induced toxicity and the underlying molecular mechanisms. Furthermore, it explores the safety profile and potential clinical applications of lycopene. The present review underscores lycopene’s potential as a promising detoxification agent against AFB1 exposure, with the intent to stimulate further research and practical utilization in this domain. Full article
(This article belongs to the Special Issue Natural Antioxidants and Oxidative Stress in Livestock and Poultry)
Show Figures

Figure 1

Back to TopTop