Natural Antioxidants in Animal Immunity

A special issue of Antioxidants (ISSN 2076-3921). This special issue belongs to the section "Extraction and Industrial Applications of Antioxidants".

Deadline for manuscript submissions: closed (30 November 2022) | Viewed by 25447

Special Issue Editors


E-Mail Website
Guest Editor
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
Interests: epitranscriptome; m6A RNA methylation; mucosal immunity; stem cells; gut–liver axis; nutrition metabolism; plant extracts
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
Interests: nutrition metabolism and immunity; including amino acids; nucleotide and microelements with the physiological functions for the well-being of animals and people
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Animal & Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
Interests: animal biologics and metabolism; host–microbe interactions
Special Issues, Collections and Topics in MDPI journals
College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
Interests: nutrition metabolism; plant extracts; probiotics; intestinal barrier function; gut–liver axis; antioxidant
Special Issues, Collections and Topics in MDPI journals
Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
Interests: innate immunity; gut microbial; microelement homeostasis; ferroptosis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Antioxidant defense systems are essential for maintaining optimum health in animals. In the current intensive animal production systems, the environment, unbalanced nutrition, administration of drugs, and physical and physiological stress cause an adverse effect on the immune function of different animal species, with the emergence and re-emergence of diseases. These phenomena affect the animal health and decrease the animal production efficiency, thereby increasing production costs. A better understanding of immune-system development and the factors that affect the immune system can lead to the production of more-resilient animals with increased immune competence. Novel multidisciplinary collaborative research programs that integrate, e.g., animal nutrition, mucosal immunology, cell metabolism, and molecular biology are, therefore, urgently needed. Antioxidants such as polyphenols, antioxidant vitamins (C, E, A), and minerals (iron, zinc, selenium) generally enhance cellular and noncellular immunity by maintaining the functional and structural integrity of immune cells. Antioxidants may provide the strategic future of industry, ensuring health in humans and animals.

 This Special Issue particularly focuses on:

  • The molecular networks of immune system development in young animals.
  • Crosstalk between microbes (virus and microbiota) and mucosal immunity in animals.
  • The roles of RNA methylation in animal immunity.
  • The impact of oxidative stress on the immune function of animals.
  • The roles of antioxidants in animal immunity.

All scientific works (original research papers and reviews) in this field are highly welcome.

Prof. Dr. Xiang Zhong
Prof. Dr. Xin Wu
Dr. Vanessa Leone
Dr. Lili Zhang
Dr. Dan Wan
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Antioxidants is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • antioxidants
  • animal
  • immunity
  • microbiota
  • virus
  • oxidative stress
  • iron or other microelement
  • plant extracts

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 3611 KiB  
Article
Encapsulated Essential Oils Improve the Growth Performance of Meat Ducks by Enhancing Intestinal Morphology, Barrier Function, Antioxidant Capacity and the Cecal Microbiota
by Hongduo Bao, Yongqiang Xue, Yingying Zhang, Feng Tu, Ran Wang, Yu Cao and Yong Lin
Antioxidants 2023, 12(2), 253; https://doi.org/10.3390/antiox12020253 - 22 Jan 2023
Cited by 3 | Viewed by 1430
Abstract
The objective of this study was to evaluate the effects of encapsulated essential oils (EOs) on the gut microbiota, growth performance, intestinal morphology, antioxidant properties and barrier function of meat-type ducks. A total of 320 male Cherry Valley ducks (1 day old), were [...] Read more.
The objective of this study was to evaluate the effects of encapsulated essential oils (EOs) on the gut microbiota, growth performance, intestinal morphology, antioxidant properties and barrier function of meat-type ducks. A total of 320 male Cherry Valley ducks (1 day old), were randomly assigned to four dietary experimental groups with eight replicates of ten ducks each. The groups consisted of the CON group (basal diet), the HEO group (basal diet + EO 1000 mg/kg), the LEO group (basal diet + EO 500 mg/kg), and the ANT group (basal diet + chlortetracycline 50 mg/kg). Our findings indicated that ducks fed with EO 1000 mg/kg had greater average daily feed intake (ADFI), average daily gain (ADG), and body weight (BW) and a lower feed conversion ratio (FCR) than the other groups. The serum concentration of TG reduced in the HEO (p > 0.05) and LEO (p < 0.05) groups on day 42, while the concentration of CHOL increased with the EO concentration in the LEO (p > 0.05) and HEO (p < 0.05) groups. No differences were observed in the ileal mucosa for the activities of SOD, MPO and GSH-PX after EO dietary treatment. Dietary supplementation with EOs significantly increased the villus heights (p < 0.01) and the ratio of villus height to crypt depth (c/v) in the duodenum and jejunum of ducks. Moreover, the mRNA expressions of Claudin1 and Occludin in the jejunal mucosa were observed to be higher in the LEO and HEO groups rather than the CON and ANT groups on d 42. The α diversity showed that the HEO group improved the bacterial diversity and abundance. The β diversity analysis indicated that the microbial structures of the four groups were obviously separated. EO dietary supplementation could increase the relative abundance (p < 0.01) of the Bacteroidetes phylum, Bacteroidaceae family, and Bacteroides, Desulfovibrio, Phascolarctobacterium, and Butyricimonas genera in the cecal microbiota of ducks. We demonstrated significant differences in the bacterial composition and functional potential of the gut microbiota in ducks that were fed either an EO diet or a basal diet. Therefore, supplemented EOs was found to have a positive effect on the growth performance and intestinal health of ducks, which was attributed to the improvement in cecal microbiota, intestinal morphology, and barrier function. Full article
(This article belongs to the Special Issue Natural Antioxidants in Animal Immunity)
Show Figures

Figure 1

19 pages, 13408 KiB  
Article
Screening and Characterization of Pediococcus acidilactici LC-9-1 toward Selection as a Potential Probiotic for Poultry with Antibacterial and Antioxidative Properties
by Chong Li, Shaolong Wang, Si Chen, Xiaoying Wang, Xuejuan Deng, Guohua Liu, Wenhuan Chang, Yves Beckers and Huiyi Cai
Antioxidants 2023, 12(2), 215; https://doi.org/10.3390/antiox12020215 - 17 Jan 2023
Cited by 9 | Viewed by 2365
Abstract
Growing interest has been focused on lactic acid bacteria as alternatives to antimicrobial growth promoters, which are characterized by the production of various functional metabolites, such as antimicrobial and antioxidants compounds. The present study was undertaken to evaluate a potential probiotic from the [...] Read more.
Growing interest has been focused on lactic acid bacteria as alternatives to antimicrobial growth promoters, which are characterized by the production of various functional metabolites, such as antimicrobial and antioxidants compounds. The present study was undertaken to evaluate a potential probiotic from the antioxidant perspective. LC-9-1, screened from the intestines of healthy animals, was revealed to be Pediococcus acidilactici on the basis of its morphological, biochemical, and molecular characteristics. The strain has excellent properties, including acid-production efficiency, antibacterial performance and antioxidant activity. The safety of the strain was also evaluated. Furthermore, the experiments in broiler chickens suggested that dietary LC-9-1 supplementation improved the growth performance and decreased the abdominal fat, and enhanced the antioxidant capability and intestinal innate immunity of broilers. Analysis of intestinal microbiota showed that a higher community diversity (Shannon index) was achieved. In addition to the significantly increased relative abundances of Pediococcus spp., beneficial genera such as Rothia spp. and Ruminococcus spp. were abundant, while opportunistic pathogens such as Escherichia-Shigella spp. were significantly reduced in LC-9-1-supplemented broilers. Collectively, such in-depth characterization and the available data will guide future efforts to develop next-generation probiotics, and LC-9-1 could be considered a potential strain for further utilization in direct-fed microbial or starter culture for fermentation. Full article
(This article belongs to the Special Issue Natural Antioxidants in Animal Immunity)
Show Figures

Figure 1

18 pages, 4027 KiB  
Article
Lactoferrin Restores the Deoxynivalenol-Impaired Spermatogenesis and Blood–Testis Barrier Integrity via Improving the Antioxidant Capacity and Modifying the Cell Adhesion and Inflammatory Response
by Zhaojian Li, Yahui Zhao, Qiufang Zong, Ping Hu, Wenbin Bao, Hao-Yu Liu and Demin Cai
Antioxidants 2023, 12(1), 152; https://doi.org/10.3390/antiox12010152 - 9 Jan 2023
Cited by 4 | Viewed by 2151
Abstract
Deoxynivalenol (DON) is among the most prevalent contaminants in cereal crops and has been demonstrated to impair male spermatogenesis and induce oxidative stress, testicular apoptosis, and disruption of the blood–testis barrier (BTB). Lactoferrin (LF) is an iron-binding glycoprotein with multifunctions including anti-inflammation and [...] Read more.
Deoxynivalenol (DON) is among the most prevalent contaminants in cereal crops and has been demonstrated to impair male spermatogenesis and induce oxidative stress, testicular apoptosis, and disruption of the blood–testis barrier (BTB). Lactoferrin (LF) is an iron-binding glycoprotein with multifunctions including anti-inflammation and antioxidation. Thus, this study aimed to investigate the effects of LF on the spermatogenesis and integrity of the BTB in DON-exposed mice. Thirty-two male mice were allotted to four groups for a 35-day feeding period: vehicle (basal diet), DON (12 mg/kg), LF (10 mg/d, p.o.), and DON + LF. The results showed that DON induced vacuolization of the spermatogenic epithelium, broke the adhesion junction between Sertoli cells and spermatids established by N-cadherin and induced testicular oxidative stress. LF administration restored sperm production, attenuated the DON-induced oxidative stress and reduced the breakages in adhesion junction. DON exposure enhanced the protein expression of occludin. Transcriptional profiling of the testis observed a disturbance in the expression profiles of cell adhesion and inflammatory response genes, and LF administration reversed these gene expressions. Furthermore, down-regulated signaling pathways, including the apical junction, TNFα signaling via NF-κB, and TGF-β in the DON group were observed. These were restored by LF. Enrichment analysis between DON + LF group and vehicle also confirmed the absence of these pathways. These findings indicated that LF eliminated the DON-induced detriment to spermatogenesis and cell connections between Sertoli cells and spermatids via improving antioxidant capacity and modifying the inflammatory response and cell adhesion genes. Full article
(This article belongs to the Special Issue Natural Antioxidants in Animal Immunity)
Show Figures

Figure 1

15 pages, 2309 KiB  
Article
Histidine Deficiency Inhibits Intestinal Antioxidant Capacity and Induces Intestinal Endoplasmic-Reticulum Stress, Inflammatory Response, Apoptosis, and Necroptosis in Largemouth Bass (Micropterus salmoides)
by Hualiang Liang, Pao Xu, Gangchun Xu, Lin Zhang, Dongyu Huang, Mingchun Ren and Lu Zhang
Antioxidants 2022, 11(12), 2399; https://doi.org/10.3390/antiox11122399 - 2 Dec 2022
Cited by 11 | Viewed by 1962
Abstract
This 56-day study aimed to evaluate the effects of histidine levels on intestinal antioxidant capacity and endoplasmic-reticulum stress (ERS) in largemouth bass (Micropterus salmoides). The initial weights of the largemouth bass were (12.33 ± 0.01) g. They were fed six graded [...] Read more.
This 56-day study aimed to evaluate the effects of histidine levels on intestinal antioxidant capacity and endoplasmic-reticulum stress (ERS) in largemouth bass (Micropterus salmoides). The initial weights of the largemouth bass were (12.33 ± 0.01) g. They were fed six graded levels of histidine: 0.71% (deficient group), 0.89%, 1.08%, 1.26%, 1.48%, and 1.67%. The results showed that histidine deficiency significantly suppressed the intestinal antioxidant enzyme activities, including SOD, CAT, GPx, and intestinal level of GSH, which was supported by significantly higher levels of intestinal MDA. Moreover, histidine deficiency significantly lowered the mRNA level of nrf2 and upregulated the mRNA level of keap1, which further lowered the mRNA levels of the downstream genes sod, cat, and gpx. Additionally, histidine-deficiency-induced intestinal ERS, which was characterized by activating the PEPK-signalling pathway and IRE1-signalling pathway, including increased core gene expression of pepk, grp78, eif2α, atf4, chopα, ire1, xbp1, traf2, ask1, and jnk1. Dietary histidine deficiency also induced apoptosis and necroptosis in the intestine by upregulating the expressions of proapoptotic genes, including caspase 3, caspase 8, caspase 9, and bax, and necroptosis-related genes, including mlkl and ripk3, while also lowering the mRNA level of the antiapoptotic gene bcl-2. Furthermore, histidine deficiency activated the NF-κB-signalling pathway to induce an inflammatory response, improving the mRNA levels of the proinflammatory factors tnf-α, hepcidin 1, cox2, cd80, and cd83 and lowering the mRNA levels of the anti-inflammatory factors tgf-β1 and ikbα. Similarly, dietary histidine deficiency significantly lowered the intestinal levels of the anti-inflammatory factors TGF-β and IL-10 and upregulated the intestinal levels of the proinflammatory factor TNF-α, showing a trend similar to the gene expression of inflammatory factors. However, dietary histidine deficiency inhibited only the level of C3, and no significant effects were observed for IgM, IgG, HSP70, or IFN-γ. Based on the MDA and T-SOD results, the appropriate dietary histidine requirements of juvenile largemouth bass were 1.32% of the diet (2.81% dietary protein) and 1.47% of the diet (3.13% dietary protein), respectively, as determined by quadratic regression analysis. Full article
(This article belongs to the Special Issue Natural Antioxidants in Animal Immunity)
Show Figures

Figure 1

18 pages, 6703 KiB  
Article
Bisdemethoxycurcumin Alleviates Dextran Sodium Sulfate-Induced Colitis via Inhibiting NLRP3 Inflammasome Activation and Modulating the Gut Microbiota in Mice
by Jingfei Zhang, Qiming Li, Xin Zhang, Yanan Chen, Yufang Lu, Xinyu Wang, Lili Zhang and Tian Wang
Antioxidants 2022, 11(10), 1994; https://doi.org/10.3390/antiox11101994 - 7 Oct 2022
Cited by 4 | Viewed by 2043
Abstract
Our previous study showed that bisdemethoxycurcumin (BUR) exerts anti-inflammatory properties in lipopolysaccharide-induced intestinal injury, and studies have revealed that NOD-like receptor superfamily, pyrin domain containing 3 (NLRP3) inflammasome activation plays a vital role in the pathogenesis of colitis. However, it is not clear [...] Read more.
Our previous study showed that bisdemethoxycurcumin (BUR) exerts anti-inflammatory properties in lipopolysaccharide-induced intestinal injury, and studies have revealed that NOD-like receptor superfamily, pyrin domain containing 3 (NLRP3) inflammasome activation plays a vital role in the pathogenesis of colitis. However, it is not clear whether BUR could attenuate colitis-mediated intestinal inflammation via NLRP3 inflammasome inactivation and modulate the gut microbiota dysbiosis. The results demonstrated that BUR attenuated DSS-induced body weight decrease, histopathological changes, and epithelial apoptosis. BUR significantly improved the intestinal barrier defects and abrogated DSS-induced inflammatory response. Consistently, BUR reduced the expression of NLRP3 family members, confirming its inhibitory effects on NLRP3 inflammasome activation and pyroptosis. BUR regulated microbiota dysbiosis and altered the gut microbial community. BUR supplementation enriched the relative abundance of beneficial bacteria (such as Lactobacillus and Bifidobacterium), which showed significant negative correlations with the pro-inflammatory biomarkers. Collectively, these findings illustrated that BUR could ameliorate DSS-induced colitis by improving intestinal barrier function, reducing apoptosis, inhibiting NLRP3 inflammasome activation, and regulating the gut microbiota. Full article
(This article belongs to the Special Issue Natural Antioxidants in Animal Immunity)
Show Figures

Figure 1

17 pages, 2773 KiB  
Article
M6A RNA Methylation Mediates NOD1/NF-kB Signaling Activation in the Liver of Piglets Challenged with Lipopolysaccharide
by Menghui Xu, Ruhao Zhuo, Shengxiang Tao, Yaxu Liang, Chunru Liu, Qingyang Liu, Tian Wang and Xiang Zhong
Antioxidants 2022, 11(10), 1954; https://doi.org/10.3390/antiox11101954 - 30 Sep 2022
Cited by 9 | Viewed by 2537
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification that widely participates in various immune and inflammatory responses; however, its regulatory mechanisms in the inflammation of liver induced by lipopolysaccharide in piglets remain largely unknown. In the present study, piglets [...] Read more.
N6-methyladenosine (m6A) is the most abundant internal modification that widely participates in various immune and inflammatory responses; however, its regulatory mechanisms in the inflammation of liver induced by lipopolysaccharide in piglets remain largely unknown. In the present study, piglets were intraperitoneally injected with 80 μg/kg LPS or an equal dose of sterile saline. Results indicated that LPS administration increased activities of serum alanine aminotransferase (ALT), induced M1 macrophage polarization and promoted secretion of inflammatory cytokines, and finally led to hepatic lesions in piglets. The NOD1/NF-κB signaling pathway was activated in the livers of the LPS group. Moreover, the total m6A level was significantly elevated after LPS treatment. MeRIP-seq showed that 1166 and 1344 transcripts contained m6A methylation in control and LPS groups, respectively. The m6A methylation sites of these transcripts mainly distributes in the 5′ untranslated region (5′UTR), the coding sequence (CDS), and the 3′ untranslated region (3′UTR). Interestingly, these genes were mostly enriched in the NF-κB signaling pathway, and LPS treatment significantly changed the m6A modification in NOD1, RIPK2, NFKBIA, NFKBIB, and TNFAIP3 mRNAs. In addition, knockdown of METTL3 or overexpression of FTO both changed gene levels in the NOD1/NF-κB pathway, suggesting that activation of this pathway was regulated by m6A RNA methylation. Moreover, the alteration of m6A RNA methylation profile may be associated with the increase of reactive oxygen species (ROS), HIF-1α, and MAT2A. In conclusion, LPS activated the NOD1/NF-κB pathway at post-transcriptional regulation through changing m6A RNA methylation, and then promoted the overproduction of proinflammatory cytokines, ultimately resulting in liver inflammation and damage. Full article
(This article belongs to the Special Issue Natural Antioxidants in Animal Immunity)
Show Figures

Figure 1

16 pages, 2941 KiB  
Article
Bacillus subtilis Protects the Ducks from Oxidative Stress Induced by Escherichia coli: Efficacy and Molecular Mechanism
by Chong Li, Yang Li, Shuzhen Li, Si Chen, Guohua Liu, Xuejuan Deng, Wenhuan Chang and Huiyi Cai
Antioxidants 2022, 11(10), 1951; https://doi.org/10.3390/antiox11101951 - 29 Sep 2022
Cited by 2 | Viewed by 1834
Abstract
Bacillus subtilis has been widely used in animal husbandry as a potential alternative to antibiotics due to its excellent bacteriostasis and antioxidant activity. This study aims to investigate the effects of Bacillus subtilis on the protection of ducks from Escherichia coli infection and [...] Read more.
Bacillus subtilis has been widely used in animal husbandry as a potential alternative to antibiotics due to its excellent bacteriostasis and antioxidant activity. This study aims to investigate the effects of Bacillus subtilis on the protection of ducks from Escherichia coli infection and its mechanism. The four experimental groups include the negative control group, positive control group, antibiotic group and Bacillus subtilis group. Ducks in positive, antibiotic and Bacillus subtilis groups are orally administered with Escherichia coli and equivalent saline solution for the negative group. The results show that supplements with Bacillus subtilis enhances the performance and health status of the infected ducks. Moreover, Bacillus subtilis alleviates the increase in globulin, LPS and MDA, and the decrease in albumin, T-AOC and T-SOD in the serum caused by Escherichia coli infection. Bacillus subtilis also attenuates injury in the intestine and partially reverses the increase in ROS production and the depletion of ATP in the jejunum. These effects are accompanied with the change of related genes of the ribosome (13.54%) and oxidative phosphorylation (6.68%). Collectively, Bacillus subtilis alleviates the damage caused by Escherichia coli infection in ducks by activating ribosome and oxidative phosphorylation signaling to regulate antioxidant and energy metabolism. Full article
(This article belongs to the Special Issue Natural Antioxidants in Animal Immunity)
Show Figures

Figure 1

16 pages, 3478 KiB  
Article
Periplaneta americana Extract Pretreatment Alleviates Oxidative Stress and Inflammation and Increases the Abundance of Gut Akkermansia muciniphila in Diquat-Induced Mice
by Shiyi Lu, Shuyi Xu, Lingjun Chen, Yuhang Deng and Jie Feng
Antioxidants 2022, 11(9), 1806; https://doi.org/10.3390/antiox11091806 - 13 Sep 2022
Cited by 7 | Viewed by 2729
Abstract
Studies have shown that Periplaneta americana extract (PAE) has good therapeutic effects in inflammatory disorders such as ulcerative colitis, alcoholic hepatitis, and gastric ulcers. However, whether or not PAE has good pre-protective effects has not been widely and deeply studied. In this [...] Read more.
Studies have shown that Periplaneta americana extract (PAE) has good therapeutic effects in inflammatory disorders such as ulcerative colitis, alcoholic hepatitis, and gastric ulcers. However, whether or not PAE has good pre-protective effects has not been widely and deeply studied. In this study, we investigated the effects of PAE pretreatment for 7 days on oxidative stress and inflammation triggered by oxidative stress by using diquat-induced C57BL/6 mice as an oxidative stress model. The results showed that PAE pretreatment could significantly reduce oxidative stress in the intestine and liver by reducing the production of MDA, and improved antioxidant systems (SOD, CAT, GSH, and T-AOC). By primarily activating the anti-inflammatory cytokine (IL-10) mediated JAK1/STAT3 signaling pathway, PAE also effectively reduced oxidative stress-induced liver inflammation while also reducing liver damage, as evidenced by the reductions in serum AST and ALT. PAE pretreatment also had a significant effect on maintaining the intestinal barrier function, which was manifested by inhibiting a decrease in the expression of tight junction proteins (ZO-1 and occludin), and reducing the increased intestinal permeability (serum DAO and D-Lac) caused by diquat. The 16S rRNA sequencing analysis revealed that diquat decreased the gut microbiota diversity index and increased the abundance of pathogenic bacteria (e.g., Allobaculum, Providencia and Escherichia-Shigella), while PAE pretreatment responded to diquat-induced damage by greatly increasing the abundance of Akkermansia muciniphila. These findings elucidate potential pre-protective mechanisms of PAE in alleviating oxidative stress and inflammation, while providing a direction for the treatment of metabolic diseases by utilizing PAE to enhance the abundance of gut A. muciniphila. Full article
(This article belongs to the Special Issue Natural Antioxidants in Animal Immunity)
Show Figures

Figure 1

17 pages, 3232 KiB  
Article
Dietary Supplementation with Eucommia ulmoides Leaf Extract Improved the Intestinal Antioxidant Capacity, Immune Response, and Disease Resistance against Streptococcus agalactiae in Genetically Improved Farmed Tilapia (GIFT; Oreochromis niloticus)
by Dongyu Huang, Jian Zhu, Lu Zhang, Xianping Ge, Mingchun Ren and Hualiang Liang
Antioxidants 2022, 11(9), 1800; https://doi.org/10.3390/antiox11091800 - 13 Sep 2022
Cited by 4 | Viewed by 1993
Abstract
A 7-week rearing trial was designed to investigate the effects of Eucommia ulmoides leaf extract (ELE) on growth performance, body composition, antioxidant capacity, immune response, and disease susceptibility of diet-fed GIFT. The results showed that dietary ELE did not affect growth performance or [...] Read more.
A 7-week rearing trial was designed to investigate the effects of Eucommia ulmoides leaf extract (ELE) on growth performance, body composition, antioxidant capacity, immune response, and disease susceptibility of diet-fed GIFT. The results showed that dietary ELE did not affect growth performance or whole-body composition (p > 0.05). Compared with the control group, plasma ALB contents increased in the 0.06% dietary ELE group (p < 0.05), and plasma ALT and AST activities decreased in the 0.08% dietary ELE group (p < 0.05). In terms of antioxidants, compared with GIFT fed the control diet, 0.06% dietary ELE upregulated the mRNA expression levels of Nrf2 pathway-related antioxidant genes, including CAT and SOD (p < 0.05), and 0.06% and 0.08% dietary ELE upregulated the mRNA levels of Hsp70 (p < 0.05). In terms of immunity, 0.06% dietary ELE suppressed intestinal TLR2, MyD88, and NF-κB mRNA levels (p < 0.05). Moreover, the mRNA levels of the anti-inflammatory cytokines TGF-β and IL-10 were upregulated by supplementation with 0.04% and 0.06% dietary ELE (p < 0.05). In terms of apoptosis, 0.06% and 0.08% ELE significantly downregulated the expression levels of FADD mRNA (p < 0.05). Finally, the challenge experiment with S. agalactiae showed that 0.06% dietary ELE could inhibit bacterial infection, and significantly improve the survival rate of GIFT (p < 0.05). This study demonstrated that the supplementation of 0.04–0.06% ELE in diet could promote intestinal antioxidant capacity, enhance the immune response and ultimately improve the disease resistance of GIFT against Streptococcus agalactiae. Full article
(This article belongs to the Special Issue Natural Antioxidants in Animal Immunity)
Show Figures

Figure 1

17 pages, 2030 KiB  
Article
Effect of Resveratrol Supplementation on Intestinal Oxidative Stress, Immunity and Gut Microbiota in Weaned Piglets Challenged with Deoxynivalenol
by Yueqin Qiu, Xinzhi Nie, Jun Yang, Li Wang, Cui Zhu, Xuefen Yang and Zongyong Jiang
Antioxidants 2022, 11(9), 1775; https://doi.org/10.3390/antiox11091775 - 8 Sep 2022
Cited by 7 | Viewed by 2068
Abstract
(1) Background: Deoxynivalenol (DON) is a general mycotoxin that induces severe intestinal barrier injury in humans and animals. Resveratrol (RES) efficiently exerts anti-inflammatory and antioxidant effects. However, the information regarding RES protecting against DON-induced oxidative stress and intestinal inflammation in piglets is limited. [...] Read more.
(1) Background: Deoxynivalenol (DON) is a general mycotoxin that induces severe intestinal barrier injury in humans and animals. Resveratrol (RES) efficiently exerts anti-inflammatory and antioxidant effects. However, the information regarding RES protecting against DON-induced oxidative stress and intestinal inflammation in piglets is limited. (2) Methods: A total of 64 weaned piglets (Duroc × (Landrace × Yorkshire), 21-d-old, barrow) were randomly allocated to four groups (eight replicate pens per group, each pen containing two piglets) for 28 d. The piglets were fed a control diet (CON) or the CON diet supplemented with 300 mg RES/kg diet (RES group), 3.8 mg DON/kg diet (DON) or both (DON+RES) in a 2 × 2 factorial design. (3) Compared with unsupplemented DON-challenged piglets, RES supplementation in DON-challenged piglets increased ileal villus height and the abundance of ileal SOD1, GCLC and PG1-5 transcripts and Muc2 protein (p < 0.05), while decreasing the mRNA and proteins expression of ileal IL-1β, IL-6 and TNF-α, and malondialdehyde (MDA) levels in plasma and ileum in DON-challenged piglets (p < 0.05). Moreover, the abundances of class Bacilli, order Lactobacillales, family Lactobacillaceae and species Lactobacillus gasseri were increased in DON-challenged piglets fed a RES-supplemented diet compared with those in DON-challenged piglets(p ≤ 0.05). (4) Conclusions: our results indicated that RES supplementation in DON-challenged piglets efficiently attenuated intestinal inflammation and oxidative stress and improved gut microbiota, thereby alleviating DON-induced intestinal barrier injury. Full article
(This article belongs to the Special Issue Natural Antioxidants in Animal Immunity)
Show Figures

Figure 1

17 pages, 2749 KiB  
Article
Dietary Supplementation of 25-Hydroxyvitamin D3 Improves Growth Performance, Antioxidant Capacity and Immune Function in Weaned Piglets
by Xingjian Zhou, Youwei Zou, Youhan Xu, Zeyu Zhang, Yujun Wu, Jindang Cao, Baoqin Qiu, Xiaoyu Qin, Dandan Han, Xiangshu Piao, Junjun Wang and Jinbiao Zhao
Antioxidants 2022, 11(9), 1750; https://doi.org/10.3390/antiox11091750 - 3 Sep 2022
Cited by 3 | Viewed by 2165
Abstract
This study was conducted to evaluate the effects of 25-hydroxyvitamin D3 (25(OH)VD3) and Vitamin D3 (VD3) supplemented in the diet of weaned piglets on their growth performance, bone quality, intestinal integrity, immune function and antioxidant capacity. A [...] Read more.
This study was conducted to evaluate the effects of 25-hydroxyvitamin D3 (25(OH)VD3) and Vitamin D3 (VD3) supplemented in the diet of weaned piglets on their growth performance, bone quality, intestinal integrity, immune function and antioxidant capacity. A total of 192 weaned piglets were allocated into four groups and they were fed a control diet containing 2000 IU VD3 (negative control, NC), NC + 100 ppm colistin sulfate (positive control, PC), NC + 2000 IU VD3 (VD3) and NC + 2000 IU 25(OH)VD3 (25(OH)VD3). The results showed that 25(OH)VD3 improved the growth performance, bone quality and antioxidase activity of piglets compared with the other groups. Meanwhile, 25(OH)VD3 up-regulated ileal mRNA expressions of tight junction proteins and host defense peptides. The VD3 group had an increased intestinal sIgA content and mRNA expression of pBD-1 compared with the NC group. Both groups of VD3 and 25(OH)VD3 altered the microbial β-diversity compared with the NC group, and 25(OH)VD3 increased ileal concentrations of acetate and butyrate. In conclusion, our findings indicated that a regular dosage of 2000 IU VD3 in the weaned piglets’ diet did not achieve optimal antioxidant capacity and immune function. 25(OH)VD3 had better growth performance than VD3 at the same inclusion level, which is associated with the improved intestinal integrity and antioxidant capacity. Full article
(This article belongs to the Special Issue Natural Antioxidants in Animal Immunity)
Show Figures

Figure 1

Back to TopTop