Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Article

22 pages, 3543 KiB  
Article
Potential Nutraceutical Properties of Leaves from Several Commonly Cultivated Plants
by Hafsa Amat-ur-Rasool, Fenella Symes, David Tooth, Larissa-Nele Schaffert, Ekramy Elmorsy, Mehboob Ahmed, Shahida Hasnain and Wayne G. Carter
Biomolecules 2020, 10(11), 1556; https://doi.org/10.3390/biom10111556 - 15 Nov 2020
Cited by 25 | Viewed by 4754
Abstract
Chronic dietary ingestion of suitable phytochemicals may assist with limiting or negating neurodegenerative decline. Current therapeutics used to treat Alzheimer disease elicit broad adverse drug reactions, and alternative sources of cholinesterase inhibitors (ChEIs) are required. Herein, we screened methanolic extracts from seven commonly [...] Read more.
Chronic dietary ingestion of suitable phytochemicals may assist with limiting or negating neurodegenerative decline. Current therapeutics used to treat Alzheimer disease elicit broad adverse drug reactions, and alternative sources of cholinesterase inhibitors (ChEIs) are required. Herein, we screened methanolic extracts from seven commonly cultivated plants for their nutraceutical potential; ability to inhibit acetylcholinesterase (AChE) and butyryl-cholinesterase (BuChE), and provision of antioxidant activity through their 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) free radical scavenging capabilities. Potential neurotoxicity of plant extracts was examined via application to SHSY-5Y neuroblastoma cells and quantitation of cell viability. Methanolic extracts of Citrus limon (Lemon), Bombax ceiba (Red silk-cotton), Lawsonia inermis (Henna), Eucalyptus globulus (Eucalyptus), Ocimum basilicum (Basil), Citrus reticulata (Mandarin orange), and Mentha spicata (Spearmint) all displayed concentration-dependent inhibition of AChE and BuChE. The majority of extracts inhibited AChE and BuChE to near equipotency, with Henna and Eucalyptus extracts the two most potent ChEIs. All plant extracts were able to scavenge free radicals in a concentration-dependent manner, with Eucalyptus the most potent antioxidant. Toxicity of plant extracts to neuronal cells was concentration dependent, with Eucalyptus also the most toxic extract. Fractionation of plant extracts and analysis by mass spectrometry identified a number of plant polyphenols that might have contributed to the cholinesterase inhibition: 3-caffeoylquinic acid, methyl 4-caffeoylquinate, kaempferol-acetyl-glycoside, quercetin 3-rutinoside, quercetin-acetyl-glycoside, kaempferol 3-O-glucoside, and quercetin 3-O-glucoside. In silico molecular modeling of these polyphenols demonstrated their improved AChE and BuChE binding affinities compared to the current FDA-approved dual ChEI, galantamine. Collectively, all the plant extracts contained nutraceutical agents as antioxidants and ChEIs and, therefore, their chronic consumption may prove beneficial to combat the pathological deficits that accrue in Alzheimer disease. Full article
(This article belongs to the Special Issue Cholinesterase Research)
Show Figures

Figure 1

17 pages, 2491 KiB  
Article
Image Segmentation of the Ventricular Septum in Fetal Cardiac Ultrasound Videos Based on Deep Learning Using Time-Series Information
by Ai Dozen, Masaaki Komatsu, Akira Sakai, Reina Komatsu, Kanto Shozu, Hidenori Machino, Suguru Yasutomi, Tatsuya Arakaki, Ken Asada, Syuzo Kaneko, Ryu Matsuoka, Daisuke Aoki, Akihiko Sekizawa and Ryuji Hamamoto
Biomolecules 2020, 10(11), 1526; https://doi.org/10.3390/biom10111526 - 8 Nov 2020
Cited by 56 | Viewed by 7214
Abstract
Image segmentation is the pixel-by-pixel detection of objects, which is the most challenging but informative in the fundamental tasks of machine learning including image classification and object detection. Pixel-by-pixel segmentation is required to apply machine learning to support fetal cardiac ultrasound screening; we [...] Read more.
Image segmentation is the pixel-by-pixel detection of objects, which is the most challenging but informative in the fundamental tasks of machine learning including image classification and object detection. Pixel-by-pixel segmentation is required to apply machine learning to support fetal cardiac ultrasound screening; we have to detect cardiac substructures precisely which are small and change shapes dynamically with fetal heartbeats, such as the ventricular septum. This task is difficult for general segmentation methods such as DeepLab v3+, and U-net. Hence, here we proposed a novel segmentation method named Cropping-Segmentation-Calibration (CSC) that is specific to the ventricular septum in ultrasound videos in this study. CSC employs the time-series information of videos and specific section information to calibrate the output of U-net. The actual sections of the ventricular septum were annotated in 615 frames from 421 normal fetal cardiac ultrasound videos of 211 pregnant women who were screened. The dataset was assigned a ratio of 2:1, which corresponded to a ratio of the training to test data, and three-fold cross-validation was conducted. The segmentation results of DeepLab v3+, U-net, and CSC were evaluated using the values of the mean intersection over union (mIoU), which were 0.0224, 0.1519, and 0.5543, respectively. The results reveal the superior performance of CSC. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence for Medical Research)
Show Figures

Figure 1

17 pages, 2887 KiB  
Article
Modulation of Guanylate Cyclase Activating Protein 1 (GCAP1) Dimeric Assembly by Ca2+ or Mg2+: Hints to Understand Protein Activity
by Francesco Bonì, Valerio Marino, Carlo Bidoia, Eloise Mastrangelo, Alberto Barbiroli, Daniele Dell’Orco and Mario Milani
Biomolecules 2020, 10(10), 1408; https://doi.org/10.3390/biom10101408 - 5 Oct 2020
Cited by 10 | Viewed by 3061
Abstract
The guanylyl cyclase-activating protein 1, GCAP1, activates or inhibits retinal guanylyl cyclase (retGC) depending on cellular Ca2+ concentrations. Several point mutations of GCAP1 have been associated with impaired calcium sensitivity that eventually triggers progressive retinal degeneration. In this work, we demonstrate that [...] Read more.
The guanylyl cyclase-activating protein 1, GCAP1, activates or inhibits retinal guanylyl cyclase (retGC) depending on cellular Ca2+ concentrations. Several point mutations of GCAP1 have been associated with impaired calcium sensitivity that eventually triggers progressive retinal degeneration. In this work, we demonstrate that the recombinant human protein presents a highly dynamic monomer-dimer equilibrium, whose dissociation constant is influenced by salt concentration and, more importantly, by protein binding to Ca2+ or Mg2+. Based on small-angle X-ray scattering data, protein-protein docking, and molecular dynamics simulations we propose two novel three-dimensional models of Ca2+-bound GCAP1 dimer. The different propensity of human GCAP1 to dimerize suggests structural differences induced by cation binding potentially involved in the regulation of retGC activity. Full article
(This article belongs to the Special Issue Metal Binding Proteins 2020)
Show Figures

Graphical abstract

15 pages, 2096 KiB  
Article
Direct Effects of D-Chiro-Inositol on Insulin Signaling and Glucagon Secretion of Pancreatic Alpha Cells
by Agnese Filippello, Alessandra Scamporrino, Stefania Di Mauro, Roberta Malaguarnera, Antonino Di Pino, Roberto Scicali, Francesco Purrello and Salvatore Piro
Biomolecules 2020, 10(10), 1404; https://doi.org/10.3390/biom10101404 - 4 Oct 2020
Cited by 11 | Viewed by 3532
Abstract
The insulin resistance state of pancreatic α-cells seems to be related to glucagon hypersecretion in type 2 diabetes. Treatment that can improve the insulin sensitivity of α-cells could control glucagon levels in patients with diabetes mellitus. The aim of this study was to [...] Read more.
The insulin resistance state of pancreatic α-cells seems to be related to glucagon hypersecretion in type 2 diabetes. Treatment that can improve the insulin sensitivity of α-cells could control glucagon levels in patients with diabetes mellitus. The aim of this study was to investigate the preventive role of D-chiro-inositol (DCI), which has insulin receptor-sensitizer effects on insulin signaling pathways and glucagon secretion in pancreatic α-TC1 clone 6 cells. Cells were chronically treated with palmitate to induce insulin resistance in the presence/absence of DCI. DCI treatment improved the insulin signaling pathway and restored insulin-mediated glucagon suppression in α-TC1-6 cells exposed to palmitate. These results indicate that DCI treatment prevents the insulin resistance of α-TC1-6 cells chronically exposed to palmitate. Our data provide evidence that DCI could be useful to improve the insulin sensitivity of pancreatic α-cells in diabetes treatment. Full article
(This article belongs to the Special Issue Pancreatic Islets of Langerhans: Not Only Beta-Cells)
Show Figures

Figure 1

15 pages, 1246 KiB  
Article
Targeting Endothelial Dysfunction in Eight Extreme-Critically Ill Patients with COVID-19 Using the Anti-Adrenomedullin Antibody Adrecizumab (HAM8101)
by Mahir Karakas, Dominik Jarczak, Martin Becker, Kevin Roedl, Marylyn M. Addo, Frauke Hein, Andreas Bergmann, Jens Zimmermann, Tim-Philipp Simon, Gernot Marx, Marc Lütgehetmann, Axel Nierhaus and Stefan Kluge
Biomolecules 2020, 10(8), 1171; https://doi.org/10.3390/biom10081171 - 11 Aug 2020
Cited by 23 | Viewed by 6521
Abstract
Recently, the stabilization of the endothelium has been explicitly identified as a therapeutic goal in coronavirus disease 2019 (COVID-19). Adrecizumab (HAM8101) is a first-in-class humanized monoclonal anti-Adrenomedullin (anti-ADM) antibody, targeting the sepsis- and inflammation-based vascular and capillary leakage. Within a “treatment on a [...] Read more.
Recently, the stabilization of the endothelium has been explicitly identified as a therapeutic goal in coronavirus disease 2019 (COVID-19). Adrecizumab (HAM8101) is a first-in-class humanized monoclonal anti-Adrenomedullin (anti-ADM) antibody, targeting the sepsis- and inflammation-based vascular and capillary leakage. Within a “treatment on a named-patient basis” approach, Adrecizumab was administered to eight extreme-critically ill COVID-19 patients with acute respiratory distress syndrome (ARDS). The patients received a single dose of Adrecizumab, which was administered between 1 and 3 days after the initiation of mechanical ventilation. The SOFA (median 12.5) and SAPS-II (median 39) scores clearly documented the population at highest risk. Moreover, six of the patients suffered from acute renal failure, of whom five needed renal replacement therapy. The length of follow-up ranged between 13 and 27 days. Following the Adrecizumab administration, one patient in the low-dose group died at day 4 due to fulminant pulmonary embolism, while four were in stable condition, and three were discharged from the intensive care unit (ICU). Within 12 days, the SOFA score, as well as the disease severity score (range 0–16, mirroring critical resources in the ICU, with higher scores indicating more severe illness), decreased in five out of the seven surviving patients (in all high-dose patients). The PaO2/FiO2 increased within 12 days, while the inflammatory parameters C-reactive protein, procalcitonin, and interleukin-6 decreased. Importantly, the mortality was lower than expected and calculated by the SOFA score. In conclusion, in this preliminary uncontrolled case series of eight shock patients with life-threatening COVID-19 and ARDS, the administration of Adrecizumab was followed by a favorable outcome. Although the non-controlled design and the small sample size preclude any definitive statement about the potential efficacy of Adrecizumab in critically ill COVID-19 patients, the results of this case series are encouraging. Full article
(This article belongs to the Special Issue Biomolecules for Translational Approaches in Cardiology)
Show Figures

Figure 1

19 pages, 2046 KiB  
Article
Protein–Protein Interactions Mediated by Intrinsically Disordered Protein Regions Are Enriched in Missense Mutations
by Eric T. C. Wong, Victor So, Mike Guron, Erich R. Kuechler, Nawar Malhis, Jennifer M. Bui and Jörg Gsponer
Biomolecules 2020, 10(8), 1097; https://doi.org/10.3390/biom10081097 - 24 Jul 2020
Cited by 23 | Viewed by 4882
Abstract
Because proteins are fundamental to most biological processes, many genetic diseases can be traced back to single nucleotide variants (SNVs) that cause changes in protein sequences. However, not all SNVs that result in amino acid substitutions cause disease as each residue is under [...] Read more.
Because proteins are fundamental to most biological processes, many genetic diseases can be traced back to single nucleotide variants (SNVs) that cause changes in protein sequences. However, not all SNVs that result in amino acid substitutions cause disease as each residue is under different structural and functional constraints. Influential studies have shown that protein–protein interaction interfaces are enriched in disease-associated SNVs and depleted in SNVs that are common in the general population. These studies focus primarily on folded (globular) protein domains and overlook the prevalent class of protein interactions mediated by intrinsically disordered regions (IDRs). Therefore, we investigated the enrichment patterns of missense mutation-causing SNVs that are associated with disease and cancer, as well as those present in the healthy population, in structures of IDR-mediated interactions with comparisons to classical globular interactions. When comparing the different categories of interaction interfaces, division of the interface regions into solvent-exposed rim residues and buried core residues reveal distinctive enrichment patterns for the various types of missense mutations. Most notably, we demonstrate a strong enrichment at the interface core of interacting IDRs in disease mutations and its depletion in neutral ones, which supports the view that the disruption of IDR interactions is a mechanism underlying many diseases. Intriguingly, we also found an asymmetry across the IDR interaction interface in the enrichment of certain missense mutation types, which may hint at an increased variant tolerance and urges further investigations of IDR interactions. Full article
(This article belongs to the Special Issue The Amazing World of IDPs in Human Diseases)
Show Figures

Figure 1

19 pages, 4801 KiB  
Article
Glutenin and Gliadin, a Piece in the Puzzle of their Structural Properties in the Cell Described through Monte Carlo Simulations
by Joel Markgren, Mikael Hedenqvist, Faiza Rasheed, Marie Skepö and Eva Johansson
Biomolecules 2020, 10(8), 1095; https://doi.org/10.3390/biom10081095 - 23 Jul 2020
Cited by 29 | Viewed by 5358
Abstract
Gluten protein crosslinking is a predetermined process where specific intra- and intermolecular disulfide bonds differ depending on the protein and cysteine motif. In this article, all-atom Monte Carlo simulations were used to understand the formation of disulfide bonds in gliadins and low molecular [...] Read more.
Gluten protein crosslinking is a predetermined process where specific intra- and intermolecular disulfide bonds differ depending on the protein and cysteine motif. In this article, all-atom Monte Carlo simulations were used to understand the formation of disulfide bonds in gliadins and low molecular weight glutenin subunits (LMW-GS). The two intrinsically disordered proteins appeared to contain mostly turns and loops and showed “self-avoiding walk” behavior in water. Cysteine residues involved in intramolecular disulfide bonds were located next to hydrophobic peptide sections in the primary sequence. Hydrophobicity of neighboring peptide sections, synthesis chronology, and amino acid chain flexibility were identified as important factors in securing the specificity of intramolecular disulfide bonds formed directly after synthesis. The two LMW-GS cysteine residues that form intermolecular disulfide bonds were positioned next to peptide sections of lower hydrophobicity, and these cysteine residues are more exposed to the cytosolic conditions, which influence the crosslinking behavior. In addition, coarse-grained Monte Carlo simulations revealed that the protein folding is independent of ionic strength. The potential molecular behavior associated with disulfide bonds, as reported here, increases the biological understanding of seed storage protein function and provides opportunities to tailor their functional properties for different applications. Full article
Show Figures

Graphical abstract

12 pages, 1039 KiB  
Article
A Fluorescence-Based Method to Measure ADP/ATP Exchange of Recombinant Adenine Nucleotide Translocase in Liposomes
by Jürgen Kreiter, Eric Beitz and Elena E. Pohl
Biomolecules 2020, 10(5), 685; https://doi.org/10.3390/biom10050685 - 29 Apr 2020
Cited by 10 | Viewed by 4668
Abstract
Several mitochondrial proteins, such as adenine nucleotide translocase (ANT), aspartate/glutamate carrier, dicarboxylate carrier, and uncoupling proteins 2 and 3, are suggested to have dual transport functions. While the transport of charge (protons and anions) is characterized by an alteration in membrane conductance, investigating [...] Read more.
Several mitochondrial proteins, such as adenine nucleotide translocase (ANT), aspartate/glutamate carrier, dicarboxylate carrier, and uncoupling proteins 2 and 3, are suggested to have dual transport functions. While the transport of charge (protons and anions) is characterized by an alteration in membrane conductance, investigating substrate transport is challenging. Currently, mainly radioactively labeled substrates are used, which are very expensive and require stringent precautions during their preparation and use. We present and evaluate a fluorescence-based method using Magnesium Green (MgGrTM), a Mg2+-sensitive dye suitable for measurement in liposomes. Given the different binding affinities of Mg2+ for ATP and ADP, changes in their concentrations can be detected. We obtained an ADP/ATP exchange rate of 3.49 ± 0.41 mmol/min/g of recombinant ANT1 reconstituted into unilamellar liposomes, which is comparable to values measured in mitochondria and proteoliposomes using a radioactivity assay. ADP/ATP exchange calculated from MgGrTM fluorescence solely depends on the ANT1 content in liposomes and is inhibited by the ANT-specific inhibitors, bongkrekic acid and carboxyatractyloside. The application of MgGrTM to investigate ADP/ATP exchange rates contributes to our understanding of ANT function in mitochondria and paves the way for the design of other substrate transport assays. Full article
Show Figures

Figure 1

19 pages, 4219 KiB  
Article
Computational Investigations on the Binding Mode of Ligands for the Cannabinoid-Activated G Protein-Coupled Receptor GPR18
by Alexander Neumann, Viktor Engel, Andhika B. Mahardhika, Clara T. Schoeder, Vigneshwaran Namasivayam, Katarzyna Kieć-Kononowicz and Christa E. Müller
Biomolecules 2020, 10(5), 686; https://doi.org/10.3390/biom10050686 - 29 Apr 2020
Cited by 17 | Viewed by 5782
Abstract
GPR18 is an orphan G protein-coupled receptor (GPCR) expressed in cells of the immune system. It is activated by the cannabinoid receptor (CB) agonist ∆9-tetrahydrocannabinol (THC). Several further lipids have been proposed to act as GPR18 agonists, but these results still [...] Read more.
GPR18 is an orphan G protein-coupled receptor (GPCR) expressed in cells of the immune system. It is activated by the cannabinoid receptor (CB) agonist ∆9-tetrahydrocannabinol (THC). Several further lipids have been proposed to act as GPR18 agonists, but these results still require unambiguous confirmation. In the present study, we constructed a homology model of the human GPR18 based on an ensemble of three GPCR crystal structures to investigate the binding modes of the agonist THC and the recently reported antagonists which feature an imidazothiazinone core to which a (substituted) phenyl ring is connected via a lipophilic linker. Docking and molecular dynamics simulation studies were performed. As a result, a hydrophobic binding pocket is predicted to accommodate the imidazothiazinone core, while the terminal phenyl ring projects towards an aromatic pocket. Hydrophobic interaction of Cys251 with substituents on the phenyl ring could explain the high potency of the most potent derivatives. Molecular dynamics simulation studies suggest that the binding of imidazothiazinone antagonists stabilizes transmembrane regions TM1, TM6 and TM7 of the receptor through a salt bridge between Asp118 and Lys133. The agonist THC is presumed to bind differently to GPR18 than to the distantly related CB receptors. This study provides insights into the binding mode of GPR18 agonists and antagonists which will facilitate future drug design for this promising potential drug target. Full article
Show Figures

Graphical abstract

21 pages, 3351 KiB  
Article
Discovering the RNA-Binding Proteome of Plant Leaves with an Improved RNA Interactome Capture Method
by Marcel Bach-Pages, Felix Homma, Jiorgos Kourelis, Farnusch Kaschani, Shabaz Mohammed, Markus Kaiser, Renier A. L. van der Hoorn, Alfredo Castello and Gail M. Preston
Biomolecules 2020, 10(4), 661; https://doi.org/10.3390/biom10040661 - 24 Apr 2020
Cited by 57 | Viewed by 14728
Abstract
RNA-binding proteins (RBPs) play a crucial role in regulating RNA function and fate. However, the full complement of RBPs has only recently begun to be uncovered through proteome-wide approaches such as RNA interactome capture (RIC). RIC has been applied to various cell lines [...] Read more.
RNA-binding proteins (RBPs) play a crucial role in regulating RNA function and fate. However, the full complement of RBPs has only recently begun to be uncovered through proteome-wide approaches such as RNA interactome capture (RIC). RIC has been applied to various cell lines and organisms, including plants, greatly expanding the repertoire of RBPs. However, several technical challenges have limited the efficacy of RIC when applied to plant tissues. Here, we report an improved version of RIC that overcomes the difficulties imposed by leaf tissue. Using this improved RIC method in Arabidopsis leaves, we identified 717 RBPs, generating a deep RNA-binding proteome for leaf tissues. While 75% of these RBPs can be linked to RNA biology, the remaining 25% were previously not known to interact with RNA. Interestingly, we observed that a large number of proteins related to photosynthesis associate with RNA in vivo, including proteins from the four major photosynthetic supercomplexes. As has previously been reported for mammals, a large proportion of leaf RBPs lack known RNA-binding domains, suggesting unconventional modes of RNA binding. We anticipate that this improved RIC method will provide critical insights into RNA metabolism in plants, including how cellular RBPs respond to environmental, physiological and pathological cues. Full article
(This article belongs to the Special Issue Ribonucleoprotein Particles (RNPs): From Structure to Function)
Show Figures

Graphical abstract

15 pages, 2041 KiB  
Article
Role of 3-Mercaptopyruvate Sulfurtransferase in the Regulation of Proliferation and Cellular Bioenergetics in Human Down Syndrome Fibroblasts
by Theodora Panagaki, Elisa B. Randi and Csaba Szabo
Biomolecules 2020, 10(4), 653; https://doi.org/10.3390/biom10040653 - 23 Apr 2020
Cited by 25 | Viewed by 4741
Abstract
Down syndrome (trisomy of human chromosome 21) is a common genetic disorder. Overproduction of the gaseous mediator hydrogen sulfide (H2S) has been implicated in the pathogenesis of neurological and metabolic deficits associated with Down syndrome. Several lines of data indicate that [...] Read more.
Down syndrome (trisomy of human chromosome 21) is a common genetic disorder. Overproduction of the gaseous mediator hydrogen sulfide (H2S) has been implicated in the pathogenesis of neurological and metabolic deficits associated with Down syndrome. Several lines of data indicate that an important enzyme responsible for H2S overproduction in Down syndrome is cystathionine-β-synthase (CBS), an enzyme localized on chromosome 21. The current study explored the possibility that a second H2S-producing enzyme, 3-mercaptopyruvate sulfurtransferase (3-MST), may also contribute to the development of functional deficits of Down syndrome cells. Western blotting analysis demonstrated a significantly higher level of 3-MST protein expression in human Down syndrome fibroblasts compared to cells from healthy control individuals; the excess 3-MST was mainly localized to the mitochondrial compartment. Pharmacological inhibition of 3-MST activity improved mitochondrial electron transport and oxidative phosphorylation parameters (but did not affect the suppressed glycolytic parameters) and enhanced cell proliferation in Down syndrome cells (but not in healthy control cells). The findings presented in the current report suggest that in addition to the indisputable role of CBS, H2S produced from 3-MST may also contribute to the development of mitochondrial metabolic and functional impairments in Down syndrome cells. Full article
Show Figures

Graphical abstract

22 pages, 3501 KiB  
Article
SUMOylation Protects FASN Against Proteasomal Degradation in Breast Cancer Cells Treated with Grape Leaf Extract
by Andrea Floris, Michael Mazarei, Xi Yang, Aaron Elias Robinson, Jennifer Zhou, Antonio Barberis, Guy D’hallewin, Emanuela Azara, Ylenia Spissu, Ainhoa Iglesias-Ara, Sandro Orrù and Maria Lauda Tomasi
Biomolecules 2020, 10(4), 529; https://doi.org/10.3390/biom10040529 - 31 Mar 2020
Cited by 28 | Viewed by 4493
Abstract
Existing therapeutic strategies for breast cancer are limited by tumor recurrence and drug-resistance. Antioxidant plant-derived compounds such as flavonoids reduce adverse outcomes and have been identified as a potential source of antineoplastic agent with less undesirable side effects. Here, we describe the novel [...] Read more.
Existing therapeutic strategies for breast cancer are limited by tumor recurrence and drug-resistance. Antioxidant plant-derived compounds such as flavonoids reduce adverse outcomes and have been identified as a potential source of antineoplastic agent with less undesirable side effects. Here, we describe the novel regulation of fatty-acid synthase (FASN), the key enzyme in de novo fatty-acid synthesis, whereby Vitis vinifera L. cv Vermentino leaf hydroalcoholic extract lowers its protein stability that is regulated by small ubiquitin-like modifier (SUMO)ylation. The phenolic compounds characterization was performed by liquid chromatography–mass spectrometry (LC–MS), whereas mass spectrometry (LC–MS/MS), Western blotting/co-immunoprecipitation (Co-IP) and RT-PCR, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), clonogenicity assays, and FACS analysis were used to measure the expression of targets and tumorigenicity. Vermentino extract exhibits antitumorigenic effects, and we went on to determine that FASN and ubiquitin-conjugating enzyme 9 (UBC9), the sole E2 enzyme required for SUMOylation, were significantly reduced. Moreover, FASN was found SUMOylated in human breast cancer tissues and cell lines, and lack of SUMOylation caused by SUMO2 silencing reduced FASN protein stability. These results suggest that SUMOylation protects FASN against proteasomal degradation and may exert oncogenic activity through alteration of lipid metabolism, whereas Vermentino extract inhibits these effects which supports the additional validation of the therapeutic value of this compound in breast cancer. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 3382 KiB  
Article
A Novel NAD-RNA Decapping Pathway Discovered by Synthetic Light-Up NAD-RNAs
by Florian Abele, Katharina Höfer, Patrick Bernhard, Julia Grawenhoff, Maximilian Seidel, André Krause, Sara Kopf, Martin Schröter and Andres Jäschke
Biomolecules 2020, 10(4), 513; https://doi.org/10.3390/biom10040513 - 28 Mar 2020
Cited by 12 | Viewed by 7150
Abstract
The complexity of the transcriptome is governed by the intricate interplay of transcription, RNA processing, translocation, and decay. In eukaryotes, the removal of the 5’-RNA cap is essential for the initiation of RNA degradation. In addition to the canonical 5’-N7-methyl guanosine cap in [...] Read more.
The complexity of the transcriptome is governed by the intricate interplay of transcription, RNA processing, translocation, and decay. In eukaryotes, the removal of the 5’-RNA cap is essential for the initiation of RNA degradation. In addition to the canonical 5’-N7-methyl guanosine cap in eukaryotes, the ubiquitous redox cofactor nicotinamide adenine dinucleotide (NAD) was identified as a new 5’-RNA cap structure in prokaryotic and eukaryotic organisms. So far, two classes of NAD-RNA decapping enzymes have been identified, namely Nudix enzymes that liberate nicotinamide mononucleotide (NMN) and DXO-enzymes that remove the entire NAD cap. Herein, we introduce 8-(furan-2-yl)-substituted NAD-capped-RNA (FurNAD-RNA) as a new research tool for the identification and characterization of novel NAD-RNA decapping enzymes. These compounds are found to be suitable for various enzymatic reactions that result in the release of a fluorescence quencher, either nicotinamide (NAM) or nicotinamide mononucleotide (NMN), from the RNA which causes a fluorescence turn-on. FurNAD-RNAs allow for real-time quantification of decapping activity, parallelization, high-throughput screening and identification of novel decapping enzymes in vitro. Using FurNAD-RNAs, we discovered that the eukaryotic glycohydrolase CD38 processes NAD-capped RNA in vitro into ADP-ribose-modified-RNA and nicotinamide and therefore might act as a decapping enzyme in vivo. The existence of multiple pathways suggests that the decapping of NAD-RNA is an important and regulated process in eukaryotes. Full article
(This article belongs to the Special Issue Nicotinamide in Health and Diseases)
Show Figures

Graphical abstract

18 pages, 2976 KiB  
Article
Activation of α7 Nicotinic Acetylcholine Receptor Upregulates HLA-DR and Macrophage Receptors: Potential Role in Adaptive Immunity and in Preventing Immunosuppression
by Andrei E. Siniavin, Maria A. Streltsova, Denis S. Kudryavtsev, Irina V. Shelukhina, Yuri N. Utkin and Victor I. Tsetlin
Biomolecules 2020, 10(4), 507; https://doi.org/10.3390/biom10040507 - 27 Mar 2020
Cited by 28 | Viewed by 5155
Abstract
Immune response during sepsis is characterized by hyper-inflammation followed by immunosuppression. The crucial role of macrophages is well-known for both septic stages, since they are involved in immune homeostasis and inflammation, their dysfunction being implicated in immunosuppression. The cholinergic anti-inflammatory pathway mediated by [...] Read more.
Immune response during sepsis is characterized by hyper-inflammation followed by immunosuppression. The crucial role of macrophages is well-known for both septic stages, since they are involved in immune homeostasis and inflammation, their dysfunction being implicated in immunosuppression. The cholinergic anti-inflammatory pathway mediated by macrophage α7 nicotinic acetylcholine receptor (nAChR) represents possible drug target. Although α7 nAChR activation on macrophages reduces the production of proinflammatory cytokines, the role of these receptors in immunological changes at the cellular level is not fully understood. Using α7 nAChR selective agonist PNU 282,987, we investigated the influence of α7 nAChR activation on the expression of cytokines and, for the first time, of the macrophage membrane markers: cluster of differentiation 14 (CD14), human leukocyte antigen-DR (HLA-DR), CD11b, and CD54. Application of PNU 282,987 to THP-1Mϕ (THP-1 derived macrophages) cells led to inward ion currents and Ca2+ increase in cytoplasm showing the presence of functionally active α7 nAChR. Production of cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-10 was estimated in classically activated macrophages (M1) and treatment with PNU 282,987 diminished IL-10 expression. α7 nAChR activation on THP-1Mϕ, THP-1M1, and monocyte-derived macrophages (MDMs) increased the expression of HLA-DR, CD54, and CD11b molecules, but decreased CD14 receptor expression, these effects being blocked by alpha (α)-bungarotoxin. Thus, PNU 282,987 enhances the macrophage-mediated immunity via α7 nAChR by regulating expression of their membrane receptors and of cytokines, both playing an important role in preventing immunosuppressive states. Full article
Show Figures

Figure 1

24 pages, 7685 KiB  
Article
Loss of Elongator- and KEOPS-Dependent tRNA Modifications Leads to Severe Growth Phenotypes and Protein Aggregation in Yeast
by Leticia Pollo-Oliveira, Roland Klassen, Nick Davis, Akif Ciftci, Jo Marie Bacusmo, Maria Martinelli, Michael S. DeMott, Thomas J. Begley, Peter C. Dedon, Raffael Schaffrath and Valérie de Crécy-Lagard
Biomolecules 2020, 10(2), 322; https://doi.org/10.3390/biom10020322 - 18 Feb 2020
Cited by 17 | Viewed by 6060
Abstract
Modifications found in the Anticodon Stem Loop (ASL) of tRNAs play important roles in regulating translational speed and accuracy. Threonylcarbamoyl adenosine (t6A37) and 5-methoxycarbonyl methyl-2-thiouridine (mcm5s2U34) are critical ASL modifications that have been linked to several human [...] Read more.
Modifications found in the Anticodon Stem Loop (ASL) of tRNAs play important roles in regulating translational speed and accuracy. Threonylcarbamoyl adenosine (t6A37) and 5-methoxycarbonyl methyl-2-thiouridine (mcm5s2U34) are critical ASL modifications that have been linked to several human diseases. The model yeast Saccharomyces cerevisiae is viable despite the absence of both modifications, growth is however greatly impaired. The major observed consequence is a subsequent increase in protein aggregates and aberrant morphology. Proteomic analysis of the t6A-deficient strain (sua5 mutant) revealed a global mistranslation leading to protein aggregation without regard to physicochemical properties or t6A-dependent or biased codon usage in parent genes. However, loss of sua5 led to increased expression of soluble proteins for mitochondrial function, protein quality processing/trafficking, oxidative stress response, and energy homeostasis. These results point to a global function for t6A in protein homeostasis very similar to mcm5/s2U modifications. Full article
(This article belongs to the Collection RNA Modifications)
Show Figures

Figure 1

18 pages, 2426 KiB  
Article
Proteomic Analysis of Human Serum from Patients with Chronic Kidney Disease
by Yulia Romanova, Alexander Laikov, Maria Markelova, Rania Khadiullina, Alfiz Makseev, Milausha Hasanova, Albert Rizvanov, Svetlana Khaiboullina and Ilnur Salafutdinov
Biomolecules 2020, 10(2), 257; https://doi.org/10.3390/biom10020257 - 7 Feb 2020
Cited by 36 | Viewed by 5934
Abstract
Chronic kidney disease (CKD) is an important public health problem in the world. The aim of our research was to identify novel potential serum biomarkers of renal injury. ELISA assay showed that cytokines and chemokines IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, [...] Read more.
Chronic kidney disease (CKD) is an important public health problem in the world. The aim of our research was to identify novel potential serum biomarkers of renal injury. ELISA assay showed that cytokines and chemokines IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12 (p70), IL-13, IL-15, IL-17, Eotaxin, FGFb, G-CSF, GM-CSF, IP-10, MCP-1, MIP-1α, MIP-1β, PDGF-1bb, RANTES, TNF-α and VEGF were significantly higher (R > 0.6, p value < 0.05) in the serum of patients with CKD compared to healthy subjects, and they were positively correlated with well-established markers (urea and creatinine). The multiple reaction monitoring (MRM) quantification method revealed that levels of HSP90B2, AAT, IGSF22, CUL5, PKCE, APOA4, APOE, APOA1, CCDC171, CCDC43, VIL1, Antigen KI-67, NKRF, APPBP2, CAPRI and most complement system proteins were increased in serum of CKD patients compared to the healthy group. Among complement system proteins, the C8G subunit was significantly decreased three-fold in patients with CKD. However, only AAT and HSP90B2 were positively correlated with well-established markers and, therefore, could be proposed as potential biomarkers for CKD. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Kidney Injury and Repair)
Show Figures

Graphical abstract

14 pages, 927 KiB  
Article
Thermal Processing for the Release of Phenolic Compounds from Wheat and Oat Bran
by Lavinia Florina Călinoiu and Dan Cristian Vodnar
Biomolecules 2020, 10(1), 21; https://doi.org/10.3390/biom10010021 - 22 Dec 2019
Cited by 90 | Viewed by 6063
Abstract
The aim of the present paper was to identify the major polyphenolic compounds and investigate the antioxidant, antimutagenic, and antimicrobial activities of industrially-derived cereal byproducts—wheat bran (WB) and oat bran (OB)—before (fresh) and after thermal processing (TP) (10 min, 80 °C), coupled with [...] Read more.
The aim of the present paper was to identify the major polyphenolic compounds and investigate the antioxidant, antimutagenic, and antimicrobial activities of industrially-derived cereal byproducts—wheat bran (WB) and oat bran (OB)—before (fresh) and after thermal processing (TP) (10 min, 80 °C), coupled with ultrasound-asssited extraction. The results showed that the thermal process improved the total phenolic content of WB by +22.49%, and of OB with +25.84%. After the TP, the phenolic concentration showed a significant relative percentage increase in the case of WB (ferulic acid +39.18%, vanillic acid +95.68%, apigenin–glucoside +71.96%, p-coumaric acid +71.91) and of OB (avenanthramide 2c +52.17%, dihydroxybenzoic acids +38.55%). The best antioxidant capacity was registered by OBTP followed by WBTP. The strongest antimicrobial inhibition was attributed to the WBTP sample. Both thermally processed matrices had strong antimutagenic activity toward S. typhimurium TA100. This thermal processing was tested on bran based on its practical application within the food industry, considering the design of different cereal byproducts derived from functional foods and nutraceuticals. Full article
Show Figures

Graphical abstract

17 pages, 3163 KiB  
Article
Novel Variants of Angiotensin Converting Enzyme-2 of Shorter Molecular Size to Target the Kidney Renin Angiotensin System
by Jan Wysocki, Arndt Schulze and Daniel Batlle
Biomolecules 2019, 9(12), 886; https://doi.org/10.3390/biom9120886 - 17 Dec 2019
Cited by 42 | Viewed by 7108
Abstract
ACE2 is a monocarboxypeptidase which generates Angiotensin (1–7) from Angiotensin II (1–8). Attempts to target the kidney Renin Angiotensin System using native ACE2 to treat kidney disease are hampered by its large molecular size, 100 kDa, which precludes its glomerular filtration and subsequent [...] Read more.
ACE2 is a monocarboxypeptidase which generates Angiotensin (1–7) from Angiotensin II (1–8). Attempts to target the kidney Renin Angiotensin System using native ACE2 to treat kidney disease are hampered by its large molecular size, 100 kDa, which precludes its glomerular filtration and subsequent tubular uptake. Here, we show that both urine and kidney lysates are capable of digesting native ACE2 into shorter proteins of ~60–75 kDa and then demonstrate that they are enzymatically very active. We then truncated the native ACE2 by design from the C-terminus to generate two short recombinant (r)ACE2 variants (1-605 and 1-619AA). These two truncates have a molecular size of ~70 kDa, as expected from the amino acid sequence and as shown by Western blot. ACE2 enzyme activity, measured using a specific substrate, was higher than that of the native rACE2 (1-740 AA). When infused to mice with genetic ACE2 deficiency, a single i.v. injection of 1-619 resulted in detectable ACE2 activity in urine, whereas infusion of the native ACE2 did not. Moreover, ACE2 activity was recovered in harvested kidneys from ACE2-deficient mice infused with 1-619, but not in controls (23.1 ± 4.3 RFU/µg creatinine/h and 1.96 ± 0.73 RFU/µg protein/hr, respectively). In addition, the kidneys of ACE2-null mice infused with 1-619 studied ex vivo formed more Ang (1–7) from exogenous Ang II than those infused with vehicle (AUC 8555 ± 1933 vs. 3439 ± 753 ng/mL, respectively, p < 0.05) further demonstrating the functional effect of increasing kidney ACE2 activity after the infusion of our short ACE2 1-619 variant. We conclude that our novel short recombinant ACE2 variants undergo glomerular filtration, which is associated with kidney uptake of enzymatically active proteins that can enhance the formation of Ang (1–7) from Ang II. These small ACE2 variants may offer a potentially useful approach to target kidney RAS overactivity to combat kidney injury. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Kidney Injury and Repair)
Show Figures

Figure 1

15 pages, 2675 KiB  
Article
High-Fat Diet Affects Ceramide Content, Disturbs Mitochondrial Redox Balance, and Induces Apoptosis in the Submandibular Glands of Mice
by Anna Zalewska, Mateusz Maciejczyk, Julita Szulimowska, Monika Imierska and Agnieszka Błachnio-Zabielska
Biomolecules 2019, 9(12), 877; https://doi.org/10.3390/biom9120877 - 15 Dec 2019
Cited by 39 | Viewed by 4043
Abstract
This is the first study to investigate the relationship between ceramides, the mitochondrial respiratory system, oxidative stress, inflammation, and apoptosis in the submandibular gland mitochondria of mice with insulin resistance (IR). The experiment was conducted on 20 male C57BL/6 mice divided into two [...] Read more.
This is the first study to investigate the relationship between ceramides, the mitochondrial respiratory system, oxidative stress, inflammation, and apoptosis in the submandibular gland mitochondria of mice with insulin resistance (IR). The experiment was conducted on 20 male C57BL/6 mice divided into two equal groups: animals fed a high-fat diet (HFD; 60 kcal% fat) and animals fed a standard diet (10 kcal% fat). We have shown that feeding mice HFD induces systemic IR. We noticed that HFD feeding was accompanied by a significant increase in ceramide production (C18 1Cer, C18 Cer, C22 Cer, C24 1Cer, C24 Cer), higher activity of pro-oxidant enzymes (NADPH oxidase and xanthine oxidase), and weakened functioning of mitochondrial complexes in the submandibular glands of IR mice. In this group, we also observed a decrease in catalase and peroxidase activities, glutathione concentration, redox status, increased concentration of protein (advanced glycation end products, advanced oxidation protein products) and lipid (malondialdehyde, lipid hydroperoxide) peroxidation products, and enhanced production of tumor necrosis factor alpha (TNFα) and interleukin 2 (IL-2) as well as pro-apoptotic Bax in the submandibular gland mitochondria. In summary, HFD impairs salivary redox homeostasis and is responsible for enhanced oxidative damage and apoptosis in the submandibular gland mitochondria. The accumulation of some ceramides could boost free radical formation by affecting pro-oxidant enzymes and the mitochondrial respiratory chain. Full article
Show Figures

Figure 1

16 pages, 2590 KiB  
Article
Deregulation of the Histone Lysine-Specific Demethylase 1 Is Involved in Human Hepatocellular Carcinoma
by Sangchul Kim, Amina Bolatkan, Syuzo Kaneko, Noriko Ikawa, Ken Asada, Masaaki Komatsu, Shinya Hayami, Hidenori Ojima, Nobutsugu Abe, Hiroki Yamaue and Ryuji Hamamoto
Biomolecules 2019, 9(12), 810; https://doi.org/10.3390/biom9120810 - 1 Dec 2019
Cited by 21 | Viewed by 4466
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and is a leading cause of cancer-related death worldwide. Given that the standard-of-care for advanced liver cancer is limited, there is an urgent need to develop a novel molecular targeted therapy [...] Read more.
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and is a leading cause of cancer-related death worldwide. Given that the standard-of-care for advanced liver cancer is limited, there is an urgent need to develop a novel molecular targeted therapy to improve therapeutic outcomes for HCC. In order to tackle this issue, we conducted functional analysis of the histone lysine-specific demethylase (LSD1) to explore the possibility that this enzyme acts as a therapeutic target in HCC. According to immunohistochemical analysis, 232 of 303 (77%) HCC cases showed positive staining of LSD1 protein, and its expression was correlated with several clinicopathological characteristics, such as female gender, AFP (alpha-fetoprotein) levels, and HCV (hepatitis C virus) infectious. The survival curves for HCC using the Kaplan–Meier method and the log-rank test indicate that positive LSD1 protein expression was significantly associated with decreased rates of overall survival (OS) and disease-free survival (DFS); the multivariate analysis indicates that LSD1 expression was an independent prognostic factor for both OS and DFS in patients with HCC. In addition, knockout of LSD1 using the CRISPR/Cas9 system showed a significantly lower number of colony formation units (CFUs) and growth rate in both SNU-423 and SNU-475 HCC cell lines compared to the corresponding control cells. Moreover, LSD1 knockout decreased cells in S phase of SNU-423 and SNU-475 cells with increased levels of H3K4me1/2 and H3K9me1/2. Finally, we identified the signaling pathways regulated by LSD1 in HCC, including the retinoic acid (RA) pathway. Our findings imply that deregulation of LSD1 can be involved in HCC; further studies may explore the usefulness of LSD1 as a therapeutic target of HCC. Full article
(This article belongs to the Special Issue Epigenetics in Cancer)
Show Figures

Figure 1

15 pages, 1306 KiB  
Article
Detection and Quantification of Milk Ingredients as Hidden Allergens in Meat Products by a Novel Specific Real-Time PCR Method
by Caterina Villa, Joana Costa and Isabel Mafra
Biomolecules 2019, 9(12), 804; https://doi.org/10.3390/biom9120804 - 29 Nov 2019
Cited by 15 | Viewed by 4172
Abstract
Milk ingredients are often included in a wide range of meat products, such as cooked hams and sausages, to improve technological characteristics. However, milk proteins are also important food allergens. The aim of this study was the development of a highly sensitive and [...] Read more.
Milk ingredients are often included in a wide range of meat products, such as cooked hams and sausages, to improve technological characteristics. However, milk proteins are also important food allergens. The aim of this study was the development of a highly sensitive and specific real-time PCR system targeting the 12S rRNA gene of Bos domesticus for the detection and quantification of milk as an allergenic ingredient in processed meat products. The method was able to achieve an absolute limit of detection (LOD) of 6 fg of milk DNA. Using a normalized approach (∆Ct method) for the detection of milk protein concentrate (MPC), it was possible to obtain sensitivities down to 0.01% (w/w) of MPC in model hams (raw and cooked) and autoclaved sausages, and 0.005% in raw sausage mixtures. The developed systems generally presented acceptable PCR performance parameters, being successfully validated with blind samples, applied to commercial samples, and further compared with an immunochemical assay. Trace amounts of milk material were quantified in two out of 13 samples, but the results mostly infer the excessive practice of the precautionary labeling. Full article
(This article belongs to the Special Issue Advances on Allergens Identification and Characterization)
Show Figures

Figure 1

13 pages, 1855 KiB  
Article
Hydrogen Sulfide Effects on the Survival of Lactobacilli with Emphasis on the Development of Inflammatory Bowel Diseases
by Ivan Kushkevych, Věra Kotrsová, Dani Dordević, Leona Buňková, Monika Vítězová and Amedeo Amedei
Biomolecules 2019, 9(12), 752; https://doi.org/10.3390/biom9120752 - 20 Nov 2019
Cited by 32 | Viewed by 6862
Abstract
The gut microbiota is a complex component of humans that depends on diet, host genome, and lifestyle. The background: The study purpose is to find relations between nutrition, intestinal lactic acid bacteria (LAB) from various environments (human, animal intestine, and yogurt) and sulfate-reducing [...] Read more.
The gut microbiota is a complex component of humans that depends on diet, host genome, and lifestyle. The background: The study purpose is to find relations between nutrition, intestinal lactic acid bacteria (LAB) from various environments (human, animal intestine, and yogurt) and sulfate-reducing microbial communities in the large intestine; to compare kinetic growth parameters of LAB; and to determine their sensitivity to different concentration of hydrogen sulfide produced by intestinal sulfate-reducing bacteria. Methods: Microbiological (isolation and identification), biochemical (electrophoresis), molecular biology methods (DNA isolation and PCR analysis), and statistical processing (average and standard error calculations) of the results were used. The results: The toxicity of hydrogen sulfide produced by sulfate-reducing bacteria, the survival of lactic acid bacteria, and minimal inhibitory concentrations (MIC) were determined. The measured hydrogen sulfide sensitivity values were the same for L. paracasei and L. reuteri (MIC > 1.1 mM). In addition, L. plantarum and L. fermentum showed also a similar sensitivity (MIC > 0.45 mM) but significantly (p < 0.05) lower than L. reuteri and L. paracasei (1.1 > 0.45 mM). L. paracasei and L. reuteri are more sensitive to hydrogen sulfide than L. fermentum and L. plantarum. L. pentosus was sensitive to the extremely low concentration of H2S (MIC > 0.15 mM). Conclusions: The Lactobacillus species were significantly sensitive to hydrogen sulfide, which is a final metabolite of intestinal sulfate-reducing bacteria. The results are definitely helpful for a better understanding of complicated interaction among intestinal microbiota and nutrition. Full article
(This article belongs to the Special Issue Role of the Gut Microbiota in Immunity and Inflammatory Diseases)
Show Figures

Graphical abstract

16 pages, 2235 KiB  
Article
Total Phenolic and Flavonoid Content and Biological Activities of Extracts and Isolated Compounds of Cytisus villosus Pourr.
by Farida Larit, Francisco León, Samira Benyahia and Stephen J. Cutler
Biomolecules 2019, 9(11), 732; https://doi.org/10.3390/biom9110732 - 13 Nov 2019
Cited by 16 | Viewed by 6018
Abstract
The aim of this study was to evaluate the total phenolic and flavonoid content, and the in vitro antioxidant, anti-inflammatory, antibacterial, antifungal, antimalarial, cytotoxicity, and antiprotozoal activities of the Algerian plant Cytisus villosus Pourr. (Syn. Cytisus triflorus L’Hérit.). Additionally, the radioligand displacement affinity [...] Read more.
The aim of this study was to evaluate the total phenolic and flavonoid content, and the in vitro antioxidant, anti-inflammatory, antibacterial, antifungal, antimalarial, cytotoxicity, and antiprotozoal activities of the Algerian plant Cytisus villosus Pourr. (Syn. Cytisus triflorus L’Hérit.). Additionally, the radioligand displacement affinity on opioid and cannabinoid receptors was assessed for the extracts and isolated pure compounds. The hydro alcoholic extract of the aerial part of C. villosus was partitioned with chloroform (CHCl3), ethyl acetate (EtOAc), and n-butanol (n-BuOH). The phenolic content of the C. villosus extracts was evaluated using a modified Folin–Ciocalteau method. The total flavonoid content was measured spectrometrically using the aluminum chloride colorimetric assay. The known flavonoids genistein (1), chrysin (2), chrysin-7-O-β-d-glucopyranoside (3), and 2″-O-α-l-rhamnosylorientin (4) were isolated. The antioxidant activities of the extracts and isolated compounds were evaluated using 2,2-diphenyl-1-picrylhydrazyl (DDPH) and cellular antioxidant activity (CAA) assays. The plant extracts showed moderate antioxidant activity. EtOAc and n-BuOH extracts showed moderate anti-inflammatory activity through the inhibition of induced nitric oxide synthase (iNOS) with IC50 values of 48 and 90 µg/mL, respectively. The isolated pure compounds 1 and 3 showed good inhibition of Inducible nitric oxide synthase (iNOS) with IC50 values of 9 and 20 µg/mL, respectively. Compounds 1 and 2 exhibited lower inhibition of Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) with IC50 values of 28 and 38 µg/mL, respectively. Furthermore, the extracts and isolated pure compounds have been shown to exhibit low affinity for cannabinoid and opioid receptors. Finally, n-BuOH extract was a potent inhibitor of Trypanosoma brucei with IC50 value of 7.99 µg/mL and IC90 value of 12.61 µg/mL. The extracts and isolated compounds showed no antimicrobial, antimalarial nor antileishmanial activities. No cytotoxic effect was observed on cancer cell lines. The results highlight this species as a promising source of anti-inflammatory and antitrypanosomal agents. Full article
(This article belongs to the Special Issue Selected Papers from Bio.Natural Meeting 2019)
Show Figures

Figure 1

20 pages, 9770 KiB  
Article
The Potential Involvement of an ATP-Dependent Potassium Channel-Opening Mechanism in the Smooth Muscle Relaxant Properties of Tamarix dioica Roxb.
by Syeda Madiha Imtiaz, Ambreen Aleem, Fatima Saqib, Alexe Nicolae Ormenisan, Andrea Elena Neculau and Costin Vlad Anastasiu
Biomolecules 2019, 9(11), 722; https://doi.org/10.3390/biom9110722 - 10 Nov 2019
Cited by 23 | Viewed by 4609
Abstract
Background: Tamarix dioica is traditionally used to manage various disorders related to smooth muscle in the gastrointestinal, respiratory, and cardiovascular systems. This study was planned to establish a pharmacological basis for the uses of Tamarix dioica in certain medical conditions related to [...] Read more.
Background: Tamarix dioica is traditionally used to manage various disorders related to smooth muscle in the gastrointestinal, respiratory, and cardiovascular systems. This study was planned to establish a pharmacological basis for the uses of Tamarix dioica in certain medical conditions related to the digestive, respiratory, and cardiovascular systems, and to explore the underlying mechanisms. Methods: A phytochemical study was performed by preliminary methods, followed by HPLC-DAD and spectrometric methods. In vivo evaluation of a crude hydromethanolic extract of T. dioica (TdCr) was done with a castor-oil-provoked diarrheal model in rats to determine its antidiarrheal effect. Ex vivo experiments were done by using isolated tissues to determine the effects on smooth and cardiac muscles and explore the possible mechanisms. Results: TdCr tested positive for flavonoids, saponins, phenols, and tannins as methanolic solvable constituents in a preliminary study. The maximum quantity of gallic acid equivalent (GAE), phenolic, and quercetin equivalent (QE) flavonoid content found was 146 ± 0.001 μg GAE/mg extract and 36.17 ± 2.35 μg QE/mg extract. Quantification based on HPLC-DAD (reverse phase) exposed the presence of rutin at the highest concentration, followed by catechin, gallic acid, myricetin, kaempferol, and apigenin in TdCr. In vivo experiments showed the significant antidiarrheal effect of TdCr (100, 200, and 400 mg/kg) in the diarrheal (castor-oil-provoked) model. Ex vivo experiments revealed spasmolytic, bronchodilatory, and vasorelaxant activities as well as partial cardiac depressant activity, which may be potentiated by a potassium channel opener mechanism, similar to that of cromakalim. The potassium channel (KATP channel)-opening activity was further confirmed by repeating the experiments in glibenclamide-pretreated tissues. Conclusions: In vivo and ex vivo studies of T. dioica provided evidence of the antidiarrheal, spasmolytic, bronchodilator, vasorelaxant, and partial cardiodepressant properties facilitated through the opening of the KATP channel. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

18 pages, 3250 KiB  
Article
Zika and Flavivirus Shell Disorder: Virulence and Fetal Morbidity
by Gerard Kian-Meng Goh, A. Keith Dunker, James A. Foster and Vladimir N. Uversky
Biomolecules 2019, 9(11), 710; https://doi.org/10.3390/biom9110710 - 6 Nov 2019
Cited by 23 | Viewed by 4154
Abstract
Zika virus (ZIKV) was first discovered in 1947 in Africa. Since then, sporadic ZIKV infections of humans have been reported in Africa and Asia. For a long time, this virus was mostly unnoticed due to its mild symptoms and low fatality rates. However, [...] Read more.
Zika virus (ZIKV) was first discovered in 1947 in Africa. Since then, sporadic ZIKV infections of humans have been reported in Africa and Asia. For a long time, this virus was mostly unnoticed due to its mild symptoms and low fatality rates. However, during the 2015–2016 epidemic in Central and South America, when millions of people were infected, it was discovered that ZIKV causes microcephaly in the babies of mothers infected during pregnancy. An examination of the M and C proteins of the ZIKV shell using the disorder predictor PONDR VLXT revealed that the M protein contains relatively high disorder levels comparable only to those of the yellow fever virus (YFV). On the other hand, the disorder levels in the C protein are relatively low, which can account for the low case fatality rate (CFR) of this virus in contrast to the more virulent YFV, which is characterized by high disorder in its C protein. A larger variation was found in the percentage of intrinsic disorder (PID) in the C protein of various ZIKV strains. Strains of African lineage are characterized by higher PIDs. Using both in vivo and in vitro experiments, laboratories have also previously shown that strains of African origin have a greater potential to inflict higher fetal morbidity than do strains of Asian lineage, with dengue-2 virus (DENV-2) having the least potential. Strong correlations were found between the potential to inflict fetal morbidity and shell disorder in ZIKV (r2 = 0.9) and DENV-2 (DENV-2 + ZIKV, r2 = 0.8). A strong correlation between CFR and PID was also observed when ZIKV was included in an analysis of sets of shell proteins from a variety of flaviviruses (r2 = 0.8). These observations have potential implications for antiviral vaccine development and for the design of cancer therapeutics in terms of developing therapeutic viruses that penetrate hard-to-reach organs. Full article
Show Figures

Figure 1

16 pages, 1937 KiB  
Article
Cytokinin Detection during the Dictyostelium discoideum Life Cycle: Profiles Are Dynamic and Affect Cell Growth and Spore Germination
by Megan M. Aoki, Anna B. Kisiala, Shaojun Li, Naomi L. Stock, Craig R. Brunetti, Robert J. Huber and R. J. Neil Emery
Biomolecules 2019, 9(11), 702; https://doi.org/10.3390/biom9110702 - 5 Nov 2019
Cited by 17 | Viewed by 7555
Abstract
Cytokinins (CKs) are a family of evolutionarily conserved growth regulating hormones. While CKs are well-characterized in plant systems, these N6-substituted adenine derivatives are found in a variety of organisms beyond plants, including bacteria, fungi, mammals, and the social amoeba, Dictyostelium discoideum [...] Read more.
Cytokinins (CKs) are a family of evolutionarily conserved growth regulating hormones. While CKs are well-characterized in plant systems, these N6-substituted adenine derivatives are found in a variety of organisms beyond plants, including bacteria, fungi, mammals, and the social amoeba, Dictyostelium discoideum. Within Dictyostelium, CKs have only been studied in the late developmental stages of the life cycle, where they promote spore encapsulation and dormancy. In this study, we used ultra high-performance liquid chromatography-positive electrospray ionization-high resolution tandem mass spectrometry (UHPLC-(ESI+)-HRMS/MS) to profile CKs during the Dictyostelium life cycle: growth, aggregation, mound, slug, fruiting body, and germination. Comprehensive profiling revealed that Dictyostelium produces 6 CK forms (cis-Zeatin (cZ), discadenine (DA), N6-isopentenyladenine (iP), N6-isopentenyladenine-9-riboside (iPR), N6-isopentenyladenine-9-riboside-5′ phosphate (iPRP), and 2-methylthio-N6-isopentenyladenine (2MeSiP)) in varying abundance across the sampled life cycle stages, thus laying the foundation for the CK biosynthesis pathway to be defined in this organism. Interestingly, iP-type CKs were the most dominant CK analytes detected during growth and aggregation. Exogenous treatment of AX3 cells with various CK types revealed that iP was the only CK to promote the proliferation of cells in culture. In support of previous studies, metabolomics data revealed that DA is one of the most significantly upregulated small molecules during Dictyostelium development, and our data indicates that total CK levels are highest during germination. While much remains to be explored in Dictyostelium, this research offers new insight into the nature of CK biosynthesis, secretion, and function during Dictyostelium growth, development, and spore germination. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

16 pages, 4128 KiB  
Article
Natural Bis-Benzylisoquinoline Alkaloids-Tetrandrine, Fangchinoline, and Cepharanthine, Inhibit Human Coronavirus OC43 Infection of MRC-5 Human Lung Cells
by Dong Eon Kim, Jung Sun Min, Min Seong Jang, Jun Young Lee, Young Sup Shin, Chul Min Park, Jong Hwan Song, Hyoung Rae Kim, Seungtaek Kim, Young-Hee Jin and Sunoh Kwon
Biomolecules 2019, 9(11), 696; https://doi.org/10.3390/biom9110696 - 4 Nov 2019
Cited by 214 | Viewed by 12290
Abstract
Stephania tetrandra and other related species of Menispermaceae are the major sources of the bis-benzylisoquinoline alkaloids tetrandrine (TET), fangchinoline (FAN), and cepharanthine (CEP). Although the pharmacological properties of these compounds include anticancer and anti-inflammatory activities, the antiviral effects of these compounds against human [...] Read more.
Stephania tetrandra and other related species of Menispermaceae are the major sources of the bis-benzylisoquinoline alkaloids tetrandrine (TET), fangchinoline (FAN), and cepharanthine (CEP). Although the pharmacological properties of these compounds include anticancer and anti-inflammatory activities, the antiviral effects of these compounds against human coronavirus (HCoV) remain unclear. Hence, the aims of the current study were to assess the antiviral activities of TET, FAN, and CEP and to elucidate the underlying mechanisms in HCoV-OC43-infected MRC-5 human lung cells. These compounds significantly inhibited virus-induced cell death at the early stage of virus infection. TET, FAN, and CEP treatment dramatically suppressed the replication of HCoV-OC43 as well as inhibited viral S and N protein expression. The virus-induced host response was reduced by compound treatment as compared with the vehicle control. Taken together, these findings demonstrate that TET, FAN, and CEP are potential natural antiviral agents for the prevention and treatment of HCoV-OC43 infection. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

22 pages, 2780 KiB  
Article
Effect of Caffeine and Other Methylxanthines on Aβ-Homeostasis in SH-SY5Y Cells
by Daniel Janitschke, Christopher Nelke, Anna Andrea Lauer, Liesa Regner, Jakob Winkler, Andrea Thiel, Heike Sabine Grimm, Tobias Hartmann and Marcus Otto Walter Grimm
Biomolecules 2019, 9(11), 689; https://doi.org/10.3390/biom9110689 - 2 Nov 2019
Cited by 20 | Viewed by 6682
Abstract
Methylxanthines (MTX) are alkaloids derived from the purine-base xanthine. Whereas especially caffeine, the most prominent known MTX, has been formerly assessed to be detrimental, this point of view has changed substantially. MTXs are discussed to have beneficial properties in neurodegenerative diseases, however, the [...] Read more.
Methylxanthines (MTX) are alkaloids derived from the purine-base xanthine. Whereas especially caffeine, the most prominent known MTX, has been formerly assessed to be detrimental, this point of view has changed substantially. MTXs are discussed to have beneficial properties in neurodegenerative diseases, however, the mechanisms of action are not completely understood. Here we investigate the effect of the naturally occurring caffeine, theobromine and theophylline and the synthetic propentofylline and pentoxifylline on processes involved in Alzheimer’s disease (AD). All MTXs decreased amyloid-β (Aβ) level by shifting the amyloid precursor protein (APP) processing from the Aβ-producing amyloidogenic to the non-amyloidogenic pathway. The α-secretase activity was elevated whereas β-secretase activity was decreased. Breaking down the molecular mechanism, caffeine increased protein stability of the major α-secretase ADAM10, downregulated BACE1 expression and directly decreased β-secretase activity. Additionally, APP expression was reduced. In line with literature, MTXs reduced oxidative stress, decreased cholesterol and a decreased in Aβ1-42 aggregation. In conclusion, all MTXs act via the pleiotropic mechanism resulting in decreased Aβ and show beneficial properties with respect to AD in neuroblastoma cells. However, the observed effect strength was moderate, suggesting that MTXs should be integrated in a healthy diet rather than be used exclusively to treat or prevent AD. Full article
(This article belongs to the Special Issue 2019 Feature Papers by Biomolecules’ Editorial Board Members)
Show Figures

Graphical abstract

14 pages, 4080 KiB  
Article
Gene Expression Signature-Based Approach Identifies Antifungal Drug Ciclopirox As a Novel Inhibitor of HMGA2 in Colorectal Cancer
by Yu-Min Huang, Chia-Hsiung Cheng, Shiow-Lin Pan, Pei-Ming Yang, Ding-Yen Lin and Kuen-Haur Lee
Biomolecules 2019, 9(11), 688; https://doi.org/10.3390/biom9110688 - 2 Nov 2019
Cited by 23 | Viewed by 4263
Abstract
Human high-mobility group A2 (HMGA2) encodes for a non-histone chromatin protein which influences a variety of biological processes, including the cell cycle process, apoptosis, the DNA damage repair process, and epithelial–mesenchymal transition. The accumulated evidence suggests that high expression of HMGA2 is related [...] Read more.
Human high-mobility group A2 (HMGA2) encodes for a non-histone chromatin protein which influences a variety of biological processes, including the cell cycle process, apoptosis, the DNA damage repair process, and epithelial–mesenchymal transition. The accumulated evidence suggests that high expression of HMGA2 is related to tumor progression, poor prognosis, and a poor response to therapy. Thus, HMGA2 is an important molecular target for many types of malignancies. Our recent studies revealed the positive connections between heat shock protein 90 (Hsp90) and HMGA2 and that the Hsp90 inhibitor has therapeutic potential to inhibit HMGA2-triggered tumorigenesis. However, 43% of patients suffered visual disturbances in a phase I trial of the second-generation Hsp90 inhibitor, NVP-AUY922. To identify a specific inhibitor to target HMGA2, the Gene Expression Omnibus (GEO) database and the Library of Integrated Network-based Cellular Signatures (LINCS) L1000platform were both analyzed. We identified the approved small-molecule antifungal agent ciclopirox (CPX) as a novel potential inhibitor of HMGA2. In addition, CPX induces cytotoxicity of colorectal cancer (CRC) cells by induction of cell cycle arrest and apoptosis in vitro and in vivo through direct interaction with the AT-hook motif (a small DNA-binding protein motif) of HMGA2. In conclusion, this study is the first to report that CPX is a novel potential inhibitor of HMGA2 using a drug-repurposing approach, which can provide a potential therapeutic intervention in CRC patients. Full article
Show Figures

Figure 1

24 pages, 8916 KiB  
Article
Preparation of Chitosan/Poly(Vinyl Alcohol) Nanocomposite Films Incorporated with Oxidized Carbon Nano-Onions (Multi-Layer Fullerenes) for Tissue-Engineering Applications
by Carlos David Grande Tovar, Jorge Iván Castro, Carlos Humberto Valencia, Diana Paola Navia Porras, José Herminsul Mina Hernandez, Mayra Eliana Valencia, José Daniel Velásquez and Manuel N. Chaur
Biomolecules 2019, 9(11), 684; https://doi.org/10.3390/biom9110684 - 1 Nov 2019
Cited by 28 | Viewed by 5863
Abstract
Recently, tissue engineering became a very important medical alternative in patients who need to regenerate damaged or lost tissues through the use of scaffolds that support cell adhesion and proliferation. Carbon nanomaterials (carbon nanotubes, fullerenes, multi-wall fullerenes, and graphene) became a very important [...] Read more.
Recently, tissue engineering became a very important medical alternative in patients who need to regenerate damaged or lost tissues through the use of scaffolds that support cell adhesion and proliferation. Carbon nanomaterials (carbon nanotubes, fullerenes, multi-wall fullerenes, and graphene) became a very important alternative to reinforce the mechanical, thermal, and antimicrobial properties of several biopolymers. In this work, five different formulations of chitosan/poly(vinyl alcohol)/oxidized carbon nano-onions (CS/PVA/ox-CNO) were used to prepare biodegradable scaffolds with potential biomedical applications. Film characterization consisted of Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), tension strength, Young’s modulus, X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). The degradation in a simulated body fluid (FBS) demonstrated that all the formulations lost between 75% and 80% of their weight after 15 days of treatment, but the degradation decreased with the ox-CNO content. In vivo tests after 90 days of subdermal implantation of the nanocomposite films in Wistar rats’ tissue demonstrated good biocompatibility without allergenic reactions or pus formation. There was a good correlation between FBS hydrolytic degradation and degradation in vivo for all the samples, since the ox-CNO content increased the stability of the material. All these results indicate the potential of the CS/PVA/ox-CNO nanocomposite films in tissue engineering, especially for long-term applications. Full article
Show Figures

Figure 1

12 pages, 2159 KiB  
Article
Illuminating Clues of Cancer Buried in Prostate MR Image: Deep Learning and Expert Approaches
by Jun Akatsuka, Yoichiro Yamamoto, Tetsuro Sekine, Yasushi Numata, Hiromu Morikawa, Kotaro Tsutsumi, Masato Yanagi, Yuki Endo, Hayato Takeda, Tatsuro Hayashi, Masao Ueki, Gen Tamiya, Ichiro Maeda, Manabu Fukumoto, Akira Shimizu, Toyonori Tsuzuki, Go Kimura and Yukihiro Kondo
Biomolecules 2019, 9(11), 673; https://doi.org/10.3390/biom9110673 - 30 Oct 2019
Cited by 21 | Viewed by 6726
Abstract
Deep learning algorithms have achieved great success in cancer image classification. However, it is imperative to understand the differences between the deep learning and human approaches. Using an explainable model, we aimed to compare the deep learning-focused regions of magnetic resonance (MR) images [...] Read more.
Deep learning algorithms have achieved great success in cancer image classification. However, it is imperative to understand the differences between the deep learning and human approaches. Using an explainable model, we aimed to compare the deep learning-focused regions of magnetic resonance (MR) images with cancerous locations identified by radiologists and pathologists. First, 307 prostate MR images were classified using a well-established deep neural network without locational information of cancers. Subsequently, we assessed whether the deep learning-focused regions overlapped the radiologist-identified targets. Furthermore, pathologists provided histopathological diagnoses on 896 pathological images, and we compared the deep learning-focused regions with the genuine cancer locations through 3D reconstruction of pathological images. The area under the curve (AUC) for MR images classification was sufficiently high (AUC = 0.90, 95% confidence interval 0.87–0.94). Deep learning-focused regions overlapped radiologist-identified targets by 70.5% and pathologist-identified cancer locations by 72.1%. Lymphocyte aggregation and dilated prostatic ducts were observed in non-cancerous regions focused by deep learning. Deep learning algorithms can achieve highly accurate image classification without necessarily identifying radiological targets or cancer locations. Deep learning may find clues that can help a clinical diagnosis even if the cancer is not visible. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence for Medical Research)
Show Figures

Figure 1

20 pages, 4795 KiB  
Article
Anthocyanins from Hibiscus syriacus L. Inhibit Melanogenesis by Activating the ERK Signaling Pathway
by Wisurumuni Arachchilage Hasitha Maduranga Karunarathne, Ilandarage Menu Neelaka Molagoda, Sang Rul Park, Jeong Woon Kim, Oh-Kyu Lee, Hae Yun Kwon, Matan Oren, Yung Hyun Choi, Hyung Won Ryu, Sei-Ryang Oh, Wol Soon Jo, Kyoung Tae Lee and Gi-Young Kim
Biomolecules 2019, 9(11), 645; https://doi.org/10.3390/biom9110645 - 24 Oct 2019
Cited by 32 | Viewed by 5208
Abstract
Hibiscus syriacus L. exhibited promising potential as a new source of food and colorants containing various anthocyanins. However, the function of anthocyanins from H. syriacus L. has not been investigated. In the current study, we evaluated whether anthocyanins from the H. syriacus L. [...] Read more.
Hibiscus syriacus L. exhibited promising potential as a new source of food and colorants containing various anthocyanins. However, the function of anthocyanins from H. syriacus L. has not been investigated. In the current study, we evaluated whether anthocyanins from the H. syriacus L. varieties Pulsae and Paektanshim (PS and PTS) inhibit melanin biogenesis. B16F10 cells and zebrafish larvae were exposed to PS and PTS in the presence or absence of α-melanocyte-stimulating hormone (α-MSH), and melanin contents accompanied by its regulating genes and proteins were analyzed. PS and PTS moderately downregulated mushroom tyrosinase activity in vitro, but significantly decreased extracellular and intracellular melanin production in B16F10 cells, and inhibited α-MSH-induced expression of microphthalmia-associated transcription factor (MITF) and tyrosinase. PS and PTS also attenuated pigmentation in α-MSH-stimulated zebrafish larvae. Furthermore, PS and PTS activated the phosphorylation of extracellular signal-regulated kinase (ERK), whereas PD98059, a specific ERK inhibitor, completely reversed PS- and PTS-mediated anti-melanogenic activity in B16F10 cells and zebrafish larvae, which indicates that PS- and PTS-mediated anti-melanogenic activity is due to ERK activation. Moreover, chromatography data showed that PS and PTS possessed 17 identical anthocyanins as a negative regulator of ERK. These findings suggested that anthocyanins from PS and PTS inhibited melanogenesis in vitro and in vivo by activating the ERK signaling pathway. Full article
Show Figures

Graphical abstract

17 pages, 6400 KiB  
Article
Disclosing the Impact of Carcinogenic SF3b Mutations on Pre-mRNA Recognition Via All-Atom Simulations
by Jure Borišek, Andrea Saltalamacchia, Anna Gallì, Giulia Palermo, Elisabetta Molteni, Luca Malcovati and Alessandra Magistrato
Biomolecules 2019, 9(10), 633; https://doi.org/10.3390/biom9100633 - 21 Oct 2019
Cited by 24 | Viewed by 4695
Abstract
The spliceosome accurately promotes precursor messenger-RNA splicing by recognizing specific noncoding intronic tracts including the branch point sequence (BPS) and the 3’-splice-site (3’SS). Mutations of Hsh155 (yeast)/SF3B1 (human), which is a protein of the SF3b factor involved in BPS recognition and induces altered [...] Read more.
The spliceosome accurately promotes precursor messenger-RNA splicing by recognizing specific noncoding intronic tracts including the branch point sequence (BPS) and the 3’-splice-site (3’SS). Mutations of Hsh155 (yeast)/SF3B1 (human), which is a protein of the SF3b factor involved in BPS recognition and induces altered BPS binding and 3’SS selection, lead to mis-spliced mRNA transcripts. Although these mutations recur in hematologic malignancies, the mechanism by which they change gene expression remains unclear. In this study, multi-microsecond-long molecular-dynamics simulations of eighth distinct ∼700,000 atom models of the spliceosome Bact complex, and gene sequencing of SF3B1, disclose that these carcinogenic isoforms destabilize intron binding and/or affect the functional dynamics of Hsh155/SF3B1 only when binding non-consensus BPSs, as opposed to the non-pathogenic variants newly annotated here. This pinpoints a cross-talk between the distal Hsh155 mutation and BPS recognition sites. Our outcomes unprecedentedly contribute to elucidating the principles of pre-mRNA recognition, which provides critical insights on the mechanism underlying constitutive/alternative/aberrant splicing. Full article
Show Figures

Figure 1

11 pages, 1945 KiB  
Article
Identification and Isolation of Active Compounds from Astragalus membranaceus that Improve Insulin Secretion by Regulating Pancreatic β-Cell Metabolism
by Dahae Lee, Da Hye Lee, Sungyoul Choi, Jin Su Lee, Dae Sik Jang and Ki Sung Kang
Biomolecules 2019, 9(10), 618; https://doi.org/10.3390/biom9100618 - 17 Oct 2019
Cited by 15 | Viewed by 4705
Abstract
In type 2 diabetes (T2D), insufficient secretion of insulin from the pancreatic β-cells contributes to high blood glucose levels, associated with metabolic dysregulation. Interest in natural products to complement or replace existing antidiabetic medications has increased. In this study, we examined the effect [...] Read more.
In type 2 diabetes (T2D), insufficient secretion of insulin from the pancreatic β-cells contributes to high blood glucose levels, associated with metabolic dysregulation. Interest in natural products to complement or replace existing antidiabetic medications has increased. In this study, we examined the effect of Astragalus membranaceus extract (ASME) and its compounds 19 on glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. ASME and compounds 19 isolated from A. membranaceus stimulated insulin secretion in INS-1 cells without inducing cytotoxicity. A further experiment showed that compounds 2, 3, and 5 enhanced the phosphorylation of total insulin receptor substrate-2 (IRS-2), phosphatidylinositol 3-kinase (PI3K), and Akt, and activated pancreatic and duodenal homeobox-1 (PDX-1) and peroxisome proliferator-activated receptor-γ (PPAR-γ), which are associated with β-cell function and insulin secretion. The data suggest that two isoflavonoids (2 and 3) and a nucleoside (compound 5), isolated from the roots of A. membranaceus, have the potential to improve insulin secretion in β-cells, representing the first step towards the development of potent antidiabetic drugs. Full article
Show Figures

Graphical abstract

20 pages, 2719 KiB  
Article
Whole Genome Sequencing of Familial Non-Medullary Thyroid Cancer Identifies Germline Alterations in MAPK/ERK and PI3K/AKT Signaling Pathways
by Aayushi Srivastava, Abhishek Kumar, Sara Giangiobbe, Elena Bonora, Kari Hemminki, Asta Försti and Obul Reddy Bandapalli
Biomolecules 2019, 9(10), 605; https://doi.org/10.3390/biom9100605 - 13 Oct 2019
Cited by 22 | Viewed by 6070
Abstract
Evidence of familial inheritance in non-medullary thyroid cancer (NMTC) has accumulated over the last few decades. However, known variants account for a very small percentage of the genetic burden. Here, we focused on the identification of common pathways and networks enriched in NMTC [...] Read more.
Evidence of familial inheritance in non-medullary thyroid cancer (NMTC) has accumulated over the last few decades. However, known variants account for a very small percentage of the genetic burden. Here, we focused on the identification of common pathways and networks enriched in NMTC families to better understand its pathogenesis with the final aim of identifying one novel high/moderate-penetrance germline predisposition variant segregating with the disease in each studied family. We performed whole genome sequencing on 23 affected and 3 unaffected family members from five NMTC-prone families and prioritized the identified variants using our Familial Cancer Variant Prioritization Pipeline (FCVPPv2). In total, 31 coding variants and 39 variants located in upstream, downstream, 5′ or 3′ untranslated regions passed FCVPPv2 filtering. Altogether, 210 genes affected by variants that passed the first three steps of the FCVPPv2 were analyzed using Ingenuity Pathway Analysis software. These genes were enriched in tumorigenic signaling pathways mediated by receptor tyrosine kinases and G-protein coupled receptors, implicating a central role of PI3K/AKT and MAPK/ERK signaling in familial NMTC. Our approach can facilitate the identification and functional validation of causal variants in each family as well as the screening and genetic counseling of other individuals at risk of developing NMTC. Full article
(This article belongs to the Special Issue Systems Genomics Approaches for Understanding Multi-omics Data)
Show Figures

Figure 1

23 pages, 4983 KiB  
Article
Temporin-SHa and Its Analogs as Potential Candidates for the Treatment of Helicobacter pylori
by Hamza Olleik, Elias Baydoun, Josette Perrier, Akram Hijazi, Josette Raymond, Marine Manzoni, Lucas Dupuis, Ghislain Pauleau, Yvain Goudard, Bruno de La Villéon, Géraldine Goin, Philippe Sockeel, Muhammad Iqbal Choudhary, Eric Di Pasquale, Muhammad Nadeem-ul-Haque, Hunain Ali, Arif Iftikhar Khan, Farzana Shaheen and Marc Maresca
Biomolecules 2019, 9(10), 598; https://doi.org/10.3390/biom9100598 - 11 Oct 2019
Cited by 11 | Viewed by 5159
Abstract
Helicobacterpylori is one of the most prevalent pathogens colonizing 50% of the world’s population and causing gastritis and gastric cancer. Even with triple and quadruple antibiotic therapies, H. pylori shows increased prevalence of resistance to conventional antibiotics and treatment failure. Due to [...] Read more.
Helicobacterpylori is one of the most prevalent pathogens colonizing 50% of the world’s population and causing gastritis and gastric cancer. Even with triple and quadruple antibiotic therapies, H. pylori shows increased prevalence of resistance to conventional antibiotics and treatment failure. Due to their pore-forming activity, antimicrobial peptides (AMP) are considered as a good alternative to conventional antibiotics, particularly in the case of resistant bacteria. In this study, temporin-SHa (a frog AMP) and its analogs obtained by Gly to Ala substitutions were tested against H. pylori. Results showed differences in the antibacterial activity and toxicity of the peptides in relation to the number and position of D-Ala substitution. Temporin-SHa and its analog NST1 were identified as the best molecules, both peptides being active on clinical resistant strains, killing 90–100% of bacteria in less than 1 h and showing low to no toxicity against human gastric cells and tissue. Importantly, the presence of gastric mucins did not prevent the antibacterial effect of temporin-SHa and NST1, NST1 being in addition resistant to pepsin. Taken together, our results demonstrated that temporin-SHa and its analog NST1 could be considered as potential candidates to treat H. pylori, particularly in the case of resistant strains. Full article
(This article belongs to the Special Issue Structure and Function of Antimicrobial Peptides)
Show Figures

Figure 1

7 pages, 1269 KiB  
Communication
Butyrylcholinesterase Protein Ends in the Pathogenesis of Alzheimer’s Disease—Could BCHE Genotyping Be Helpful in Alzheimer’s Therapy?
by Jacek Jasiecki and Bartosz Wasąg
Biomolecules 2019, 9(10), 592; https://doi.org/10.3390/biom9100592 - 9 Oct 2019
Cited by 40 | Viewed by 8014
Abstract
Late-onset Alzheimer’s disease (AD) is clinically characterized by a progressive decline of memory and other cognitive functions leading to the loss of the ability to perform everyday activities. Only a few drugs have been approved to treat AD dementia over the past century [...] Read more.
Late-onset Alzheimer’s disease (AD) is clinically characterized by a progressive decline of memory and other cognitive functions leading to the loss of the ability to perform everyday activities. Only a few drugs have been approved to treat AD dementia over the past century since the first AD patient was diagnosed. Drugs increasing the availability of neurotransmitters at synapses in the brain are used clinically in the treatment of AD dementia, and cholinesterase inhibitors (ChEIs) are the mainstay of the therapy. A detrimental effect on cognitive function has been reported in patients with pharmacological inhibition of acetylcholinesterase (AChE) by ChEIs and reduced butyrylcholinesterase (BChE) activity due to the single nucleotide polymorphisms. The BChE K-variant (rs1803274), the most common genetic variant of the BCHE gene, was thought to reduce enzyme activity reflecting the lower clinical response to rivastigmine in AD patients. During ChEIs therapy, patients carrying reduced-activity BChE do not present such improved attention like patients with the wild-type enzyme. On the other hand, alterations in the BCHE gene causing enzyme activity reduction may delay AD onset in patients at risk by preserving the level of cortical acetylcholine (ACh). Based on our previous results, we conclude that SNPs localized outside of the coding sequence, in 5’UTR (rs1126680) and/or intron 2 (rs55781031) of the BCHE gene, but not solely K-variant alteration (p.A539T) itself, are responsible for reduced enzyme activity. Therefore, we suspect that not BChE-K itself, but these coexisting SNPs (rs1126680 and rs55781031), could be associated with deleterious changes in cognitive decline in patients treated with ChEIs. Based on the results, we suggest that SNPs (rs1126680) and/or (rs55781031) genotyping should be performed to identify subjects at risk for lowered efficacy ChEIs therapy, and such patients should be treated with a lower rivastigmine dosage. Finally, our sequence analysis of the N-terminal end of N-BChE revealed evolutionarily conserved amino acid residues that can be involved in disulfide bond formation and anchoring of N-BChE in the cell membrane. Full article
(This article belongs to the Special Issue Cholinesterases in Alzheimer's Disease)
Show Figures

Figure 1

14 pages, 2733 KiB  
Article
Chitosan–Azide Nanoparticle Coating as a Degradation Barrier in Multilayered Polyelectrolyte Drug Delivery Systems
by Steffen Sydow, Armin Aniol, Christoph Hadler and Henning Menzel
Biomolecules 2019, 9(10), 573; https://doi.org/10.3390/biom9100573 - 5 Oct 2019
Cited by 18 | Viewed by 3615
Abstract
Therapeutics, proteins or drugs, can be encapsulated into multilayer systems prepared from chitosan (CS)/tripolyphosphat (TPP) nanogels and polyanions. Such multilayers can be built-up by Layer-by-Layer (LbL) deposition. For use as drug-releasing implant coating, these multilayers must meet high requirements in terms of stability. [...] Read more.
Therapeutics, proteins or drugs, can be encapsulated into multilayer systems prepared from chitosan (CS)/tripolyphosphat (TPP) nanogels and polyanions. Such multilayers can be built-up by Layer-by-Layer (LbL) deposition. For use as drug-releasing implant coating, these multilayers must meet high requirements in terms of stability. Therefore, photochemically crosslinkable chitosan arylazide (CS–Az) was synthesized and nanoparticles were generated by ionotropic gelation with TPP. The particles were characterized with regard to particle size and stability and were used to form the top-layer in multilayer films consisting of CS–TPP and three different polysaccharides as polyanions, namely alginate, chondroitin sulfate or hyaluronic acid, respectively. Subsequently, photo-crosslinking was performed by irradiation with UV light. The stability of these films was investigated under physiological conditions and the influence of the blocking layer on layer thickness was investigated by ellipsometry. Furthermore, the polyanion and the degree of acetylation (DA) of chitosan were identified as additional parameters that influence the film structure and stability. Multilayer systems blocked with the photo-crosslinked chitosan arylazide showed enhanced stability against degradation. Full article
Show Figures

Graphical abstract

25 pages, 1637 KiB  
Article
Antioxidant Enzyme-Mimetic Activity and Neuroprotective Effects of Cerium Oxide Nanoparticles Stabilized with Various Ratios of Citric Acid and EDTA
by Ana Y. Estevez, Mallikarjunarao Ganesana, John F. Trentini, James E. Olson, Guangze Li, Yvonne O. Boateng, Jennifer M. Lipps, Sarah E. R. Yablonski, William T. Donnelly, James C. Leiter and Joseph S. Erlichman
Biomolecules 2019, 9(10), 562; https://doi.org/10.3390/biom9100562 - 3 Oct 2019
Cited by 31 | Viewed by 4881
Abstract
Cerium oxide (CeO2) nanoparticles (CeNPs) are potent antioxidants that are being explored as potential therapies for diseases in which oxidative stress plays an important pathological role. However, both beneficial and toxic effects of CeNPs have been reported, and the method of [...] Read more.
Cerium oxide (CeO2) nanoparticles (CeNPs) are potent antioxidants that are being explored as potential therapies for diseases in which oxidative stress plays an important pathological role. However, both beneficial and toxic effects of CeNPs have been reported, and the method of synthesis as well as physico-chemical, biological, and environmental factors can impact the ultimate biological effects of CeNPs. In the present study, we explored the effect of different ratios of citric acid (CA) and EDTA (CA/EDTA), which are used as stabilizers during synthesis of CeNPs, on the antioxidant enzyme-mimetic and biological activity of the CeNPs. We separated the CeNPs into supernatant and pellet fractions and used commercially available enzymatic assays to measure the catalase-, superoxide dismutase (SOD)-, and oxidase-mimetic activity of each fraction. We tested the effects of these CeNPs in a mouse hippocampal brain slice model of ischemia to induce oxidative stress where the fluorescence indicator SYTOX green was used to assess cell death. Our results demonstrate that CeNPs stabilized with various ratios of CA/EDTA display different enzyme-mimetic activities. CeNPs with intermediate CA/EDTA stabilization ratios demonstrated greater neuroprotection in ischemic mouse brain slices, and the neuroprotective activity resides in the pellet fraction of the CeNPs. The neuroprotective effects of CeNPs stabilized with equal proportions of CA/EDTA (50/50) were also demonstrated in two other models of ischemia/reperfusion in mice and rats. Thus, CeNPs merit further development as a neuroprotective therapy for use in diseases associated with oxidative stress in the nervous system. Full article
Show Figures

Figure 1

16 pages, 3049 KiB  
Article
Beyond the Scavenging of Reactive Oxygen Species (ROS): Direct Effect of Cerium Oxide Nanoparticles in Reducing Fatty Acids Content in an In Vitro Model of Hepatocellular Steatosis
by Marina Parra-Robert, Eudald Casals, Nuria Massana, Muling Zeng, Meritxell Perramón, Guillermo Fernández-Varo, Manuel Morales-Ruiz, Víctor Puntes, Wladimiro Jiménez and Gregori Casals
Biomolecules 2019, 9(9), 425; https://doi.org/10.3390/biom9090425 - 29 Aug 2019
Cited by 33 | Viewed by 5728
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic accumulation of lipids. Antisteatotic effects of cerium oxide nanoparticles (CeO2NPs) have recently been shown in animal models of liver disease. However, it is unclear whether the activity of CeO2NPs is [...] Read more.
Nonalcoholic fatty liver disease (NAFLD) is characterized by hepatic accumulation of lipids. Antisteatotic effects of cerium oxide nanoparticles (CeO2NPs) have recently been shown in animal models of liver disease. However, it is unclear whether the activity of CeO2NPs is related solely to the decrease in oxidative stress or, in addition, they directly decrease liver fatty acid accumulation. To address this question, in this work, we used an in vitro model of hepatocellular steatosis, exposing HepG2 cells to oleic and palmitic acid. Cell uptake of CeO2NPs and their effect on oxidative stress and viability of hepatic cells cultured with H2O2 were also evaluated. Results show that CeO2NPs were uptaken by HepG2 cells and reduced oxidative stress and improved cell viability. Treatment with oleic and palmitic acid increased lipogenesis and the content of different fatty acids. CeO2NPs reduced palmitic and stearic acid and most fatty acids consisting of more than 18 carbon atoms. These effects were associated with significant changes in elongase and desaturase activity. In conclusion, CeO2NPs directly protected HepG2 cells from cell injury in oxidative stress conditions and reduced fatty acid content in steatotic conditions by inducing specific changes in fatty acid metabolism, thus showing potential in the treatment of NAFLD. Full article
Show Figures

Graphical abstract

14 pages, 3274 KiB  
Article
The Inhibitory Effect of Cordycepin on the Proliferation of MCF-7 Breast Cancer Cells, and Its Mechanism: An Investigation Using Network Pharmacology-Based Analysis
by Dahae Lee, Won-Yung Lee, Kiwon Jung, Yong Sam Kwon, Daeyoung Kim, Gwi Seo Hwang, Chang-Eop Kim, Sullim Lee and Ki Sung Kang
Biomolecules 2019, 9(9), 414; https://doi.org/10.3390/biom9090414 - 26 Aug 2019
Cited by 29 | Viewed by 8329
Abstract
Cordyceps militaris is a well-known medicinal mushroom. It is non-toxic and has clinical health benefits including cancer inhibition. However, the anticancer effects of C. militaris cultured in brown rice on breast cancer have not yet been reported. In this study, we simultaneously investigated [...] Read more.
Cordyceps militaris is a well-known medicinal mushroom. It is non-toxic and has clinical health benefits including cancer inhibition. However, the anticancer effects of C. militaris cultured in brown rice on breast cancer have not yet been reported. In this study, we simultaneously investigated the anticancer effects of cordycepin and an extract of C. militaris cultured in brown rice on MCF-7 human breast cancer cells using a cell viability assay, cell staining with Hoechst 33342, and an image-based cytometric assay. The C. militaris concentrate exhibited significant MCF-7 cell inhibitory effects, and its IC50 value was 73.48 µg/mL. Cordycepin also exhibited significant MCF-7 cell inhibitory effects, and its IC50 value was 9.58 µM. We applied network pharmacological analysis to predict potential targets and pathways of cordycepin. The gene set enrichment analysis showed that the targets of cordycepin are mainly associated with the hedgehog signaling, apoptosis, p53 signaling, and estrogen signaling pathways. We further verified the predicted targets related to the apoptosis pathway using western blot analysis. The C. militaris concentrate and cordycepin exhibited the ability to induce apoptotic cell death by increasing the cleavage of caspase-7 -8, and -9, increasing the Bcl-2-associated X protein/ B-cell lymphoma 2 (Bax/Bcl-2) protein expression ratio, and decreasing the protein expression of X-linked inhibitor of apoptosis protein (XIAP) in MCF-7 cells. Consequently, the C. militaris concentrate and cordycepin exhibited significant anticancer effects through their ability to induce apoptosis in breast cancer cells. Full article
Show Figures

Figure 1

15 pages, 2132 KiB  
Article
Dose-Dependent Alterations to In Vitro Human Microbiota Composition and Butyrate Inhibition by a Supercritical Carbon Dioxide Hops Extract
by Paul A. Blatchford, Shanthi G. Parkar, Wendy Hopkins, John R. Ingram and Kevin H. Sutton
Biomolecules 2019, 9(9), 390; https://doi.org/10.3390/biom9090390 - 21 Aug 2019
Cited by 11 | Viewed by 3705
Abstract
Hop cones (Humulus lupulus L.) have been used throughout history as an additive in beer brewing and as herbal supplements with medicinal and culinary properties. The objective of this study was to ascertain the effect of a range of concentrations of a [...] Read more.
Hop cones (Humulus lupulus L.) have been used throughout history as an additive in beer brewing and as herbal supplements with medicinal and culinary properties. The objective of this study was to ascertain the effect of a range of concentrations of a supercritical CO2 extract of hops on the composition and metabolism of human gut bacterial communities using in vitro batch culture systems. Fermentations were conducted over 24 h using a mixed human fecal inoculum. Microbial metabolism was assessed by measuring organic acid production and microbial community alterations were determined by 16S rRNA gene sequencing. Butyrate, an important short chain fatty acid in maintaining colonic well-being, decreased at elevated concentrations of hops, which may partly be accounted for by the concomitant reduction of Eubacterium and Coprococcus, known butyrate-producing genera, and also the inhibition of Bifidobacterium, a beneficial organism that has a butyrogenic effect through metabolic cross-feeding with intestinal commensals. The hops compounds also caused dose-dependent increases in the potentially pathogenic Enterobacteriaceae and potentially beneficial Akkermansia. Thus, hops compounds had a significant impact on the structure of the bacterial consortium, which warrants further study including human clinical trials. Full article
(This article belongs to the Special Issue Function of Microorganism in Food Production)
Show Figures

Graphical abstract

38 pages, 5465 KiB  
Article
Thimet Oligopeptidase (EC 3.4.24.15) Key Functions Suggested by Knockout Mice Phenotype Characterization
by Nilton B. dos Santos, Roseane D. Franco, Rosana Camarini, Carolina D. Munhoz, Rosangela A. S. Eichler, Mayara C. F. Gewehr, Patricia Reckziegel, Ricardo P. Llanos, Camila S. Dale, Victoria R. O. da Silva, Vanessa F. Borges, Braulio H. F. Lima, Fernando Q. Cunha, Bruna Visniauskas, Jair R. Chagas, Sergio Tufik, Fernanda F. Peres, Vanessa C. Abilio, Jorge C. Florio, Leo K. Iwai, Vanessa Rioli, Benedito C. Presoto, Alessander O. Guimaraes, Joao B. Pesquero, Michael Bader, Leandro M. Castro and Emer S. Ferroadd Show full author list remove Hide full author list
Biomolecules 2019, 9(8), 382; https://doi.org/10.3390/biom9080382 - 19 Aug 2019
Cited by 21 | Viewed by 5149
Abstract
Thimet oligopeptidase (THOP1) is thought to be involved in neuropeptide metabolism, antigen presentation, neurodegeneration, and cancer. Herein, the generation of THOP1 C57BL/6 knockout mice (THOP1−/−) is described showing that they are viable, have estrus cycle, fertility, and a number of puppies [...] Read more.
Thimet oligopeptidase (THOP1) is thought to be involved in neuropeptide metabolism, antigen presentation, neurodegeneration, and cancer. Herein, the generation of THOP1 C57BL/6 knockout mice (THOP1−/−) is described showing that they are viable, have estrus cycle, fertility, and a number of puppies per litter similar to C57BL/6 wild type mice (WT). In specific brain regions, THOP1-/- exhibit altered mRNA expression of proteasome beta5, serotonin 5HT2a receptor and dopamine D2 receptor, but not of neurolysin (NLN). Peptidomic analysis identifies differences in intracellular peptide ratios between THOP1-/- and WT mice, which may affect normal cellular functioning. In an experimental model of multiple sclerosis THOP1-/- mice present worse clinical behavior scores compared to WT mice, corroborating its possible involvement in neurodegenerative diseases. THOP1-/- mice also exhibit better survival and improved behavior in a sepsis model, but also a greater peripheral pain sensitivity measured in the hot plate test after bradykinin administration in the paw. THOP1-/- mice show depressive-like behavior, as well as attention and memory retention deficits. Altogether, these results reveal a role of THOP1 on specific behaviors, immune-stimulated neurodegeneration, and infection-induced inflammation. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

14 pages, 4542 KiB  
Article
Aortic Oxidative Stress, Inflammation and DNA Damage Following Pulmonary Exposure to Cerium Oxide Nanoparticles in a Rat Model of Vascular Injury
by Abderrahim Nemmar, Suhail Al-Salam, Sumaya Beegam, Priya Yuvaraju and Badreldin H. Ali
Biomolecules 2019, 9(8), 376; https://doi.org/10.3390/biom9080376 - 17 Aug 2019
Cited by 25 | Viewed by 4627
Abstract
Pulmonary exposure to cerium oxide nanoparticles (CeO2 NPs) can occur either at the workplace, or due to their release in the environment. Inhaled CeO2 NPs are known to cross the alveolar–capillary barrier and reach various parts of the body, including the [...] Read more.
Pulmonary exposure to cerium oxide nanoparticles (CeO2 NPs) can occur either at the workplace, or due to their release in the environment. Inhaled CeO2 NPs are known to cross the alveolar–capillary barrier and reach various parts of the body, including the vasculature. The anticancer drug cisplatin (CP) causes vascular damage. However, the effects CeO2 NPs on vascular homeostasis in a rat model of CP-induced vascular injury remain unclear. Here, we assessed the impact and underlying mechanism of pulmonary exposure to CeO2 NPs on aorta in rats given a single intraperitoneal injection of cisplatin (CP, 6 mg/kg) to induce vascular damage. Six days later, the rats were intratracheally instilled with either CeO2 NPs (1 mg/kg) or saline (control), and various variables were studied 24 h thereafter in the aortic tissue. The concentration of reduced glutathione and the activity of catalase were significantly increased in the CP + CeO2 NPs group compared with both the CP + saline and the CeO2 NPs groups. The activity of superoxide dismutase was significantly decreased in the CP + CeO2 NPs group compared with both the CP + saline and CeO2 NPs groups. The expression of nuclear factor erythroid-derived 2-like 2 (Nrf2) by the nuclei of smooth muscles and endocardial cells assessed by immunohistochemistry was significantly augmented in CeO2 NPs versus saline, in CP + saline versus saline, and in CP + CeO2 NPs versus CeO2 NPs. Moreover, the concentrations of total nitric oxide, lipid peroxidation and 8-hydroxy-2-deoxyguanosine were significantly elevated in the CP + CeO2 NPs group compared with both the CP + saline and the CeO2 NPs groups. Similarly, compared with both the CP + saline and CeO2 NPs groups, the combination of CP and CeO2 NPs significantly elevated the concentrations of interleukin-6 and tumour necrosis factor-α. Additionally, aortic DNA damage assessed by Comet assay was significantly increased in CeO2 NPs compared with saline, and in CP + saline versus saline, and all these effects were significantly aggravated by the combination of CP and CeO2 NPs. We conclude that pulmonary exposure to CeO2 NPs aggravates vascular toxicity in animal model of vascular injury through mechanisms involving oxidative stress, Nrf2 expression, inflammation and DNA damage. Full article
Show Figures

Figure 1

15 pages, 3867 KiB  
Article
The Methodological Trends of Traditional Herbal Medicine Employing Network Pharmacology
by Won-Yung Lee, Choong-Yeol Lee, Youn-Sub Kim and Chang-Eop Kim
Biomolecules 2019, 9(8), 362; https://doi.org/10.3390/biom9080362 - 13 Aug 2019
Cited by 108 | Viewed by 12338
Abstract
Natural products, including traditional herbal medicine (THM), are known to exert their therapeutic effects by acting on multiple targets, so researchers have employed network pharmacology methods to decipher the potential mechanisms of THM. To conduct THM-network pharmacology (THM-NP) studies, researchers have employed different [...] Read more.
Natural products, including traditional herbal medicine (THM), are known to exert their therapeutic effects by acting on multiple targets, so researchers have employed network pharmacology methods to decipher the potential mechanisms of THM. To conduct THM-network pharmacology (THM-NP) studies, researchers have employed different tools and databases for constructing and analyzing herb–compound–target networks. In this study, we attempted to capture the methodological trends in THM-NP research. We identified the tools and databases employed to conduct THM-NP studies and visualized their combinatorial patterns. We also constructed co-author and affiliation networks to further understand how the methodologies are employed among researchers. The results showed that the number of THM-NP studies and employed databases/tools have been dramatically increased in the last decade, and there are characteristic patterns in combining methods of each analysis step in THM-NP studies. Overall, the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) was the most frequently employed network pharmacology database in THM-NP studies. Among the processes involved in THM-NP research, the methodology for constructing a compound–target network has shown the greatest change over time. In summary, our analysis describes comprehensive methodological trends and current ideas in research design for network pharmacology researchers. Full article
(This article belongs to the Special Issue Phytochemical Omics in Medicinal Plants)
Show Figures

Figure 1

16 pages, 2179 KiB  
Article
The Natural-Based Antitumor Compound T21 Decreases Survivin Levels through Potent STAT3 Inhibition in Lung Cancer Models
by David Martínez-García, Marta Pérez-Hernández, Luís Korrodi-Gregório, Roberto Quesada, Ricard Ramos, Núria Baixeras, Ricardo Pérez-Tomás and Vanessa Soto-Cerrato
Biomolecules 2019, 9(8), 361; https://doi.org/10.3390/biom9080361 - 13 Aug 2019
Cited by 22 | Viewed by 5031
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide; hence novel treatments for this malignancy are eagerly needed. Since natural-based compounds represent a rich source of novel chemical entities in drug discovery, we have focused our attention on tambjamines, natural compounds isolated [...] Read more.
Lung cancer is the leading cause of cancer-related deaths worldwide; hence novel treatments for this malignancy are eagerly needed. Since natural-based compounds represent a rich source of novel chemical entities in drug discovery, we have focused our attention on tambjamines, natural compounds isolated from marine invertebrates that have shown diverse pharmacological activities. Based on these structures, we have recently identified the novel indole-based tambjamine analog 21 (T21) as a promising antitumor agent, which modulates the expression of apoptotic proteins such as survivin. This antiapoptotic protein plays an important role in carcinogenesis and chemoresistance. In this work, we have elucidated the molecular mechanism by which the anticancer compound T21 exerts survivin inhibition and have validated this protein as a therapeutic target in different lung cancer models. T21 was able to reduce survivin protein levels in vitro by repressing its gene expression through the blockade of Janus kinase/Signal Transducer and Activator of Transcription-3 (JAK/STAT3)/survivin signaling pathway. Interestingly, this occurred even when the pathway was overstimulated with its ligand interleukin 6 (IL-6), which is frequently overexpressed in lung cancer patients who show poor clinical outcomes. Altogether, these results show T21 as a potent anticancer compound that effectively decreases survivin levels through STAT3 inhibition in lung cancer, appearing as a promising therapeutic drug for cancer treatment. Full article
Show Figures

Figure 1

15 pages, 2773 KiB  
Article
Cyclodextrins Can Entrap Zearalenone-14-Glucoside: Interaction of the Masked Mycotoxin with Cyclodextrins and Cyclodextrin Bead Polymer
by Zelma Faisal, Eszter Fliszár-Nyúl, Luca Dellafiora, Gianni Galaverna, Chiara Dall’Asta, Beáta Lemli, Sándor Kunsági-Máté, Lajos Szente and Miklós Poór
Biomolecules 2019, 9(8), 354; https://doi.org/10.3390/biom9080354 - 9 Aug 2019
Cited by 16 | Viewed by 4294
Abstract
Zearalenone (ZEN) is a Fusarium-derived xenoestrogenic mycotoxin. In plants, zearalenone-14-O-β-d-glucoside (Z14G) is the major conjugated metabolite of ZEN, and is a masked mycotoxin. Masked mycotoxins are plant-modified derivatives, which are not routinely screened in food and feed samples. [...] Read more.
Zearalenone (ZEN) is a Fusarium-derived xenoestrogenic mycotoxin. In plants, zearalenone-14-O-β-d-glucoside (Z14G) is the major conjugated metabolite of ZEN, and is a masked mycotoxin. Masked mycotoxins are plant-modified derivatives, which are not routinely screened in food and feed samples. Cyclodextrins (CDs) are cyclic oligosaccharides built up from D-glucopyranose units. CDs can form stable host–guest type complexes with lipophilic molecules (e.g., with some mycotoxins). In this study, the interaction of Z14G with native and chemically modified β- and γ-CDs was examined employing fluorescence spectroscopy and molecular modeling. Furthermore, the removal of Z14G from aqueous solution by insoluble β-CD bead polymer (BBP) was also tested. Our results demonstrate that Z14G forms the most stable complexes with γ-CDs under acidic and neutral conditions (K ≈ 103 L/mol). Among the CDs tested, randomly methylated γ-CD induced the highest increase in the fluorescence of Z14G (7.1-fold) and formed the most stable complexes with the mycotoxin (K = 2 × 103 L/mol). Furthermore, BBP considerably reduced the Z14G content of aqueous solution. Based on these observations, CD technology seems a promising tool to improve the fluorescence analytical detection of Z14G and to discover new mycotoxin binders which can also remove masked mycotoxins (e.g., Z14G). Full article
(This article belongs to the Special Issue Perspectives of Cyclodextrins)
Show Figures

Graphical abstract

17 pages, 1613 KiB  
Article
KDR (VEGFR2) Genetic Variants and Serum Levels in Patients with Rheumatoid Arthritis
by Agnieszka Paradowska-Gorycka, Barbara Stypinska, Andrzej Pawlik, Damian Malinowski, Katarzyna Romanowska-Prochnicka, Malgorzata Manczak and Marzena Olesinska
Biomolecules 2019, 9(8), 355; https://doi.org/10.3390/biom9080355 - 9 Aug 2019
Cited by 13 | Viewed by 3502
Abstract
We investigated kinase insert domain-containing receptor (KDR) polymorphisms and protein levels in relation to susceptibility to and severity of Rheumatoid Arthritis (RA). 641 RA patients and 340 controls (HC) were examined for the rs1870377 KDR variant by the polymerase chain reaction (PCR)-restriction fragment [...] Read more.
We investigated kinase insert domain-containing receptor (KDR) polymorphisms and protein levels in relation to susceptibility to and severity of Rheumatoid Arthritis (RA). 641 RA patients and 340 controls (HC) were examined for the rs1870377 KDR variant by the polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) method and for rs2305948 and rs2071559 KDR single nucleotide polymorphisms (SNPs) by TaqMan SNP genotyping assay. KDR serum levels were determined by enzyme-linked immunosorbent assay (ELISA). The rs1870377 KDR variant has shown association with RA under the codominant (p = 0.02, OR = 1.76, 95% CI = 1.09–2.85) and recessive models (p = 0.019, OR = 1.53, 95% CI = 1.07–2.20). KDR rs2305948 was associated with RA under the dominant model (p = 0.005, OR = 1.38, 95% CI = 1.10–1.73). Under the codominant model, the frequency of the rs2071559 TC and GG genotypes were lower in RA patients than in controls (p < 0.001, OR = 0.51, 95% CI = 0.37–0.69, and p = 0.002, OR = 0.57, 95% CI = 0.39–0.81). KDR rs2071559 T and rs2305948 A alleles were associated with RA (p = 0.001, OR = 0.60, 95% CI = 0.45–0.81 and p = 0.008, OR = 1.71, CI = 1.15–2.54). KDR rs2305948SNP was associated with Disease Activity Score (DAS)-28 score (p < 0.001), Visual Analog Scale (VAS) score (p < 0.001), number of swollen joints (p < 0.001), mean value of CRP (p < 0.001). A higher KDR serum level was found in RA patients than in HC (8018 pg/mL versus 7381 pg/mL, p = 0.002). Present results shed light on the role of KDR genetic variants in the severity of RA. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

13 pages, 2415 KiB  
Article
Accumulation of Amyloid Beta (Aβ) Peptide on Blood Vessel Walls in the Damaged Brain after Transient Middle Cerebral Artery Occlusion
by Antonio Henrique Martins, Astrid Zayas-Santiago, Yancy Ferrer-Acosta, Solianne M. Martinez-Jimenez, Lidia Zueva, Amanda Diaz-Garcia and Mikhail Inyushin
Biomolecules 2019, 9(8), 350; https://doi.org/10.3390/biom9080350 - 8 Aug 2019
Cited by 12 | Viewed by 6320
Abstract
It is well known that amyloid beta (Aβ) peptides are generated in blood vessels, released into the brain during thrombosis, and temporarily accumulate in this organ after injury. Here we demonstrate that 24 h after transient middle cerebral artery occlusion (tMCAO), one of [...] Read more.
It is well known that amyloid beta (Aβ) peptides are generated in blood vessels, released into the brain during thrombosis, and temporarily accumulate in this organ after injury. Here we demonstrate that 24 h after transient middle cerebral artery occlusion (tMCAO), one of the standard models of focal ischemic stroke, Aβ peptide accumulates in the brain, concentrating on the blood vessel walls. Because Aβ oligomers are known to induce significant damage to brain cells, they act as an additional damaging factor during ischemic stroke. Considering that they have been shown to form ion channels in cells, affecting osmotic balance, we used an Aβ peptide channel blocker, tromethamine (2-amino-2-(hydroxymethyl) propane-1,3-diol), to prevent this additional injury. Tromethamine injected 0.1 g/100 g body weight intraperitoneally at 5 min before tMCAO decreased water content in the damaged hemisphere, as measured by dry brain weight. Congo red staining, which binds only to Aβ oligomer plaques (amyloid), showed that there was no significant presence of plaques. Therefore, we suggest that Aβ peptide oligomers are responsible for some of the brain damage during stroke and that blockage of the ion channels that they form could be beneficial in treating this complex neurological syndrome. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

8 pages, 1730 KiB  
Communication
The Impact of Salts on the Ice Recrystallization Inhibition Activity of Antifreeze (Glyco)Proteins
by Romà Surís-Valls and Ilja K. Voets
Biomolecules 2019, 9(8), 347; https://doi.org/10.3390/biom9080347 - 6 Aug 2019
Cited by 19 | Viewed by 4825
Abstract
Antifreeze (glyco)proteins (AF(G)Ps) have received increasing attention as potential cryopreservation agents since their discovery in the 1970s. While cryopreservation strategies for specific cells (such as red blood cells) are successful and widely implemented, preservation of other cell types, tissues and whole organs remains [...] Read more.
Antifreeze (glyco)proteins (AF(G)Ps) have received increasing attention as potential cryopreservation agents since their discovery in the 1970s. While cryopreservation strategies for specific cells (such as red blood cells) are successful and widely implemented, preservation of other cell types, tissues and whole organs remains challenging. This is due to the multifactorial nature of the freeze-thaw damage, the complexity of preserving biological matter and the (country-to-country) variability of the employed procedures and regulations. AF(G)Ps are well-known for their ability to modulate ice crystal growth morphology and ice recrystallization inhibition (IRI), both of which are considered key contributors to freeze-thaw damage. To date, however, the impact of AF(G)Ps on cell survival remains at best partially understood as conflicting results on the benefits or disadvantages of including AF(G)P in cryopreservation strategies remain unelucidated. We hypothesize that variability in the additives in the cryopreservation media contributes to the observed discrepancies. To critically examine this idea, we monitored the inhibition of ice recrystallization by AF(G)P in the presence of various salts using a quantitative analysis of optical microscopy images via the Lifshitz-Slyozov-Wagner (LSW) theory for Oswald ripening. We found that the addition of salts, which are used in culture and cryopreservation media, enhances the IRI activity of AF(G)Ps, and that the magnitude of the enhancement was in line with the Hofmeister series. The size of ice crystals grown in AFGP1–5 and type III AFP samples containing chloride, phosphate and citrate ions were statistically smaller after 90 min of incubation than crystals grown in the absence of these salts. The ice recrystallization rates (kd) of AFGP1–5 and type III AFP samples prepared at a fixed overall ionic strength of 100 mM progressively decreased following the Hofmeister series for anions. Our results demonstrate that the performance of AF(G)Ps is significantly influenced by additives present in common cryopreservation media. It is thus important to conduct excipient compatibility experiments to identify potential incompatibilities between additives and AF(G)Ps in cryopreservation formulations. Full article
(This article belongs to the Special Issue Antifreeze Protein: New Insight from Different Approaches)
Show Figures

Figure 1

Back to TopTop