Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2096 KiB  
Article
Red Onion Peel Powder as a Functional Ingredient for Manufacturing Ricotta Cheese
by Florin Daniel Lipșa, Florina Stoica, Roxana Nicoleta Rațu, Ionuț Dumitru Veleșcu, Petru Marian Cârlescu, Iuliana Motrescu, Marius Giorgi Usturoi and Gabriela Râpeanu
Foods 2024, 13(2), 182; https://doi.org/10.3390/foods13020182 - 5 Jan 2024
Cited by 1 | Viewed by 1934
Abstract
Onion (Allium cepa L.) is a vegetable widely cultivated and consumed due to its rich content in bioactive compounds. Red onion peel (ROP) powder, which is a by-product derived from the onion industry, has been attracting significant interest as a potential functional [...] Read more.
Onion (Allium cepa L.) is a vegetable widely cultivated and consumed due to its rich content in bioactive compounds. Red onion peel (ROP) powder, which is a by-product derived from the onion industry, has been attracting significant interest as a potential functional ingredient for improving the overall quality of foods. The present study explores the potential of ROP powder as a functional ingredient to improve the quality and nutritional value of whey cheese. Despite being frequently viewed as a food processing waste byproduct, ROP is a rich source of bioactive substances, including antioxidants, flavonoids, and dietary fiber, having antioxidant and antibacterial effects. The ROP extract exhibited high amounts of total polyphenols (119.69 ± 2.71 mg GAE/g dw) and antioxidant activity (82.35 ± 1.05%). Different quantities (1 and 3%) of ROP powder were added to cheese formulations, and the subsequent impact on the texture characteristics, sensory attributes, and phytochemical composition of the value-added cheeses was evaluated. The findings show that the addition of ROP powder improved the texture and the color of the cheeses, providing a visually appealing product. Additionally, adding the ROP powder significantly raised the amount of phytochemicals and antioxidant activity (17.08 ± 0.78 µmol TE/g dw for RCROP1, 24.55 ± 0.67 µmol TE/g dw for RCROP2) in the final product’s formulation. Moreover, adding powder to cheese is an effective way to increase the value of onion by-products and produce polyphenol-enriched cheese. Full article
(This article belongs to the Section Dairy)
Show Figures

Figure 1

20 pages, 1265 KiB  
Review
The Relationship between Preparation and Biological Activities of Animal-Derived Polysaccharides: A Comprehensive Review
by Bochun Yang, Conghao Yang, Rui Liu, Wenjie Sui, Qiaomei Zhu, Yan Jin, Tao Wu and Min Zhang
Foods 2024, 13(1), 173; https://doi.org/10.3390/foods13010173 - 4 Jan 2024
Cited by 1 | Viewed by 1807
Abstract
Polysaccharides are biomolecules found in microorganisms, plants, and animals that constitute living organisms. Glycosaminoglycans, unique acidic polysaccharides in animal connective tissue, are often combined with proteins in the form of covalent bonds due to their potent biological activity, low toxicity, and minimal side [...] Read more.
Polysaccharides are biomolecules found in microorganisms, plants, and animals that constitute living organisms. Glycosaminoglycans, unique acidic polysaccharides in animal connective tissue, are often combined with proteins in the form of covalent bonds due to their potent biological activity, low toxicity, and minimal side effects, which have the potential to be utilized as nutrition healthcare and dietary supplements. Existing studies have demonstrated that the bioactivity of polysaccharides is closely dependent on their structure and chain conformation. The characteristic functional groups and primary structure directly determine the strength of activity. However, the relationship between structure and function is still unclear, and the target and mechanism of action are not fully understood, resulting in limited clinical applications. As a result, the clinical applications of these polysaccharides are currently limited. This review provides a comprehensive summary of the extraction methods, structures, and biological activities of animal-derived polysaccharides that have been discovered so far. The aim is to promote developments in animal active polysaccharide science and provide theoretical support for exploring other unknown natural products. Full article
Show Figures

Figure 1

21 pages, 5839 KiB  
Article
Porcine Intestinal Mucosal Peptides Target Macrophage-Modulated Inflammation and Alleviate Intestinal Homeostasis in Dextrose Sodium Sulfate-Induced Colitis in Mice
by Yucong Wang, Zhixin Xie, Xiaolong Wu, Lei Du, Zhengchen Chong, Rongxu Liu and Jianchun Han
Foods 2024, 13(1), 162; https://doi.org/10.3390/foods13010162 - 3 Jan 2024
Cited by 1 | Viewed by 2910
Abstract
Porcine intestinal mucosal proteins are novel animal proteins that contain large amounts of free amino acids and peptides. Although porcine intestinal mucosal proteins are widely used in animal nutrition, the peptide bioactivities of their enzymatic products are not yet fully understood. In the [...] Read more.
Porcine intestinal mucosal proteins are novel animal proteins that contain large amounts of free amino acids and peptides. Although porcine intestinal mucosal proteins are widely used in animal nutrition, the peptide bioactivities of their enzymatic products are not yet fully understood. In the present study, we investigated the effect of porcine intestinal mucosal peptides (PIMP) on the RAW264.7 cell model of LPS-induced inflammation. The mRNA expression of inflammatory factors (interleukin 6, tumor necrosis factor-α, and interleukin-1β) and nitrous oxide levels were all measured by quantitative real-time PCR and cyclooxygenase-2 protein expression measured by Western blot. To investigate the modulating effect of PIMP and to establish a model of dextran sodium sulfate (DSS)-induced colitis in mice, we examined the effects of hematoxylin-eosin staining, myeloperoxidase levels, pro-inflammatory factor mRNA content, tight junction protein expression, and changes in intestinal flora. Nuclear factor κB pathway protein levels were also assessed by Western blot. PIMP has been shown in vitro to control inflammatory responses and prevent the activation of key associated signaling pathways. PIMP at doses of 100 and 400 mg/kg/day also alleviated intestinal inflammatory responses, reduced tissue damage caused by DSS, and improved intestinal barrier function. In addition, PIMP at 400 mg/kg/day successfully repaired the dysregulated gut microbiota and increased short-chain fatty acid levels. These findings suggest that PIMP may positively influence inflammatory responses and alleviate colitis. This study is the first to demonstrate the potential of PIMP as a functional food for the prevention and treatment of colitis. Full article
Show Figures

Figure 1

15 pages, 4189 KiB  
Article
Tapioca Starch Improves the Quality of Virgatus nemipterus Surimi Gel by Enhancing Molecular Interaction in the Gel System
by Xiaobing Huang, Qingguan Liu, Pengkai Wang, Chunyong Song, Huanta Ma, Pengzhi Hong and Chunxia Zhou
Foods 2024, 13(1), 169; https://doi.org/10.3390/foods13010169 - 3 Jan 2024
Cited by 5 | Viewed by 1791
Abstract
The gel prepared using Nemipterus virgatus (N. virgatus) surimi alone still has some defects in texture and taste. Complexing with polysaccharides is an efficient strategy to enhance its gel properties. The main objective of this study was to analyze the relationship [...] Read more.
The gel prepared using Nemipterus virgatus (N. virgatus) surimi alone still has some defects in texture and taste. Complexing with polysaccharides is an efficient strategy to enhance its gel properties. The main objective of this study was to analyze the relationship between the gel quality and molecular interaction of N. virgatus surimi gel after complexing with tapioca starch. The results make clear that the gel strength, hardness, and chewiness of surimi gel were increased by molecular interaction with tapioca starch. At the appropriate addition amount (12%, w/w), the surimi gel had an excellent gel strength (17.48 N), water-holding capacity (WHC) (89.01%), lower cooking loss rate (CLR) (0.95%), and shortened T2 relaxation time. Microstructure analysis indicated that the addition of tapioca starch facilitated even distribution in the gel network structure, resulting in a significant reduction in cavity diameter, with the minimum diameter reduced to 20.33 μm. In addition, tapioca starch enhanced the hydrogen bonding and hydrophobic interaction in the gel system and promoted the transformation of α-helix to β-sheet (p < 0.05). Correlation analysis showed that the increased physicochemical properties of surimi gel were closely related to the enhanced noncovalent interactions. In conclusion, noncovalent complexation with tapioca starch is an efficient strategy to enhance the quality of surimi gel. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Graphical abstract

17 pages, 1385 KiB  
Article
Shelf-Life Enhancement Applying Pulsed Electric Field and High-Pressure Treatments Prior to Osmotic Dehydration of Fresh-Cut Potatoes
by Maria Katsouli, Efimia Dermesonlouoglou, George Dimopoulos, Eleftheria Karafantalou, Maria Giannakourou and Petros Taoukis
Foods 2024, 13(1), 171; https://doi.org/10.3390/foods13010171 - 3 Jan 2024
Cited by 1 | Viewed by 1649
Abstract
From a quality standpoint, it is desirable to preserve the characteristics of fresh-cut potatoes at their peak. However, due to the mechanical tissue damage during the cutting process, potatoes are susceptible to enzymatic browning. This study pertains to the selection of the appropriate [...] Read more.
From a quality standpoint, it is desirable to preserve the characteristics of fresh-cut potatoes at their peak. However, due to the mechanical tissue damage during the cutting process, potatoes are susceptible to enzymatic browning. This study pertains to the selection of the appropriate osmotic dehydration (OD), high pressure (HP), and pulsed electric fields (PEF) processing conditions leading to effective quality retention of potato cuts. PEF (0.5 kV/cm, 200 pulses) or HP (400 MPa, 1 min) treatments prior to OD (35 °C, 120 min) were found to promote the retention of the overall quality (texture and color) of the samples. The incorporation of anti-browning agents (ascorbic acid and papain) into the osmotic solution improved the color retention, especially when combined with PEF or HP due to increased solid uptake (during OD) as indicated by DEI index (2.30, 1.93, and 2.10 for OD treated 120 min, non-pre-treated, HP pre-treated, and PEF pre-treated samples, respectively). PEF and HP combined with OD and anti-browning agent enrichment are sought to improve the quality and microbial stability of fresh-cut potatoes during refrigerator storage. Untreated fresh-cut potatoes were characterized by color degradation from the 2nd day of storage at 4 °C, and presented microbial growth (total viable counts: 6 log (CFU)/g) at day 6, whereas pre-treated potato samples retained their color and microbiologically stability after 6 days of cold storage (total viable counts, <4 log(CFU)/g). Full article
(This article belongs to the Special Issue The Application of Hurdle Technology in Extending Food Shelf Life)
Show Figures

Figure 1

17 pages, 3074 KiB  
Article
Nanoliposome-Mediated Encapsulation of Chlorella Oil for the Development of a Controlled-Release Lipid-Lowering Formulation
by Lanlan Tu, Jihao Zeng, Xue Bai, Ziyun Wu, Jinhong Wu and Shannan Xu
Foods 2024, 13(1), 158; https://doi.org/10.3390/foods13010158 - 2 Jan 2024
Cited by 2 | Viewed by 1285
Abstract
Chlorella oil nanoliposomes (CO-NLP) were synthesized through ultrasonic injection with ethanol, and their physicochemical properties and hypolipidemic efficacy were systematically investigated. The results revealed that the mean particle size of CO-NLP was 86.90 nm and the encapsulation efficiency (EE) was 92.84%. Storage conditions [...] Read more.
Chlorella oil nanoliposomes (CO-NLP) were synthesized through ultrasonic injection with ethanol, and their physicochemical properties and hypolipidemic efficacy were systematically investigated. The results revealed that the mean particle size of CO-NLP was 86.90 nm and the encapsulation efficiency (EE) was 92.84%. Storage conditions at 4 °C were conducive to the stability of CO-NLP, maintaining an EE of approximately 90% even after 10 days of storage. The release profile of CO-NLP adhered more closely to the first-order kinetic model during in vitro assessments, exhibiting a slower release rate compared to free microalgae oil. In simulated in vitro digestion experiments, lipolytic reactions of CO-NLP were observed during intestinal digestion subsequent to nanoliposome administration. Notably, the inhibitory effect of CO-NLP on cholesterol esterase activity was measured at 85.42%. Additionally, the average fluorescence intensity of nematodes in the CO-NLP group was 52.17% lower than in the control group at a CO-NLP concentration of 500 μg/mL, which suggests a pronounced lipid-lowering effect of CO-NLP. Therefore, the CO-NLP exhibited characteristics of small and uniform particle size, elevated storage stability, gradual release during intestinal digestion, and a noteworthy hypolipidemic effect. These findings designate CO-NLP as a novel lipid-lowering active product, demonstrating potential for the development of functional foods. Full article
Show Figures

Figure 1

19 pages, 1142 KiB  
Review
Research Progress for Probiotics Regulating Intestinal Flora to Improve Functional Dyspepsia: A Review
by Xinyu Shen, Aijun Xie, Zijing Li, Chengxi Jiang, Jiaqi Wu, Mohan Li and Xiqing Yue
Foods 2024, 13(1), 151; https://doi.org/10.3390/foods13010151 - 2 Jan 2024
Cited by 16 | Viewed by 6168
Abstract
Functional dyspepsia (FD) is a common functional gastrointestinal disorder. The pathophysiology remains poorly understood; however, alterations in the small intestinal microbiome have been observed. Current treatments for FD with drugs are limited, and there are certain safety problems. A class of active probiotic [...] Read more.
Functional dyspepsia (FD) is a common functional gastrointestinal disorder. The pathophysiology remains poorly understood; however, alterations in the small intestinal microbiome have been observed. Current treatments for FD with drugs are limited, and there are certain safety problems. A class of active probiotic bacteria can control gastrointestinal homeostasis, nutritional digestion and absorption, and the energy balance when taken in certain dosages. Probiotics play many roles in maintaining intestinal microecological balance, improving the intestinal barrier function, and regulating the immune response. The presence and composition of intestinal microorganisms play a vital role in the onset and progression of FD and serve as a critical factor for both regulation and potential intervention regarding the management of this condition. Thus, there are potential advantages to alleviating FD by regulating the intestinal flora using probiotics, targeting intestinal microorganisms. This review summarizes the research progress of probiotics regarding improving FD by regulating intestinal flora and provides a reference basis for probiotics to improve FD. Full article
(This article belongs to the Special Issue Current Research on Probiotics and Fermented Products)
Show Figures

Figure 1

16 pages, 314 KiB  
Article
Integral Use of Red Wine Pomace after Hydrostatic High Pressure: Application of Two Consecutive Cycles of Treatment
by Matilde D’Arrigo, Jonathan Delgado-Adámez, Javier Rocha-Pimienta, M. Esperanza Valdés-Sánchez and M. Rosario Ramírez-Bernabé
Foods 2024, 13(1), 149; https://doi.org/10.3390/foods13010149 - 1 Jan 2024
Cited by 1 | Viewed by 1235
Abstract
The influence of applying hydrostatic high pressure (HHP) to red grape pomace cv. Tempranillo was studied to obtain an ingredient rich in bioactive compounds for the manufacture of food products. Four treatments were investigated: (i) 600 MPa/1 s; (ii) 600 MPa/300 s, and [...] Read more.
The influence of applying hydrostatic high pressure (HHP) to red grape pomace cv. Tempranillo was studied to obtain an ingredient rich in bioactive compounds for the manufacture of food products. Four treatments were investigated: (i) 600 MPa/1 s; (ii) 600 MPa/300 s, and other two treatments with 2 cycles of HHP: (iii) 2 cycles of 600 MPa/1 s; and (iv) 1 first cycle of 400 MPa/1 s and a second cycle 600 MPa/1 s. Treated pomace was stored at different temperatures (4 and 20 °C). The application of two consecutive cycles had no effect on the microorganisms’ inactivation compared to only one cycle. Immediately after HHP, the phenolic compounds content was maintained. However, HHP had no influence on the polyphenol oxidase enzyme (PPO), and so the phenolic compounds were significantly reduced during storage. Hence, the shelf-life of red grape pomace was significantly reduced at both temperatures, although phenolic compounds were better preserved under refrigeration than at room temperature. Full article
25 pages, 1035 KiB  
Review
A Review of Plant-Based Drinks Addressing Nutrients, Flavor, and Processing Technologies
by Aijun Xie, Yushi Dong, Zifei Liu, Zhiwei Li, Junhua Shao, Mohan Li and Xiqing Yue
Foods 2023, 12(21), 3952; https://doi.org/10.3390/foods12213952 - 29 Oct 2023
Cited by 24 | Viewed by 4829
Abstract
Plant-based drinks have garnered significant attention as viable substitutes for traditional dairy milk, providing options for individuals who are lactose intolerant or allergic to dairy proteins, and those who adhere to vegan or vegetarian diets. In recent years, demand for plant-based drinks has [...] Read more.
Plant-based drinks have garnered significant attention as viable substitutes for traditional dairy milk, providing options for individuals who are lactose intolerant or allergic to dairy proteins, and those who adhere to vegan or vegetarian diets. In recent years, demand for plant-based drinks has expanded rapidly. Each variety has unique characteristics in terms of flavor, texture, and nutritional composition, offering consumers a diverse range of choices tailored to meet individual preferences and dietary needs. In this review, we aimed to provide a comprehensive overview of the various types of plant-based drinks and explore potential considerations including their nutritional compositions, health benefits, and processing technologies, as well as the challenges facing the plant-based drink processing industry. We delve into scientific evidence supporting the consumption of plant-based drinks, discuss their potential roles in meeting dietary requirements, and address current limitations and concerns regarding their use. We hope to illuminate the growing significance of plant-based drinks as sustainable and nutritious alternatives to dairy milk, and assist individuals in making informed choices regarding their dietary habits, expanding potential applications for plant-based drinks, and providing necessary theoretical and technical support for the development of a plant-based drink processing industry. Full article
(This article belongs to the Special Issue Current Research on Probiotics and Fermented Products)
Show Figures

Figure 1

21 pages, 404 KiB  
Review
Microplastics, a Global Issue: Human Exposure through Environmental and Dietary Sources
by Lucrezia Borriello, Marcello Scivicco, Nunzio Antonio Cacciola, Francesco Esposito, Lorella Severino and Teresa Cirillo
Foods 2023, 12(18), 3396; https://doi.org/10.3390/foods12183396 - 11 Sep 2023
Cited by 12 | Viewed by 4816
Abstract
Plastic production has grown dramatically over the years. Microplastics (MPs) are formed from the fragmentation of larger plastic debris by combining chemical, physical, and biological processes and can degrade further to form nanoplastics (NPs). Because of their size, MPs and NPs are bioavailable [...] Read more.
Plastic production has grown dramatically over the years. Microplastics (MPs) are formed from the fragmentation of larger plastic debris by combining chemical, physical, and biological processes and can degrade further to form nanoplastics (NPs). Because of their size, MPs and NPs are bioavailable to many organisms and can reach humans through transport along the food chain. In addition to the risk from ingesting MPs themselves, there are risks associated with the substances they carry, such as pesticides, pathogenic microorganisms, and heavy metals, and with the additives added to plastics to improve their characteristics. In addition, bioaccumulation and biomagnification can cause a cumulative exposure effect for organisms at the top of the food chain and humans. Despite the growing scientific interest in this emerging contaminant, the potential adverse effects remain unclear. The aim of this review is to summarize the characteristics (size, shape, color, and properties) of MPs in the environment, the primary sources, and the transport pathways in various environmental compartments, and to shed more light on the ecological impact of MPs and the potential health effects on organisms and humans by identifying human exposure pathways. Full article
(This article belongs to the Special Issue Risk Assessment of Microbiological and Chemical Hazards in Foods)
22 pages, 2237 KiB  
Review
Heavy Metals in Foods and Beverages: Global Situation, Health Risks and Reduction Methods
by Elena Cristina Scutarașu and Lucia Carmen Trincă
Foods 2023, 12(18), 3340; https://doi.org/10.3390/foods12183340 - 6 Sep 2023
Cited by 27 | Viewed by 8699
Abstract
Heavy metals are chemical elements with a toxic effect on the human body. The expansion of industries has led to significant increasing levels of these constituents in the environment. Intensive agriculture can also lead to an increased concentration of heavy metals as a [...] Read more.
Heavy metals are chemical elements with a toxic effect on the human body. The expansion of industries has led to significant increasing levels of these constituents in the environment. Intensive agriculture can also lead to an increased concentration of heavy metals as a result of using different fertilizers and pesticides. Heavy metal accumulation in soil and plants represents a serious issue because of the potential risks to consumers. There are several methods available for the removal of these toxic components from different substrates (chemical precipitation, electrodialysis, coagulation and flocculation, photocatalytic removal, and adsorption-based processes), but most procedures are expensive and difficult to perform. Thus, more research is needed on the development of low-cost methods in foods. This work represents a review on the heavy metal presence in different food substrates (such as fruits and vegetables, milk and dairy products, meat and meat derivatives, oils, and alcoholic beverages) and provides an overview of the current situation worldwide, taking into account the fact that risks for human health are induced by the intensification of industry and the high degree of pollution. Considering that the toxicological quality of food affects its acceptability, this work provides valuable data regarding the actual situation on the proposed topic. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

23 pages, 793 KiB  
Review
Edible Coatings and Future Trends in Active Food Packaging–Fruits’ and Traditional Sausages’ Shelf Life Increasing
by Catarina Nunes, Mafalda Silva, Diana Farinha, Hélia Sales, Rita Pontes and João Nunes
Foods 2023, 12(17), 3308; https://doi.org/10.3390/foods12173308 - 2 Sep 2023
Cited by 25 | Viewed by 7802
Abstract
The global food production industry faces environmental concerns exacerbated by substantial food waste. European countries are striving to reduce food waste towards a circular bioeconomy and sustainable development. To address environmental issues and reduce plastic waste, researchers are developing sustainable active packaging systems, [...] Read more.
The global food production industry faces environmental concerns exacerbated by substantial food waste. European countries are striving to reduce food waste towards a circular bioeconomy and sustainable development. To address environmental issues and reduce plastic waste, researchers are developing sustainable active packaging systems, including edible packaging made from industry residues. These innovations aim to increase food safety and quality, extend shelf life, and reduce plastic and food waste. Particularly important in the context of the growing demand for fresh and minimally processed fruits, edible coatings have emerged as a potential solution that offers numerous advantages in maintaining fruit quality. In addition to fruit, edible coatings have also been investigated for animal-based foods to meet the demand for high-quality, chemical-free food and extended shelf life. These products globally consumed can be susceptible to the growth of harmful microorganisms and spoilage. One of the main advantages of using edible coatings is their ability to preserve meat quality and freshness by reducing undesirable physicochemical changes, such as color, texture, and moisture loss. Furthermore, edible coatings also contribute to the development of a circular bioeconomy, promoting sustainability in the food industry. This paper reviews the antimicrobial edible coatings investigated in recent years in minimally processed fruits and traditional sausages. It also approaches bionanocomposites as a recently emerged technology with potential application in food quality and safety. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

18 pages, 6342 KiB  
Article
Influence of Flow Rate, Particle Size, and Temperature on Espresso Extraction Kinetics
by Benedikt K. L. Schmieder, Verena B. Pannusch, Lara Vannieuwenhuyse, Heiko Briesen and Mirjana Minceva
Foods 2023, 12(15), 2871; https://doi.org/10.3390/foods12152871 - 28 Jul 2023
Cited by 4 | Viewed by 4055
Abstract
Brewing espresso coffee (EC) is considered a craft and, by some, even an art. Therefore, in this study, we systematically investigated the influence of coffee grinding, water flow rate, and temperature on the extraction kinetics of representative EC components, employing a central composite [...] Read more.
Brewing espresso coffee (EC) is considered a craft and, by some, even an art. Therefore, in this study, we systematically investigated the influence of coffee grinding, water flow rate, and temperature on the extraction kinetics of representative EC components, employing a central composite experimental design. The extraction kinetics of trigonelline, caffeine, 5-caffeoylquinic acid (5-CQA), and Total Dissolved Solids (TDS) were determined by collecting and analyzing ten consecutive fractions during the EC brewing process. From the extraction kinetics, the component masses in the cup were calculated for Ristretto, Espresso, and Espresso Lungo. The analysis of the studied parameters revealed that flow rate had the strongest effect on the component mass in the cup. The intensity of the flow rate influence was more pronounced at finer grindings and higher water temperatures. Overall, the observed influences were minor compared to changes resulting from differences in total extracted EC mass. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

30 pages, 1079 KiB  
Review
Algal Carotenoids: Chemistry, Sources, and Application
by Ivana Generalić Mekinić, Vida Šimat, Nikheel Bhojraj Rathod, Imen Hamed and Martina Čagalj
Foods 2023, 12(14), 2768; https://doi.org/10.3390/foods12142768 - 20 Jul 2023
Cited by 22 | Viewed by 4723
Abstract
Recently, the isolation and identification of various biologically active secondary metabolites from algae have been of scientific interest, with particular attention paid to carotenoids, widely distributed in various photosynthetic organisms, including algal species. Carotenoids are among the most important natural pigments, with many [...] Read more.
Recently, the isolation and identification of various biologically active secondary metabolites from algae have been of scientific interest, with particular attention paid to carotenoids, widely distributed in various photosynthetic organisms, including algal species. Carotenoids are among the most important natural pigments, with many health-promoting effects. Since the number of scientific studies on the presence and profile of carotenoids in algae has increased exponentially along with the interest in their potential commercial applications, this review aimed to provide an overview of the current knowledge (from 2015) on carotenoids detected in different algal species (12 microalgae, 21 green algae, 26 brown algae, and 43 red algae) to facilitate the comparison of the results of different studies. In addition to the presence, content, and identification of total and individual carotenoids in various algae, the method of their extraction and the main extraction parameters were also highlighted. Full article
Show Figures

Graphical abstract

17 pages, 5163 KiB  
Article
Non-Destructive Detection of the Freshness of Air-Modified Mutton Based on Near-Infrared Spectroscopy
by Peilin Jin, Yifan Fu, Renzhong Niu, Qi Zhang, Mingyue Zhang, Zhigang Li and Xiaoshuan Zhang
Foods 2023, 12(14), 2756; https://doi.org/10.3390/foods12142756 - 20 Jul 2023
Cited by 25 | Viewed by 1639
Abstract
Monitoring and identifying the freshness levels of meat holds significant importance in the field of food safety as it directly relates to human dietary safety. Traditional packaging methods for lamb meat quality assessment present issues such as cumbersome operations and irreversible damage. This [...] Read more.
Monitoring and identifying the freshness levels of meat holds significant importance in the field of food safety as it directly relates to human dietary safety. Traditional packaging methods for lamb meat quality assessment present issues such as cumbersome operations and irreversible damage. This research proposes a quality assessment method for modified atmosphere packaging lamb meat using near-infrared spectroscopy and multi-parameter fusion. Fresh lamb meat quality is taken as the research subject, comparing various physicochemical indicators and near-infrared spectroscopic information under different temperatures (4 °C and 10 °C) and different modified atmosphere packaging combinations. Through precision parameter comparison, rebound and TVB-N values are selected as the modeling parameters. Six spectral preprocessing methods (multi-scatter calibration, MSC; standard normal variate transformation, SNV; normalization; Savitzky–Golay smoothing, SG; Savitzky–Golay 1 derivative, SG-1st; and Savitzky–Golay 2 derivative, SG-2nd), and three feature wavelength selection methods (competitive adaptive reweighted sampling, CARS; successive projections algorithm, SPA; and uninformative variable elimination, UVE) are compared. Partial least squares (PLS) and support vector machine (SVM) are used to construct prediction models for chilled fresh lamb meat quality. The results show that when rebound is used as a parameter, the SG-2nd-SPA-PLSR model has the highest accuracy, with a determination coefficient R2p of 0.94 for the prediction set. When TVB-N is used as a parameter, the MSC-UVE-SVM model has the highest accuracy, with an R2p of 0.95 for the prediction set. In conclusion, the use of near-infrared spectroscopic analysis enables rapid and non-destructive prediction and evaluation of lamb meat freshness, including its textural characteristics and TVB-N content under different modified atmosphere packaging. This study provides a theoretical basis and technical support for further encapsulating the models into portable devices and developing portable near-infrared spectrometers to rapidly determine lamb meat freshness. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

19 pages, 8645 KiB  
Article
Effect of Thermoresponsive Xyloglucan on the Bread-Making Properties and Preservation of Gluten-Free Rice-Flour Bread
by Keiko Fujii, Momomi Usui, Akiko Ohsuga and Michiko Tsuji
Foods 2023, 12(14), 2761; https://doi.org/10.3390/foods12142761 - 20 Jul 2023
Cited by 3 | Viewed by 1587
Abstract
This study clarified the effect of adding thermoresponsive xyloglucan on the bread-making properties and preservation of gluten-free rice-flour bread. The thickening polysaccharides used for preparing gluten-free rice-flour bread were modified tamarind gum (MTG; thermoresponsive xyloglucan), tamarind gum (TG), and xanthan gum (XT). The [...] Read more.
This study clarified the effect of adding thermoresponsive xyloglucan on the bread-making properties and preservation of gluten-free rice-flour bread. The thickening polysaccharides used for preparing gluten-free rice-flour bread were modified tamarind gum (MTG; thermoresponsive xyloglucan), tamarind gum (TG), and xanthan gum (XT). The mechanical properties of the added polysaccharide thickener solutions and bread dough, the mechanical properties and sensory characteristics of rice-flour bread, and the aging properties of rice-flour bread were measured. The results showed that the MTG solution exhibited solification at 40 °C and gelation below 40 °C, which affected the dynamic viscoelasticity of the dough. The addition of MTG to gluten-free rice-flour bread reduced the specific volume, increased the moisture content, and reduced the stress at 70% compression. Therefore, the bread with MTG added was soft, moist, and preferred over other those with other additives. In terms of preservation, the addition of 0.5–0.75% of polysaccharides inhibited the hardening and aging of beard with MTG added. This indicates that the addition of MTG at low concentrations is effective in preserving gluten-free rice-flour breads. We found that the thickening polysaccharides had to be added in appropriate concentrations to improve the bread-making properties and achieve the preferred effect. Full article
Show Figures

Figure 1

46 pages, 2758 KiB  
Review
Current Application of Advancing Spectroscopy Techniques in Food Analysis: Data Handling with Chemometric Approaches
by Mourad Kharbach, Mohammed Alaoui Mansouri, Mohammed Taabouz and Huiwen Yu
Foods 2023, 12(14), 2753; https://doi.org/10.3390/foods12142753 - 19 Jul 2023
Cited by 25 | Viewed by 8633
Abstract
In today’s era of increased food consumption, consumers have become more demanding in terms of safety and the quality of products they consume. As a result, food authorities are closely monitoring the food industry to ensure that products meet the required standards of [...] Read more.
In today’s era of increased food consumption, consumers have become more demanding in terms of safety and the quality of products they consume. As a result, food authorities are closely monitoring the food industry to ensure that products meet the required standards of quality. The analysis of food properties encompasses various aspects, including chemical and physical descriptions, sensory assessments, authenticity, traceability, processing, crop production, storage conditions, and microbial and contaminant levels. Traditionally, the analysis of food properties has relied on conventional analytical techniques. However, these methods often involve destructive processes, which are laborious, time-consuming, expensive, and environmentally harmful. In contrast, advanced spectroscopic techniques offer a promising alternative. Spectroscopic methods such as hyperspectral and multispectral imaging, NMR, Raman, IR, UV, visible, fluorescence, and X-ray-based methods provide rapid, non-destructive, cost-effective, and environmentally friendly means of food analysis. Nevertheless, interpreting spectroscopy data, whether in the form of signals (fingerprints) or images, can be complex without the assistance of statistical and innovative chemometric approaches. These approaches involve various steps such as pre-processing, exploratory analysis, variable selection, regression, classification, and data integration. They are essential for extracting relevant information and effectively handling the complexity of spectroscopic data. This review aims to address, discuss, and examine recent studies on advanced spectroscopic techniques and chemometric tools in the context of food product applications and analysis trends. Furthermore, it focuses on the practical aspects of spectral data handling, model construction, data interpretation, and the general utilization of statistical and chemometric methods for both qualitative and quantitative analysis. By exploring the advancements in spectroscopic techniques and their integration with chemometric tools, this review provides valuable insights into the potential applications and future directions of these analytical approaches in the food industry. It emphasizes the importance of efficient data handling, model development, and practical implementation of statistical and chemometric methods in the field of food analysis. Full article
Show Figures

Figure 1

18 pages, 1093 KiB  
Review
Climate Change—A Global Threat Resulting in Increasing Mycotoxin Occurrence
by Jovana Kos, Mislav Anić, Bojana Radić, Manuela Zadravec, Elizabet Janić Hajnal and Jelka Pleadin
Foods 2023, 12(14), 2704; https://doi.org/10.3390/foods12142704 - 14 Jul 2023
Cited by 30 | Viewed by 3583
Abstract
During the last decade, scientists have given increasingly frequent warnings about global warming, linking it to mycotoxin-producing moulds in various geographical regions across the world. In the future, more pronounced climate change could alter host resilience and host–pathogen interaction and have a significant [...] Read more.
During the last decade, scientists have given increasingly frequent warnings about global warming, linking it to mycotoxin-producing moulds in various geographical regions across the world. In the future, more pronounced climate change could alter host resilience and host–pathogen interaction and have a significant impact on the development of toxicogenic moulds and the production of their secondary metabolites, known as mycotoxins. The current climate attracts attention and calls for novel diagnostic tools and notions about the biological features of agricultural cultivars and toxicogenic moulds. Since European climate environments offer steadily rising opportunities for Aspergillus flavus growth, an increased risk of cereal contamination with highly toxic aflatoxins shall be witnessed in the future. On top of that, the profile (representation) of certain mycotoxigenic Fusarium species is changing ever more substantially, while the rise in frequency of Fusarium graminearum contamination, as a species which is able to produce several toxic mycotoxins, seen in northern and central Europe, is becoming a major concern. In the following paper, a high-quality approach to a preventative strategy is tailored to put a stop to the toxicogenic mould- and mycotoxin-induced contamination of foods and feeds in the foreseeable future. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

15 pages, 668 KiB  
Article
Enhancing the Nutritional Profile of Tenebrio molitor Using the Leaves of Moringa oleifera
by Konstantina Kotsou, Theodoros Chatzimitakos, Vassilis Athanasiadis, Eleni Bozinou, Christos I. Rumbos, Christos G. Athanassiou and Stavros I. Lalas
Foods 2023, 12(13), 2612; https://doi.org/10.3390/foods12132612 - 6 Jul 2023
Cited by 12 | Viewed by 2217
Abstract
Nowadays, more and more research is being carried out on various feeds of Tenebrio molitor larvae, in order to increase their nutritional value and render them a valuable component of the human diet. In this study, Moringa oleifera leaves were used in different [...] Read more.
Nowadays, more and more research is being carried out on various feeds of Tenebrio molitor larvae, in order to increase their nutritional value and render them a valuable component of the human diet. In this study, Moringa oleifera leaves were used in different proportions (up to 50%) to substitute wheat bran (the usually employed feed), in order to evaluate their effect on the growth and development of the larvae, as well as on their composition in crude protein, fat and fatty acids, ash, vitamins, and antioxidants. It was found that the addition of M. oleifera leaves in the feed had no negative impact on the development and survival of the insects, while an increase in their nutritional value was recorded. More specifically, an increase in the crude protein of up to 22.61% and vitamin C and A contents of up to 40.74% and 491.63%, respectively, was recorded. Therefore, the use of M. oleifera leaves as a feed additive is highly recommended for rearing T. molitor larvae to enhance the nutritional value of the insects. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Figure 1

15 pages, 2613 KiB  
Article
Physicochemical, Rheological, and Sensory Characteristics of Yogurt Fermented by Lactic Acid Bacteria with Probiotic Potential and Bioprotective Properties
by Ramize Hoxha, Yana Evstatieva and Dilyana Nikolova
Foods 2023, 12(13), 2552; https://doi.org/10.3390/foods12132552 - 29 Jun 2023
Cited by 8 | Viewed by 4273
Abstract
The applicability of two lactic acid bacterial strains with probiotic potential and bioprotective properties as additions in the starter culture in yogurt fermentation was examined. The studied strains, Lactobacillus delbrueckii subsp. bulgaricus KZM 2-11-3 and Lactiplantibacillus plantarum KC 5-12, inhibited the growth of [...] Read more.
The applicability of two lactic acid bacterial strains with probiotic potential and bioprotective properties as additions in the starter culture in yogurt fermentation was examined. The studied strains, Lactobacillus delbrueckii subsp. bulgaricus KZM 2-11-3 and Lactiplantibacillus plantarum KC 5-12, inhibited the growth of Kluyveromyces lactis, Kluyveromyces marxianus, and Saccharomyces cerevisiae. The strain L. delbrueckii subsp. bulgaricus KZM 2-11-3 directly inhibited Escherichia coli. The important characteristics for the quality of the yogurt product, such as physicochemical parameters during fermentation and storage, rheological characteristics, and sensory changes during the storage of samples were determined. The yogurt samples with the strains did not differ in most parameters from the control yogurt with the commercial starter. The added strains showed stable viability in the yogurt samples during storage. The yogurt sample with L. delbrueckii subsp. bulgaricus KZM 2-11-3 and the sample with both strains based on the total evaluation were very similar to the control yogurt with the commercial starter. Using these strains as probiotic supplements to enrich the starter cultures in yogurt production will contribute to developing new products with benefits to human health. Full article
Show Figures

Figure 1

23 pages, 1136 KiB  
Review
Nutritional Composition of Hass Avocado Pulp
by Nikki A. Ford, Paul Spagnuolo, Jana Kraft and Ella Bauer
Foods 2023, 12(13), 2516; https://doi.org/10.3390/foods12132516 - 28 Jun 2023
Cited by 11 | Viewed by 11237
Abstract
Avocados (Persea americana) are a unique fruit that can provide health benefits when included in a healthy diet. As health care moves towards precision health and targeted therapies or preventative medicine, it is critical to understand foods and their dietary components. [...] Read more.
Avocados (Persea americana) are a unique fruit that can provide health benefits when included in a healthy diet. As health care moves towards precision health and targeted therapies or preventative medicine, it is critical to understand foods and their dietary components. The nutritional composition and plant physiology of the Hass avocado is strikingly different from other fruits. This paper reviews the nutrient and bioactive composition of the edible portion of the Hass avocado (pulp) reported in the literature and from commercial lab analyses of the current market supply of fresh Hass avocados. These results provide comprehensive data on what nutrients and bioactives are in avocado and the quantity of these nutrients. We discuss the reasons for nutrient composition variations and review some potential health benefits of bioactive compounds found in Hass avocados. Full article
(This article belongs to the Special Issue Analysis of Nutrients and Contaminants in Foods)
Show Figures

Figure 1

24 pages, 1899 KiB  
Review
New Functional Foods with Cactus Components: Sustainable Perspectives and Future Trends
by Shênia Santos Monteiro, Raphael Lucas Almeida, Newton Carlos Santos, Emmanuel Moreira Pereira, Amanda Priscila Silva, Hugo Miguel Lisboa Oliveira and Matheus Augusto de Bittencourt Pasquali
Foods 2023, 12(13), 2494; https://doi.org/10.3390/foods12132494 - 27 Jun 2023
Cited by 12 | Viewed by 5874
Abstract
The growing interest in a healthy lifestyle has contributed to disseminating perspectives on more sustainable natural resource management. This review describes promising aspects of using cacti in the food industry, addressing sustainable, nutritional, and functional aspects of the plant’s production. Our study provides [...] Read more.
The growing interest in a healthy lifestyle has contributed to disseminating perspectives on more sustainable natural resource management. This review describes promising aspects of using cacti in the food industry, addressing sustainable, nutritional, and functional aspects of the plant’s production. Our study provides an overview of the potential of cacti for the food industry to encourage the sustainable cultivation of underutilized cactus species and their commercial exploitation. The commercial production of cacti has advantages over other agricultural practices by mitigating damage to ecosystems and encouraging migration to sustainable agriculture. The application of cactus ingredients in food development has been broad, whether in producing breads, jellies, gums, dyes, probiotics, and postbiotic and paraprobiotic foods. However, in the field of probiotic foods, future research should focus on technologies applied in processing and researching interactions between probiotics and raw materials to determine the functionality and bioactivity of products. Full article
(This article belongs to the Section Food Security and Sustainability)
Show Figures

Figure 1

16 pages, 4090 KiB  
Article
Optimization of Exopolysaccharide Produced by Lactobacillus plantarum R301 and Its Antioxidant and Anti-Inflammatory Activities
by Junyong Wang, Jing Zhang, Henan Guo, Qiang Cheng, Zaheer Abbas, Yucui Tong, Tiantian Yang, Yichen Zhou, Haosen Zhang, Xubiao Wei, Dayong Si and Rijun Zhang
Foods 2023, 12(13), 2481; https://doi.org/10.3390/foods12132481 - 25 Jun 2023
Cited by 10 | Viewed by 2579
Abstract
In this study, the yield of exopolysaccharide (EPS) from Lactobacillus plantarum R301 was optimized using a single-factor experiment and response surface methodology (RSM). After optimization, the EPS yield was increased with a fold-change of 0.85. The significant factors affecting EPS production, as determined [...] Read more.
In this study, the yield of exopolysaccharide (EPS) from Lactobacillus plantarum R301 was optimized using a single-factor experiment and response surface methodology (RSM). After optimization, the EPS yield was increased with a fold-change of 0.85. The significant factors affecting EPS production, as determined through a Plackett–Burman design and Central Composite Design (CCD), were MgSO4 concentration, initial pH, and inoculation size. The maximum yield was 97.85 mg/mL under the condition of 0.01% MgSO4, an initial pH 7.4, and 6.4% of the inoculation size. In addition, the EPS exhibited strong antioxidant activity, as demonstrated by its ability to scavenge DPPH, ABTS, and hydroxyl radicals. The scavenging rate was up to 100% at concentrations of 4 mg/mL, 1 mg/mL, and 2 mg/mL, respectively. Moreover, the EPS also exhibited reducing power, which was about 30% that of ascorbic acid when both tended to be stable with the increased concentration. These results suggest that L. plantarum R301 EPS possesses different antioxidant mechanisms and warrants further investigation. In addition to its antioxidant activity, the EPS also demonstrated good anti-inflammatory activity by inhibiting the inflammation induced by lipopolysaccharide (LPS) in RAW 264.7 cells, which could decrease nitric oxide (NO) production and expression of the proinflammatory cytokine Il-6. These findings suggest that L. plantarum R301 EPS could be used as a potential multifunctional food additive in the food industry. Full article
Show Figures

Figure 1

16 pages, 2715 KiB  
Article
A Multimethodological Approach for the Chemical Characterization of Edible Insects: The Case Study of Acheta domesticus
by Mattia Spano, Giacomo Di Matteo, Carlos Alberto Fernandez Retamozo, Alba Lasalvia, Marco Ruggeri, Giuseppina Sandri, Carlos Cordeiro, Marta Sousa Silva, Carlotta Totaro Fila, Stefania Garzoli, Maria Elisa Crestoni and Luisa Mannina
Foods 2023, 12(12), 2331; https://doi.org/10.3390/foods12122331 - 9 Jun 2023
Cited by 11 | Viewed by 1970
Abstract
Acheta domesticus (house cricket) has been recently introduced into the official European list of novel foods, representing an alternative and sustainable food source. Up to now, the chemical characterization of this edible insect has been focused only on specific classes of compounds. Here, [...] Read more.
Acheta domesticus (house cricket) has been recently introduced into the official European list of novel foods, representing an alternative and sustainable food source. Up to now, the chemical characterization of this edible insect has been focused only on specific classes of compounds. Here, three production batches of an A. domesticus powder were investigated by means of a multimethodological approach based on NMR, FT-ICR MS, and GC-MS methodologies. The applied analytical protocol, proposed for the first time in the study of an edible insect, allowed us to identify and quantify compounds not previously reported in crickets. In particular, methyl-branched hydrocarbons, previously identified in other insects, together with other compounds such as citrulline, formate, γ-terpinene, p-cymene, α-thujene, β-thujene, and 4-carene were detected. Amino acids, organic acids, and fatty acids were also identified and quantified. The improved knowledge of the chemical profile of this novel food opens new horizons both for the use of crickets as a food ingredient and for the use of extracts for the production of new formulations. In order to achieve this objective, studies regarding safety, biological activity, bioaccessibility, and bioavailability are needed as future perspectives in this field. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Graphical abstract

18 pages, 3212 KiB  
Article
Dendrobium officinale Polysaccharide Prevents Diabetes via the Regulation of Gut Microbiota in Prediabetic Mice
by Haodong Liu, Yan Xing, Yinbo Wang, Xinxiu Ren, Danyang Zhang, Jianying Dai, Zhilong Xiu, Shiqiang Yu and Yuesheng Dong
Foods 2023, 12(12), 2310; https://doi.org/10.3390/foods12122310 - 8 Jun 2023
Cited by 13 | Viewed by 2187
Abstract
Dendrobium officinale polysaccharide (DOP), which serves as a prebiotic, exhibits a variety of biological activities, including hypoglycemic activities. However, the effects of DOP on diabetes prevention and its hypoglycemic mechanisms are still unclear. In this study, the effects of DOP treatment on the [...] Read more.
Dendrobium officinale polysaccharide (DOP), which serves as a prebiotic, exhibits a variety of biological activities, including hypoglycemic activities. However, the effects of DOP on diabetes prevention and its hypoglycemic mechanisms are still unclear. In this study, the effects of DOP treatment on the prediabetic mice model were studied and the mechanism was investigated. The results showed that 200 mg/kg/d of DOP reduced the relative risk of type 2 diabetes mellitus (T2DM) from prediabetes by 63.7%. Meanwhile, DOP decreased the level of LPS and inhibited the expression of TLR4 by regulating the composition of the gut microbiota, consequently relieving the inflammation and alleviating insulin resistance. In addition, DOP increased the abundance of SCFA (short chain fatty acid)-producing bacteria in the intestine, increased the levels of intestinal SCFAs, promoted the expression of short-chain fatty acid receptors FFAR2/FFAR3, and increased the secretion of the intestinal hormones GLP-1 and PYY, which helped to repair islet damage, suppress appetite, and improve insulin resistance. Our results suggested that DOP is a promising functional food supplement for the prevention of T2DM. Full article
Show Figures

Graphical abstract

19 pages, 3498 KiB  
Article
Towards a Better Understanding of Texturization during High-Moisture Extrusion (HME)—Part II: Characterization of Thermophysical Properties of High-Moisture Meat Analogues
by Elisabeth Högg and Cornelia Rauh
Foods 2023, 12(12), 2283; https://doi.org/10.3390/foods12122283 - 6 Jun 2023
Cited by 6 | Viewed by 1845
Abstract
It is crucial to determine the thermophysical properties of high-moisture extruded samples (HMESs) to properly understand the texturization process of high-moisture extrusion (HME), especially when the primary objective is the production of high-moisture meat analogues (HMMAs). Therefore, the study’s aim was to determine [...] Read more.
It is crucial to determine the thermophysical properties of high-moisture extruded samples (HMESs) to properly understand the texturization process of high-moisture extrusion (HME), especially when the primary objective is the production of high-moisture meat analogues (HMMAs). Therefore, the study’s aim was to determine thermophysical properties of high-moisture extruded samples made from soy protein concentrate (SPC ALPHA® 8 IP). Thermophysical properties such as the specific heat capacity and the apparent density were experimentally determined and further investigated to obtain simple prediction models. These models were compared to non-HME-based literature models, which were derived from high-moisture foods, such as soy-based and meat products (including fish). Furthermore, thermal conductivity and thermal diffusivity were calculated based on generic equations and literature models and showed a significant mutual influence. The combination of the experimental data and the applied simple prediction models resulted in a satisfying mathematical description of the thermophysical properties of the HME samples. The application of data-driven thermophysical property models could contribute to understanding the texturization effect during HME. Further, the gained knowledge could be applied for further understanding in related research, e.g., with numerical simulation studies of the HME process. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

19 pages, 1305 KiB  
Article
Impact of Starch Concentration on the Pasting and Rheological Properties of Gluten-Free Gels. Effects of Amylose Content and Thermal and Hydration Properties
by Raúl Ricardo Mauro, Antonio José Vela and Felicidad Ronda
Foods 2023, 12(12), 2281; https://doi.org/10.3390/foods12122281 - 6 Jun 2023
Cited by 9 | Viewed by 3205
Abstract
The pasting and rheological properties of starch gels from different botanical origins have been widely used to evaluate the application of these starches in pharmaceutical and food products. However, the ways in which these properties are modified by starch concentration and their dependence [...] Read more.
The pasting and rheological properties of starch gels from different botanical origins have been widely used to evaluate the application of these starches in pharmaceutical and food products. However, the ways in which these properties are modified by starch concentration and their dependence on amylose content and thermal and hydration properties have not been adequately established so far. An exhaustive study of the pasting and rheological properties of starch gels (maize and rice (normal and waxy in both cases), wheat, potato, and tapioca) at concentrations of 6.4, 7.8, 9.2, 10.6, and 11.9 g/100 g was performed. The results were evaluated in terms of a potential equation fit between each parameter and each gel concentration. The parameters determined for the gels at the studied concentrations were correlated with the hydration properties and thermal properties by applying principal component analysis (PCA). Wheat starch, followed by normal maize and normal rice starches, presented a greater capacity to modulate their gels’ pasting and viscoelastic properties via their concentration in water. On the contrary, the characteristics of waxy rice and maize, potato, and tapioca starches were barely modified by concentration in pasting assays, but the gels of potato and tapioca showed noticeable changes in their viscoelastic properties as functions of concentration. In the PCA plot, the non-waxy cereal samples (wheat, normal maize, and normal rice) were located close to each other. Wheat starch gels were the most dispersed on the graph, which is consistent with the high dependence on the concentration of the gel shown in most of the studied parameters. The waxy starches had close positions not too distant from those of the tapioca and potato samples and with little influence from amylose concentration. The potato and tapioca samples were close to the vectors of the crossover point in rheology and peak viscosity in their pasting properties. The knowledge gained from this work allows a better understanding of the effects of starch concentration on food formulations. Full article
(This article belongs to the Special Issue Gluten-Free Food and Celiac Disease)
Show Figures

Figure 1

32 pages, 1499 KiB  
Review
Sustainable Strategies for Increasing Legume Consumption: Culinary and Educational Approaches
by Isaac Amoah, Angela Ascione, Fares M. S. Muthanna, Alessandra Feraco, Elisabetta Camajani, Stefania Gorini, Andrea Armani, Massimiliano Caprio and Mauro Lombardo
Foods 2023, 12(11), 2265; https://doi.org/10.3390/foods12112265 - 4 Jun 2023
Cited by 14 | Viewed by 7688
Abstract
Legumes are nutrient-dense crops with health-promoting benefits. However, several barriers are associated with their consumption. Emerging issues including food neophobic tendencies or taboos, unclear dietary guidelines on legume consumption, health concerns, and socio-economic reasons, as well as long cooking procedures, adversely affect legume [...] Read more.
Legumes are nutrient-dense crops with health-promoting benefits. However, several barriers are associated with their consumption. Emerging issues including food neophobic tendencies or taboos, unclear dietary guidelines on legume consumption, health concerns, and socio-economic reasons, as well as long cooking procedures, adversely affect legume consumption frequency. Pre-treatment methods, including soaking, sprouting, and pulse electric field technology, are effective in reducing the alpha-oligosaccharides and other anti-nutritional factors, eventually lowering cooking time for legumes. Extrusion technology used for innovative development of legume-enriched products, including snacks, breakfast cereals and puffs, baking and pasta, represents a strategic way to promote legume consumption. Culinary skills such as legume salads, legume sprouts, stews, soups, hummus, and the development of homemade cake recipes using legume flour could represent effective ways to promote legume consumption. This review aims to highlight the nutritional and health effects associated with legume consumption, and strategies to improve their digestibility and nutritional profile. Additionally, proper educational and culinary approaches aimed to improve legumes intake are discussed. Full article
Show Figures

Graphical abstract

18 pages, 3717 KiB  
Article
The Effects of Synbiotics on Dextran-Sodium-Sulfate-Induced Acute Colitis: The Impact of Chitosan Oligosaccharides on Endogenous/Exogenous Lactiplantibacillus plantarum
by Yunjiao Zhao, Liangyu Xue, Shunqin Li, Tao Wu, Rui Liu, Wenjie Sui and Min Zhang
Foods 2023, 12(11), 2251; https://doi.org/10.3390/foods12112251 - 2 Jun 2023
Cited by 3 | Viewed by 1731
Abstract
In this work, Lactiplantibacillus plantarum (L. plantarum) isolated from mice feces (LP-M) and pickles (LP-P) were chosen as the endogenous and exogenous L. plantarum, respectively, which were separately combined with chitosan oligosaccharides (COS) to be synbiotics. The anti-inflammatory activity of [...] Read more.
In this work, Lactiplantibacillus plantarum (L. plantarum) isolated from mice feces (LP-M) and pickles (LP-P) were chosen as the endogenous and exogenous L. plantarum, respectively, which were separately combined with chitosan oligosaccharides (COS) to be synbiotics. The anti-inflammatory activity of LP-M, LP-P, COS, and the synbiotics was explored using dextran-sodium-sulfate (DSS)-induced acute colitis mice, as well as by comparing the synergistic effects of COS with LP-M or LP-P. The results revealed that L. plantarum, COS, and the synbiotics alleviated the symptoms of mice colitis and inhibited the changes in short-chain fatty acids (SCFAs), tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, IL-10, and myeloperoxidase (MPO) caused by DSS. In addition, the intervention of L. plantarum, COS, and the synbiotics increased the relative abundance of beneficial bacteria Muribaculaceae and Lactobacillus and suppressed the pathogenic bacteria Turicibacter and Escherichia-Shigella. There was no statistically difference between LP-M and the endogenous synbiotics on intestinal immunity and metabolism. However, the exogenous synbiotics improved SCFAs, inhibited the changes in cytokines and MPO activity, and restored the gut microbiota more effectively than exogenous L. plantarum LP-P. This indicated that the anti-inflammatory activity of exogenous LP-P can be increased by combining it with COS as a synbiotic. Full article
Show Figures

Figure 1

15 pages, 2093 KiB  
Article
Antilisterial and Antimicrobial Effect of Salvia officinalis Essential Oil in Beef Sous-Vide Meat during Storage
by Robert Gál, Natália Čmiková, Aneta Prokopová and Miroslava Kačániová
Foods 2023, 12(11), 2201; https://doi.org/10.3390/foods12112201 - 30 May 2023
Cited by 5 | Viewed by 1580
Abstract
If food is contaminated with pathogens such as Listeria monocytogenes, improper cooking during sous-vide preparation can lead to foodborne illnesses. In this study, it was found that L. monocytogenes were inactivated with both heat and the essential oil of Salvia officinalis (sage [...] Read more.
If food is contaminated with pathogens such as Listeria monocytogenes, improper cooking during sous-vide preparation can lead to foodborne illnesses. In this study, it was found that L. monocytogenes were inactivated with both heat and the essential oil of Salvia officinalis (sage EO) in beef tenderloin of the musculus psoas major that had undergone sous-vide processing. To determine whether the enhancement of the efficacy of heat treatment is prospective, L. monocytogenes and sage EO were mixed. Groups with L. monocytogenes alone and sage essential oil combined with L. monocytogenes and test groups without EO were established. The samples were vacuum-packed, inoculated with L. monocytogenes, and then cooked sous-vide for the predetermined duration at 50, 55, 60, or 65 °C. In both groups with sous-vide beef tenderloin, the total bacterial count, the coliforms bacterial count, and the amount of L. monocytogenes were assessed on days 0, 3, 6, 9, and 12. Over these days, the amounts of L. monocytogenes, coliform bacteria, and overall bacteria increased. The identification of bacterial strains in various days and categories was performed by MALDI-TOF mass spectrometry. The test group that was exposed to a temperature of 50 °C for 5 min had a higher overall bacterial count for each day that was assessed. Pseudomonas fragi and L. monocytogenes were the most isolated organisms from the test group and the treated group. To ensure the safety for the consumption of sous-vide beef tenderloin, it was found that the addition of natural antimicrobials could produce effective outcomes. Full article
Show Figures

Figure 1

23 pages, 1187 KiB  
Review
From Industrial Food Waste to Bioactive Ingredients: A Review on the Sustainable Management and Transformation of Plant-Derived Food Waste
by Yassine Jaouhari, F. Travaglia, L. Giovannelli, A. Picco, E. Oz, F. Oz and M. Bordiga
Foods 2023, 12(11), 2183; https://doi.org/10.3390/foods12112183 - 29 May 2023
Cited by 19 | Viewed by 4796
Abstract
According to the United Nations, approximately one-third of the food produced for human consumption is wasted. The actual linear “Take-Make-Dispose” model is nowadays obsolete and uneconomical for societies and the environment, while circular thinking in production systems and its effective adoption offers new [...] Read more.
According to the United Nations, approximately one-third of the food produced for human consumption is wasted. The actual linear “Take-Make-Dispose” model is nowadays obsolete and uneconomical for societies and the environment, while circular thinking in production systems and its effective adoption offers new opportunities and benefits. Following the “Waste Framework Directive” (2008/98/CE), the European Green Deal, and the actual Circular Economy Action Plan, when prevention is not possible, recovering an unavoidable food waste as a by-product represents a most promising pathway. Using last year’s by-products, which are rich in nutrients and bioactive compounds, such as dietary fiber, polyphenols, and peptides, offer a wake-up call to the nutraceutical and cosmetic industry to invest and develop value-added products generated from food waste ingredients. Full article
Show Figures

Figure 1

18 pages, 5555 KiB  
Article
Third-Generation Snacks Manufactured from Andean Tubers and Tuberous Root Flours: Microwave Expansion Kinetics and Characterization
by Liliana Acurio, Diego Salazar, Purificación García-Segovia, Javier Martínez-Monzó and Marta Igual
Foods 2023, 12(11), 2168; https://doi.org/10.3390/foods12112168 - 27 May 2023
Cited by 5 | Viewed by 2332
Abstract
Andean tubers and tuberous roots have nutritional and medicinal properties transferred through ancestral generations. In this study, we aim to promote cultivation and consumption by developing a snack based on these crops. Corn grits were thoroughly mixed with sweet potato, mashua, and three [...] Read more.
Andean tubers and tuberous roots have nutritional and medicinal properties transferred through ancestral generations. In this study, we aim to promote cultivation and consumption by developing a snack based on these crops. Corn grits were thoroughly mixed with sweet potato, mashua, and three varieties of oca flour (white, yellow, and red) in an 80:20 ratio, and a single-screw laboratory extruder was utilized to produce third-generation (3G) dried pellets. Microwave expansion was studied, and the dried 3G pellets and expanded snacks were characterized. The microwave expansion curves of the dried 3G pellets were adjusted to the Page, logarithmic, and Midilli–Kucuk models. During the characterization, the influence of the raw material composition was observed in sectional expansion, water content, water activity, water absorption, water solubility, swelling, optical and textural properties, and bioactive compounds. According to global color variation (mixture vs. expanded and dried vs. expanded) and bioactive compound analysis, the mashua suffered little chemical change or nutritional loss during the process. The extrusion process was shown to be an ideal method for manufacturing snacks from Andean tuber flours. Full article
Show Figures

Graphical abstract

14 pages, 3719 KiB  
Article
Effects of Drying Treatments on Nutritional Compositions, Volatile Flavor Compounds, and Bioactive Substances of Broad Beans
by Si Li, Fangwei Liu, Mulan Wu, Yuhao Li, Xiaoxiao Song and Junyi Yin
Foods 2023, 12(11), 2160; https://doi.org/10.3390/foods12112160 - 26 May 2023
Cited by 5 | Viewed by 2101
Abstract
In this study, different drying methods, including hot air drying, sun drying, and freeze drying were employed to dry fresh broad beans. The nutritional composition, volatile organic components and bioactive substances of the dried broad beans were systematically compared. The results indicated significant [...] Read more.
In this study, different drying methods, including hot air drying, sun drying, and freeze drying were employed to dry fresh broad beans. The nutritional composition, volatile organic components and bioactive substances of the dried broad beans were systematically compared. The results indicated significant differences (p < 0.05) in nutritional composition, such as protein and soluble sugar content. Among the 66 identified volatile organic compounds, freeze drying and hot air drying significantly promote the production of alcohols and aldehydes, while sun drying effectively preserves esters. In terms of bioactive substances, broad beans dried by freeze drying exhibit the highest total phenol content as well as the strongest antioxidant capacity and gallic acid, followed by sun drying. The chemometric analysis revealed that the bioactive compounds in broad beans dried by three different methods were primarily composed of flavonoids, organic acids, and amino acids with significant differentiation. Notably, freeze-dried and sun-dried broad beans exhibited a higher concentration of differential substances. Full article
Show Figures

Graphical abstract

19 pages, 3598 KiB  
Review
Meat Consumption, Sustainability and Alternatives: An Overview of Motives and Barriers
by Maria Font-i-Furnols
Foods 2023, 12(11), 2144; https://doi.org/10.3390/foods12112144 - 26 May 2023
Cited by 23 | Viewed by 9397
Abstract
Meat and meat products are important sources of protein in the human diet. However, their consumption or excessive consumption has been questioned as this has been related to sustainability and health issues. Due to this, alternatives to conventional meat consumption, such as meat [...] Read more.
Meat and meat products are important sources of protein in the human diet. However, their consumption or excessive consumption has been questioned as this has been related to sustainability and health issues. Due to this, alternatives to conventional meat consumption, such as meat produced more sustainably or meat alternatives, have been considered. The aim of the present work is to gain insight into the meat consumption of different countries, the motives for and barriers to this consumption, as well as into the consumption of more sustainably produced meat with particular focus on organic meat and meat alternatives. Information on meat consumption has been obtained using FAOSTAT data and maps have been constructed using SAS software. Results showed that, in general, albeit with variations between and within countries, there is a tendency to decrease red meat consumption and increase poultry consumption, while for pork consumption the tendency is less clear. Motives and barriers for meat and meat alternative consumption have been reviewed and it is possible to see that these are very variable and that they, in addition to the intrinsic and extrinsic characteristics of the meat, are also related to consumers’ attitudes and beliefs. Thus, it is important to inform consumers in a truthful and reliable way in order to allow them to make well-founded decisions regarding the consumption of these products. Full article
(This article belongs to the Special Issue Animal-Based Food Consumption - Trends and Perspectives)
Show Figures

Figure 1

17 pages, 3185 KiB  
Article
Optimization of Extraction Parameters for Enhanced Recovery of Bioactive Compounds from Quince Peels Using Response Surface Methodology
by Vassilis Athanasiadis, Theodoros Chatzimitakos, Eleni Bozinou, Konstantina Kotsou, Dimitrios Palaiogiannis and Stavros I. Lalas
Foods 2023, 12(11), 2099; https://doi.org/10.3390/foods12112099 - 23 May 2023
Cited by 10 | Viewed by 2125
Abstract
Quinces are well known for their multiple health benefits, including antioxidant, hypoglycemic, antimicrobial, anti-inflammatory, anticarcinogenic, etc., properties. Despite the widespread utilization of various plant parts, the peel has been largely ignored in the industry. In this study, we explored the effects of different [...] Read more.
Quinces are well known for their multiple health benefits, including antioxidant, hypoglycemic, antimicrobial, anti-inflammatory, anticarcinogenic, etc., properties. Despite the widespread utilization of various plant parts, the peel has been largely ignored in the industry. In this study, we explored the effects of different extraction parameters, such as temperature, time, and composition of the extraction solvent, and techniques such as ultrasound (US) and a pulsed electric field (PEF), either alone or in combination, and optimized these parameters using a response surface methodology (RSM) to enhance the extraction of bioactive compounds such as chlorogenic acid, total polyphenols, flavonoids, and ascorbic acid from waste quince peels. From our results, it was apparent that quince peels are a great source of many bioactive compounds with high antioxidant activity. More specifically, after principal component analysis (PCA) and partial least squares (PLS) analysis, quince peels contain high levels of total polyphenols (43.99 mg gallic acid equivalents/g dw), total flavonoids (3.86 mg rutin equivalents/g dw), chlorogenic acid (2.12 mg/g dw), and ascorbic acid (543.93 mg/100 g dw), as well as antioxidant activity of 627.73 μmol AAE/g and 699.61 μmol DPPH/g as evidenced by FRAP and DPPH assays, respectively. These results emphasize the potential of utilizing quince peels as an eco-friendly and cost-effective source of bioactive compounds with various applications in the food and pharmaceutical industries for the prepared extracts. Full article
Show Figures

Figure 1

16 pages, 7474 KiB  
Article
Application of Central Composite Design and Superimposition Approach for Optimization of Drying Parameters of Pretreated Cassava Flour
by Ellyas Alga Nainggolan, Jan Banout and Klara Urbanova
Foods 2023, 12(11), 2101; https://doi.org/10.3390/foods12112101 - 23 May 2023
Cited by 11 | Viewed by 2413
Abstract
The primary goals of this study were to identify the influence of temperature and drying time on pretreated cassava flour, as well as the optimal settings for the factors and to analyze the microstructure of cassava flour. The experiment was designed using the [...] Read more.
The primary goals of this study were to identify the influence of temperature and drying time on pretreated cassava flour, as well as the optimal settings for the factors and to analyze the microstructure of cassava flour. The experiment was designed using the response surface methodology with central composite design and the superimposition approach in order to assess the effect of drying temperature (45.85–74.14 °C) and drying time (3.96–11.03 h) and the optimal drying conditions of the cassava flour investigated. Soaking and blanching were applied as pretreatments to freshly sliced cassava tubers. The value moisture content of cassava flour was between 6.22% and 11.07%, whereas the observed whiteness index in cassava flour ranged from 72.62 to 92.67 in all pretreated cassava flour samples. Through analysis of variance, each drying factor, their interaction, and all squared terms had a substantial impact on moisture content and whiteness index. The optimized values for drying temperature and drying time for each pretreated cassava flour were 70 °C and 10 h, respectively. The microstructure showed a non-gelatinized, relatively homogeneous in size and shape sample with pretreatment soaked in distilled water at room temperature. These study results are relevant to the development of more sustainable cassava flour production. Full article
Show Figures

Figure 1

22 pages, 2606 KiB  
Article
Health-Aware Food Recommendation Based on Knowledge Graph and Multi-Task Learning
by Yi Chen, Yandi Guo, Qiuxu Fan, Qinghui Zhang and Yu Dong
Foods 2023, 12(10), 2079; https://doi.org/10.3390/foods12102079 - 22 May 2023
Cited by 9 | Viewed by 4008
Abstract
Current food recommender systems tend to prioritize either the user’s dietary preferences or the healthiness of the food, without considering the importance of personalized health requirements. To address this issue, we propose a novel approach to healthy food recommendations that takes into account [...] Read more.
Current food recommender systems tend to prioritize either the user’s dietary preferences or the healthiness of the food, without considering the importance of personalized health requirements. To address this issue, we propose a novel approach to healthy food recommendations that takes into account the user’s personalized health requirements, in addition to their dietary preferences. Our work comprises three perspectives. Firstly, we propose a collaborative recipe knowledge graph (CRKG) with millions of triplets, containing user–recipe interactions, recipe–ingredient associations, and other food-related information. Secondly, we define a score-based method for evaluating the healthiness match between recipes and user preferences. Based on these two prior perspectives, we develop a novel health-aware food recommendation model (FKGM) using knowledge graph embedding and multi-task learning. FKGM employs a knowledge-aware attention graph convolutional neural network to capture the semantic associations between users and recipes on the collaborative knowledge graph and learns the user’s requirements in both preference and health by fusing the losses of these two learning tasks. We conducted experiments to demonstrate that FKGM outperformed four competing baseline models in integrating users’ dietary preferences and personalized health requirements in food recommendations and performed best on the health task. Full article
(This article belongs to the Special Issue Applications of Artificial Intelligence in Food Industry)
Show Figures

Figure 1

15 pages, 2630 KiB  
Article
Formation, Structural Characterization, and Functional Properties of Corn Starch/Zeaxanthin Composites
by Songnan Li, Duo Feng, Enpeng Li and Robert G. Gilbert
Foods 2023, 12(10), 2076; https://doi.org/10.3390/foods12102076 - 22 May 2023
Cited by 5 | Viewed by 1584
Abstract
Zeaxanthin is a natural xanthophyll carotenoid and the main macular pigment that protects the macula from light-initiated oxidative damage, but it has poor stability and low bioavailability. Absorption of this active ingredient into starch granules as a carrier can be used to improve [...] Read more.
Zeaxanthin is a natural xanthophyll carotenoid and the main macular pigment that protects the macula from light-initiated oxidative damage, but it has poor stability and low bioavailability. Absorption of this active ingredient into starch granules as a carrier can be used to improve both zeaxanthin stability and controlled release. Optimization using three variables judged important for optimizing the system (reaction temperature of 65 °C, starch concentration of 6%, and reaction time of 2 h) was conducted for incorporation of zeaxanthin into corn starch granules, aiming for high zeaxanthin content (2.47 mg/g) and high encapsulation efficiency (74%). Polarized-light microscopy, X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopy showed that the process partially gelatinized corn starch; additionally, it showed the presence of corn starch/zeaxanthin composites, with the zeaxanthin successfully trapped in corn starch granules. The half-life time of zeaxanthin in corn starch/zeaxanthin composites increased to 43 days as compared with that of zeaxanthin alone (13 days). The composites show a rapid increase in zeaxanthin release with in vitro intestinal digestion, which is favorable for possible use in living systems. These findings could have application in designing effective starch-based carriers of this bioactive ingredient with enhanced storage stability and improved intestines-targeted controlled-release delivery. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

21 pages, 640 KiB  
Review
Addressing Clean Label Trends in Commercial Meat Processing: Strategies, Challenges and Insights from Consumer Perspectives
by Elena S. Inguglia, Zuo Song, Joseph P. Kerry, Maurice G. O’Sullivan and Ruth M. Hamill
Foods 2023, 12(10), 2062; https://doi.org/10.3390/foods12102062 - 20 May 2023
Cited by 17 | Viewed by 4265
Abstract
Background: The concept of a clean label is difficult to define, even in common language, as the interpretation of what a “clean” food is differs from one person to another and from one organisation to another. The lack of a unique definition and [...] Read more.
Background: The concept of a clean label is difficult to define, even in common language, as the interpretation of what a “clean” food is differs from one person to another and from one organisation to another. The lack of a unique definition and regulations of what the term “clean” means, along with the growing consumer demand for more “natural” and healthier foods, is posing new challenges for manufacturers and ingredient producers. The meat industry, in particular, has been affected by this new movement owing to negative attitudes and feelings consumers associate with consuming processed meat products. Scope and approach: The review scope is to describe attributes and associations around the “clean” label term by analysing the most recent ingredients, additives and processing methods currently available for meat manufacturers. Their application in meat, plant-based alternatives and hybrid meat/plant products, current limitations and challenges presented in consumer perception, safety and potential impacts on product quality are also presented. Key findings and conclusions: The availability of a growing number of “clean” label ingredients provides a new suite of approaches that are available for application by meat processors to help overcome some of the negative connotations associated with processed meat products and also support plant-based meat alternatives and hybrids. Full article
Show Figures

Figure 1

17 pages, 745 KiB  
Article
What Is the Value of a “Mountain Product” Claim? A Ranking Conjoint Experiment on Goat’s Milk Yoghurt
by Raffaele Zanchini, Giuseppe Di Vita, Luca Panzone and Filippo Brun
Foods 2023, 12(10), 2059; https://doi.org/10.3390/foods12102059 - 19 May 2023
Cited by 6 | Viewed by 1502
Abstract
Rural development is complex in marginal and disadvantaged areas, such as mountains, which impose high labour costs and restrict farmers in their choices of crop and livestock. To recognise this problem, the European Union regulates the use of the optional quality term “ [...] Read more.
Rural development is complex in marginal and disadvantaged areas, such as mountains, which impose high labour costs and restrict farmers in their choices of crop and livestock. To recognise this problem, the European Union regulates the use of the optional quality term “Mountain product” on the label. Consumers may recognise this label and be more willing to pay for it, resulting in higher revenues for producers using it. This study estimates the willingness to pay (WTP) for a mountain quality label. This WTP is then compared to that of functional and nutrition claims. For this purpose, we used a ranking conjoint experiment, using goat’s milk yoghurt—a typical mountain product—as a case study. Using a rank-ordered logit, we show that mountain quality labels generate a significant WTP, higher than that of functional claims. WTP differs by the demographic profile of the consumer. The study provided useful insights about the combination of the mountain quality label with different attributes. However, future studies are needed to adequately understand the potential of mountain certification as a supporting tool for farmers in marginal areas and for rural development. Full article
Show Figures

Figure 1

19 pages, 788 KiB  
Article
Exploring Factors and Impact of Blockchain Technology in the Food Supply Chains: An Exploratory Study
by Abubakar Mohammed, Vidyasagar Potdar and Mohammed Quaddus
Foods 2023, 12(10), 2052; https://doi.org/10.3390/foods12102052 - 19 May 2023
Cited by 8 | Viewed by 4711
Abstract
Blockchain technology (BCT) has been proven to have the potential to transform food supply chains (FSCs) based on its potential benefits. BCT promises to improve food supply chain processes. Despite its several benefits, little is known about the factors that drive blockchain adoption [...] Read more.
Blockchain technology (BCT) has been proven to have the potential to transform food supply chains (FSCs) based on its potential benefits. BCT promises to improve food supply chain processes. Despite its several benefits, little is known about the factors that drive blockchain adoption within the food supply chain and the impact of blockchain technology on the food supply chain, as empirical evidence is scarce. This study, therefore, explores factors, impacts and challenges of blockchain adoption in the FSC. The study adopts an exploratory qualitative interview approach. The data consist of Twenty-one interviews which were analyzed using thematic analysis techniques in NVivo (v12), resulting in identifying nine factors classified under three broad categories (Technology—complexity, compatibility, cost; Organization—organization size, knowledge; Environment—government support, competitive pressure, standardization, and compliance) as the most significant factors driving blockchain adoption in the FSC. In addition, five impacts were identified (visibility, performance, efficiency, trust, and value creation) to blockchain technology adoption. This study also identifies significant challenges of blockchain technology (interoperability, privacy, infrastructure conditions, and lack of knowledge). Based on the findings, the study developed a conceptual framework for blockchain adoption in food supply chains. The study adds to the corpus of knowledge by illuminating the adoption of blockchain technology and its effects on food supply chains and by giving the industry evidence-based guidance for developing its blockchain plans. The study provides full insights and awareness of blockchain adoption challenges among executives, supply chain organizations, and governmental agencies. Full article
(This article belongs to the Section Food Systems)
Show Figures

Figure 1

25 pages, 695 KiB  
Review
Pressurized Liquid Extraction: A Powerful Tool to Implement Extraction and Purification of Food Contaminants
by Laura Barp, Ana Miklavčič Višnjevec and Sabrina Moret
Foods 2023, 12(10), 2017; https://doi.org/10.3390/foods12102017 - 16 May 2023
Cited by 25 | Viewed by 6422
Abstract
Pressurized liquid extraction (PLE) is considered an advanced extraction technique developed in the mid-1990s with the aim of saving time and reducing solvent with respect to traditional extraction processes. It is commonly used with solid and semi-solid samples and employs solvent extraction at [...] Read more.
Pressurized liquid extraction (PLE) is considered an advanced extraction technique developed in the mid-1990s with the aim of saving time and reducing solvent with respect to traditional extraction processes. It is commonly used with solid and semi-solid samples and employs solvent extraction at elevated temperatures and pressures, always below the respective critical points, to maintain the solvent in a liquid state throughout the extraction procedure. The use of these particular pressure and temperature conditions changes the physicochemical properties of the extraction solvent, allowing easier and deeper penetration into the matrix to be extracted. Furthermore, the possibility to combine the extraction and clean-up steps by including a layer of an adsorbent retaining interfering compounds directly in the PLE extraction cells makes this technique extremely versatile and selective. After providing a background on the PLE technique and parameters to be optimized, the present review focuses on recent applications (published in the past 10 years) in the field of food contaminants. In particular, applications related to the extraction of environmental and processing contaminants, pesticides, residues of veterinary drugs, mycotoxins, parabens, ethyl carbamate, and fatty acid esters of 3-monochloro-1,2-propanediol and 2-monochloro-1,3-propanediol from different food matrices were considered. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

16 pages, 20735 KiB  
Article
Three-Dimensional Appearance and Physicochemical Properties of Pleurotus eryngii under Different Drying Methods
by Jun-Wen Bai, Yu-Chi Wang, Jian-Rong Cai, Lu Zhang, Yi Dai, Xiao-Yu Tian and Hong-Wei Xiao
Foods 2023, 12(10), 1999; https://doi.org/10.3390/foods12101999 - 15 May 2023
Cited by 11 | Viewed by 1467
Abstract
This study investigated the effects of different drying methods on the drying characteristics, three-dimensional (3D) appearance, color, total polysaccharide content (TPC), antioxidant activity, and microstructure of Pleurotus eryngii slices. The drying methods included hot air drying (HAD), infrared drying (ID), and microwave drying [...] Read more.
This study investigated the effects of different drying methods on the drying characteristics, three-dimensional (3D) appearance, color, total polysaccharide content (TPC), antioxidant activity, and microstructure of Pleurotus eryngii slices. The drying methods included hot air drying (HAD), infrared drying (ID), and microwave drying (MD). The results showed that the drying method and conditions significantly influenced the drying time, with MD having a significant advantage in reducing the drying time. The 3D appearance of P. eryngii slices was evaluated based on shrinkage and roughness as quantitative indexes, and the best appearance was obtained by hot air drying at 55 and 65 °C. HAD and ID at lower drying temperatures obtained better color, TPC, and antioxidant activity, but MD significantly damaged the color and nutritional quality of P. eryngii. The microstructure of dried P. eryngii slices was observed using scanning electron microscopy, and the results showed that drying methods and conditions had an obvious effect on the microstructure of P. eryngii slices. Scattered mycelia were clearly observed in P. eryngii samples dried by HAD and ID at lower drying temperatures, while high drying temperatures led to the cross-linking and aggregation of mycelia. This study offers scientific and technical support for choosing appropriate drying methods to achieve a desirable appearance and quality of dried P. eryngii. Full article
Show Figures

Figure 1

30 pages, 1776 KiB  
Review
Encapsulation of Bioactive Peptides by Spray-Drying and Electrospraying
by Carmen Berraquero-García, Raúl Pérez-Gálvez, F. Javier Espejo-Carpio, Antonio Guadix, Emilia M. Guadix and Pedro J. García-Moreno
Foods 2023, 12(10), 2005; https://doi.org/10.3390/foods12102005 - 15 May 2023
Cited by 12 | Viewed by 3321
Abstract
Bioactive peptides derived from enzymatic hydrolysis are gaining attention for the production of supplements, pharmaceutical compounds, and functional foods. However, their inclusion in oral delivery systems is constrained by their high susceptibility to degradation during human gastrointestinal digestion. Encapsulating techniques can be used [...] Read more.
Bioactive peptides derived from enzymatic hydrolysis are gaining attention for the production of supplements, pharmaceutical compounds, and functional foods. However, their inclusion in oral delivery systems is constrained by their high susceptibility to degradation during human gastrointestinal digestion. Encapsulating techniques can be used to stabilize functional ingredients, helping to maintain their activity after processing, storage, and digestion, thus improving their bioaccessibility. Monoaxial spray-drying and electrospraying are common and economical techniques used for the encapsulation of nutrients and bioactive compounds in both the pharmaceutical and food industries. Although less studied, the coaxial configuration of both techniques could potentially improve the stabilization of protein-based bioactives via the formation of shell–core structures. This article reviews the application of these techniques, both monoaxial and coaxial configurations, for the encapsulation of bioactive peptides and protein hydrolysates, focusing on the factors affecting the properties of the encapsulates, such as the formulation of the feed solution, selection of carrier and solvent, as well as the processing conditions used. Furthermore, this review covers the release, retention of bioactivity, and stability of peptide-loaded encapsulates after processing and digestion. Full article
Show Figures

Figure 1

18 pages, 1116 KiB  
Review
Improving the Sustainability of Processing By-Products: Extraction and Recent Biological Activities of Collagen Peptides
by Shumin Xu, Yuping Zhao, Wenshan Song, Chengpeng Zhang, Qiuting Wang, Ruimin Li, Yanyan Shen, Shunmin Gong, Mingbo Li and Leilei Sun
Foods 2023, 12(10), 1965; https://doi.org/10.3390/foods12101965 - 12 May 2023
Cited by 15 | Viewed by 3958
Abstract
Society and consumers are increasingly concerned about food safety and the sustainability of food production systems. A significant amount of by-products and discards are generated during the processing of aquatic animals, which still needs to be fully utilized by the food industry. The [...] Read more.
Society and consumers are increasingly concerned about food safety and the sustainability of food production systems. A significant amount of by-products and discards are generated during the processing of aquatic animals, which still needs to be fully utilized by the food industry. The management and sustainable use of these resources are essential to avoiding environmental pollution and resource waste. These by-products are rich in biologically active proteins, which can be converted into peptides by enzymatic hydrolysis or fermentation treatment. Therefore, exploring the extraction of collagen peptides from these by-products using an enzymatic hydrolysis technology has attracted a wide range of attention from numerous researchers. Collagen peptides have been found to possess multiple biological activities, including antioxidant, anticancer, antitumor, hypotensive, hypoglycemic, and anti-inflammatory properties. These properties can enhance the physiological functions of organisms and make collagen peptides useful as ingredients in food, pharmaceuticals, or cosmetics. This paper reviews the general methods for extracting collagen peptides from various processing by-products of aquatic animals, including fish skin, scales, bones, and offal. It also summarizes the functional activities of collagen peptides as well as their applications. Full article
Show Figures

Figure 1

17 pages, 1724 KiB  
Review
Current Technologies and Uses for Fruit and Vegetable Wastes in a Sustainable System: A Review
by Yingdan Zhu, Yueting Luan, Yingnan Zhao, Jiali Liu, Zhangqun Duan and Roger Ruan
Foods 2023, 12(10), 1949; https://doi.org/10.3390/foods12101949 - 11 May 2023
Cited by 19 | Viewed by 13303
Abstract
The fruit and vegetable industry produces millions of tons of residues, which can cause large economic losses. Fruit and vegetable wastes and by-products contain a large number of bioactive substances with functional ingredients that have antioxidant, antibacterial, and other properties. Current technologies can [...] Read more.
The fruit and vegetable industry produces millions of tons of residues, which can cause large economic losses. Fruit and vegetable wastes and by-products contain a large number of bioactive substances with functional ingredients that have antioxidant, antibacterial, and other properties. Current technologies can utilize fruit and vegetable waste and by-products as ingredients, food bioactive compounds, and biofuels. Traditional and commercial utilization in the food industry includes such technologies as microwave-assisted extraction (MAE), supercritical fluid extraction (SFE), ultrasonic-assisted extraction (UAE), and high hydrostatic pressure technique (HHP). Biorefinery methods for converting fruit and vegetable wastes into biofuels, such as anaerobic digestion (AD), fermentation, incineration, pyrolysis and gasification, and hydrothermal carbonization, are described. This study provides strategies for the processing of fruit and vegetable wastes using eco-friendly technologies and lays a foundation for the utilization of fruit and vegetable loss/waste and by-products in a sustainable system. Full article
Show Figures

Graphical abstract

48 pages, 7394 KiB  
Review
Analyzing the Quality Parameters of Apples by Spectroscopy from Vis/NIR to NIR Region: A Comprehensive Review
by Justyna Grabska, Krzysztof B. Beć, Nami Ueno and Christian W. Huck
Foods 2023, 12(10), 1946; https://doi.org/10.3390/foods12101946 - 10 May 2023
Cited by 20 | Viewed by 6624
Abstract
Spectroscopic methods deliver a valuable non-destructive analytical tool that provides simultaneous qualitative and quantitative characterization of various samples. Apples belong to the world’s most consumed crops and with the current challenges of climate change and human impacts on the environment, maintaining high-quality apple [...] Read more.
Spectroscopic methods deliver a valuable non-destructive analytical tool that provides simultaneous qualitative and quantitative characterization of various samples. Apples belong to the world’s most consumed crops and with the current challenges of climate change and human impacts on the environment, maintaining high-quality apple production has become critical. This review comprehensively analyzes the application of spectroscopy in near-infrared (NIR) and visible (Vis) regions, which not only show particular potential in evaluating the quality parameters of apples but also in optimizing their production and supply routines. This includes the assessment of the external and internal characteristics such as color, size, shape, surface defects, soluble solids content (SSC), total titratable acidity (TA), firmness, starch pattern index (SPI), total dry matter concentration (DM), and nutritional value. The review also summarizes various techniques and approaches used in Vis/NIR studies of apples, such as authenticity, origin, identification, adulteration, and quality control. Optical sensors and associated methods offer a wide suite of solutions readily addressing the main needs of the industry in practical routines as well, e.g., efficient sorting and grading of apples based on sweetness and other quality parameters, facilitating quality control throughout the production and supply chain. This review also evaluates ongoing development trends in the application of handheld and portable instruments operating in the Vis/NIR and NIR spectral regions for apple quality control. The use of these technologies can enhance apple crop quality, maintain competitiveness, and meet the demands of consumers, making them a crucial topic in the apple industry. The focal point of this review is placed on the literature published in the last five years, with the exceptions of seminal works that have played a critical role in shaping the field or representative studies that highlight the progress made in specific areas. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

17 pages, 3041 KiB  
Article
Hot-Air Drying Significantly Improves the Quality and Functional Activity of Orange Black Tea Compared with Traditional Sunlight Drying
by Zhi Yan, Zhihu Zhou, Yuanfang Jiao, Jiasheng Huang, Zhi Yu, De Zhang, Yuqiong Chen and Dejiang Ni
Foods 2023, 12(9), 1913; https://doi.org/10.3390/foods12091913 - 7 May 2023
Cited by 10 | Viewed by 2209
Abstract
The quality of traditional sunlight-dried orange black tea can be affected by weather variations, leading to its quality instability. This study investigated the feasibility of replacing sunlight drying with a new hot-air drying method in orange black tea production. The hot-air-dried orange black [...] Read more.
The quality of traditional sunlight-dried orange black tea can be affected by weather variations, leading to its quality instability. This study investigated the feasibility of replacing sunlight drying with a new hot-air drying method in orange black tea production. The hot-air-dried orange black tea showed better sensory quality than the traditional outdoor-sunlight-dried tea, with a harmonious fruity aroma and sweet–mellow taste. The content of polyphenols and other quality components in the peel and tea leaves was significantly higher after hot-air drying than after sunlight drying. GC-MS analysis showed that the total number of volatile components of hot-air-dried tea (3103.46 μg/g) was higher than that of sunlight-dried tea (3019.19 μg/g). Compared with sunlight-dried orange black tea, the hot-air-dried orange black tea showed higher total antioxidant capacity, with an increase of 21.5% (FRAP), 7.5% (DPPH), and 17.4% (ABTS), as well as an increase of 38.1% and 36.3% in the inhibitory capacity on α-glucosidase and α-amylase activities. Further analysis of the effects of different drying temperatures (40, 45, 50, and 60 °C) on the quality of orange black tea showed that the tea quality gradually decreased with the increase in drying temperature, with the most obvious decrease in the quality of orange black tea at the drying temperature of 60 °C. Low-temperature (40 °C) dried tea had better aroma coordination, higher fruit flavor, greater sweet–mellow taste, and higher retention of functional active substances in orange peel and black tea. In summary, compared with traditional sunlight drying, the hot-air drying method could reduce the drying time from 90 h to 20 h and improve the sensory quality and functional activity of orange black tea, suggesting it can replace the traditional sunlight drying process. This work is significant for improving the quality of orange black tea in practical production. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

18 pages, 1525 KiB  
Review
Metal Oxide Nanoparticles in Food Packaging and Their Influence on Human Health
by Mariana Stuparu-Cretu, Gheorghe Braniste, Gina-Aurora Necula, Silvius Stanciu, Dimitrie Stoica and Maricica Stoica
Foods 2023, 12(9), 1882; https://doi.org/10.3390/foods12091882 - 3 May 2023
Cited by 9 | Viewed by 3042
Abstract
It is a matter of common knowledge in the literature that engineered metal oxide nanoparticles have properties that are efficient for the design of innovative food/beverage packages. Although nanopackages have many benefits, there are circumstances when these materials are able to release nanoparticles [...] Read more.
It is a matter of common knowledge in the literature that engineered metal oxide nanoparticles have properties that are efficient for the design of innovative food/beverage packages. Although nanopackages have many benefits, there are circumstances when these materials are able to release nanoparticles into the food/beverage matrix. Once dispersed into food, engineered metal oxide nanoparticles travel through the gastrointestinal tract and subsequently enter human cells, where they display various behaviors influencing human health or wellbeing. This review article provides an insight into the antimicrobial mechanisms of metal oxide nanoparticles as essential for their benefits in food/beverage packaging and provides a discussion on the oral route of these nanoparticles from nanopackages to the human body. This contribution also highlights the potential toxicity of metal oxide nanoparticles for human health. The fact that only a small number of studies address the issue of food packaging based on engineered metal oxide nanoparticles should be particularly noted. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Graphical abstract

21 pages, 14216 KiB  
Review
Advances in the Potential Application of 3D Food Printing to Enhance Elderly Nutritional Dietary Intake
by Yisha Xie, Qingqing Liu, Wenwen Zhang, Feng Yang, Kangyu Zhao, Xiuping Dong, Sangeeta Prakash and Yongjun Yuan
Foods 2023, 12(9), 1842; https://doi.org/10.3390/foods12091842 - 28 Apr 2023
Cited by 19 | Viewed by 5649
Abstract
The contradiction between the growing demand from consumers for “nutrition & personalized” food and traditional industrialized food production has consistently been a problem in the elderly diet that researchers face and discuss. Three-dimensional (3D) food printing could potentially offer a solution to this [...] Read more.
The contradiction between the growing demand from consumers for “nutrition & personalized” food and traditional industrialized food production has consistently been a problem in the elderly diet that researchers face and discuss. Three-dimensional (3D) food printing could potentially offer a solution to this problem. This article reviews the recent research on 3D food printing, mainly including the use of different sources of protein to improve the performance of food ink printing, high internal phase emulsion or oleogels as a fat replacement and nutrition delivery system, and functional active ingredients and the nutrition delivery system. In our opinion, 3D food printing is crucial for improving the appetite and dietary intake of the elderly. The critical obstacles of 3D-printed food for the elderly regarding energy supplements, nutrition balance, and even the customization of the recipe in a meal are discussed in this paper. By combining big data and artificial intelligence technology with 3D food printing, comprehensive, personalized, and customized geriatric foods, according to the individual traits of each elderly consumer, will be realized via food raw materials-appearance-processing methods. This article provides a theoretical basis and development direction for future 3D food printing for the elderly. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

Back to TopTop