Molecular Mechanism of Microbial Heat Adaptation

A special issue of Microorganisms (ISSN 2076-2607). This special issue belongs to the section "Molecular Microbiology and Immunology".

Deadline for manuscript submissions: 28 February 2025 | Viewed by 1879

Special Issue Editor


E-Mail Website
Guest Editor
Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
Interests: microbial genomics; molecular networks; protein structures; temperature adaptation; gene regulation

Special Issue Information

Dear Colleagues,

Temperature is one of the most important factors for the survival of all living organisms. Microbes need sensing and defense mechanisms to adapt to changes in temperature. They adapt to high temperatures through a series of biological processes at the cellular and molecular levels. This Special Issue, “Molecular Mechanism of Microbial Heat Adaptation”, focuses on the molecular mechanisms of microbial heat adaptation, including the changes in nucleic acid structure and regulatory relationship, gene recombination, DNA damage repair, protein structural stability and metabolic adaptation to a high-temperature environment. We welcome researchers who conduct research related to the molecular mechanisms of microbial thermal adaptation to submit research papers or review articles to this Special Issue.

Prof. Dr. Binguang Ma
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Microorganisms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • microbial genomics
  • molecular networks
  • protein structures
  • temperature adaptation
  • gene regulation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 1273 KiB  
Article
Calorie Restriction Decreases Competitive Fitness in Saccharomyces cerevisiae Following Heat Stress
by Lucy Hill, Stéphane Guyot, Lucie Bertheau and Hazel Davey
Microorganisms 2024, 12(9), 1838; https://doi.org/10.3390/microorganisms12091838 - 5 Sep 2024
Viewed by 509
Abstract
Experiments exposing Saccharomyces cerevisiae to glucose limitation (calorie restriction) are widely used to determine impacts on cell health as a model for aging. Using growth on plates and in liquid culture, we demonstrated that calorie restriction reduces fitness in subsequent nutrient-limited environments. Yeast [...] Read more.
Experiments exposing Saccharomyces cerevisiae to glucose limitation (calorie restriction) are widely used to determine impacts on cell health as a model for aging. Using growth on plates and in liquid culture, we demonstrated that calorie restriction reduces fitness in subsequent nutrient-limited environments. Yeast grown in a calorie-restricted environment took longer to emerge from the lag phase, had an extended doubling time and had a lower percentage of culturability. Cells grown under moderate calorie restriction were able to withstand a gradual heat stress in a similar manner to cells grown without calorie restriction but fared less well with a sudden heat shock. Yeast grown under extreme calorie restriction were less fit when exposed to gradual heating or heat shock. Using RNAseq analysis, we provide novel insight into the mechanisms underlying this response, showing that in the absence of calorie restriction, genes whose products are involved in energy metabolism (glycolysis/gluconeogenesis and the citrate cycle) are predominantly overexpressed when yeasts were exposed to gradual heating, whereas this was not the case when they were exposed to shock. We show that both the culture history and the current environment must be considered when assaying physiological responses, and this has wider implications when developing strategies for the propagation, preservation or destruction of microbial cells. Full article
(This article belongs to the Special Issue Molecular Mechanism of Microbial Heat Adaptation)
Show Figures

Figure 1

14 pages, 27401 KiB  
Article
AfSwi6 Regulates the Stress Response, Chlamydospore Production, and Pathogenicity in the Nematode-Trapping Fungus Arthrobotrys flagrans
by Shao-Xiang Linghu, Yu Zhang, Jia-Fang Zuo, Ming-He Mo and Guo-Hong Li
Microorganisms 2024, 12(9), 1765; https://doi.org/10.3390/microorganisms12091765 - 26 Aug 2024
Viewed by 371
Abstract
Nematode-trapping (NT) fungi are a major resource for controlling parasitic nematodes. Arthrobotrys flagrans, as a typical NT fungus, can capture nematodes by producing three-dimensional nets. The APSES transcription factor Swi6 plays a vital role in fungal growth and the pathogenicity of pathogens. [...] Read more.
Nematode-trapping (NT) fungi are a major resource for controlling parasitic nematodes. Arthrobotrys flagrans, as a typical NT fungus, can capture nematodes by producing three-dimensional nets. The APSES transcription factor Swi6 plays a vital role in fungal growth and the pathogenicity of pathogens. In this study, we characterized AfSwi6 via gene disruption using the homologous recombinant method and transcriptome sequencing. Knockout of the AfSwi6 gene caused defects in mycelial growth, trap formation and pathogenicity, chlamydospore production, and stress response. Moreover, the transcriptome data indicated that AfSwi6 was related to DNA repair, stress response, and plasma membrane fusion. The result showed that AfSwi6 has a significant effect on trap development and chlamydospore production in A. flagrans. Full article
(This article belongs to the Special Issue Molecular Mechanism of Microbial Heat Adaptation)
Show Figures

Figure 1

16 pages, 4428 KiB  
Article
Spatial Chromosome Organization and Adaptation of Escherichia coli under Heat Stress
by Xu-Ting Wang and Bin-Guang Ma
Microorganisms 2024, 12(6), 1229; https://doi.org/10.3390/microorganisms12061229 - 19 Jun 2024
Viewed by 735
Abstract
The spatial organization of bacterial chromosomes is crucial for cellular functions. It remains unclear how bacterial chromosomes adapt to high-temperature stress. This study delves into the 3D genome architecture and transcriptomic responses of Escherichia coli under heat-stress conditions to unravel the intricate interplay [...] Read more.
The spatial organization of bacterial chromosomes is crucial for cellular functions. It remains unclear how bacterial chromosomes adapt to high-temperature stress. This study delves into the 3D genome architecture and transcriptomic responses of Escherichia coli under heat-stress conditions to unravel the intricate interplay between the chromosome structure and environmental cues. By examining the role of macrodomains, chromosome interaction domains (CIDs), and nucleoid-associated proteins (NAPs), this work unveils the dynamic changes in chromosome conformation and gene expression patterns induced by high-temperature stress. It was observed that, under heat stress, the short-range interaction frequency of the chromosomes decreased, while the long-range interaction frequency of the Ter macrodomain increased. Furthermore, two metrics, namely, Global Compactness (GC) and Local Compactness (LC), were devised to measure and compare the compactness of the chromosomes based on their 3D structure models. The findings in this work shed light on the molecular mechanisms underlying thermal adaptation and chromosomal organization in bacterial cells, offering valuable insights into the complex inter-relationships between environmental stimuli and genomic responses. Full article
(This article belongs to the Special Issue Molecular Mechanism of Microbial Heat Adaptation)
Show Figures

Figure 1

Back to TopTop