nutrients-logo

Journal Browser

Journal Browser

Phytonutrients in Inflammation and Metabolic Health

A special issue of Nutrients (ISSN 2072-6643). This special issue belongs to the section "Phytochemicals and Human Health".

Deadline for manuscript submissions: 15 December 2024 | Viewed by 4298

Special Issue Editor


E-Mail Website
Guest Editor
Department of Pharmacognosy, Poznan University of Medical Sciences, Rokietnicka 3 Street, Poznan, Poland
Interests: natural drugs; pharmacognosy; polyphenols; amorphous formulation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The aim of this Special Issue, “Phytonutrients in Inflammation and Metabolic Health”, is to focus on the importance of phytonutrients and other natural substances in diseases of civilization. Phytonutrients contain a wide range of nutrient substances that can be used to treat chronic and infectious diseases. The focus of this Special Issue is on both the extraction and isolation of plant extracts and the characterization of active substances of a natural origin.

Specifically, the aim of this Special Issue is to clarify whether plant extracts and natural substances can influence free radicals and inflammatory mediators, as well as their interaction, favoring human health and preventing diseases.

This new information will provide healthcare professionals with widespread, clear, and updated evidence on natural products in medical care.

Prof. Dr. PrzemysŁaw ł. Zalewski
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nutrients is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • anti-inflammatory effect
  • anti-obesity effect
  • antioxidant properties
  • functional foods
  • improved formulations
  • innovative plant extract applications
  • mechanism of action
  • medicinal plants
  • neuroprotective effect
  • phytochemicals
  • toxicity

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 3408 KiB  
Article
In Vitro and In Silico Analysis of PTP1B Inhibitors from Cleistocalyx operculatus Leaves and Their Effect on Glucose Uptake
by Jorge-Eduardo Ponce-Zea, Byeol Ryu, Ju-Yong Lee, Eun-Jin Park, Van-Hieu Mai, Thi-Phuong Doan, Hee-Ju Lee and Won-Keun Oh
Nutrients 2024, 16(17), 2839; https://doi.org/10.3390/nu16172839 - 24 Aug 2024
Viewed by 836
Abstract
As part of our ongoing research on new anti-diabetic compounds from ethnopharmacologically consumed plants, two previously undescribed lupane-type triterpenoids (1 and 2) with dicarboxylic groups, an undescribed nor-taraxastane-type triterpenoid (3), and 14 known compounds (417) [...] Read more.
As part of our ongoing research on new anti-diabetic compounds from ethnopharmacologically consumed plants, two previously undescribed lupane-type triterpenoids (1 and 2) with dicarboxylic groups, an undescribed nor-taraxastane-type triterpenoid (3), and 14 known compounds (417) were isolated from the leaves of Cleistocalyx operculatus. Extensive spectroscopic analysis (IR, HRESIMS, 1D, and 2D NMR) was used for structure elucidation, while the known compounds were compared to reference data reported in the scientific literature. All the isolates (117) were evaluated for their inhibitory effects on the protein tyrosine phosphatase 1B (PTP1B) enzyme. Compounds 6, 9, and 17 showed strong PTP1B inhibitory activities. The mechanism of PTP1B inhibition was studied through enzyme kinetic experiments. A non-competitive mechanism of inhibition was determined using Lineweaver–Burk plots for compounds 6, 9, and 17. Additionally, Dixon plots were employed to determine the inhibition constant. Further insights were gained through a structure–activity relationship study and molecular docking analysis of isolated compounds with the PTP1B crystal structure. Moreover, all isolates (117) were tested for their stimulatory effects on the uptake of 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl) amino]-D-glucose (2-NBDG) in differentiated 3T3-L1 adipocyte cells. Compounds 6, 13, and 17 exhibited strong glucose absorption stimulation activity in a dose-dependent manner. Full article
(This article belongs to the Special Issue Phytonutrients in Inflammation and Metabolic Health)
Show Figures

Figure 1

30 pages, 9675 KiB  
Article
Long-Term Dietary Consumption of Grapes Affects Kidney Health in C57BL/6J Mice
by Asim Dave, Eun-Jung Park, Paulette Kofsky, Alexandre Dufresne, Soma Chakraborty and John M. Pezzuto
Nutrients 2024, 16(14), 2309; https://doi.org/10.3390/nu16142309 - 18 Jul 2024
Viewed by 1822
Abstract
Starting at 4 weeks of age, male and female C57BL/6J mice were provided with a semi-synthetic diet for a period of one year and then continued on the semi-synthetic diet with or without grape supplementation for the duration of their lives. During the [...] Read more.
Starting at 4 weeks of age, male and female C57BL/6J mice were provided with a semi-synthetic diet for a period of one year and then continued on the semi-synthetic diet with or without grape supplementation for the duration of their lives. During the course of the study, no variation of body weights was noted between the groups. At 2.5 years of age, the body-weight-to-tissue-weight ratios did not vary for the liver, colon, muscle, prostate, or ovary. However, relative to the standard diet, the body/kidney weight ratio was significantly lower in the male and female groups with grape-supplemented diets. With the mice provided with the standard diet, the BUN/creatinine ratios were 125 and 152 for males and females, respectively, and reduced to 63.7 and 40.4, respectively, when provided with the grape diet. A histological evaluation suggested that this may be due to enhanced/improved perfusion in the kidney as a preventive/protective effect. In response to the dietary grapes, an RNA seq analysis revealed up-regulation of 21 and 109 genes with male and female mice, respectively, with a corresponding down-regulation of 108 and 65 genes. The downward movement of the FPKM values in the males (alox5, btk, fga, fpr1, hmox1, lox, ltf, lyve1, marco, mmp8, prg4, s100a8/9, serpina3n, and vsig4) and upward movement of the FPKM values in the females (camp, cd300lf, cd72, fcgr4, fgr, fpr2, htra4, il10, lilrb4b, lipg, pilra, and tlr8) suggest beneficial kidney effects. The expression of some genes related to the immunological activity was also modulated by the grape diet, mainly downward in the males and upward in the females. The reactome pathway analysis, KEGG analysis, and GSEA normalized enrichment scores illustrate that several pathways related to immune function, collagenase degradation, extracellular matrix regulation, metabolism of vitamins and cofactors, pancreatic secretion, aging, and mitochondrial function were enriched in both the males and females provided with the grape diet. Overall, these results indicate that the long-term dietary consumption of grapes contributes to renal health and resilience against fibrosis and related pathologies. Full article
(This article belongs to the Special Issue Phytonutrients in Inflammation and Metabolic Health)
Show Figures

Figure 1

16 pages, 2437 KiB  
Article
Tissue-Level Effect of Andrographis and Ashwagandha Metabolites on Metabolic and Inflammatory Gene Expression in Skeletal Muscle and Adipose Tissue: An Ex Vivo/In Vitro Investigation
by Celeste Lugtmeijer, Joanna L. Bowtell and Mary O’Leary
Nutrients 2024, 16(14), 2291; https://doi.org/10.3390/nu16142291 - 17 Jul 2024
Viewed by 1339
Abstract
Adipose tissue and skeletal muscle dysfunction play a central role in cardiometabolic morbidity. Ashwagandha and Andrographis are purported to have anti-inflammatory and antioxidant activity, but this is based on exposure of cells to the parent compounds ignoring phytochemical absorption and metabolism. We explored [...] Read more.
Adipose tissue and skeletal muscle dysfunction play a central role in cardiometabolic morbidity. Ashwagandha and Andrographis are purported to have anti-inflammatory and antioxidant activity, but this is based on exposure of cells to the parent compounds ignoring phytochemical absorption and metabolism. We explored the anti-inflammatory/antioxidant effects of ashwagandha and Andrographis in ex vivo human models of skeletal muscle and adipose tissue. Healthy participants supplemented with 2000 mg/day Andrographis (n = 10) or 1100 mg/day ashwagandha (n = 10) for 28 days. Sera collected pre (D0) and post (D28) supplementation were pooled by timepoint and added to adipose explant (AT) and primary human myotube (SKMC) culture media (15% v/v) for treatment. A Taqman panel of 56 genes was used to quantify these. In AT, treatment with ashwagandha sera decreased the expression of genes involved in antioxidant defence and inflammatory response (CCL5, CD36, IL6, IL10, ADIPOQ, NFEL2, UCP2, GPX3, GPX4; geometric 95% CI for fold change > 1) and altered the expression of genes involved in fatty acid metabolism. In SKMC, ashwagandha sera altered FOXO1 and SREBF1 expression. Andrographis sera decreased IL18 and SERPINEA3 expression in AT. This physiologically relevant in vitro screening characterises the effects of ashwagandha in AT to guide future clinical trials. Full article
(This article belongs to the Special Issue Phytonutrients in Inflammation and Metabolic Health)
Show Figures

Figure 1

Back to TopTop