Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (166)

Search Parameters:
Keywords = Ancestral reconstruction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6155 KiB  
Article
Complete Mitochondrial Genome of Two Amathusiini Species (Lepidoideae: Nymphalidae: Satyrinae): Characterization, Comparative Analyses, and Phylogenetic Implications
by Qinghui Shi, Xinyue Wang, Jianhong Xing, Xiaoyun Xu, Gang Sun and Juncheng Zhang
Genes 2025, 16(4), 447; https://doi.org/10.3390/genes16040447 (registering DOI) - 12 Apr 2025
Viewed by 31
Abstract
Background: The Satyrinae subfamily represents a taxonomically critical group within Nymphalidae, characterized by its remarkable species diversity. Despite its evolutionary significance, the phylogenetic relationships among tribal and subtribal lineages remain poorly resolved. Although mitochondrial genomes have become crucial molecular markers in [...] Read more.
Background: The Satyrinae subfamily represents a taxonomically critical group within Nymphalidae, characterized by its remarkable species diversity. Despite its evolutionary significance, the phylogenetic relationships among tribal and subtribal lineages remain poorly resolved. Although mitochondrial genomes have become crucial molecular markers in Lepidoptera phylogenetics, their potential remains underutilized in the systematics of Satyrinae. Notably, Amathusiini exhibits a particular paucity, with only two congeneric representatives having been comprehensively sequenced to date. Methods: We employed high-throughput sequencing to assemble the complete mitochondrial genomes of two Amathusiini species, Discophora sondaica and Aemona amathusia. Our study revealed novel evolutionary insights through comparative genomics, which encompassed all available Satyrinae mitochondrial genomes. Additionally, we conducted phylogenetic reconstruction using maximum likelihood and Bayesian inference approaches, utilizing the most extensive dataset to date. Results: The closed, circular mitochondrial genomes measure 15,333 bp for D. sondaica and 15,423 bp for A. amathusia, maintaining the ancestral lepidopteran architecture: 13 protein-coding genes (PCGs), 22 tRNAs, 2 rRNAs, and an AT-rich control region. Comparative analyses of 71 mitochondrial genomes revealed strong evolutionary conservation across multiple parameters: nucleotide composition (AT content range: 77.9–81.8%), codon usage bias (ENC = 30.83–37.55), tRNA secondary structures, and control region organization. All PCGs showed purifying selection signals (Ka/Ks < 1.0), with atp8 exhibiting the highest evolutionary rate (Ka/Ks = 0.277). Phylogenetic reconstructions yielded congruent tribal-level topologies with strong nodal support: ((Satyrini + Melanitini) + (Amathusiini + Elymniini) + Zetherini), confirming a sister relationship between Amathusiini and Elymniini. Within Satyrini, five subtribes formed monophyletic groups: Ypthimina, Erebiina, Maniolina, Satyrina, and Melanargiina, arranged as ((Ypthimina + (Erebiina + Maniolina)) + (Satyrina + Melanargiina)). Mycalesina, Lethina, and Parargina comprised a well-supported clade (BS = 100%; PP = 1.0), though internal relationships required further resolution due to Lethina’s polyphyly. Conclusions: This study provides novel insights into mitochondrial genomic evolution within the Satyrinae subfamily while elucidating the efficacy of mitogenomic data for resolving deep phylogenetic relationships within this ecologically significant subfamily. Our findings establish critical genome baselines for further systematic research and underscore essential pathways for refining subtribal-level taxonomy through integrative molecular approaches. Full article
(This article belongs to the Special Issue Mitochondrial DNA Replication and Transcription)
Show Figures

Figure 1

14 pages, 1880 KiB  
Article
Dated Phylogeny of Banisteriopsis (Malpighiaceae) Suggests an Ancient Colonization of the Cerrado and No Evidence of Human Manipulation in the Origin of B. caapi
by Thais A. C. Santos, Bruno S. Amorim, Jefferson R. Maciel, Cassiano A. D. Welker, Scheila Cristina Biazatti and Regina C. Oliveira
Plants 2025, 14(7), 1149; https://doi.org/10.3390/plants14071149 (registering DOI) - 7 Apr 2025
Viewed by 70
Abstract
Banisteriopsis is a genus in the Malpighiaceae family with 61 species, notable for including ritualistic taxa such as B. caapi (Spruce ex Griseb.) C.V. Morton, one of the main components of Ayahuasca tea. We analyzed 38 Banisteriopsis species, representing more than 60% of [...] Read more.
Banisteriopsis is a genus in the Malpighiaceae family with 61 species, notable for including ritualistic taxa such as B. caapi (Spruce ex Griseb.) C.V. Morton, one of the main components of Ayahuasca tea. We analyzed 38 Banisteriopsis species, representing more than 60% of the genus, to investigate its geographical origin, diversification period, and colonization routes in the Neotropics. Plastid genes (matK, ndhF, and rbcL) and nuclear regions (ETS, ITS, and PHYC) were used in our analyses. Divergence time analyses were performed using Bayesian inference with a relaxed molecular clock and ancestral area reconstruction. Our results show that Banisteriopsis originated in the Miocene approximately 22 million years ago, and its diversification coincides with the expansion of dry areas in South America. Banisteriopsis began colonizing the Cerrado earlier than most other plants, and the history of the genus reveals that the biome served as a source of species for Neotropical rainforests. Our results also indicate a probable ancient origin for B. caapi, with no evidence of human manipulation in its diversification, and they reinforce archaeological evidence of a millennia-old exchange of uses among Amazonian peoples. Full article
(This article belongs to the Section Plant Systematics, Taxonomy, Nomenclature and Classification)
Show Figures

Figure 1

18 pages, 6360 KiB  
Article
Phylodynamic of Tomato Brown Rugose Fruit Virus and Tomato Chlorosis Virus, Two Emergent Viruses in Mixed Infections in Argentina
by Julia M. Ibañez, Romina Zambrana, Pamela Carreras, Verónica Obregón, José M. Irazoqui, Pablo A. Vera, Tatiana E. Lattar, María D. Blanco Fernández, Andrea F. Puebla, Ariel F. Amadio, Carolina Torres and Paola M. López Lambertini
Viruses 2025, 17(4), 533; https://doi.org/10.3390/v17040533 - 5 Apr 2025
Viewed by 181
Abstract
Tobamovirus fructirugosum (ToBRFV) and Crinivirus tomatichlorosis (ToCV) are emerging viral threats to tomato production worldwide, with expanding global distribution. Both viruses exhibit distinct biological characteristics and transmission mechanisms that influence their spread. This study aimed to reconstruct the complete genomes of ToBRFV and [...] Read more.
Tobamovirus fructirugosum (ToBRFV) and Crinivirus tomatichlorosis (ToCV) are emerging viral threats to tomato production worldwide, with expanding global distribution. Both viruses exhibit distinct biological characteristics and transmission mechanisms that influence their spread. This study aimed to reconstruct the complete genomes of ToBRFV and ToCV from infected tomato plants and wastewater samples in Argentina to explore their global evolutionary dynamics. Additionally, it compared the genetic diversity of ToBRFV in plant tissue and sewage samples. Using metagenomic analysis, the complete genome sequences of two ToBRFV isolates and two ToCV isolates from co-infected tomatoes, along with four ToBRFV isolates from sewage, were obtained. The analysis showed that ToBRFV exhibited higher genetic diversity in environmental samples than in plant samples. Phylodynamic analysis indicated that both viruses had a recent, single introduction in Argentina but predicted different times for ancestral diversification. The evolutionary analysis estimated that ToBRFV began its global diversification in June 2013 in Israel, with rapid diversification and exponential growth until 2020, after which the effective population size declined. Moreover, ToCV’s global expansion was characterized by exponential growth from 1979 to 2010, with Turkey identified as the most probable location with the current data available. This study highlights how sequencing and monitoring plant viruses can enhance our understanding of their global spread and impact on agriculture. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

41 pages, 17061 KiB  
Article
Multiple Ecological Niche Modeling Reveals Niche Conservatism and Divergence in East Asian Yew (Taxus)
by Chuncheng Wang, Minqiu Wang, Shanshan Zhu, Xingtong Wu, Shaolong Yang, Yadan Yan and Yafeng Wen
Plants 2025, 14(7), 1094; https://doi.org/10.3390/plants14071094 - 1 Apr 2025
Viewed by 124
Abstract
Understanding ecological niche evolution patterns is crucial for elucidating biogeographic history and guiding biodiversity conservation. Taxus is a Tertiary relict gymnosperm with 11 lineages mainly distributed across East Asia, spanning from tropical to subarctic regions. However, the spatiotemporal dynamics of its ecological niche [...] Read more.
Understanding ecological niche evolution patterns is crucial for elucidating biogeographic history and guiding biodiversity conservation. Taxus is a Tertiary relict gymnosperm with 11 lineages mainly distributed across East Asia, spanning from tropical to subarctic regions. However, the spatiotemporal dynamics of its ecological niche evolution and the roles of ecological and geographical factors in lineage diversification, remain unclear. Using occurrence records, environmental data, and reconstructed phylogenies, we employed ensemble ecological niche models (eENMs), environmental principle components analysis (PCA-env), and phyloclimatic modeling to analyze niche similarity and evolution among 11 Taxus lineages. Based on reconstructed Bayesian trees and geographical distribution characteristics, we classified the eleven lineages into four clades: Northern (T. cuspidata), Central (T. chinensis, T. qinlingensis, and the Emei type), Western (T. wallichiana, T. florinii, and T. contorta), and Southern (T. calcicola, T. phytonii, T. mairei, and the Huangshan type). Orogenic activities and climate changes in the Tibetan Plateau since the Late Miocene likely facilitated the local adaptation of ancestral populations in Central China, the Hengduan Mountains, and the Yunnan–Guizhou Plateau, driving their expansion and diversification towards the west and south. Key environmental variables, including extreme temperature, temperature and precipitation variability, light, and altitude, were identified as major drivers of current niche divergence. Both niche conservatism and divergence were observed, with early conservatism followed by recent divergence. The Southern clade exhibits high heat and moisture tolerance, suggesting an adaptive shift, while the Central and Western clades retain ancestral drought and cold tolerance, displaying significant phylogenetic niche conservatism (PNC). We recommend prioritizing the conservation of T. qinlingensis, which exhibits the highest PNC level, particularly in the Qinling, Daba, and Taihang Mountains, which are highly degraded and vulnerable to future climate fluctuations. Full article
Show Figures

Figure 1

14 pages, 4640 KiB  
Review
Strategies and Recent Trends in Engineering Thermostable GH11 Xylanases
by Beom Soo Kim and In Jung Kim
Catalysts 2025, 15(4), 317; https://doi.org/10.3390/catal15040317 - 26 Mar 2025
Viewed by 185
Abstract
Glycoside hydrolase family 11 (GH11) xylanases are used in various industries, such as biorefining, animal feed production, and baking, making them key industrial enzymes. Operating bioprocesses at elevated temperatures enhances the reaction rate and product yield and thus requires thermostable enzymes to sustain [...] Read more.
Glycoside hydrolase family 11 (GH11) xylanases are used in various industries, such as biorefining, animal feed production, and baking, making them key industrial enzymes. Operating bioprocesses at elevated temperatures enhances the reaction rate and product yield and thus requires thermostable enzymes to sustain catalytic performance. The limited availability of naturally occurring thermostable GH11 xylanases necessitates targeted modifications via protein engineering to enhance their thermal stability. In this review, we present the key drivers of thermostability, an overview of engineering strategies, and the underlying mechanisms of action. Finally, we investigated state-of-the-art technologies involving artificial intelligence (AI)- and ancestral sequence reconstruction-guided approaches. Full article
(This article belongs to the Special Issue New Trends in Industrial Biocatalysis, 2nd Edition)
Show Figures

Graphical abstract

16 pages, 3212 KiB  
Article
Unraveling the Evolutionary Patterns of Genus Frontonia: An Integrative Approach with Morphological and Molecular Data
by Ratih Kusuma Wardani, Ragib Ahsan and Mann Kyoon Shin
Biology 2025, 14(3), 289; https://doi.org/10.3390/biology14030289 - 13 Mar 2025
Viewed by 409
Abstract
Ciliates of the genus Frontonia have been extensively studied to resolve their phylogenetic and evolutionary history, but challenges remain. This study used molecular analyses of SSU rRNA genes, phylogenetic tree reconstruction, molecular dating, and diversification analysis, together with ancestral state reconstruction of morphological [...] Read more.
Ciliates of the genus Frontonia have been extensively studied to resolve their phylogenetic and evolutionary history, but challenges remain. This study used molecular analyses of SSU rRNA genes, phylogenetic tree reconstruction, molecular dating, and diversification analysis, together with ancestral state reconstruction of morphological traits and habitat preferences. Data included newly sequenced Korean species, GenBank records and published morphological information. Phylogenetic trees revealed paraphyly within Frontonia, identifying four groups that emerged in the Mesozoic era: Group I (~172 mya), Group II (~83 mya), Group III (~115 mya), and Group IV (~190 mya), with a common ancestor dating to ~420 mya in the Palaeozoic era. Diversification analysis revealed higher extinction rates (0.826 and 0.613 species/year) than speciation rates (0.011 and 0.016 species/year). Morphological evolution showed habitat adaptation and plasticity, with habitat transitions unrelated to contractile vacuolar traits. The SSU rRNA gene polymorphism likely contributed to the paraphyletic state of Frontonia. These results highlight the complex evolutionary patterns of the genus, shaped by genetic diversity, morphology, and environmental constraints. Full article
(This article belongs to the Section Evolutionary Biology)
Show Figures

Figure 1

43 pages, 12081 KiB  
Article
Coevolution of Lentiviral Vif with Host A3F and A3G: Insights from Computational Modelling and Ancestral Sequence Reconstruction
by David Nicolas Giuseppe Huebert, Atefeh Ghorbani, Shaw Yick Brian Lam and Mani Larijani
Viruses 2025, 17(3), 393; https://doi.org/10.3390/v17030393 - 10 Mar 2025
Viewed by 531
Abstract
The evolutionary arms race between host restriction factors and viral antagonists provides crucial insights into immune system evolution and viral adaptation. This study investigates the structural and evolutionary dynamics of the double-domain restriction factors A3F and A3G and their viral inhibitor, Vif, across [...] Read more.
The evolutionary arms race between host restriction factors and viral antagonists provides crucial insights into immune system evolution and viral adaptation. This study investigates the structural and evolutionary dynamics of the double-domain restriction factors A3F and A3G and their viral inhibitor, Vif, across diverse primate species. By constructing 3D structural homology models and integrating ancestral sequence reconstruction (ASR), we identified patterns of sequence diversity, structural conservation, and functional adaptation. Inactive CD1 (Catalytic Domain 1) domains displayed greater sequence diversity and more positive surface charges than active CD2 domains, aiding nucleotide chain binding and intersegmental transfer. Despite variability, the CD2 DNA-binding grooves remained structurally consistent with conserved residues maintaining critical functions. A3F and A3G diverged in loop 7’ interaction strategies, utilising distinct molecular interactions to facilitate their roles. Vif exhibited charge variation linked to host species, reflecting its coevolution with A3 proteins. These findings illuminate how structural adaptations and charge dynamics enable both restriction factors and their viral antagonists to adapt to selective pressures. Our results emphasize the importance of studying structural evolution in host–virus interactions, with implications for understanding immune defense mechanisms, zoonotic risks, and viral evolution. This work establishes a foundation for further exploration of restriction factor diversity and coevolution across species. Full article
(This article belongs to the Special Issue Host-Mediated Viral Mutations: APOBECs, ADARs, and Beyond)
Show Figures

Figure 1

14 pages, 2283 KiB  
Article
Molecular Phylogeny and Evolutionary History of the Genus Cyprinus (Teleostei: Cypriniformes)
by Yanyan Chen, Heng Xiao, Zhaoping Yue, Xiaoyun Wu, Ruiguang Zan and Shanyuan Chen
Fishes 2025, 10(3), 121; https://doi.org/10.3390/fishes10030121 - 10 Mar 2025
Viewed by 436
Abstract
The genus Cyprinus encompasses economically vital freshwater fish species; yet the phylogenetic relationships and evolutionary history of many taxa within this genus remain unresolved. To address this knowledge gap, we reconstructed the molecular phylogenetic and estimated divergence times using complete mitochondrial cytochrome b [...] Read more.
The genus Cyprinus encompasses economically vital freshwater fish species; yet the phylogenetic relationships and evolutionary history of many taxa within this genus remain unresolved. To address this knowledge gap, we reconstructed the molecular phylogenetic and estimated divergence times using complete mitochondrial cytochrome b (CYTB) sequences of 76 Cyprinidae specimens, within Cyprinidae, including 4 outgroup species. Phylogenetic trees were reconstructed using maximum likelihood (ML) and Bayesian inference (BI) methods, while divergence times were estimated using a Bayesian relaxed molecular clock approach. The results confirmed the monophyly of the genus Cyprinus. The relationships among C. (Cyprinus) multitaeniata, C. (C.) pellegrini, C. (C.) acutidorsalis, and three Erhai Lake species (C. (C.) longipectoralis, C. (C.) barbatus, and C. (C.) chilia) were resolved with strong support. Cyprinus (C.) multitaeniata is basal. The species in Erhai Lake form a monophyletic group, and C. (C.) acutidorsalis is at the top of the phylogenetic tree. The taxonomic delineation within the genus Cyprinus remains controversial, particularly regarding the proposed division into two subgenera (Cyprinus and Mesocyprinus), which has been historically constrained by limited specimen availability for Mesocyprinus. Our comprehensive phylogenetic analysis reveals significant evolutionary divergence patterns: The genus Cyprinus diverged from Carassius during the 56.9 Mya. Notably, the Erhai Lake radiation species (C. (C.) longipectoralis, C. (C.) barbatus, and C. (C.) chilia) originated during 2.03 Mya, while the Lake Biwa endemic C. (C.) haematopterus demonstrates 8.7 Mya. We identified a late Pleistocene speciation event (0.75 Mya) in C. (C.) acutidorsalis, coinciding with its adaptation to brackish water ecosystems. The native C. (C.) pellegrini of Xingyun Lake and Chilu Lake may have originated 4.8 Mya, when the ancient lake that its ancestral population inhabited became isolated. These findings provide robust molecular evidence supporting the recognition of two evolutionary distinct subgenera within Cyprinus. Full article
(This article belongs to the Section Taxonomy, Evolution, and Biogeography)
Show Figures

Figure 1

19 pages, 4765 KiB  
Article
Unraveling the Ancient Introgression History of Xanthoceras (Sapindaceae): Insights from Phylogenomic Analysis
by Jian He, Mingyang Li, Huanyu Wu, Jin Cheng and Lei Xie
Int. J. Mol. Sci. 2025, 26(4), 1581; https://doi.org/10.3390/ijms26041581 - 13 Feb 2025
Viewed by 512
Abstract
Ancient introgression is an infrequent evolutionary process often associated with conflicts between nuclear and organellar phylogenies. Determining whether such conflicts arise from introgression, incomplete lineage sorting (ILS), or other processes is essential to understanding plant diversification. Previous studies have reported phylogenetic discordance in [...] Read more.
Ancient introgression is an infrequent evolutionary process often associated with conflicts between nuclear and organellar phylogenies. Determining whether such conflicts arise from introgression, incomplete lineage sorting (ILS), or other processes is essential to understanding plant diversification. Previous studies have reported phylogenetic discordance in the placement of Xanthoceras, but its causes remain unclear. Here, we analyzed transcriptome data from 41 Sapindaceae samples to reconstruct phylogenies and investigate this discordance. While nuclear phylogenies consistently placed Xanthoceras as sister to subfam. Hippocastanoideae, plastid data positioned it as the earliest-diverging lineage within Sapindaceae. Our coalescent simulations suggest that this cyto-nuclear discordance is unlikely to be explained by ILS alone. HyDe and PhyloNet analyses provided strong evidence that Xanthoceras experienced ancient introgression, incorporating approximately 16% of its genetic material from ancestral subfam. Sapindoideae lineages. Morphological traits further support this evolutionary history, reflecting characteristics of both contributing subfamilies. Likely occurring during the Paleogene, this introgression represents a rare instance of cross-subfamily gene flow shaping the evolutionary trajectory of a major plant lineage. Our findings clarify the evolutionary history of Xanthoceras and underscore the role of ancient introgression in driving phylogenetic conflicts, offering a rare example of introgression-driven diversification in angiosperms. Full article
Show Figures

Graphical abstract

12 pages, 1742 KiB  
Article
Comparative Mitogenomic Analyses of Tanypodinae (Diptera: Chironomidae)
by Xiu-Ru Xiao, Meng-Han Chen, Shu-Yi Li, Bing-Xin Guo, Yan Zhang, Zhi-Chao Zhang, Ya-Jun Qiao and Xiao-Long Lin
Insects 2025, 16(2), 203; https://doi.org/10.3390/insects16020203 - 12 Feb 2025
Viewed by 552
Abstract
Tanypodinae, a highly diverse subfamily within Chironomidae (Diptera), has been poorly represented in mitochondrial genome (mitogenome) databases, with only a limited number of complete or partial sequences available. To address this gap, we present the first complete mitogenome sequences of 16 Tanypodinae species [...] Read more.
Tanypodinae, a highly diverse subfamily within Chironomidae (Diptera), has been poorly represented in mitochondrial genome (mitogenome) databases, with only a limited number of complete or partial sequences available. To address this gap, we present the first complete mitogenome sequences of 16 Tanypodinae species and 1 Podonominae species. By integrating these novel data with previously published chironomid mitogenomes, we conducted a comprehensive comparative mitogenomic analysis of 21 Tanypodinae species. Our results reveal that Tanypodinae mitogenomes maintain a conserved structural organization, preserving the ancestral insect gene arrangement. The nucleotide composition exhibits significant bias, with the control region demonstrating the highest A + T content among all genomic regions. Evolutionary analysis indicates that all protein-coding genes (PCGs) are subject to purifying selection, with ATP8 exhibiting the most rapid evolutionary rate. Phylogenetic reconstruction based on PCG amino acid sequences delineates seven well-supported clades within Tanypodinae, corresponding to the tribes Pentaneurini, Natarsiini, Procladiini, Tanypodini, Clinotanypodini, Macropelopiini, and Anatopyniini. These findings significantly advance our understanding of mitogenomic architecture and provide critical insights into the phylogenetic relationships within Tanypodinae. Full article
Show Figures

Figure 1

67 pages, 32566 KiB  
Article
Advances in Understanding the Karyotype Evolution of Tetrapulmonata and Two Other Arachnid Taxa, Ricinulei and Solifugae
by Jiří Král, Alexandr Sember, Klára Divišová, Tereza Kořínková, Azucena C. Reyes Lerma, Ivalú M. Ávila Herrera, Martin Forman, František Šťáhlavský, Jana Musilová, Sabrina Torres Kalme, José G. Palacios Vargas, Magda Zrzavá, Iva Vrbová, Jairo A. Moreno-González, Paula E. Cushing, Alexander V. Gromov, Štěpánka Šebestiánová, Vendula Bohlen Šlechtová, Lorenzo Prendini and Tharina L. Bird
Genes 2025, 16(2), 207; https://doi.org/10.3390/genes16020207 - 8 Feb 2025
Viewed by 1249
Abstract
Background/Objectives: Arachnids are a megadiverse arthropod group. The present study investigated the chromosomes of pedipalpid tetrapulmonates (orders Amblypygi, Thelyphonida, Schizomida) and two arachnid orders of uncertain phylogenetic placement, Ricinulei and Solifugae, to reconstruct their karyotype evolution. Except for amblypygids, the cytogenetics of these [...] Read more.
Background/Objectives: Arachnids are a megadiverse arthropod group. The present study investigated the chromosomes of pedipalpid tetrapulmonates (orders Amblypygi, Thelyphonida, Schizomida) and two arachnid orders of uncertain phylogenetic placement, Ricinulei and Solifugae, to reconstruct their karyotype evolution. Except for amblypygids, the cytogenetics of these arachnid orders was almost unknown prior to the present study. Methods: Chromosomes were investigated using methods of standard (Giemsa-stained preparations, banding techniques) and molecular cytogenetics (fluorescence in situ hybridization, comparative genomic hybridization). Results and Conclusions: New data for 38 species, combined with previously published data, suggest that ancestral arachnids possessed low to moderate 2n (22–40), monocentric chromosomes, one nucleolus organizer region (NOR), low levels of heterochromatin and recombinations, and no or homomorphic sex chromosomes. Karyotypes of Pedipalpi and Solifugae diversified via centric fusions, pericentric inversions, and changes in the pattern of NORs and, in solifuges, also through tandem fusions. Some solifuges display an enormous amount of constitutive heterochromatin and high NOR number. It is hypothesized that the common ancestor of amblypygids, thelyphonids, and spiders exhibited a homomorphic XY system, and that telomeric heterochromatin and NORs were involved in the evolution of amblypygid sex chromosomes. The new findings support the Cephalosomata clade (acariforms, palpigrades, and solifuges). Hypotheses concerning the origin of acariform holocentric chromosomes are presented. Unlike current phylogenetic hypotheses, the results suggest a sister relationship between Schizomida and a clade comprising other tetrapulmonates as well as a polyploidization in the common ancestor of the clade comprising Araneae, Amblypygi, and Thelyphonida. Full article
(This article belongs to the Special Issue Commemorating the Launch of the Section "Cytogenomics")
Show Figures

Figure 1

18 pages, 3382 KiB  
Article
Phylogenetic Inferences and Historical Biogeography of Onocleaceae
by Jing Zhao, Jia-Guan Wang, Yu-Ping Hu, Chuan-Jie Huang, Shao-Li Fang, Zi-Yue Wan, Rong-Juan Li, Hong Yu, Zhao-Rong He and Xin-Mao Zhou
Plants 2025, 14(4), 510; https://doi.org/10.3390/plants14040510 - 7 Feb 2025
Viewed by 608
Abstract
The family Onocleaceae represents a small family of terrestrial ferns, with four genera and around five species. It has a circumboreal to north temperate distribution, and exhibits a disjunct distribution between Eurasia and North America, including Mexico. Historically, the taxonomy and classification of [...] Read more.
The family Onocleaceae represents a small family of terrestrial ferns, with four genera and around five species. It has a circumboreal to north temperate distribution, and exhibits a disjunct distribution between Eurasia and North America, including Mexico. Historically, the taxonomy and classification of this family has been subject to debate and contention among scholars, leading to contradictory classifications and disagreements on the number of genera and species within the family. Furthermore, due to this disjunct intercontinental distribution and the lack of detailed study across its wide range, this family merits further study to clarify its distributional pattern. Maximum likelihood and Bayesian phylogenetic reconstructions were based on a concatenated sequence dataset for 17 plastid loci and one nuclear locus, which were generated from 106 ingroup and six outgroup taxa from three families. Phylogenetic analyses support that Onocleaceae is composed of four main clades, and Pentarhizidium was recovered as the first branching lineages in Onocleaceae. Molecular dating and ancestral area reconstruction analyses suggest that the stem group of Onocleaceae originated in Late Cretaceous, with subsequent diversification and establishment of the genera Matteuccia, Onoclea, Onocleopsis, and Pentarhizidium during the Paleogene and Neogene. The ancestors of Matteuccia, Onoclea, and Onocleopsis could have migrated to North America via the Beringian land bridge or North Atlantic land bridge which suggests that the diversification of Matteuccia + Onoclea + Onocleopsis closely aligns with the Paleocene-Eocene Thermal Maximum (PETM). In addition, these results suggest that Onocleaceae species diversity peaks during the late Neogene to Quaternary. Studies such as this enhance our understanding of the mechanisms and climatic conditions shaping disjunct distribution in ferns and lycophytes of eastern Asia, North America, and Mexico and contribute to a growing body of evidence from other taxa, to advance our understanding of the origins and migration of plants across continents. Full article
(This article belongs to the Section Plant Systematics, Taxonomy, Nomenclature and Classification)
Show Figures

Figure 1

29 pages, 14079 KiB  
Article
Molecular Phylogenetics and Estimation of Evolutionary Divergence and Biogeography of the Family Cordycipitaceae (Ascomycota, Hypocreales)
by Huili Pu, Jiao Yang, Nemat O. Keyhani, Lixia Yang, Minhai Zheng, Chenghao Qiu, Yuchen Mao, Junya Shang, Yongsheng Lin, Chengjie Xiong, Longbing Lin, Pengyu Lai, Yanbin Huang, Xin Yuan, Huiling Liang, Longfei Fan, Xiaoli Ma, Chunjin Qiu and Junzhi Qiu
J. Fungi 2025, 11(1), 28; https://doi.org/10.3390/jof11010028 - 2 Jan 2025
Viewed by 967
Abstract
The Cordycipitaceae family of insecticidal fungi is widely distributed in nature, is the most complex in the order Hypocreales (Ascomycota), with members displaying a diversity of morphological characteristics and insect host ranges. Based on Bayesian evolutionary analysis of five genomic loci(the small subunit [...] Read more.
The Cordycipitaceae family of insecticidal fungi is widely distributed in nature, is the most complex in the order Hypocreales (Ascomycota), with members displaying a diversity of morphological characteristics and insect host ranges. Based on Bayesian evolutionary analysis of five genomic loci(the small subunit of ribosomal RNA (SSU) gene, the large subunit of ribosomal RNA (LSU) gene, the translation elongation factor 1-α (tef1-α) gene, the largest subunit of RNA polymerase II (rpb1), and the second largest subunit of RNA polymerase II (rpb2), we inferred the divergence times for members of the Cordycipitaceae, improving the internal phylogeny of this fungal family. Molecular clock analyses indicate that the ancestor of Akanthomyces sensu lato occurred in the Paleogene period (34.57 Mya, 95% HPD: 31.41–37.67 Mya), and that most species appeared in the Neogene period. The historical biogeography of Akanthomyces sensu lato was reconstructed using reconstructing ancestral state in phylogenies (RASP) analysis, indicating that it most likely originated in Asia. Combined morphological characterization and phylogenetic analyses were used to identify and taxonomically place five species within Cordycipitaceae. These include the following: (i) two new species, namely Akanthomyces baishanensis sp. nov. and Samsoniella sanmingense sp. nov., (ii) a new record species isolated from infected Lepidopteran host, Blackwellomyces lateris, (iii) a new record species in the genus Niveomyces, with sporothrix-like asexual morphs, namely N. multisynnematus, isolated from dipteran insects (flies), and (iv) a known species of the (hyper-) mycoparasite, Liangia sinensis, isolated from the fungus Ophiocordyceps globiceps (Ophiocordycipitaceae) growing on a dipteran host. Our data provide a significant addition to the diversity, ecology, and evolutionary aspects of the Cordycipitaceae. Full article
(This article belongs to the Special Issue Diversity of Microscopic Fungi)
Show Figures

Figure 1

12 pages, 1872 KiB  
Article
Mitogenome Phylogenetics of Spiruromorpha Porpoise Parasite: Insights Into Phylogeny of Crassicauda magna
by Lei Han, Yuling Yang, Maolin Lu, Hongyan Yu, Yaxian Lu, Mengchao Zhou, Tianlu Liu, Ruisi Zhang, Bingyao Chen and Zhijun Hou
Pathogens 2025, 14(1), 18; https://doi.org/10.3390/pathogens14010018 - 30 Dec 2024
Viewed by 863
Abstract
(1) Background: Crassicauda magna is a major parasite of large porpoises and whales and has been classified in the Habronematoidea family. However, there has been a great controversy regarding its classification. Mitochondria have an important function in revealing taxonomic and evolutionary history. (2) [...] Read more.
(1) Background: Crassicauda magna is a major parasite of large porpoises and whales and has been classified in the Habronematoidea family. However, there has been a great controversy regarding its classification. Mitochondria have an important function in revealing taxonomic and evolutionary history. (2) Methods: In this study, we sequenced the mitochondrial genome of C. magna and conducted a phylogenetic analysis with the mitochondrial sequences of species belonging to the Habronematoidea family. (3) Results: The complete mitochondrial genome was 13,604 bp and it has an AT-rich sequence and one non-coding region (NCR). The reconstruction of the ancestral state showed that the gene orders of all species in Spirurina were conserved. The phylogenetic tree indicates that C. magna is closer to Heliconema longissimum (Physalopteroidea) than Tetrameres grusi (Habronematoidea). (4) Conclusions: This study provides new evidence that C. magna is phylogenetically closer to Physalopteroidea at the molecular taxonomic level. Full article
(This article belongs to the Special Issue Aquatic Parasites)
Show Figures

Figure 1

23 pages, 621 KiB  
Article
An Updated Overview of the Austroasiatic Components of Vietnamese
by Mark Alves
Languages 2024, 9(12), 377; https://doi.org/10.3390/languages9120377 - 17 Dec 2024
Viewed by 1303
Abstract
This article presents an updated view of the language history of Vietnamese from its native Austroasiatic roots, including key historical phonological, morphological, and syntactic features and developments; a characterization of its Austroasiatic etyma; and the context of this information in Vietnamese linguistic ethnohistory. [...] Read more.
This article presents an updated view of the language history of Vietnamese from its native Austroasiatic roots, including key historical phonological, morphological, and syntactic features and developments; a characterization of its Austroasiatic etyma; and the context of this information in Vietnamese linguistic ethnohistory. It is now possible to make better supported claims and more precise characterizations due to improved understanding of the history of Austroasiatic and Vietic and their reconstructions, the nature and effect of language contact with Chinese, and the process of typological convergence of the ancestral language of Vietnamese. This study shows that, while Vietnamese is not a typologically characteristic Austroasiatic language, the Austroasiatic components of the Vietnamese lexicon and linguistic structure are more prominent than previously supposed. Full article
(This article belongs to the Special Issue Current Issues in Vietnamese Linguistics)
Back to TopTop