Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = DC–DC Zeta converter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 15363 KB  
Article
Battery Power Interface to Mitigate Load Transients and Reduce Current Harmonics for Increasing Sustainability in DC Microgrids
by Carlos Andrés Ramos-Paja, Sergio Ignacio Serna-Garcés and Andrés Julián Saavedra-Montes
Sustainability 2025, 17(17), 7987; https://doi.org/10.3390/su17177987 (registering DOI) - 4 Sep 2025
Abstract
In microgrids, battery chargers/dischargers are used to manage power flow between the battery and the DC bus and to regulate the DC bus voltage, ensuring safe operating conditions for sources and loads. These actions contribute to enhancing the sustainability of the microgrid by [...] Read more.
In microgrids, battery chargers/dischargers are used to manage power flow between the battery and the DC bus and to regulate the DC bus voltage, ensuring safe operating conditions for sources and loads. These actions contribute to enhancing the sustainability of the microgrid by improving energy efficiency, extending battery life, and ensuring reliable operation. The classical converter adopted to implement the battery chargers/dischargers is the boost converter, which avoids high current harmonic injection into the battery because of its continuous input current. But due to the discontinuous output current, it introduces high current harmonics into the DC bus. This also occurs in Sepic, Zeta, or other DC/DC converters with discontinuous input or output currents. One exception is the Cuk converter, which has both continuous input and output currents. However, in the Cuk converter, the intermediate capacitor voltage is higher than the input and output voltages, thus imposing high stress on the semiconductors and requiring a costly capacitor with high energy storage. Therefore, this paper proposes the design of a battery charger/discharger based on a non-electrolytic capacitor boost converter. This topology provides continuous input and output currents, which reduces harmonic component injection, extends battery life, and increases operation efficiency. Moreover, it requires a lower intermediate capacitor voltage, thereby enhancing reliability. The design of this battery charger/discharger requires an adaptive sliding-mode controller to ensure global stability and accurate bus voltage regulation. A formal stability analysis and design equations are provided. The proposed solution is validated through detailed simulations, while the adaptive sliding-mode controller is specifically tested using a detailed software-in-the-loop approach. Full article
Show Figures

Figure 1

19 pages, 4117 KB  
Article
Integrated Zeta–Ćuk-Based Single-Phase DC/AC Inverter for Standalone Applications
by Aylla R. M. Guedes, Anderson A. Dionizio, Óliver P. Westin, Leonardo P. Sampaio and Sérgio A. O. da Silva
Processes 2025, 13(8), 2603; https://doi.org/10.3390/pr13082603 - 17 Aug 2025
Viewed by 673
Abstract
Power electronics has significantly contributed to advances in developing single-stage integrated converter topologies, enabling DC/AC conversion with voltage step-up capability in a compact and efficient structure. This work proposes a novel Integrated Zeta–Ćuk Inverter (IZCI), derived from combining the Zeta and Ćuk DC/DC [...] Read more.
Power electronics has significantly contributed to advances in developing single-stage integrated converter topologies, enabling DC/AC conversion with voltage step-up capability in a compact and efficient structure. This work proposes a novel Integrated Zeta–Ćuk Inverter (IZCI), derived from combining the Zeta and Ćuk DC/DC converter structures. In addition, the proposed topology achieves high efficiency and full utilization of the input voltage. A potential application for the IZCI topology involves DC microgrids, in which the proposed topology can supply AC local loads, achieving high power quality, such as a low total harmonic distortion (THD). The IZCI operates in discontinuous conduction mode (DCM), exhibiting three distinct operating stages for each switching period. The DCM operation guarantees a linear relationship between output and duty cycle, simplifying the control strategy and requiring fewer sensors, thereby reducing the cost and processing requirements. The feasibility and performance of the IZCI topology are evaluated and validated through experimental results in a standalone application. The results demonstrate high energy conversion efficiency and reliability, providing an AC output voltage with low harmonic distortion. Full article
(This article belongs to the Special Issue Advances in Power Converters in Energy and Microgrid Systems)
Show Figures

Figure 1

16 pages, 4367 KB  
Article
Robust Control of a Zeta Converter: A Feedback Linearization Approach with Digital PWM Implementation
by David Angulo-García, Fabiola Angulo and Juan-Guillermo Muñoz
Energies 2025, 18(8), 1927; https://doi.org/10.3390/en18081927 - 10 Apr 2025
Viewed by 439
Abstract
This paper presents a robust control strategy for a synchronous Zeta converter using feedback linearization combined with a PI controller. The control design is based on a state-averaged model, but it is implemented and evaluated in a digitally switched system using PSIM simulations. [...] Read more.
This paper presents a robust control strategy for a synchronous Zeta converter using feedback linearization combined with a PI controller. The control design is based on a state-averaged model, but it is implemented and evaluated in a digitally switched system using PSIM simulations. To ensure consistency between the averaged and switched models, the duty cycle is computed at the beginning of each period, and a centered PWM scheme is applied. This study identifies critical factors that affect stability, including the sampling period and the PWM edge selection, both of which can destabilize the switched system even when the averaged model remains stable. This study analyzes the difference in stability ranges between the averaged and switched models under variations in load and reference voltage, revealing significant discrepancies between them. Results show that the proposed control achieves robust performance, low stabilization time, and good tracking behavior across a wide range of conditions. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 3rd Edition)
Show Figures

Figure 1

32 pages, 8789 KB  
Review
Reduced Loss Tristate Converters
by Felix A. Himmelstoss
Electronics 2025, 14(7), 1305; https://doi.org/10.3390/electronics14071305 - 26 Mar 2025
Viewed by 415
Abstract
In a tristate converter the basic circuit topology is extended by an additional electronic switch and an additional diode. Three modes follow each other within one switching period. During the first mode M1, both electronic switches are on and both diodes are off. [...] Read more.
In a tristate converter the basic circuit topology is extended by an additional electronic switch and an additional diode. Three modes follow each other within one switching period. During the first mode M1, both electronic switches are on and both diodes are off. In the second mode M2, only the second switch is on and the first diode is conducting, and in mode M3, only the second diode is conducting. The voltage transformation ratio is a function of the two duty cycles of the electronic switches. In a typical tristate converter, the current flows through the second switch during the first two modes. In the converters treated here, the current is flowing through the second switch only during the second mode, so the losses are reduced compared to the normal tristate converter. This is shown for the Buck, the Buck–Boost, the Boost, the Zeta, the Cuk, the Super Boost, the quadratic Buck, and a reduced-duty cycle converter. The voltage transformation ratios are depicted in diagrams. As an example the reduced loss tristate Buck is used to demonstrate the derivation of the large and the small signal models. The transfer functions are also calculated and Bode plots are shown for an operating point. The voltage and the current stress of the converters are analyzed and the results are summarized in tables. The considerations are proved by simulations with the help of LTSpice. Full article
(This article belongs to the Special Issue Advanced Power Generation and Conversion Systems, 2nd Edition)
Show Figures

Figure 1

29 pages, 4639 KB  
Article
Design and Experimental Validation of a Battery/Supercapacitor Hybrid Energy Storage System Based on an Adaptive LQG Controller
by Jhoan Alejandro Montenegro-Oviedo, Carlos Andres Ramos-Paja, Martha Lucia Orozco-Gutierrez, Edinson Franco-Mejía and Sergio Ignacio Serna-Garcés
Appl. Syst. Innov. 2025, 8(1), 1; https://doi.org/10.3390/asi8010001 - 25 Dec 2024
Cited by 1 | Viewed by 1774
Abstract
Hybrid energy storage systems (HESSs) are essential for adopting sustainable energy sources. HESSs combine complementary storage technologies, such as batteries and supercapacitors, to optimize efficiency, grid stability, and demand management. This work proposes a semi-active HESS formed by a battery connected to the [...] Read more.
Hybrid energy storage systems (HESSs) are essential for adopting sustainable energy sources. HESSs combine complementary storage technologies, such as batteries and supercapacitors, to optimize efficiency, grid stability, and demand management. This work proposes a semi-active HESS formed by a battery connected to the DC bus and a supercapacitor managed by a Sepic/Zeta converter, which has the aim of avoiding high-frequency variations in the battery current on any operation condition. The converter control structure is formed by an LQG controller, an optimal state observer, and an adaptive strategy to ensure the correct controller operation in any condition: step-up, step-down, and unitary gain. This adaptive LQG controller consists of two control loops, an internal current loop and an external voltage loop, which use only two sensors. Compared with classical PI and LQG controllers, the adaptive LQG solution exhibits a better performance in all operation modes, up to 68% better than the LQG controller and up to 84% better than the PI controller. Therefore, the control strategy proposed for this HESS provides a fast-tracking of DC-bus current, driving the high-frequency component to the supercapacitor and the low-frequency component to the battery. Thus, fast changes in the battery power are avoided, reducing the degradation. Finally, the system adaptability to changes up to 67% in the operation range are experimentally tested, and the implementation of the control system using commercial hardware is verified. Full article
Show Figures

Figure 1

13 pages, 1659 KB  
Article
Optimized Energy Management System for Wind Lens-Enhanced PMSG Utilizing Zeta Converter and Advanced MPPT Control Strategies
by Arun Selvaraj and Ganesh Mayilsamy
Wind 2024, 4(4), 275-287; https://doi.org/10.3390/wind4040014 - 2 Oct 2024
Cited by 2 | Viewed by 1618
Abstract
This paper presents the design and analysis of an efficient energy management system for a wind lens integrated with a permanent magnet synchronous generator (PMSG) and a zeta converter. The wind lens, a ring-shaped structure encircling the rotor, enhances the turbine’s capability to [...] Read more.
This paper presents the design and analysis of an efficient energy management system for a wind lens integrated with a permanent magnet synchronous generator (PMSG) and a zeta converter. The wind lens, a ring-shaped structure encircling the rotor, enhances the turbine’s capability to capture wind energy by increasing the wind influx through the turbine. In the contemporary wind energy sector, PMSGs are extensively employed due to their superior performance characteristics. This study integrates a 1 kW PMSG system with a wind lens to optimize power extraction from the wind energy conversion system (WECS) under varying wind speeds. A comparative analysis of different control strategies for maximum power point tracking (MPPT) is conducted, including the incremental conductance (INC) method and the perturb and observe (P&O) method. The performance of the MPPT controller integrated with the wind lens-based PMSG system is assessed based on output DC voltage and power delivered to the load. To evaluate the overall effectiveness of these control strategies, both steady-state voltage and dynamic response under diverse wind conditions are examined. The system is modeled and simulated using the MATLAB R2023a/Simulink 9.1 software, and the simulation results are validated to demonstrate the efficacy of the proposed energy management system. Full article
Show Figures

Figure 1

16 pages, 6586 KB  
Article
Research on Suppressing Commutation Torque Ripple of BLDCM Based on Zeta Converter
by Tao Yin, Wanli Yang, Wenxian Zhang, Meng Wu, Xiugang Yu and Xingchang Han
Machines 2024, 12(9), 592; https://doi.org/10.3390/machines12090592 - 26 Aug 2024
Cited by 1 | Viewed by 871
Abstract
Torque ripple in a brushless DC motor (BLDCM) seriously restricts its application in high-performance fields. This paper proposes a commutation torque ripple suppression strategy based on a Zeta converter. The expected output voltage of a Zeta converter that suppresses the commutation torque ripple [...] Read more.
Torque ripple in a brushless DC motor (BLDCM) seriously restricts its application in high-performance fields. This paper proposes a commutation torque ripple suppression strategy based on a Zeta converter. The expected output voltage of a Zeta converter that suppresses the commutation torque ripple is obtained, according to the effect of the duty ratio of the Zeta converter on the turn-off phase freewheeling duration and the turn-on phase rising duration, during commutation. Based on the analysis of the dynamic response of the Zeta converter, the Zeta converter is adjusted to ensure that the Zeta converter reaches stability in sufficient time. During the commutation, the output voltage of the Zeta converter is connected to the main circuit to reduce the torque ripple during commutation, and the expected regulated duty cycle of the Zeta converter during the next commutation is calculated to adjust the output voltage of the Zeta converter. Based on this analysis, the experimental results verify the effectiveness of the proposed method. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

15 pages, 3190 KB  
Article
Novel Integrated Zeta Inverter for Standalone Applications
by Anderson Aparecido Dionizio, Guilherme Masquetti Pelz, Leonardo Poltronieri Sampaio and Sérgio Augusto Oliveira da Silva
Energies 2024, 17(11), 2748; https://doi.org/10.3390/en17112748 - 4 Jun 2024
Cited by 2 | Viewed by 1090
Abstract
In recent years, distributed generation systems based on renewable energy sources have gained increasing prominence. Thus, the DC/AC converters based on power electronics devices have become increasingly important. In this context, this article presents an integrated Zeta inverter for low-power conditions, which operates [...] Read more.
In recent years, distributed generation systems based on renewable energy sources have gained increasing prominence. Thus, the DC/AC converters based on power electronics devices have become increasingly important. In this context, this article presents an integrated Zeta inverter for low-power conditions, which operates in continuous conduction mode (CCM), achieving efficiency greater than 95%. The proposed topology is composed of four power switches, two operating at high frequency and two operating at low frequency, i.e., at the output frequency. Compared with the topologies in the literature, these configurations make it a competitive solution from the point of view of efficiency, number of elements, and, consequently, implementation cost. The proposed converter operates as a sinusoidal voltage source for local loads and is supplied by a DC source, such as batteries or a photovoltaic array. A multi-resonant voltage controller was used to guarantee the sinusoidal voltage provided to the non-linear load while dealing with the complex dynamics of the Zeta converter in the CCM. Experimental results from a 324 W prototype show the converter’s implementation feasibility and the high efficiency of the DC/AC conversion. Full article
(This article belongs to the Special Issue Power Electronic and Power Conversion Systems for Renewable Energy)
Show Figures

Figure 1

18 pages, 5333 KB  
Article
A New Smart Grid Hybrid DC–DC Converter with Improved Voltage Gain and Synchronized Multiple Outputs
by Khaled A. Mahafzah, Mohammad A. Obeidat, Ayman Mansour, Eleonora Riva Sanseverino and Gaetano Zizzo
Appl. Sci. 2024, 14(6), 2274; https://doi.org/10.3390/app14062274 - 8 Mar 2024
Cited by 9 | Viewed by 2169
Abstract
This paper introduces a new hybrid DC–DC converter with enhanced voltage gain and synchronized multiple output capabilities, specifically tailored for smart grid applications. The proposed converter is based on the integration of non-isolated Zeta and Mahafzah converters, comprising a single controlled switch, two [...] Read more.
This paper introduces a new hybrid DC–DC converter with enhanced voltage gain and synchronized multiple output capabilities, specifically tailored for smart grid applications. The proposed converter is based on the integration of non-isolated Zeta and Mahafzah converters, comprising a single controlled switch, two diodes, three inductors, and two coupling capacitors. The primary objective of this novel hybrid converter is to improve voltage gain as compared to conventional Zeta and Mahafzah topologies. By achieving higher voltage gain at lower duty cycles, the converter effectively reduces voltage stress on semiconductor switches and output diodes, thereby enhancing overall performance and reliability. A comprehensive examination of the hybrid converter’s operating principle is presented, along with detailed calculations of duty cycle and switching losses. The paper also explores the converter’s application in smart grids, specifically in the context of renewable energy systems and electric vehicles. Two distinct scenarios are analyzed to evaluate the converter’s efficacy. Firstly, the converter is assessed as a DC–DC converter for renewable energy systems, highlighting its relevance in sustainable energy applications. Secondly, the converter is evaluated as an electric vehicle adapter, showcasing its potential in the transportation sector. To validate the converter’s performance, extensive simulations are carried out using MATLAB/SIMULINK with parameters set at 25 kW, 200 V, and 130 A. The simulation results demonstrate the converter’s ability to efficiently supply multiple loads with opposing energy flows, making it a promising technology for optimized grid management and energy distribution. Moreover, the paper investigates the total harmonic distortion (THD) of the grid current, focusing on its impact in smart grid environments. Notably, the new hybrid converter topology achieves a THD of 21.11% for the grid current, indicating its ability to effectively mitigate harmonics and improve power quality. Overall, this research introduces a cutting-edge hybrid DC–DC converter that enhances voltage gain and synchronizes multiple outputs, specifically catering to the requirements of smart grid applications. The findings underscore the converter’s potential to significantly contribute to the advancement of efficient and resilient power conversion technologies for smart grids, enabling seamless integration of renewable energy systems and electric vehicles into the grid. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

17 pages, 2128 KB  
Article
Robust Sliding-Mode Control Design of DC-DC Zeta Converter Operating in Buck and Boost Modes
by Humam Al-Baidhani, Fabio Corti, Alberto Reatti and Marian K. Kazimierczuk
Mathematics 2023, 11(17), 3791; https://doi.org/10.3390/math11173791 - 4 Sep 2023
Cited by 6 | Viewed by 2265
Abstract
This paper presents a new nonlinear control scheme for a pulse-width modulated dc-dc Zeta converter operating in buck and boost modes. The averaged model of the dc-dc power converter is derived, based on which a robust control law is developed using a simplified [...] Read more.
This paper presents a new nonlinear control scheme for a pulse-width modulated dc-dc Zeta converter operating in buck and boost modes. The averaged model of the dc-dc power converter is derived, based on which a robust control law is developed using a simplified sliding-mode control technique. The existence and stability conditions are introduced to select proper controller gains that ensure fast output voltage convergence towards reference voltage. A detailed design procedure is provided to realize the control scheme using low-cost discrete components. The proposed control method handles large disturbances, accommodates the non-minimum phase property, and maintains regulated output voltage during step-up and step-down operation modes. The control system also maintains constant switching frequency, improves the transient response, and eliminates the steady-state error at the output voltage. A MATLAB/SIMULINK model is developed to simulate the closed-loop dc-dc Zeta converter in continuous conduction mode and investigate the tracking and regulation performance. The simulation results confirm the robustness and stability of the nonlinear controlled power converter under abrupt line and load variations. Full article
(This article belongs to the Special Issue Dynamics and Control Theory with Applications)
Show Figures

Figure 1

23 pages, 12652 KB  
Article
Enhanced Power Factor Correction and Torque Ripple Mitigation for DC–DC Converter Based BLDC Drive
by Geethu Krishnan, Moshe Sitbon and Shijoh Vellayikot
Electronics 2023, 12(16), 3533; https://doi.org/10.3390/electronics12163533 - 21 Aug 2023
Cited by 5 | Viewed by 2368
Abstract
A novel approach to the design of power factor correction (PFC) and torque ripple minimization in a brushless direct current (BLDC) motor drive with a new pulse width modulation (PWM) technique is demonstrated. The drive was designed to have a better power factor [...] Read more.
A novel approach to the design of power factor correction (PFC) and torque ripple minimization in a brushless direct current (BLDC) motor drive with a new pulse width modulation (PWM) technique is demonstrated. The drive was designed to have a better power factor (PF) and less torque ripple. On the other hand, the modified Zeta converter is used to enhance the power factor of the proposed system. The modified Zeta converter is operated in discontinuous inductor current mode (DICM) by using a voltage follower technique, which only needs a voltage sensor for power factor correction (PFC) operation and DC-link voltage control. The output voltage of the VSI is determined by switching patterns generated by the PWM-ON-PWM switching strategy, and it reduces the torque ripples. The proposed drive is developed and simulated in a MATLAB/Simulink environment. The power factor of 0.9999 is produced by the PFC modified zeta converter topology and the PWM-ON-PWM scheme reduce the torque ripple in the commutation region by 34.2% as compared with the PWM-ON scheme. This demonstrates the effectiveness of the suggested control method. Full article
(This article belongs to the Special Issue New Trends in Power Electronics for Microgrids)
Show Figures

Figure 1

31 pages, 4601 KB  
Article
Experimental Design of an Adaptive LQG Controller for Battery Charger/Dischargers Featuring Low Computational Requirements
by Jhoan Alejandro Montenegro-Oviedo, Carlos Andres Ramos-Paja, Martha Lucia Orozco-Gutierrez, Edinson Franco-Mejía and Sergio Ignacio Serna-Garcés
World Electr. Veh. J. 2023, 14(6), 142; https://doi.org/10.3390/wevj14060142 - 28 May 2023
Cited by 2 | Viewed by 2653
Abstract
The growing use of DC/DC power converters has resulted in the requirement that their complex controllers be cheaper and smaller, thus using cost-effective implementations. For this purpose, it is necessary to decrease the computational burden in controller implementation to minimize the hardware requirements. [...] Read more.
The growing use of DC/DC power converters has resulted in the requirement that their complex controllers be cheaper and smaller, thus using cost-effective implementations. For this purpose, it is necessary to decrease the computational burden in controller implementation to minimize the hardware requirements. This manuscript presents two methods for tuning an adaptive linear–quadratic–Gaussian voltage controller for a battery charger/discharger, implemented with a Sepic/Zeta converter, to work at any operating point. The first method is based on a lookup table to select, using the nearest method, both the state feedback vector and the observer gain vector, solving the Riccati’s differential equation offline for each practical operating point. The second method defines a polynomial function for each controller element that is based on the previous data corresponding to the system operating points. The adaptability of the two controllers to fixed voltage regulation and reference tracking was validated using simulations and experimental tests. The overshoot and settling time results were lower than 11% and 3.7 ms, which are in the same orders of magnitude of a control approach in which the equations are solved online. Likewise, three indices were evaluated: central processing unit capacity, cost, and performance. This evaluation confirms that the controller based on polynomial interpolation is the best option of the two examined methods due to the satisfactory balance between dynamic performance and cost. Despite the advantages of the controllers in being based on a lookup table and polynomial interpolation, the adaptive linear–quadratic–Gaussian has the benefit of not requiring an offline training campaign; however, the cost saving obtained with the lookup table controllers and polynomial interpolation controllers, due to the possible implementation on small-size microcontrollers with development tool simple and easy maintenance, will surely be desirable for a large number of deployed units, ensuring that those solutions are highly cost-effective. Full article
(This article belongs to the Topic Power Converters)
Show Figures

Figure 1

18 pages, 4901 KB  
Article
Modeling and Harmonic Analysis of a Fractional-Order Zeta Converter
by Lingling Xie and Di Wan
Energies 2023, 16(9), 3969; https://doi.org/10.3390/en16093969 - 8 May 2023
Cited by 3 | Viewed by 1955
Abstract
The Zeta converter is an essential and widely used high-order converter. The current modeling studies on Zeta converters are based on the model that devices, such as capacitors and inductors, are of integer order. For this reason, this paper takes the Zeta converter [...] Read more.
The Zeta converter is an essential and widely used high-order converter. The current modeling studies on Zeta converters are based on the model that devices, such as capacitors and inductors, are of integer order. For this reason, this paper takes the Zeta converter as the research object and conducts an in-depth study on its fractional-order modeling. However, the existing modeling and analysis methods have high computational complexity, the analytical solutions of system variables are tedious, and it is difficult to describe the ripple changes of state variables. This paper combines the principle of harmonic balance with the equivalent small parameter method (ESPM); the approximate analytic steady-state solution of the state variable can be obtained in only three iterative steps in the whole solving process. The DC components and ripples of the state variables obtained by the proposed method were compared with those obtained by the Oustaloup’s filter-based approximation method; the symbolic period results obtained by ESPM had sufficient precision because they included more combinations of higher harmonics. Finally, the influence of fractional order on harmonics were analyzed. The obtained results show that the proposed method has the advantage of being less computational and easily describing changes in the ripple of the state variables. The simulation results are provided for validity of the theoretical analysis. Full article
Show Figures

Figure 1

19 pages, 5549 KB  
Article
Grid-Tied Single-Phase Integrated Zeta Inverter for Photovoltaic Applications
by Anderson Aparecido Dionizio, Leonardo Poltronieri Sampaio, Sérgio Augusto Oliveira da Silva and Sebastián de Jesús Manrique Machado
Energies 2023, 16(9), 3622; https://doi.org/10.3390/en16093622 - 22 Apr 2023
Cited by 10 | Viewed by 2034
Abstract
Recently, the development of integrated inverters for photovoltaic systems has been widely performed to reduce overall system size, costs, and losses. Thus, integrated inverters have emerged as a prominent solution for replacing two-stage power conversion composed of a step-up converter and a voltage [...] Read more.
Recently, the development of integrated inverters for photovoltaic systems has been widely performed to reduce overall system size, costs, and losses. Thus, integrated inverters have emerged as a prominent solution for replacing two-stage power conversion composed of a step-up converter and a voltage source inverter. Thereby, this paper proposes an integrated inverter topology for single-phase grid-tied photovoltaic systems. The proposed power converter, called a Single-Phase Integrated Zeta Inverter (SP-IZI), can boost the input voltage and inject a sinusoidal and regulated current into the mains with low harmonic distortion. The SP-IZI is based on integrating modified DC-DC Zeta converters, designed and controlled to operate in a discontinuous conduction mode, and presents similarities with the Modified Zeta Inverter (MZI). In this way, this paper compares the main parameters of both topologies and provides a complete study of the SP-IZI, involving both quantitative and qualitative studies as well as a small signals analysis. The feasibility and functionality of the proposed SP-IZI inverter are presented and evaluated through experimental results, which demonstrate that the SP-IZI presents the following advantages compared to the MZI: (i) the voltage in coupling capacitors is 13% lower; (ii) voltage stresses in switches and diodes are 40% lower; and (iii) static gain is similar to the traditional Zeta converter. Full article
(This article belongs to the Special Issue New Insights into Distributed Energy Systems)
Show Figures

Figure 1

22 pages, 4421 KB  
Article
Water Pumping System Supplied by a PV Generator and with a Switched Reluctance Motor Using a Drive Based on a Multilevel Converter with Reduced Switches
by Vitor Fernão Pires, Daniel Foito, Armando Cordeiro, Tito G. Amaral, Hao Chen, Armando Pires and João F. Martins
Designs 2023, 7(2), 39; https://doi.org/10.3390/designs7020039 - 3 Mar 2023
Cited by 4 | Viewed by 2689
Abstract
Pumping systems play a fundamental role in many applications. One of the applications in which these systems are very important is to pump water. However, in the real world context, the use of renewable energies to supply this kind of system becomes essential. [...] Read more.
Pumping systems play a fundamental role in many applications. One of the applications in which these systems are very important is to pump water. However, in the real world context, the use of renewable energies to supply this kind of system becomes essential. Thus, this paper proposes a water pumping system powered by a photovoltaic (PV) generator. In addition, due to its interesting characteristics, such low manufacturing cost, free of rare-earth elements, simple design and robustness for pumping systems, a switched reluctance motor (SRM) is used. The power electronic system to be used in the PV generator and to control the SRM consists of a DC/DC converter with a bipolar output and a multilevel converter. The adopted DC/DC converter uses only one switch, so its topology can be considered as a derivation of the combination of a Zeta converter with a buck–boost converter. Another important aspect is that this converter allows continuous input current, which is desirable for PV panels. The topology selected to control the SRM is a multilevel converter. This proposed topology was adopted with the purpose of reducing the number of power semiconductors. A maximum power point algorithm (MPPT) associated with the DC/DC converter to obtain the maximum power of the PV panels is also proposed. This MPPT will be developed based on the concept of the time derivative of the power and voltage. It will be verified that with the increase in solar irradiance, the generated power will also increase. From this particular case study, it will be verified that changes in the irradiance from 1000 W/m2 to 400 W/m2 will correspond to a change in the motor speed from 1220 rpm to 170 rpm. The characteristics and operation of the proposed system will be verified through several simulation and experimental studies. Full article
(This article belongs to the Topic Advanced Electrical Machines and Drives Technologies)
Show Figures

Figure 1

Back to TopTop