Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (127)

Search Parameters:
Keywords = copper interconnects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 8984 KB  
Article
Sintering for High Power Optoelectronic Devices
by Hannes Schwan, Nihesh Mohan, Maximilian Schmid, Rocky Kumar Saha, Holger Klassen, Klaus Müller and Gordon Elger
Micromachines 2025, 16(10), 1164; https://doi.org/10.3390/mi16101164 - 14 Oct 2025
Abstract
Residual-free eutectic Au80Sn20 soldering is still the dominant assembly technology for optoelectronic devices such as high-power lasers, LEDs, and photodiodes. Due to the high cost of gold, alternatives are desirable. This paper investigates the thermal performance of copper-based sintering for optoelectronic submodules on [...] Read more.
Residual-free eutectic Au80Sn20 soldering is still the dominant assembly technology for optoelectronic devices such as high-power lasers, LEDs, and photodiodes. Due to the high cost of gold, alternatives are desirable. This paper investigates the thermal performance of copper-based sintering for optoelectronic submodules on first and second level to obtain thermally efficient thin bondlines. Sintered interconnects obtained by a new particle-free copper ink, based on complexed copper salt, are compared with copper flake and silver nanoparticle sintered interconnects and benchmarked against AuSn solder interconnects. The copper ink is dispensed and predried at 130 °C to facilitate in situ generation of Cu nanoparticles by thermal decomposition of the metal salt before sintering. Submounts are then sintered at 275 °C for 15 min under nitrogen with 30 MPa pressure, forming uniform 2–5 µm copper layers achieving shear strengths above 31 MPa. Unpackaged LEDs are bonded on first level using the copper ink but applying only 10 MPa to avoid damaging the semiconductor dies. Thermal performance is evaluated via transient thermal analysis. Results show that copper ink interfaces approach the performance of thin AuSn joints and match silver interconnects at second level. However, at first level, AuSn and sintered interconnects of commercial silver and copper pastes remained superior due to the relative inhomogeneous thickness of the thin Cu copper layer after predrying, requiring higher bonding pressure to equalize surface inhomogeneities. Full article
(This article belongs to the Special Issue Emerging Trends in Optoelectronic Device Engineering)
Show Figures

Figure 1

15 pages, 5525 KB  
Article
Post Wire-Bonding Corrosion Prevention Strategies to Mitigate Chloride- and Bromide-Induced Corrosion Failures in Cu- and PCC-Based Wire-Bonded Packages
by Dinesh Kumar Kumaravel, Shinoj Sridharan Nair, Khanh Tuyet Anh Tran, Pavan Ahluwalia, Kevin Antony Jesu Durai and Oliver Chyan
Micromachines 2025, 16(10), 1155; https://doi.org/10.3390/mi16101155 - 12 Oct 2025
Viewed by 43
Abstract
To ensure the highest safety standards in modern automobiles, the industry is constantly adopting zero-defect frameworks, such as AEC-Q100, which aims for defective-parts-per-billion (DPPB) or grade-0 level reliability standards in automotive integrated-circuit (IC) packages. Most contemporary wire-bonded packages use either pure copper (Cu) [...] Read more.
To ensure the highest safety standards in modern automobiles, the industry is constantly adopting zero-defect frameworks, such as AEC-Q100, which aims for defective-parts-per-billion (DPPB) or grade-0 level reliability standards in automotive integrated-circuit (IC) packages. Most contemporary wire-bonded packages use either pure copper (Cu) or palladium (Pd)-coated copper (PCC) wires bonded to aluminum (Al) bond pads as interconnections. This choice is made due to their lower cost and superior electrical and mechanical performance, compared to traditional gold wire-based devices. However, these Cu–Al wire-bonded interconnections are prone to ion-induced lift-off/open-circuit corrosion failures when exposed to even trace amounts (<20 ppm) of extrinsic and/or intrinsic halide (Cl and Br) contaminants, decreasing device longevity. This study investigates corrosion failure mechanisms in Cu and PCC wire-based devices by subjecting non-encapsulated devices to a highly accelerated aqueous-immersion screening test containing 100 ppm chloride (Cl), 100 ppm bromide (Br), and a mixed-ion solution (MX: Cl + Br). The screening results indicate that even control PCC-Al devices with a Pd overlayer can be susceptible to Cl and Br induced corrosion, with 21 ± 1.6% lift-off failures in MX-solution. In contrast, applying a novel Cu-selective passivation reduced lift-off to 3.3 ± 0.6% and introducing phosphonic-acid-based inhibitor into the MX solution eliminated lift-off failures, demonstrating markedly improved reliability. Full article
Show Figures

Figure 1

17 pages, 4099 KB  
Article
Synthesis of Quaternary Ammonium Gemini Levelers and Their Action Mechanisms in Microvias Void-Free Copper Filling
by Tao Song, Jun-Yi Wang, Jiang-Peng Qiu, Jia-Qiang Yang, Zhao-Yun Wang, Yi Zhao, Xiao-Hui Yang, Ren Hu, Jun Cheng, Fang-Zu Yang, Lian-Huan Han and Dong-Ping Zhan
Colloids Interfaces 2025, 9(5), 62; https://doi.org/10.3390/colloids9050062 - 15 Sep 2025
Viewed by 334
Abstract
Developing a highly efficient leveler in acid copper electroplating solution is one of the primary tasks necessary for achieving superconformal filling of microvias and interconnections in printed circuit boards (PCBs). Two triethylenediamine-based Gemini levelers, both with terminal quaternary ammonium groups, are synthesized and [...] Read more.
Developing a highly efficient leveler in acid copper electroplating solution is one of the primary tasks necessary for achieving superconformal filling of microvias and interconnections in printed circuit boards (PCBs). Two triethylenediamine-based Gemini levelers, both with terminal quaternary ammonium groups, are synthesized and named as GL1 (C8) after reaction of triethylenediamine with 1,8-dichlorooctane and GL2 (C6 with two C–O linkages) after triethylenediamine with 1,2-bis(2-chloroethoxy) ethane. Electrochemical experiments indicate that at 100 rpm and 1000 rpm GL2 combines with a suppressor and accelerator to exhibit greater potential difference of 23 mV than GL1 in 9 mV for Cu2+ reduction, demonstrating that GL2 has a stronger synergistic convection-dependent adsorption (CDA) effect. Microvias copper electroplating experiments confirm that acid copper electroplating solution containing GL2 achieve more effective superconformal void-free filling as it results in FP = 96.1%, while the solution containing GL1 results in FP = 70%. Theoretical calculations indicate that adsorption energy of GL2 is −1037.54 kJ·mol−1, which is lower than GL1 (−1019.06 kJ·mol−1). GL2 displays lower electron density compared to GL1, which facilitates its displacement by accelerator at the bottom. The lower adsorption energy of GL2 suggests the weaker adsorption ability and the stronger CDA behavior. Full article
Show Figures

Graphical abstract

16 pages, 13804 KB  
Article
The Effect of Cobalt Incorporation on the Microstructure and Properties of Cu(Co) Alloys for Use in Hybrid Bonding
by Sarabjot Singh and Kathleen Dunn
Metals 2025, 15(9), 1023; https://doi.org/10.3390/met15091023 - 15 Sep 2025
Viewed by 428
Abstract
In this study, the properties of Cu(Co) alloy films were investigated to assess their utility as an alternative material for interconnections in hybrid bonding applications. Thin films of Cu(Co) were deposited using electrochemical deposition in a standard sulfate-based electrolyte. X-ray photoelectron spectroscopy (XPS) [...] Read more.
In this study, the properties of Cu(Co) alloy films were investigated to assess their utility as an alternative material for interconnections in hybrid bonding applications. Thin films of Cu(Co) were deposited using electrochemical deposition in a standard sulfate-based electrolyte. X-ray photoelectron spectroscopy (XPS) of the films revealed that an increasing current density during deposition resulted in an increase in cobalt concentration. Bright-field scanning transmission electron microscopy (STEM) coupled with energy-dispersive x-ray spectroscopy (EDS) was used to visualize the fine-grained microstructure and confirmed grain boundary segregation of cobalt in the films. X-ray diffraction with a heated stage determined that the coefficient of thermal expansion (CTE) increased linearly with increasing cobalt content, from 17.5 ppm/K for pure copper to a maximum of 27.5 ppm/K for a film containing 24 at.% Co. Nanoindentation experiments found that the mechanical properties depended non-linearly on composition, with hardness increasing from 3.5 GPa for a 0% cobalt film to a maximum of 4.5 GPa (24 at.% Co) and the Young’s modulus increasing from 118 GPa to 214 GPa, respectively. Four-point probe electrical measurements confirmed the expected linear increase in resistivity as Co content increased. Since electrical and mechanical properties have differing dependences on the film composition, an optimal alloy composition that balances an acceptable increase in resistance with improved mechanical properties could enable more reliable, low-temperature bonding solutions in advanced microelectronic devices. Full article
(This article belongs to the Special Issue Solidification and Microstructure of Metallic Alloys)
Show Figures

Figure 1

16 pages, 3024 KB  
Article
Rapid Microwave-Assisted Synthesis of CuSe Nanoparticles for High-Sensitivity Serotonin Biosensing in Serum
by Sankar Sekar, Ramalingam Manikandan, Shiva Kumar Arumugasamy, Saravanan Sekar, Youngmin Lee, Seung-Cheol Chang and Sejoon Lee
Chemosensors 2025, 13(7), 264; https://doi.org/10.3390/chemosensors13070264 - 21 Jul 2025
Cited by 2 | Viewed by 726
Abstract
In this study, a simple and effective approach was developed for the quantitative detection of serotonin. Hexagonal copper selenide nanostructures (CuSe) were employed to modify a disposable screen-printed carbon electrode (SPCE), and their ability to electrochemically detect serotonin in serum samples was investigated. [...] Read more.
In this study, a simple and effective approach was developed for the quantitative detection of serotonin. Hexagonal copper selenide nanostructures (CuSe) were employed to modify a disposable screen-printed carbon electrode (SPCE), and their ability to electrochemically detect serotonin in serum samples was investigated. The fabricated CuSe nanostructures exhibited an interconnected, cluster-like morphology composed of irregularly shaped particles with a distinct hexagonal crystal structure. The electrochemical results revealed that the CuSe/SPCE sensor showed better electrochemical activity and good analytical sensing performance towards serotonin detection. The sensor exhibited a linear response in the concentration range of 10 to 1000 nM, with an excellent correlation coefficient (R2 = 0.9998) and a low detection limit of 3 nM. Furthermore, the CuSe/SPCE showed better selectivity, impressive sensitivity (12.45 µM/µA cm−2), and good reproducibility toward serotonin detection, making it a promising electrochemical biosensor for serotonin detection in various real biological samples. Full article
(This article belongs to the Special Issue Electrochemical Sensing in Medical Diagnosis)
Show Figures

Figure 1

21 pages, 1246 KB  
Review
Impacts of Metals on Infectious Diseases in Wildlife and Zoonotic Spillover
by Joel Henrique Ellwanger, Marina Ziliotto and José Artur Bogo Chies
J. Xenobiot. 2025, 15(4), 105; https://doi.org/10.3390/jox15040105 - 3 Jul 2025
Cited by 2 | Viewed by 1349
Abstract
Climate change, mining activities, pollution and other human impacts on the natural environment cause significant changes in the concentrations and mixtures of metallic elements found in different ecosystems. Metals such as cadmium, copper, lead and mercury affect multiple aspects of host–pathogen interactions, influencing [...] Read more.
Climate change, mining activities, pollution and other human impacts on the natural environment cause significant changes in the concentrations and mixtures of metallic elements found in different ecosystems. Metals such as cadmium, copper, lead and mercury affect multiple aspects of host–pathogen interactions, influencing the risk of infectious diseases caused by various classes of pathogens. Notably, exposure to metals in doses and combinations toxic to the immune system can favor the dissemination of pathogens in natural environments, threatening the reproduction, well-being and survival of varied animal species. However, these problems remain neglected, since the influences of metals on infectious diseases are studied with a primary focus on human medicine. Therefore, this article aims to review the influence of metals/metalloids (e.g., arsenic, cadmium, chromium, copper, iron, lead, mercury, nickel, zinc) on infectious and parasitic diseases in animals living in natural environments. The potential impact of metals on the risk of zoonotic spillover events is also discussed. Metal pollution tends to increase as the demand for elements used in the manufacture of industrial products, batteries, and electronic devices increases globally. This problem can aggravate the biodiversity crisis and facilitate the emergence of infectious diseases. Considering the interconnections between pollution and immunity, measures to limit metal pollution are necessary to protect human health and biodiversity from the risks posed by pathogens. This review helps fill the gap in the literature regarding the connections between metal pollution and various aspects of infectious diseases. Full article
Show Figures

Graphical abstract

20 pages, 9010 KB  
Article
Polycaprolactone/Doped Bioactive Glass Composite Scaffolds for Bone Regeneration
by Ana Sofia Pádua, Manuel Pedro Fernandes Graça and Jorge Carvalho Silva
J. Funct. Biomater. 2025, 16(6), 200; https://doi.org/10.3390/jfb16060200 - 1 Jun 2025
Cited by 1 | Viewed by 1303
Abstract
Critical-size bone defects do not heal spontaneously and require external support, making bone regeneration a central challenge in tissue engineering. Polymeric/ceramic composite scaffolds offer a promising approach to mimic the structural and biological properties of bone. In this study, we aimed to evaluate [...] Read more.
Critical-size bone defects do not heal spontaneously and require external support, making bone regeneration a central challenge in tissue engineering. Polymeric/ceramic composite scaffolds offer a promising approach to mimic the structural and biological properties of bone. In this study, we aimed to evaluate the effect of different doping oxides in bioactive glass (BG) on the performance of polycaprolactone (PCL)-based composite scaffolds for bone tissue engineering applications. Composite scaffolds were fabricated using solvent casting, hot pressing, and salt-leaching techniques, combining PCL with 25 wt% of BG or doped BG containing 4 mol% of tantalum, zinc, magnesium, or niobium oxides, and 1 mol% of copper oxide. The scaffolds were characterized in terms of morphology, mechanical properties, and in vitro biological performance. All scaffolds exhibited a highly porous, interconnected structure. Mechanical compression tests indicated that elastic modulus increased with ceramic content, while doping had no measurable effect. Cytotoxicity assays confirmed biocompatibility across all scaffolds. Among the tested materials, the Zn-doped BG/PCL scaffold uniquely supported cell adhesion and proliferation and significantly enhanced alkaline phosphatase (ALP) activity—an early marker of osteogenic differentiation—alongside the Nb-doped scaffold. These results highlight the Zn-doped BG/PCL composite as a promising candidate for bone regeneration applications. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Figure 1

13 pages, 4277 KB  
Article
Advancing Nanoscale Copper Deposition Through Ultrafast-Laser-Activated Surface Chemistry
by Modestas Sadauskas, Romualdas Trusovas, Evaldas Kvietkauskas, Viktorija Vrubliauskaitė, Ina Stankevičienė, Aldona Jagminienė, Tomas Murauskas, Dainius Balkauskas, Alexandr Belosludtsev and Karolis Ratautas
Nanomaterials 2025, 15(11), 830; https://doi.org/10.3390/nano15110830 - 30 May 2025
Viewed by 841
Abstract
Direct-writing submicron copper circuits on glass with laser precision—without lithography, vacuum deposition, or etching—represents a transformative step in next-generation microfabrication. We present a high-resolution, maskless method for metallizing glass using ultrashort pulse Bessel beam laser processing, followed by silver ion activation and electroless [...] Read more.
Direct-writing submicron copper circuits on glass with laser precision—without lithography, vacuum deposition, or etching—represents a transformative step in next-generation microfabrication. We present a high-resolution, maskless method for metallizing glass using ultrashort pulse Bessel beam laser processing, followed by silver ion activation and electroless copper plating. The laser-modified glass surface hosts nanoscale chemical defects that promote the in situ reduction of Ag+ to metallic Ag0 upon exposure to AgNO3 solution. These silver seeds act as robust catalytic and adhesion sites for subsequent copper growth. Using this approach, we demonstrate circuit traces as narrow as 0.7 µm, featuring excellent uniformity and adhesion. Compared to conventional redistribution-layer (RDL) and under-bump-metallization (UBM) techniques, this process eliminates multiple lithographic and vacuum-based steps, significantly reducing process complexity and production time. The method is scalable and adaptable for applications in transparent electronics, fan-out packaging, and high-density interconnects. Full article
Show Figures

Figure 1

22 pages, 2379 KB  
Review
Actual Data on Essential Trace Elements in Parkinson’s Disease
by Cristina Popescu, Constantin Munteanu, Aura Spînu, Ioana Andone, Roxana Bistriceanu, Ruxandra Postoiu, Andreea Suciu, Sebastian Giuvara, Andreea-Iulia Vlădulescu-Trandafir, Sorina Maria Aurelian, Nadina Liana Pop, Vlad Ciobanu and Gelu Onose
Nutrients 2025, 17(11), 1852; https://doi.org/10.3390/nu17111852 - 29 May 2025
Cited by 1 | Viewed by 1710
Abstract
Sola dosis facit venenum” (Paracelsus). Essential trace elements, crucial for maintaining neuronal function, have their dysregulation increasingly correlated with neurodegenerative disorders, particularly Parkinson’s disease (PD). This systematic review aims to synthesize recent high-quality evidence regarding the involvement of essential trace elements, [...] Read more.
Sola dosis facit venenum” (Paracelsus). Essential trace elements, crucial for maintaining neuronal function, have their dysregulation increasingly correlated with neurodegenerative disorders, particularly Parkinson’s disease (PD). This systematic review aims to synthesize recent high-quality evidence regarding the involvement of essential trace elements, such as iron, zinc, copper, manganese, and selenium, in the pathogenesis and, consequently, as potential therapeutic targets of PD. A comprehensive literature search was conducted for articles published between 1 January 2023 and 31 December 2024. Out of an initial pool of 1231 identified studies, 63 met the methodological eligibility criteria according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. All potentially eligible interventional and observational studies were initially assessed using the Physiotherapy Evidence Database (PEDro) scale, which is commonly employed for evaluating the internal validity and statistical interpretability of clinical trials and rehabilitation-focused studies. Following the qualitative assessment using the PEDro scale, 18 studies were ultimately selected based on their scientific relevance and methodological rigor. To supplement the PEDro scoring, which is designed primarily for individual trials, we applied the AMSTAR-2 (A MeaSurement Tool to Assess Systematic Reviews) checklist for the evaluation of the included systematic reviews or meta-analyses. The included studies employed a variety of clinical, postmortem, and experimental models to investigate trace-element concentrations and their mechanistic roles in PD. The findings revealed consistent patterns of iron accumulation in the substantia nigra, zinc’s bidirectional effects on oxidative stress and autophagy, copper-induced α-synuclein aggregation, and the neuroprotective role of selenium via antioxidant pathways. Manganese was associated with mitochondrial dysfunction and neuroinflammation. Essential trace-element disturbances contribute to PD pathology through interconnected mechanisms involving redox imbalance, protein misfolding, and impaired cellular homeostasis. These elements may serve as both biomarkers and potential therapeutic tools, warranting further investigation into personalized metal-based interventions for PD. Full article
(This article belongs to the Special Issue Trace Minerals in Human Health: Hot Topics and Information Update)
Show Figures

Figure 1

12 pages, 7004 KB  
Article
Bonding Characteristics in Air of a Decomposable Composite Sheet Containing Sn-3.0Ag-0.5Cu Particles for Formation of a Robust Metallic Solder Joint in Die Attachment
by Hye-Min Lee and Jong-Hyun Lee
J. Manuf. Mater. Process. 2025, 9(5), 161; https://doi.org/10.3390/jmmp9050161 - 15 May 2025
Viewed by 674
Abstract
To address solder paste drawbacks, such as die contamination and flux residue, a polymer-based sheet containing Sn-3.0 (wt%) Ag-0.5Cu solder particles as fillers was fabricated, and its bonding characteristics were analyzed. The reductant in the manufactured sheet evaporated while removing the oxide layers [...] Read more.
To address solder paste drawbacks, such as die contamination and flux residue, a polymer-based sheet containing Sn-3.0 (wt%) Ag-0.5Cu solder particles as fillers was fabricated, and its bonding characteristics were analyzed. The reductant in the manufactured sheet evaporated while removing the oxide layers on the solder and copper finish surfaces during heating. Subsequently, the resin component (polymethyl methacrylate) began to decompose thermally and gradually dissipated. Ultimately, the resulting joint formed a solder interconnection with a small amount of residual resin. This joint is expected to exhibit superior thermal conductivity compared with composite joints with a polymer matrix structure. Die-attach tests were conducted in air using the fabricated sheet between Cu finishes. Results showed that joints formed at 300 °C for 30 s and 350 °C for 10 s provided excellent shear strength values of 48.0 and 44.3 MPa, respectively, along with appropriately developed intermetallic compound (IMC) layers at the bonding interface. In contrast, bonding at 350 °C for 60 s resulted in excessive growth of IMC layers at the interface. When comparing size effects of solder particles, type 6 particles exhibited superior shear strength along with a relatively thinner total IMC layer thickness compared to when type 7 particles were used. Full article
(This article belongs to the Special Issue Innovative Approaches in Metal Forming and Joining Technologies)
Show Figures

Figure 1

24 pages, 11408 KB  
Review
Emerging Copper-to-Copper Bonding Techniques: Enabling High-Density Interconnects for Heterogeneous Integration
by Wenhan Bao, Jieqiong Zhang, Hei Wong, Jun Liu and Weidong Li
Nanomaterials 2025, 15(10), 729; https://doi.org/10.3390/nano15100729 - 12 May 2025
Cited by 3 | Viewed by 3527
Abstract
As CMOS technology continues to downsize to the nanometer range, the exponential growth predicted by Moore’s Law has been significantly decelerated. Doubling chip density in the two-dimensional domain will no longer be feasible without further device downsizing. Meanwhile, emerging new device technologies, which [...] Read more.
As CMOS technology continues to downsize to the nanometer range, the exponential growth predicted by Moore’s Law has been significantly decelerated. Doubling chip density in the two-dimensional domain will no longer be feasible without further device downsizing. Meanwhile, emerging new device technologies, which may be incompatible with the mainstream CMOS technology, offer potential performance enhancements for system integration and could be options for a More-than-Moore system. Additionally, the explosive growth of artificial intelligence (AI) demands ever-high computing power and energy-efficient computing platforms. Heterogeneous multi-chip integration, which combines diverse components or a larger number of functional blocks with different process technologies and materials into compact 3D systems, has emerged as a critical pathway to overcome the performance limitations of monolithic integrated circuits (ICs), such as limited process/material options, low yield, and multifunctional design complexity. Furthermore, it sustains Moore’s Law progression for a further smaller footprint and higher integration density, and it has become pivotal for “More-than-Moore” strategies in the next CMOS technology revolution. This approach is also crucial for sustaining computational advancements with low-power dissipation and low-latency interconnects in the coming decades. The key techniques for heterogeneous wafer-to-wafer bonding involve both copper-to-copper (Cu-Cu) and dielectric-to-dielectric bonding. This review provides a comprehensive comparison of recent advancements in Cu-Cu bonding techniques. Major issues, such as plasma treatment to activate bonding surfaces, passivation to suppress oxidation, Cu geometry, and microstructure optimization to enhance interface diffusion and regrowth, and the use of polymers as dielectrics to mitigate contamination and wafer warpage, as well as pitch size scaling, are discussed in detail. Full article
(This article belongs to the Special Issue Heterogeneous Integration Technology for More Moore)
Show Figures

Figure 1

39 pages, 6578 KB  
Article
Tribo-Electrochemical Considerations for Assessing Galvanic Corrosion Characteristics of Metals in Chemical Mechanical Planarization
by Kassapa U. Gamagedara and Dipankar Roy
Electrochem 2025, 6(2), 15; https://doi.org/10.3390/electrochem6020015 - 21 Apr 2025
Viewed by 3065
Abstract
The manufacturing of integrated circuits involves multiple steps of chemical mechanical planarization (CMP) involving different materials. Mitigating CMP-induced defects is a main requirement of all CMP schemes. In this context, controlling galvanic corrosion is a particularly challenging task for planarizing device structures involving [...] Read more.
The manufacturing of integrated circuits involves multiple steps of chemical mechanical planarization (CMP) involving different materials. Mitigating CMP-induced defects is a main requirement of all CMP schemes. In this context, controlling galvanic corrosion is a particularly challenging task for planarizing device structures involving contact regions of different metals with dissimilar levels of corrosivity. Since galvanic corrosion occurs in the reactive environment of CMP slurries, an essential aspect of slurry engineering for metal CMP is to control the surface chemistries responsible for these bimetallic effects. Using a CMP system based on copper and cobalt (used in interconnects for wiring and blocking copper diffusion, respectively), the present work explores certain theoretical and experimental aspects of evaluating and controlling galvanic corrosion in barrier CMP. The limitations of conventional electrochemical tests for studying CMP-related galvanic corrosion are examined, and a tribo-electrochemical method for investigating these systems is demonstrated. Alkaline CMP slurries based on sodium percarbonate are used to planarize both Co and Cu samples. Galvanic corrosion of Co is controlled by using the metal-selective complex forming functions of malonic acid at the Co and Cu sample surfaces. A commonly used corrosion inhibitor, benzotriazole, is employed to further reduce the galvanic effects. Full article
Show Figures

Figure 1

12 pages, 6973 KB  
Article
Investigation on Electromigration-Induced Failure and Reservoir Effect in AlCu Interconnects
by Yuanxiang Zhang, Guoquan Jiang, Jingbo Zhao and Lihua Liang
Micromachines 2025, 16(4), 458; https://doi.org/10.3390/mi16040458 - 13 Apr 2025
Cited by 2 | Viewed by 1076
Abstract
Aluminum–copper alloy (AlCu) is commonly utilized as interconnect material in low-power devices. However, as the size of electronic devices continues to decrease and current density increases, electromigration (EM) has emerged as a significant reliability concern for AlCu interconnects in the microelectronics industry. In [...] Read more.
Aluminum–copper alloy (AlCu) is commonly utilized as interconnect material in low-power devices. However, as the size of electronic devices continues to decrease and current density increases, electromigration (EM) has emerged as a significant reliability concern for AlCu interconnects in the microelectronics industry. In this study, two-level AlCu interconnect structures with a Ti/TiN barrier layer were fabricated using 0.18 μm technology to perform accelerated EM tests. The test samples were subjected to three current levels (1.45 mA, 2.40 mA and 5.30 mA) at three ambient temperatures (200 °C, 225 °C and 250 °C) to investigate the nucleation and evolution of voids during EM degradation and then obtain the mean time to failure (MTTF). The numerical simulation method of atomic density integral (ADI) was used to simulate experimental observations based on the ANSYS platform, considering the coupled effects of electron wind force, stress gradient, temperature gradient, and atomic density gradient. A comparison of the experimental results and numerical simulations proves that the ADI method can be applied successfully to EM failure prediction of AlCu interconnects. Finite element models with different reservoir lengths were built to demonstrate the mechanism of the reservoir effect. The results show that the reservoir can improve the EM lifetime of the interconnect, but there is a critical extension length beyond which increasing extension sizes have no effect on EM lifetime. Full article
(This article belongs to the Topic Advanced Integrated Circuit Design and Application)
Show Figures

Figure 1

15 pages, 5727 KB  
Article
Superconformal Electrodeposition of Cobalt into Micron-Scale Trench with Alkynol Derivatives
by Wei Xu, Yedi Li, Tingjun Wu, Yu Duan, Lei Zhu, Qiang Liu, Yiying Wang and Wenjie Yu
Materials 2025, 18(8), 1747; https://doi.org/10.3390/ma18081747 - 10 Apr 2025
Cited by 1 | Viewed by 852
Abstract
Copper interconnect technology faces limitations due to the electron’s mean free path and electromigration, driving the adoption of cobalt alternatives. This study proposes a novel mechanism to achieve superfilling by tuning the adsorption energy of additive molecules on cobalt surfaces. The adsorption energies [...] Read more.
Copper interconnect technology faces limitations due to the electron’s mean free path and electromigration, driving the adoption of cobalt alternatives. This study proposes a novel mechanism to achieve superfilling by tuning the adsorption energy of additive molecules on cobalt surfaces. The adsorption energies of additives are tailored by changing molecular structures with different functional groups. Computational results reveal that carbon–carbon triple bonds critically strengthen adsorption, while ether bonds further enhance binding on distinct cobalt crystallographic planes. Specifically, 1,4-bis(2-hydroxyethoxy)-2-butyne (BEO) containing both triple bonds and ether groups exhibits the highest adsorption energy (−22.62 eV). Replacing ether with hydroxyl groups in 2-butyne-1,4-diol (BOZ) reduces the adsorption energy to −10.39 eV, while eliminating triple bonds in 1,4-butanediol diglycidyl ether (BDE) further decreases it to −8.43 eV. Experimental studies demonstrate that BOZ and BEO preferentially adsorb on the (101) and (110) planes of hexagonal close-packed cobalt (HCP-Co) due to their differential adsorption energies. This selective suppression promotes preferential growth along the densely packed (002) orientation. This leads to a trench-filling process dominated by the most densely packed plane, resulting in better electrical performance. Superfilling is achieved when molecular adsorption energies are in the range of 5–8 eV. The work establishes a functional group design strategy to regulate additive adsorption, enabling crystallographic control for advanced cobalt electrodeposition processes. Full article
Show Figures

Figure 1

14 pages, 4102 KB  
Article
Investigation of 2-Mercapto-1-Methylimidazole as a New Type of Leveler in Wafer Electroplating Copper
by Tong Tan, Renlong Liu, Lanfeng Guo, Zhaobo He, Xing Fan, Rui Ye and Changyuan Tao
Materials 2025, 18(7), 1622; https://doi.org/10.3390/ma18071622 - 2 Apr 2025
Cited by 1 | Viewed by 789
Abstract
Through-Silicon-Via (TSV) technology is of crucial importance in the process of defect-free copper filling in vias. In this study, the small molecule 2-mercapto-1-methylimidazole (SN2) is proposed as a new leveler. It enables bottom-up super-filling of blind vias without the need for inhibitors. Atomic [...] Read more.
Through-Silicon-Via (TSV) technology is of crucial importance in the process of defect-free copper filling in vias. In this study, the small molecule 2-mercapto-1-methylimidazole (SN2) is proposed as a new leveler. It enables bottom-up super-filling of blind vias without the need for inhibitors. Atomic force microscopy (AFM), X-ray diffraction (XRD), and XPS were employed to characterize the surface morphology, crystal structure, and adsorption properties of copper crystals in these systems. Meanwhile, by means of electrochemical measurements, the inhibitory effect of the leveler SN2 on copper ion deposition and the synergistic effect between SN2 molecules and other additives were investigated. The LSV test indicated that additive SN2 inhibited copper electrodeposition after being added to the plating solution, and this inhibitory effect enhanced with increasing SN2 concentration. In the actual plating wafer test (1 ASD plating for 1 min, 5 ASD plating for 5 min, and 10 ASD plating for 1 h), the best plating effect was achieved at 3 ppm, which verified the conjecture of the galvanostatic measurements. Moreover, XPS and computer simulations revealed that SN2 could be adsorbed onto the copper surfaces. This work will inspire the discovery of new effective levelers in the future. Full article
Show Figures

Figure 1

Back to TopTop