Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = fish mercury bioaccumulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 2318 KB  
Article
Mercury Contamination and Human Health Risk by Artisanal Small-Scale Gold Mining (ASGM) Activity in Gunung Pongkor, West Java, Indonesia
by Tia Agustiani, Susi Sulistia, Agus Sudaryanto, Budi Kurniawan, Patrick Adu Poku, Ahmed Elwaleed, Jun Kobayashi, Yasuhiro Ishibashi, Yasumi Anan and Tetsuro Agusa
Earth 2025, 6(3), 67; https://doi.org/10.3390/earth6030067 - 1 Jul 2025
Viewed by 1412
Abstract
Artisanal small-scale gold mining (ASGM) is the largest source of global mercury (Hg) emissions. This study investigated Hg contamination in water, soil, sediment, fish, and cassava plants around ASGM sites in Gunung Pongkor, West Java, Indonesia. Hg concentration ranged from 0.06 to 4.49 [...] Read more.
Artisanal small-scale gold mining (ASGM) is the largest source of global mercury (Hg) emissions. This study investigated Hg contamination in water, soil, sediment, fish, and cassava plants around ASGM sites in Gunung Pongkor, West Java, Indonesia. Hg concentration ranged from 0.06 to 4.49 µg/L in water; 0.420 to 144 mg/kg dw in soil; 0.920 to 150 mg/kg dw in sediment; 0.259 to 1.23 mg/kg dw in fish; 0.097 to 5.09 mg/kg dw in cassava root; and 0.350 to 8.84 mg/kg dw in cassava leaf. Geo-accumulation index (Igeo) analysis revealed moderate to heavy soil contamination upstream, likely due to direct ASGM input. In contrast, sediment Igeo values indicated heavy contamination downstream, suggesting Hg transport and sedimentation. Bioconcentration factors (BCFs) in fish were predominantly high in downstream and midstream areas, indicating enhanced Hg bioavailability. Bioaccumulation factors (BAFs) in cassava were higher in upstream areas. Health risk assessment, based on the Hazard Quotient (HQ) and Hazard Index (HI), identified ingestion as the primary exposure route, with children exhibiting significantly higher risks than adults. These findings highlight the significant Hg contamination associated with ASGM in Gunung Pongkor and emphasize the need for targeted mitigation strategies to protect human and environmental health. Full article
Show Figures

Figure 1

15 pages, 1499 KB  
Article
Effects of Diet on Mercury Bioaccumulation in Farmed Gilthead Seabream (Sparus aurata)
by Antonio Bellante, Maria Bonsignore, Giulia Maricchiolo, Martina Meola, Simone Mirto, Grazia Marina Quero, Enza Maria Quinci, Vincenzo Tancredi and Mario Sprovieri
Appl. Sci. 2025, 15(13), 7151; https://doi.org/10.3390/app15137151 - 25 Jun 2025
Viewed by 515
Abstract
The administration of nutraceutical substances to fish diet can help to control disease outbreaks in aquaculture practices, thereby promoting sustainability and food safety. In particular, some substances have the potential to alleviate the effects of trace metals toxicity in fish also by reducing [...] Read more.
The administration of nutraceutical substances to fish diet can help to control disease outbreaks in aquaculture practices, thereby promoting sustainability and food safety. In particular, some substances have the potential to alleviate the effects of trace metals toxicity in fish also by reducing metal accumulation in tissues. This study evaluates, for the first time, the effect of nutraceutical substances on bioaccumulation mechanisms of mercury (Hg) in tissues and organs of farmed gilthead seabream (Sparus aurata) by mesocosm experimentation. The kinetics of bioaccumulation in muscle, gills, gut, liver and kidney and the detoxification efficiency were also assessed. Fish were fed with three different diets: a commercial diet used as control (CD); a diet enriched with short chain fatty acids (SCFA) and extract of Castanea sativa (D1); a diet enriched with yeast Saccharomyces cerevisiae and extract of Schinopsis balansae (D2). All groups were exposed to sub-lethal concentrations of mercury. After 20 days of exposure, mercury levels in different organs and tissues clearly revealed the effectiveness of yeast and plant extracts in limiting the metal bioaccumulation in fish fed with D2 through mercury absorption and then elimination by feces. In contrast, the D1 seems to not reduce the Hg bioaccumulation in fish tissues. This can be attributed to the high affinity of SCFA for mercury, leading to the formation of organometallic compounds absorbed by the fish tissues. This mechanism potentially counteracts the efficiency of tannins contained in the extract plant on mercury removal. This study clearly demonstrates that the use of diets enriched with yeast and/or plant extracts rich in tannins are a useful bioremediation strategy to reduce trace metals bioaccumulation in farmed fish, thus preserving their health status from intoxication, their commercial values, and consequently the health of consumers. Full article
(This article belongs to the Special Issue New Insights into Marine Ecology and Fisheries Science)
Show Figures

Figure 1

22 pages, 2367 KB  
Review
Climate-Driven Alterations in the Mercury Cycle: Implications for Wildlife Managers Through a One Health Lens
by Jennifer L. Wilkening, Angelika L. Kurthen, Kelly Guilbeau, Dominic A. Libera, Sarah J. Nelson and Jaron Ming
Land 2025, 14(4), 856; https://doi.org/10.3390/land14040856 - 14 Apr 2025
Cited by 1 | Viewed by 945
Abstract
Mercury (Hg) is a naturally occurring element, but atmospheric Hg has increased due to human activities since the industrial revolution. When deposited in aquatic environments, atmospheric Hg can be converted to methyl mercury (MeHg), which bioaccumulates in ecosystems and can cause neurologic and [...] Read more.
Mercury (Hg) is a naturally occurring element, but atmospheric Hg has increased due to human activities since the industrial revolution. When deposited in aquatic environments, atmospheric Hg can be converted to methyl mercury (MeHg), which bioaccumulates in ecosystems and can cause neurologic and endocrine disruption in high quantities. While higher atmospheric Hg levels do not always translate to higher contamination in wildlife, museum specimens over the past 2 centuries have documented an increase in species that feed at higher trophic levels. Increased exposure to pollutants presents an additional threat to fish and wildlife populations already facing habitat loss or degradation due to global change. Additionally, Hg cycling and bioaccumulation are primarily driven by geophysical, ecological, and biogeochemical processes in the environment, all of which may be modulated by climate change. In this review, we begin by describing where, when, and how the Hg cycle may be altered by climate change and how this may impact wildlife exposure to MeHg. Next, we summarize the already observed physiological effects of increased MeHg exposure to wildlife and identify future climate change vulnerabilities. We illustrate the implications for wildlife managers through a case study and conclude by suggesting key areas for management action to mitigate harmful effects and conserve wildlife and habitats amid global change. Full article
Show Figures

Figure 1

17 pages, 2391 KB  
Article
Elemental Distribution in Tissues of Shorthorn Sculpins (Myoxocephalus scorpius) from Kongsfjorden in Svalbard
by Francisco Ardini, Federico Moggia, Davide Di Blasi, Paola Rivaro, Marco Grotti and Laura Ghigliotti
J. Mar. Sci. Eng. 2024, 12(12), 2245; https://doi.org/10.3390/jmse12122245 - 6 Dec 2024
Cited by 1 | Viewed by 993
Abstract
The shorthorn sculpin (Myoxocephalus scorpius) is considered a suitable sentinel species for marine pollution in the Arctic due to its ecology and stationary habits. To evaluate its role as a bioindicator for potential natural and anthropic impacts on the marine ecosystem [...] Read more.
The shorthorn sculpin (Myoxocephalus scorpius) is considered a suitable sentinel species for marine pollution in the Arctic due to its ecology and stationary habits. To evaluate its role as a bioindicator for potential natural and anthropic impacts on the marine ecosystem of the Kongsfjorden (Svalbard, Norwegian Arctic), 33 female and male specimens of shorthorn sculpins were collected in July 2018 in proximity of the Ny-Ålesund international research facility and analyzed for the content of 25 major and trace elements and methylmercury (MeHg) in the muscle, liver, gonads, and gills by using spectroscopic techniques. Most elements had their maximum average concentrations in the gills (Al, Cr, Fe, Mn, Na, Ni, Pb, Se, Si, Sr, and V), while the livers featured higher contents of some toxic and heavy metals (As, Cd, Cu, Mo, and Zn). The muscle was characterized by high contents of Ca, K, and Mg, while Ba, Co, and P were mostly concentrated in the gonads. The gonads presented higher concentrations of Cr, K, Mg, Ni, P, and V for the males and Co, Cu, Fe, Mn, and Se for the females. Both the total Hg and MeHg concentrations in the muscle correlated with the fish size, indicating bioaccumulation, although high Se/Hg molar ratios (11.0 ± 2.2) suggested a low toxic potential of mercury. Full article
(This article belongs to the Special Issue Chemical Contamination on Coastal Ecosystems—Edition II)
Show Figures

Figure 1

9 pages, 521 KB  
Proceeding Paper
Protection of Selenium Against Methylmercury in the Human Body: A Comprehensive Review of Biomolecular Interactions
by A. O. S. Jorge, F. Chamorro, M. Carpena, J. Echave, A. G. Pereira, M. Beatriz P. P. Oliveira and M. A. Prieto
Biol. Life Sci. Forum 2024, 35(1), 8; https://doi.org/10.3390/blsf2024035008 - 18 Oct 2024
Cited by 1 | Viewed by 3083
Abstract
Methylmercury (MeHg) contamination in seafood poses significant health risks to human populations worldwide, particularly neurotoxicity. Selenium protects against the toxicity of metals, such as mercury and inorganic arsenic, but at the same time, the loss of bioavailability of Se caused by these pollutants [...] Read more.
Methylmercury (MeHg) contamination in seafood poses significant health risks to human populations worldwide, particularly neurotoxicity. Selenium protects against the toxicity of metals, such as mercury and inorganic arsenic, but at the same time, the loss of bioavailability of Se caused by these pollutants must also be taken into account. Several studies have performed a risk–benefit ratio evaluation. New criteria have been proposed to assess the risks of Hg exposure, the Se Health Benefit Value (HBVSe) and the Benefit–Risk Value (BRV), which allow the simultaneous evaluation of Hg exposures and dietary Se intakes. Additionally, changes in mercury bioaccessibility have been attributed to the cooking of fish that changes the conformation of native proteins. Various studies have shown that the benefits of consuming seafood outweigh the risks, especially when the protective effects of selenium are considered. This comprehensive review examines the biomolecular interactions underlying the protective effects of selenium against MeHg in the human body. We will discuss how selenium modulates MeHg toxicity, including its role in mitigating oxidative stress, preventing MeHg bioaccumulation, and facilitating detoxification pathways. Nevertheless, further research in the area is necessary to study the synergistic effects between the different variables to improve the understanding of the repercussions on health regarding fish and shellfish intake. Overall, this communication contributes to our understanding of the complex interplay between selenium and methylmercury in the human body and underscores the potential of selenium as a therapeutic agent for mitigating MeHg-related health risks. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Biomolecules)
Show Figures

Figure 1

13 pages, 1817 KB  
Article
Differential Cellular Response to Mercury in Non-Farmed Fish Species Based on Mitochondrial DNA Copy Number Variation Analysis
by Marta Giuga, Venera Ferrito, Giada Santa Calogero, Anna Traina, Maria Bonsignore, Mario Sprovieri and Anna Maria Pappalardo
Biology 2024, 13(9), 691; https://doi.org/10.3390/biology13090691 - 3 Sep 2024
Viewed by 1635
Abstract
Mercury (Hg) pro-oxidant role on biological systems and its biogeochemical cycle represent a serious threat due to its persistence in marine environment. As the mitochondrial genome is exposed to reactive oxygen species (ROS), the aim of the present study is the validation of [...] Read more.
Mercury (Hg) pro-oxidant role on biological systems and its biogeochemical cycle represent a serious threat due to its persistence in marine environment. As the mitochondrial genome is exposed to reactive oxygen species (ROS), the aim of the present study is the validation of the variation in the number of mitochondrial DNA copies (mtDNAcn) as biomarker of oxidative stress in aquatic environment. During summer 2021, three selected fish species (Mullus barbatus, Diplodus annularis and Pagellus erythrinus) were collected in Augusta Bay, one of the most Mediterranean contaminated areas remarkable by past Hg inputs, and in a control area, both in the south-east of Sicily. The relative mtDNAcn was evaluated by qPCR on specimens of each species from both sites, characterized respectively by higher and lower Hg bioaccumulation. M. barbatus and P. erythrinus collected in Augusta showed a dramatic mtDNAcn reduction compared to their control groups while D. annularis showed an incredible mtDNAcn rising suggesting a higher resilience of this species. These results align with the mitochondrial dynamics of fission and fusion triggered by environmental toxicants. In conclusion, we suggest the implementation of the mtDNAcn variation as a valid tool for the early warning stress-related impacts in aquatic system. Full article
(This article belongs to the Special Issue Mitochondria: The Signaling Organelle)
Show Figures

Figure 1

20 pages, 15410 KB  
Article
Mercury Dynamics and Bioaccumulation Risk Assessment in Three Gold Mining-Impacted Amazon River Basins
by Vitor Sousa Domingues, Carlos Colmenero, Maria Vinograd, Marcelo Oliveira-da-Costa and Rodrigo Balbueno
Toxics 2024, 12(8), 599; https://doi.org/10.3390/toxics12080599 - 18 Aug 2024
Cited by 3 | Viewed by 2889
Abstract
Mercury contamination from gold mining in the Amazon poses significant environmental and health threats to the biome and its local populations. The recent expansion of non-industrial mining areas has severely impacted territories occupied by traditional communities. To address the lack of sampling data [...] Read more.
Mercury contamination from gold mining in the Amazon poses significant environmental and health threats to the biome and its local populations. The recent expansion of non-industrial mining areas has severely impacted territories occupied by traditional communities. To address the lack of sampling data in the region and better understand mercury dynamics, this study used the probabilistic model SERAFM to estimate the mercury distribution and bioaccumulation in fish. The analysis covered 8,259 sub-basins across three major Amazonian basins: the Branco, Tapajós and Xingu rivers. The findings revealed increasing downstream mercury levels, with notable accumulations in the main watercourses influenced by methylation processes and mining releases. The projected concentrations showed that an average of 27.47% of the sub-basins might not comply with Brazilian regulations, rising to 52.38% in the Branco and Tapajós river basins separately. The risk assessment of fish consumption based on the projections highlighted high mercury exposure levels among traditional communities, particularly indigenous populations, with an average of 49.79% facing an extremely high risk in the Branco and Tapajós river basins. This study demonstrated SERAFM’s capacity to fill information gaps in the Amazon while underscoring the need for enhanced data collection, culturally sensitive interventions and regulatory updates to mitigate mercury contamination in gold mining-affected areas. Full article
(This article belongs to the Special Issue Mercury Cycling and Health Effects)
Show Figures

Figure 1

19 pages, 2045 KB  
Review
Mediterranean Marine Mammals: Possible Future Trends and Threats Due to Mercury Contamination and Interaction with Other Environmental Stressors
by Roberto Bargagli and Emilia Rota
Animals 2024, 14(16), 2386; https://doi.org/10.3390/ani14162386 - 17 Aug 2024
Cited by 3 | Viewed by 2686
Abstract
Despite decreasing anthropogenic mercury (Hg) emissions in Europe and the banning and restriction of many persistent organic pollutants (POPs) under the Stockholm Convention, Mediterranean marine mammals still have one of the highest body burdens of persistent pollutants in the world. Moreover, the Mediterranean [...] Read more.
Despite decreasing anthropogenic mercury (Hg) emissions in Europe and the banning and restriction of many persistent organic pollutants (POPs) under the Stockholm Convention, Mediterranean marine mammals still have one of the highest body burdens of persistent pollutants in the world. Moreover, the Mediterranean basin is one of the most sensitive to climate change, with likely changes in the biogeochemical cycle and bioavailability of Hg, primary productivity, and the length and composition of pelagic food webs. The availability of food resources for marine mammals is also affected by widespread overfishing and the increasing number of alien species colonizing the basin. After reporting the most recent findings on the biogeochemical cycle of Hg in the Mediterranean Sea and the physico-chemical and bio-ecological factors determining its exceptional bioaccumulation in odontocetes, this review discusses possible future changes in the bioavailability of the metal. Recent ocean–atmosphere–land models predict that in mid-latitude seas, water warming (which in the Mediterranean is 20% faster than the global average) is likely to decrease the solubility of Hg and favor the escape of the metal to the atmosphere. However, the basin has been affected for thousands of years by natural and anthropogenic inputs of metals and climate change with sea level rise (3.6 ± 0.3 mm year−1 in the last two decades), and the frequency of extreme weather events will likely remobilize a large amount of legacy Hg from soils, riverine, and coastal sediments. Moreover, possible changes in pelagic food webs and food availability could determine dietary shifts and lower growth rates in Mediterranean cetaceans, increasing their Hg body burden. Although, in adulthood, many marine mammals have evolved the ability to detoxify monomethylmercury (MMHg) and store the metal in the liver and other organs as insoluble HgSe crystals, in Mediterranean populations more exposed to the metal, this process can deplete the biological pool of Se, increasing their susceptibility to infectious diseases and autoimmune disorders. Mediterranean mammals are also among the most exposed in the world to legacy POPs, micro- and nanoplastics, and contaminants of emerging interest. Concomitant exposure to these synthetic chemicals may pose a much more serious threat than the Se depletion. Unfortunately, as shown by the literature data summarized in this review, the most exposed populations are those living in the NW basin, the main feeding and reproductive area for most Mediterranean cetaceans, declared a sanctuary for their protection since 2002. Thus, while emphasizing the adoption of all available approaches to mitigate anthropogenic pressure with fishing and maritime traffic, it is recommended to direct future research efforts towards the assessment of possible biological effects, at the individual and population levels, of chronic and simultaneous exposure to Hg, legacy POPs, contaminants of emerging interest, and microplastics. Full article
Show Figures

Figure 1

13 pages, 1021 KB  
Article
Spatial Variation in Mercury Accumulation in Bottlenose Dolphins (Tursiops spp.) in Southeastern U.S.A.
by Mackenzie L. Griffin, Colleen E. Bryan, Tara M. Cox, Brian C. Balmer, Russell D. Day, Laura Garcia Barcia, Antoinette M. Gorgone, Jeremy J. Kiszka, Jenny A. Litz, Robin M. Perrtree, Teri K. Rowles, Lori H. Schwacke, Randall S. Wells and Eric Zolman
Toxics 2024, 12(5), 327; https://doi.org/10.3390/toxics12050327 - 30 Apr 2024
Viewed by 3826
Abstract
Bottlenose dolphins (Tursiops spp.) inhabit bays, sounds, and estuaries (BSEs) throughout the southeast region of the U.S.A. and are sentinel species for human and ecosystem-level health. Dolphins are vulnerable to the bioaccumulation of contaminants through the coastal food chain because they are [...] Read more.
Bottlenose dolphins (Tursiops spp.) inhabit bays, sounds, and estuaries (BSEs) throughout the southeast region of the U.S.A. and are sentinel species for human and ecosystem-level health. Dolphins are vulnerable to the bioaccumulation of contaminants through the coastal food chain because they are high-level predators. Currently, there is limited information on the spatial dynamics of mercury accumulation in these dolphins. Total mercury (THg) was measured in dolphin skin from multiple populations across the U.S. Southeast Atlantic and Gulf of Mexico coasts, and the influence of geographic origin, sex, and age class was investigated. Mercury varied significantly among sampling sites and was greatest in dolphins in St. Joseph Bay, Florida Everglades, and Choctawhatchee Bay (14,193 ng/g ± 2196 ng/g, 10,916 ng/g ± 1532 ng/g, and 7333 ng/g ± 1405 ng/g wet mass (wm), respectively) and lowest in dolphins in Charleston and Skidaway River Estuary (509 ng/g ± 32.1 ng/g and 530 ng/g ± 58.4 ng/g wm, respectively). Spatial mercury patterns were consistent regardless of sex or age class. Bottlenose dolphin mercury exposure can effectively represent regional trends and reflect large-scale atmospheric mercury input and local biogeochemical processes. As a sentinel species, the bottlenose dolphin data presented here can direct future studies to evaluate mercury exposure to human residents in St. Joseph Bay, Choctawhatchee Bay, and Florida Coastal Everglades, as well as additional sites with similar geographical, oceanographic, or anthropogenic parameters. These data may also inform state and federal authorities that establish fish consumption advisories to determine if residents in these locales are at heightened risk for mercury toxicity. Full article
(This article belongs to the Special Issue The Impact of Heavy Metals on Aquatic Ecosystems)
Show Figures

Figure 1

2 pages, 140 KB  
Abstract
Mercury Content in Fish Oil Food Supplements and Associated Health Risk
by Ljilja Torović, Jelena Banović Fuentes, Nataša Stanojković, Danijela Lukić and Mirjana Djermanović
Proceedings 2023, 91(1), 364; https://doi.org/10.3390/proceedings2023091364 - 22 Feb 2024
Viewed by 3621
Abstract
The market for fish oil supplements is growing significantly, as fish oil is one of the best-known sources of beneficial long-chain polyunsaturated fatty acids. However, along with the potent health benefits, first of all regarding the reduction of cardiovascular disease risk, the consumption [...] Read more.
The market for fish oil supplements is growing significantly, as fish oil is one of the best-known sources of beneficial long-chain polyunsaturated fatty acids. However, along with the potent health benefits, first of all regarding the reduction of cardiovascular disease risk, the consumption of fish oil could also pose a potential health risk. Namely, fish positioned higher in the food chain, such as shark, swordfish, tuna, mackerel, etc., are known to bioaccumulate mercury. Indeed, consumption of fish is the main source of mercury exposure for humans, specifically of the most toxic form of mercury, methylmercury (MeHg). In the human organism, MeHg manifests a wide spectrum of adverse health effects, collectively known as Minamata disease. The objective of this study was to assess the health risk of mercury exposure through fish oil supplement consumption. The total mercury content of 42 fish oil supplements available on the markets of the Republic of Serbia and the Republic of Srpska was determined by a direct mercury analyzer. A risk assessment was conducted for the adult population, taking into account the recommended intake of supplements and the toxicological profile of MeHg: an oral reference dose (RfD) of 0.0001 mg/kg bw/day and a tolerable weekly intake (TWI) of 0.0013 mg/kg bw. Since MeHg accounts for up to 75–98% of the total mercury content in fish, the precautionary principle was applied, meaning that the total mercury content was considered equal to MeHg. The total mercury content in supplements ranged from 0.001 to 0.0057 mg/kg, which is far below the maximum level for food supplements of 0.1 mg/kg. The mean (±standard deviation) of mercury content was 0.0019 ± 0.0009 mg/kg. The corresponding consumer mean exposure was 0.042 ± 0.039% of the RfD, with a maximum at 0.24%, and in the case of TWI, 0.023 ± 0.021%, with a maximum at 0.13%. Thus, the risk from mercury in fish oil supplements was negligible, even for pregnant and nursing women who need to protect their children from the extremely harmful developmental neurotoxicity of MeHg. However, the presence of other lipophilic environmental pollutants, such as polychlorinated biphenyls, dibenzodioxins, and dibenzofurans, should be investigated. Full article
(This article belongs to the Proceedings of The 14th European Nutrition Conference FENS 2023)
19 pages, 1189 KB  
Review
Mercury Biogeochemistry and Biomagnification in the Mediterranean Sea: Current Knowledge and Future Prospects in the Context of Climate Change
by Roberto Bargagli and Emilia Rota
Coasts 2024, 4(1), 89-107; https://doi.org/10.3390/coasts4010006 - 4 Feb 2024
Cited by 9 | Viewed by 3287
Abstract
In the 1970s, the discovery of much higher mercury (Hg) concentrations in Mediterranean fish than in related species of the same size from the Atlantic Ocean raised serious concerns about the possible health effects of neurotoxic monomethylmercury (MMHg) on end consumers. After 50 [...] Read more.
In the 1970s, the discovery of much higher mercury (Hg) concentrations in Mediterranean fish than in related species of the same size from the Atlantic Ocean raised serious concerns about the possible health effects of neurotoxic monomethylmercury (MMHg) on end consumers. After 50 years, the cycling and fluxes of the different chemical forms of the metal between air, land, and marine environments are still not well defined. However, current knowledge indicates that the anomalous Hg accumulation in Mediterranean organisms is mainly due to the re-mineralization of organic material, which favors the activity of methylating microorganisms and increases MMHg concentrations in low-oxygen waters. The compound is efficiently bio-concentrated by very small phytoplankton cells, which develop in Mediterranean oligotrophic and phosphorous-limited waters and are then transferred to grazing zooplankton. The enhanced bioavailability of MMHg together with the slow growth of organisms and more complex and longer Mediterranean food webs could be responsible for its anomalous accumulation in tuna and other long-lived predatory species. The Mediterranean Sea is a “hotspot” of climate change and has a rich biodiversity, and the increasing temperature, salinity, acidification, and stratification of seawater will likely reduce primary production and change the composition of plankton communities. These changes will likely affect the accumulation of MMHg at lower trophic levels and the biomagnification of its concentrations along the food web; however, changes are difficult to predict. The increased evasion of gaseous elemental mercury (Hg°) from warming surface waters and lower primary productivity could decrease the Hg availability for biotic (and possibly abiotic) methylation processes, but lower oxygen concentrations in deep waters, more complex food webs, and the reduced growth of top predators could increase their MMHg content. Despite uncertainties, in Mediterranean regions historically affected by Hg inputs from anthropogenic and geogenic sources, such as those in the northwestern Mediterranean and the northern Adriatic Sea, rising seawater levels, river flooding, and storms will likely favor the mobilization of Hg and organic matter and will likely maintain high Hg bioaccumulation rates for a long time. Long-term studies will, therefore, be necessary to evaluate the impact of climate change on continental Hg inputs in the Mediterranean basin, on air–sea exchanges, on possible changes in the composition of biotic communities, and on MMHg formation and its biomagnification along food webs. In this context, to safeguard the health of heavy consumers of local seafood, it appears necessary to develop information campaigns, promote initiatives for the consumption of marine organisms at lower trophic levels, and organize large-scale surveys of Hg accumulation in the hair or urine of the most exposed population groups. Full article
Show Figures

Figure 1

44 pages, 9502 KB  
Review
Natural Background and the Anthropogenic Enrichment of Mercury in the Southern Florida Environment: A Review with a Discussion on Public Health
by Thomas M. Missimer, James H. MacDonald, Seneshaw Tsegaye, Serge Thomas, Christopher M. Teaf, Douglas Covert and Zoie R. Kassis
Int. J. Environ. Res. Public Health 2024, 21(1), 118; https://doi.org/10.3390/ijerph21010118 - 22 Jan 2024
Cited by 3 | Viewed by 5653
Abstract
Mercury (Hg) is a toxic metal that is easily released into the atmosphere as a gas or a particulate. Since Hg has serious health impacts based on human exposure, it is a major concern where it accumulates. Southern Florida is a region of [...] Read more.
Mercury (Hg) is a toxic metal that is easily released into the atmosphere as a gas or a particulate. Since Hg has serious health impacts based on human exposure, it is a major concern where it accumulates. Southern Florida is a region of high Hg deposition in the United States. It has entered the southern Florida environment for over 56 MY. For the past 3000 to 8000 years, Hg has accumulated in the Everglades peatlands, where approximately 42.3 metric tons of Hg was deposited. The pre-industrial source of mercury that was deposited into the Everglades was from the atmosphere, consisting of combined Saharan dust and marine evasion. Drainage and the development of the Everglades for agriculture, and other mixed land uses have caused a 65.7% reduction in the quantity of peat, therefore releasing approximately 28 metric tons of Hg into the southern Florida environment over a period of approximately 133 years. Both natural and man-made fires have facilitated the Hg release. The current range in mercury release into the southern Florida environment lies between 994.9 and 1249 kg/yr. The largest source of Hg currently entering the Florida environment is from combined atmospheric sources, including Saharan dust, aerosols, sea spray, and ocean flux/evasion at 257.1–514.2 kg/yr. The remobilization of Hg from the Everglades peatlands and fires is approximately 215 kg/yr. Other large contributors include waste to energy incinerators (204.1 kg/yr), medical waste and crematory incinerators (159.7+ kg/yr), and cement plant stack discharge (150.6 kg/yr). Minor emissions include fuel emissions from motorized vehicles, gas emissions from landfills, asphalt plants, and possible others. No data are available on controlled fires in the Everglades in sugar farming, which is lumped with the overall peatland loss of Hg to the environment. Hg has impacted wildlife in southern Florida with recorded excess concentrations in fish, birds, and apex predators. This bioaccumulation of Hg in animals led to the adoption of regulations (total maximum loads) to reduce the impacts on wildlife and warnings were given to consumers to avoid the consumption of fish that are considered to be contaminated. The deposition of atmospheric Hg in southern Florida has not been studied sufficiently to ascertain where it has had the greatest impacts. Hg has been found to accumulate on willow tree leaves in a natural environment in one recent study. No significant studies of the potential impacts on human health have been conducted in southern Florida, which should be started based on the high rates of Hg fallout in rainfall and known recycling for organic sediments containing high concentrations of Hg. Full article
(This article belongs to the Special Issue Environmental Geochemistry of Toxic Elements in the Environment)
Show Figures

Figure 1

41 pages, 1073 KB  
Review
A Comprehensive Review on Metallic Trace Elements Toxicity in Fishes and Potential Remedial Measures
by Saima Naz, Ahmad Manan Mustafa Chatha, Guillermo Téllez-Isaías, Shakeeb Ullah, Qudrat Ullah, Muhammad Zahoor Khan, Muhammad Kamal Shah, Ghulam Abbas, Azka Kiran, Rubina Mushtaq, Baseer Ahmad and Zulhisyam Abdul Kari
Water 2023, 15(16), 3017; https://doi.org/10.3390/w15163017 - 21 Aug 2023
Cited by 19 | Viewed by 9406
Abstract
Metallic trace elements toxicity has been associated with a wide range of morphological abnormalities in fish, both in natural aquatic ecosystems and controlled environments. The bioaccumulation of metallic trace elements can have devastating effects on several aspects of fish health, encompassing physiological, reproductive, [...] Read more.
Metallic trace elements toxicity has been associated with a wide range of morphological abnormalities in fish, both in natural aquatic ecosystems and controlled environments. The bioaccumulation of metallic trace elements can have devastating effects on several aspects of fish health, encompassing physiological, reproductive, behavioural, and developmental functions. Considering the significant risks posed by metallic trace elements-induced toxicity to fish populations, this review aims to investigate the deleterious effects of prevalent metallic trace elements toxicants, such as mercury (Hg), cadmium (Cd), chromium (Cr), lead (Pb), arsenic (As), and copper (Cu), on the neurological, reproductive, embryonic, and tissue systems of fish. Employing diverse search engines and relevant keywords, an extensive review of in vitro and in vivo studies pertaining to metallic trace elements toxicity and its adverse consequences on fish and their organs was conducted. The findings indicate that Cd was the most prevalent metallic trace elements in aquatic environments, exerting the most severe impacts on various fish organs and systems, followed by Cu and Pb. Moreover, it was observed that different metals exhibited varying degrees and types of effects on fish. Given the profound adverse effects of metallic trace elements contamination in water, immediate measures need to be taken to mitigate water pollution stemming from the discharge of waste containing metallic trace elements from agricultural, industrial, and domestic water usage. This study also compares the most common methods for treating metallic trace elements contamination in water. Full article
Show Figures

Figure 1

14 pages, 2374 KB  
Article
What about the Arsenic? Health Risk Assessment in Canned Tuna Commercialized in Northern Spain
by Carlos Valiente-Diaz, Alejandra del Valle, Eva Garcia-Vazquez, Gonzalo Machado-Schiaffino and Alba Ardura
Processes 2023, 11(3), 824; https://doi.org/10.3390/pr11030824 - 9 Mar 2023
Cited by 3 | Viewed by 5587
Abstract
The incorrect labeling, as well as the bioaccumulation of heavy metals in seafood, represent a recurring problem worldwide, not only for natural resources but also for the consumers’ health. Heavy metals can be accumulated through the food chain and transferred to the final [...] Read more.
The incorrect labeling, as well as the bioaccumulation of heavy metals in seafood, represent a recurring problem worldwide, not only for natural resources but also for the consumers’ health. Heavy metals can be accumulated through the food chain and transferred to the final human consumer. Despite its toxicology, arsenic does not have a concentration limit on food, unlike other heavy metals like cadmium, mercury, and lead. Tuna species, with a worldwide distribution and high per capita consumption, represent a well-known toxicological issue caused by heavy metals. In this context, 80 samples of canned tuna were analyzed to check if the information contained in the label was correct and complete. Genetic identification was made by sequencing a fragment of 16S rDNA from 80 samples. For the heavy metal quantification, only those samples with the complete FAO fishing area information on the label were analyzed. Only 29 out of 80 samples presented enough information on the labels for the analysis. Some of the canned tuna commercialized in Spanish markets surpassed the safety standard levels established by the Joint FAO/WHO Expert Committee on Food Activities (JECFA) under the consumption rates of 300 g and 482 g per week. However, the carcinogenic risk (CRlim) for arsenic in all cans and all scenarios was higher than the safety levels. Full article
Show Figures

Figure 1

21 pages, 9073 KB  
Article
Mercury Levels in Sediment, Water and Selected Organisms Collected in a Coastal Contaminated Environment: The Marano and Grado Lagoon (Northern Adriatic Sea, Italy)
by Nicola Bettoso, Federico Pittaluga, Sergio Predonzani, Antonella Zanello and Alessandro Acquavita
Appl. Sci. 2023, 13(5), 3064; https://doi.org/10.3390/app13053064 - 27 Feb 2023
Cited by 20 | Viewed by 4750
Abstract
Mercury (Hg) is a global pollutant capable of bioaccumulates/biomagnifies along the trophic chain and posing concerns for organisms and humans. The historical mining in Idrija (NW Slovenia) and the more recent activity of a chlor-alkali plant (CAP) sited in Torviscosa (NE Italy) causes [...] Read more.
Mercury (Hg) is a global pollutant capable of bioaccumulates/biomagnifies along the trophic chain and posing concerns for organisms and humans. The historical mining in Idrija (NW Slovenia) and the more recent activity of a chlor-alkali plant (CAP) sited in Torviscosa (NE Italy) causes diffuse Hg contamination in the Marano and Grado Lagoon (MGL, northern Adriatic Sea, Italy). Despite the importance of fishing and aquaculture for local inhabitants, knowledge of the Hg content of MGL fish is still scarce and fragmentary. This paper reports the results obtained from the collection of sediments, water, and biota during the implementation of the WFD/2000/60/CE. The solid phase is characterised by high Hg concentrations (up to 7.4 mg kg−1) with a net positive gradient moving eastward, but chemical speciation suggests the prevalence of cinnabar (not mobile) species. The scarce mobility of Hg is attested to by the low concentrations found in surface waters. Hg in fish often exceeds the limit set for commercialization (0.5 mg kg−1 ww), especially in the Grado basin, but its content is variable depending on the size and habits of species. Although there was a significant linear relationship between THg content in sediment and tissues of Chelon auratus, the values of the biota sediment accumulation factor (BSAF), which were always less than one, suggest that the Hg bioavailable for transfer from sediment to biota is low. Additionally, the Target Hazard Quotient (THQ) calculated on C. auratus’s daily consumption showed that adverse effects on human health are out of the question at least for the Marano basin. Full article
Show Figures

Figure 1

Back to TopTop