Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,035)

Search Parameters:
Keywords = lattice composite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3197 KiB  
Article
Spark Plasma Sintering of Pristine and Transition Metal-Doped Ti2AlC MAX Phases
by Mikhail S. Gurin, Dmitry S. Shtarev, Ilya A. Zavidovskiy, Erkhan S. Kolodeznikov, Andrey A. Vyshnevyy, Aleksey V. Arsenin, Alexey D. Bolshakov and Alexander V. Syuy
Materials 2025, 18(9), 1957; https://doi.org/10.3390/ma18091957 - 25 Apr 2025
Viewed by 127
Abstract
We study the synthesis of Ti2AlC MAX-phase ceramics via spark plasma sintering (SPS), focusing on the effects of temperature, precursor composition, and transition metal doping (Mo, Ta, Hf, W, Y, and Mn). Optimized sintering parameters were established, defining the precursor ratios [...] Read more.
We study the synthesis of Ti2AlC MAX-phase ceramics via spark plasma sintering (SPS), focusing on the effects of temperature, precursor composition, and transition metal doping (Mo, Ta, Hf, W, Y, and Mn). Optimized sintering parameters were established, defining the precursor ratios necessary for the formation of Ti2AlC with >90% yield. Structural and compositional analyses revealed that select transition metals—Ta, Hf, W, and Y—could be incorporated into the Ti2AlC lattice, which resulted in >90% yield for each transition metal-doped MAX phase. In contrast, Mo and Mn predominantly formed separate phases. These findings provide insights into the controlled synthesis of MAX-phase materials with tunable properties for high-performance applications. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

27 pages, 2723 KiB  
Review
Phase Stability and Transitions in High-Entropy Alloys: Insights from Lattice Gas Models, Computational Simulations, and Experimental Validation
by Łukasz Łach
Entropy 2025, 27(5), 464; https://doi.org/10.3390/e27050464 - 25 Apr 2025
Viewed by 252
Abstract
High-entropy alloys (HEAs) are a novel class of metallic materials composed of five or more principal elements in near-equimolar ratios. This unconventional composition leads to high configurational entropy, which promotes the formation of solid solution phases with enhanced mechanical properties, thermal stability, and [...] Read more.
High-entropy alloys (HEAs) are a novel class of metallic materials composed of five or more principal elements in near-equimolar ratios. This unconventional composition leads to high configurational entropy, which promotes the formation of solid solution phases with enhanced mechanical properties, thermal stability, and corrosion resistance. Phase stability plays a critical role in determining their structural integrity and performance. This study provides a focused review of HEA phase transitions, emphasizing the role of lattice gas models in predicting phase behavior. By integrating statistical mechanics with thermodynamic principles, lattice gas models enable accurate modeling of atomic interactions, phase segregation, and order-disorder transformations. The combination of computational simulations (e.g., Monte Carlo, molecular dynamics) with experimental validation (e.g., XRD, TEM, APT) improves predictive accuracy. Furthermore, advances in data-driven methodologies facilitate high-throughput exploration of HEA compositions, accelerating the discovery of alloys with optimized phase stability and superior mechanical performance. Beyond structural applications, HEAs demonstrate potential in functional domains, such as catalysis, hydrogen storage, and energy technologies. This review brings together theoretical modeling—particularly lattice gas approaches—and experimental validation to form a unified understanding of phase behavior in high-entropy alloys. By highlighting the mechanisms behind phase transitions and their implications for material performance, this work aims to support the design and optimization of HEAs for real-world applications in aerospace, energy systems, and structural materials engineering. Full article
(This article belongs to the Special Issue Statistical Mechanics of Lattice Gases)
Show Figures

Figure 1

19 pages, 7057 KiB  
Article
Topologically Optimized Anthropomorphic Prosthetic Limb: Finite Element Analysis and Mechanical Evaluation Using Plantogram-Derived Foot Pressure Data
by Ioannis Filippos Kyriakidis, Nikolaos Kladovasilakis, Marios Gavriilopoulos, Dimitrios Tzetzis, Eleftheria Maria Pechlivani and Konstantinos Tsongas
Biomimetics 2025, 10(5), 261; https://doi.org/10.3390/biomimetics10050261 - 24 Apr 2025
Viewed by 318
Abstract
The development of prosthetic limbs has benefited individuals who suffered amputations due to accidents or medical conditions. During the development of conventional prosthetics, several challenges have been observed regarding the functional limitations, the restricted degrees of freedom compared to an actual human limb, [...] Read more.
The development of prosthetic limbs has benefited individuals who suffered amputations due to accidents or medical conditions. During the development of conventional prosthetics, several challenges have been observed regarding the functional limitations, the restricted degrees of freedom compared to an actual human limb, and the biocompatibility issues between the surface of the prosthetic limb and the human tissue or skin. These issues could result in mobility impairments due to failed mimicry of the actual stress distribution, causing discomfort, chronic pain, and tissue damage or possible infections. Especially in cases where underlying conditions exist, such as diabetes, possible trauma, or vascular disease, a failed adaptation of the prosthetic limb could lead to complete abandonment of the prosthetic part. To address these challenges, the insertion of topologically optimized parts with a biomimetic approach has allowed the optimization of the mimicry of the complex functionality behavior of the natural body parts, allowing the development of lightweight efficient anthropomorphic structures. This approach results in unified stress distribution, minimizing the practical limitations while also adding an aesthetic that aids in reducing any possible symptoms related to social anxiety and impaired social functioning. In this paper, the development of a novel anthropomorphic designed prosthetic foot with a novel Thermoplastic Polyurethane-based composite (TPU-Ground Tire Rubber 10 wt.%) was studied. The final designs contain advanced sustainable polymeric materials, gyroid lattice geometries, and Finite Element Analysis (FEA) for performance optimization. Initially, a static evaluation was conducted to replicate the phenomena at the standing process of a conventional replicated above-knee prosthetic. Furthermore, dynamic testing was conducted to assess the mechanical responses to high-intensity exercises (e.g., sprinting, jumping). The evaluation of the dynamic mechanical response of the prosthetic limb was compared to actual plantogram-derived foot pressure data during static phases (standing, light walking) and dynamic phenomena (sprinting, jumping) to address the optimal geometry and density, ensuring maximum compatibility. This innovative approach allows the development of tailored prosthetic limbs with optimal replication of the human motion patterns, resulting in improved patient outcomes and higher success rates. The proposed design presented hysteretic damping factor and energy absorption efficiency adequate for load handling of intense exercises (0.18 loss factor, 57% energy absorption efficiency) meaning that it is suitable for further research and possible upcycling. Full article
(This article belongs to the Special Issue Mechanical Properties and Functions of Bionic Materials/Structures)
Show Figures

Figure 1

12 pages, 2913 KiB  
Article
Structural and Magnetic Characterization of Mechanically Alloyed (Fe2O3)1−x(Al2O3)x Solid Solutions via Pulsed Neutron Powder Diffraction
by Dong Luo, Hayato Nakaishi, Takeshi Yabutsuka, Takashi Saito, Takashi Kamiyama, Masato Hagihala and Shigeomi Takai
Materials 2025, 18(9), 1911; https://doi.org/10.3390/ma18091911 - 23 Apr 2025
Viewed by 209
Abstract
Neutron powder diffraction experiments were carried out to characterize mechanochemically synthesized (Fe2O3)1−x(Al2O3)x solid solutions with corundum-type structure, focusing on their lattice and magnetic structures with varying temperature and composition. The neutron diffraction [...] Read more.
Neutron powder diffraction experiments were carried out to characterize mechanochemically synthesized (Fe2O3)1−x(Al2O3)x solid solutions with corundum-type structure, focusing on their lattice and magnetic structures with varying temperature and composition. The neutron diffraction experiments for (Fe2O3)0.5(Al2O3)0.5 in the temperature range between 4 K and 300 K reveal that no significant structural phase transition occurred. The behavior of temperature variation of lattice parameters is different from α-Fe2O3 and α-Al2O3 and reveals the thermal expansion coefficients of αa = 5.76(2) × 10−6 K−1 and αc = 6.19(5) × 10−6 K−1 between 200 K and 300 K. The room temperature neutron diffraction of (Fe2O3)1−x(Al2O3)x shows a linear decrease in lattice parameters with the aluminum substitution, following Vegard’s law, along with a decrease in the magnetic moment, indicating the dilution effect on spin interactions. With the increase in the aluminum substitution from x = 0 to 0.5, the deduced magnetic moment decreases from 2.224 μB to 0.862 μB. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

16 pages, 17097 KiB  
Article
Mechanical Metamaterials in Mitigating Vibrations in Battery Pack Casings
by Hsiao Mun Lee and Heow Pueh Lee
Energies 2025, 18(8), 2114; https://doi.org/10.3390/en18082114 - 19 Apr 2025
Viewed by 208
Abstract
Battery pack casings with a total energy of 12.432 kWh were designed using two types of materials: aluminum alloy and carbon fiber reinforced composite filament based on polyphthalamide or high-performance/high-temperature nylon (PPA-CF). The effectiveness of mechanical metamaterials (lattice and auxetic structures) in mitigating [...] Read more.
Battery pack casings with a total energy of 12.432 kWh were designed using two types of materials: aluminum alloy and carbon fiber reinforced composite filament based on polyphthalamide or high-performance/high-temperature nylon (PPA-CF). The effectiveness of mechanical metamaterials (lattice and auxetic structures) in mitigating the levels of random vibrations in the battery pack casings was studied using a numerical method. Both structures demonstrate outstanding capabilities with a 97% to 99% reduction in vibration levels in the aluminum casing. However, the capabilities of these structures in mitigating vibration levels in the PPA-CF casing are very limited, in that they can only mitigate approximately 63.8% and 92.8% of the longitudinal vibrations at the top cover of the casing and center of its front and back walls, respectively. Compared to PPA-CF, aluminum alloy shows better vibration mitigation performance with or without structural modification. Full article
Show Figures

Figure 1

12 pages, 5123 KiB  
Article
Enhanced Thermoelectric Properties in Cubic Sn0.50Ag0.25Bi0.25Se0.50Te0.50 via MWCNTs Incorporation
by Zhewen Tan, Zhaowei Zeng, Junliang Zhu, Wenying Wang, Lin Bo, Xingshuo Liu, Changcun Li and Degang Zhao
Crystals 2025, 15(4), 365; https://doi.org/10.3390/cryst15040365 - 16 Apr 2025
Viewed by 212
Abstract
Cubic-phase SnSe possesses exceptional crystal structure symmetry while maintaining non-harmonic bond characteristics and ultra-low lattice thermal conductivity, exhibiting superior thermoelectric (TE) application potential compared to its orthorhombic counterpart. Despite recent advancements, systematic investigations on the combined effects of composite engineering strategies in optimizing [...] Read more.
Cubic-phase SnSe possesses exceptional crystal structure symmetry while maintaining non-harmonic bond characteristics and ultra-low lattice thermal conductivity, exhibiting superior thermoelectric (TE) application potential compared to its orthorhombic counterpart. Despite recent advancements, systematic investigations on the combined effects of composite engineering strategies in optimizing TE properties of cubic-phase SnSe-based materials remain scarce. In this study, multi-walled carbon nanotubes (MWCNTs) are incorporated into the cubic-phase Sn0.50Ag0.25Bi0.25Se0.50Te0.50 to regulate its TE performance through a combination of ultrasonic dispersion and rapid hot-pressing sintering. The introduced MWCNTs promote the formation of “high-speed channel” for carrier transport and serve as additional phonon-scattering centers, resulting in a synergistic optimization of electrical and thermal transport properties. A maximum ZT value of 0.85 is achieved in the prepared 1.50 wt.% MWCNTs/Sn0.50Ag0.25Bi0.25Se0.50Te0.50 sample at 750 K, representing a 21% improvement compared to the pristine Sn0.50Ag0.25Bi0.25Se0.50Te0.50 sample. This finding establishes a scalable nano-composite engineering paradigm for enhancing TE performance of cubic-phase SnSe-based materials. Full article
Show Figures

Figure 1

34 pages, 38166 KiB  
Review
Gas Generation in Lithium-Ion Batteries: Mechanisms, Failure Pathways, and Thermal Safety Implications
by Tianyu Gong, Xuzhi Duan, Yan Shan and Lang Huang
Batteries 2025, 11(4), 152; https://doi.org/10.3390/batteries11040152 - 13 Apr 2025
Viewed by 821
Abstract
Gas evolution in lithium-ion batteries represents a pivotal yet underaddressed concern, significantly compromising long-term cyclability and safety through complex interfacial dynamics and material degradation across both normal operation and extreme thermal scenarios. While extensive research has focused on isolated gas generation mechanisms in [...] Read more.
Gas evolution in lithium-ion batteries represents a pivotal yet underaddressed concern, significantly compromising long-term cyclability and safety through complex interfacial dynamics and material degradation across both normal operation and extreme thermal scenarios. While extensive research has focused on isolated gas generation mechanisms in specific components, critical knowledge gaps persist in understanding cross-component interactions and the cascading failure pathways it induced. This review systematically decouples gas generation mechanisms at cathodes (e.g., lattice oxygen-driven CO2/CO in high-nickel layered oxides), anodes (e.g., stress-triggered solvent reduction in silicon composites), electrolytes (solvent decomposition), and auxiliary materials (binder/separator degradation), while uniquely establishing their synergistic impacts on battery stability. Distinct from prior modular analyses, we emphasize that: (1) emerging systems exhibit fundamentally different gas evolution thermodynamics compared to conventional materials, exemplified by sulfide solid electrolytes releasing H2S/SO2 via unique anionic redox pathways; (2) gas crosstalk between components creates compounding risks—retained gases induce electrolyte dry-out and ion transport barriers during cycling, while combustible gas–O2 mixtures accelerate thermal runaway through chain reactions. This review proposes three key strategies to suppress gas generation: (1) oxygen lattice stabilization via dopant engineering, (2) solvent decomposition mitigation through tailored interphases engineering, and (3) gas-selective adaptive separator development. Furthermore, it establishes a multiscale design framework spanning atomic defect control to pack-level thermal management, providing actionable guidelines for battery engineering. By correlating early gas detection metrics with degradation patterns, the work enables predictive safety systems and standardized protocols, directly guiding the development of reliable high-energy batteries for electric vehicles and grid storage. Full article
(This article belongs to the Special Issue High-Safety Lithium-Ion Batteries: Basics, Progress and Challenges)
Show Figures

Figure 1

20 pages, 21573 KiB  
Article
Thermo-Mechanical Properties and Oxidation Behavior of FeCrAl Alloys with Si and Y Addition
by Yanzhao Ni, Wen Qi, Liangshuo Zhao, Dong Li, Yingjie Qiao, Jingxue Zhou, Peng Wang and Kun Yang
Metals 2025, 15(4), 433; https://doi.org/10.3390/met15040433 - 12 Apr 2025
Viewed by 315
Abstract
The chemical composition of FeCrAl alloy significantly influences its thermal-mechanical as well as anti-corrosive properties. This study investigates the impact of silicon and yttrium additions on the thermal-mechanical properties and high-temperature oxidation resistance of FeCrAl alloy. The results indicate that thermal conductivity gradually [...] Read more.
The chemical composition of FeCrAl alloy significantly influences its thermal-mechanical as well as anti-corrosive properties. This study investigates the impact of silicon and yttrium additions on the thermal-mechanical properties and high-temperature oxidation resistance of FeCrAl alloy. The results indicate that thermal conductivity gradually decreases with the incorporation of Y or Si into the lattice, whereas the mechanical strength of the alloy can be enhanced through the addition of Y. A trace amount of Y can improve the alloy’s high-temperature oxidation resistance by mitigating the spallation of the surface oxidation film and promoting the growth of the film, characterized by heterogeneous chemical composition and microstructure. It is observed that Y possesses a higher charge density than FeCrAl, suggesting that Y can lose electrons more readily than other elements, which implies a reduction in oxygen diffusion. Full article
Show Figures

Figure 1

26 pages, 28205 KiB  
Article
Enhanced Mechanical Performance of Resin-Infused 3D-Printed Polymer Lattices
by Jakub J. Słowiński, Maciej Roszak, Mikołaj Kazimierczak, Grzegorz Skrzypczak and Maksymilian Stępczak
Polymers 2025, 17(8), 1028; https://doi.org/10.3390/polym17081028 - 10 Apr 2025
Viewed by 346
Abstract
Fused deposition modelling (FDM) technology provides a flexible and cost-effective solution for the manufacture of polymer components, enabling the precise design of structures and the incorporation of a variety of composite materials. Its development is confirmed by numerous studies on fibre reinforcements (e.g., [...] Read more.
Fused deposition modelling (FDM) technology provides a flexible and cost-effective solution for the manufacture of polymer components, enabling the precise design of structures and the incorporation of a variety of composite materials. Its development is confirmed by numerous studies on fibre reinforcements (e.g., GFRP and CF) and thermosetting resin modifications, resulting in improved impact strength and fracture toughness and increased thermal stability of products. The final mechanical properties are significantly influenced by processing parameters (e.g., fill density, layer height, and printing speed) and internal geometry (e.g., lattice structures), which can be further optimised by numerical analyses using constitutive models such as the Johnson–Cook model. The focus of the study presented here is on the fabrication of composites from FDM dies filled with F8 polyurethane resin. Filaments, including PETG carbon and PETG, were tested for potential applications with the resin. A static compression test, supported by numerical analysis using the Johnson–Cook model, was carried out to identify key mechanical characteristics and to predict the material’s behaviour under different loading conditions. The results indicate that these structures exhibit numerous potential delamination planes and voids between filament paths, leading to relatively low maximum stress values (σm ≈ 2.5–3 MPa). However, the impregnation with polyurethane resin significantly enhances these properties by bonding the layers and filling the pores, resulting in a more homogeneous and stronger composite. Additionally, numerical simulations effectively captured key aspects of structural behaviour, identifying critical stress concentration areas, particularly along the side walls and in regions forming triangular stress zones. These findings provide valuable insights into the potential of resin-filled FDM structures in engineering applications, demonstrating their improved performance over purely printed samples. Full article
(This article belongs to the Special Issue Polymers and Polymer Composite Structures for Energy Absorption)
Show Figures

Figure 1

20 pages, 10448 KiB  
Article
Experimental Investigation into the Mechanical Performance of Foam-Filled 3D-Kagome Lattice Sandwich Panels
by Zhangbin Wu, Qiuyu Li, Chao Chai, Mao Chen, Zi Ye, Yunzhe Qiu, Canhui Li and Fuqiang Lai
Symmetry 2025, 17(4), 571; https://doi.org/10.3390/sym17040571 - 9 Apr 2025
Viewed by 223
Abstract
3D-Kagome lattice sandwich panels are mainly composed of upper and lower panels and a series of symmetrically and periodically arranged lattices, known for their excellent high specific stiffness, high specific strength, and energy absorption capacity. The inherent geometrical symmetry of the 3D-Kagome lattice [...] Read more.
3D-Kagome lattice sandwich panels are mainly composed of upper and lower panels and a series of symmetrically and periodically arranged lattices, known for their excellent high specific stiffness, high specific strength, and energy absorption capacity. The inherent geometrical symmetry of the 3D-Kagome lattice plays a crucial role in achieving superior mechanical stability and load distribution efficiency. This structural symmetry enhances the uniformity of stress distribution, making it highly suitable for automotive vibration suppression, such as battery protection for electric vehicles. In this study, a polyurethane foam-filled, symmetry-enhanced 3D-Kagome sandwich panel is designed following an optimization of the lattice structure. A novel fabrication method combining precision wire-cutting, interlocking core assembly, and in situ foam filling is employed to ensure a high degree of integration and manufacturability of the composite structure. Its mechanical properties and energy absorption characteristics are systematically evaluated through a series of experimental tests, including quasi-static compression, three-point bending, and low-speed impact. The study analyzes the effects of core height on the structural stiffness, strength, and energy absorption capacity under varying loads, elucidating the failure mechanisms inherent to the symmetrical lattice sandwich configurations. The results show that the foam-filled sandwich panels exhibit significant improvements in mechanical performance compared to the unfilled ones. Specifically, the panels with core heights of 15 mm, 20 mm, and 25 mm demonstrate increases in bending stiffness of 47.3%, 53.5%, and 51.3%, respectively, along with corresponding increases in bending strength of 45.5%, 53.1%, and 50.9%. The experimental findings provide a fundamental understanding of foam-filled lattice sandwich structures, offering insights into their structural optimization for lightweight energy-absorbing applications. This study establishes a foundation for the development of advanced crash-resistant materials for automotive, aerospace, and protective engineering applications. This work highlights the structural advantages and crashworthiness potential of foam-filled Kagome sandwich panels, providing a promising foundation for their application in electric vehicle battery enclosures, aerospace impact shields, and advanced protective systems. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Mechanics of Materials)
Show Figures

Figure 1

17 pages, 5165 KiB  
Article
Effect of Accumulative High-Pressure Torsion on Structure and Electrochemical Behavior of Biodegradable Fe-30Mn-5Si (wt.%) Alloy
by Pulat Kadirov, Yulia Zhukova, Dmitry Gunderov, Maria Antipina, Tatyana Teplyakova, Natalia Tabachkova, Alexandra Baranova, Sofia Gunderova, Yury Pustov and Sergey Prokoshkin
Crystals 2025, 15(4), 351; https://doi.org/10.3390/cryst15040351 - 9 Apr 2025
Viewed by 260
Abstract
A high-pressure torsion (HPT) with a number of revolutions (n) of up to 10 and an advanced method of accumulative HPT (AccHPT), n = 10 with subsequent post-deformation annealing (PDA) at 500 and 600 °C, were applied to a biodegradable Fe-30Mn-5Si (wt.%) alloy. [...] Read more.
A high-pressure torsion (HPT) with a number of revolutions (n) of up to 10 and an advanced method of accumulative HPT (AccHPT), n = 10 with subsequent post-deformation annealing (PDA) at 500 and 600 °C, were applied to a biodegradable Fe-30Mn-5Si (wt.%) alloy. The effect of HPT, AccHPT and AccHPT with PDA on the microstructure, phase composition, microhardness and electrochemical behavior in Hanks’ solution was studied. HPT with n = 1 and 5 resulted in forming a mixed submicrocrystalline (SMCS) and nanocrystalline (NCS)structure, while HPT, n = 10 and AccHPT, n = 10 resulted in a predominant NCS with grain/subgrain sizes of 15–100 nm and 5–40 nm, respectively. PDA after AccHPT resulted in a mixture of SMCS and NCS. HPT, n = 5, n = 10 and AccHPT, n = 10 led to a transition from a two-phase (γ-austenite and ε-martensite) state after reference quenching, and HPT, n = 1 to a single-phase state (stress-induced and deformed ε-martensite), while the AccHPT, n = 10 with PDA results in a two-phase state of γ-austenite and cooling-induced ε-martensite, similarly to reference heat treatment (RHT). The increase in n resulted in the microhardness increasing up to its maximum after AccHPT, followed by a slight decrease after PDA. HPT and AccHPT led the biodegradation rate to decrease as compared to the initial state. PDA after AccHPT at 500 and 600 °C resulted in a two-phase state corresponding to an elevated biodegradation rate without significant material softening. The observed electrochemical behavior features are explained by changes in a combination of the phase state and the overall level of crystal lattice distortion. Full article
(This article belongs to the Special Issue Shape Memory Alloys: Recent Advances and Future Perspectives)
Show Figures

Figure 1

22 pages, 6690 KiB  
Article
The Polymorphism of Orlyum White 520T, an Ultraviolet Luminescent Security Ink
by János Madarász, Nóra V. May, Petra Bombicz, György Pokol, Richárd Kocsis, Bálint Hegymegi-Barakonyi and Tibor Gizur
Molecules 2025, 30(8), 1671; https://doi.org/10.3390/molecules30081671 - 8 Apr 2025
Viewed by 184
Abstract
The polymorphism of the ultraviolet luminescent security ink Orlyum White 520T (N-(2-(4-oxo-4H-benzo[d][3,1]-oxazin-2-yl)phenyl)naphthalene-2-sulfonamide) is revealed, obtaining two new polymorphic forms with enhanced stability. Beyond the known form (lit. mp. 184.8–185.2 °C, Form III, YOCTAO), we succeeded in gaining two new [...] Read more.
The polymorphism of the ultraviolet luminescent security ink Orlyum White 520T (N-(2-(4-oxo-4H-benzo[d][3,1]-oxazin-2-yl)phenyl)naphthalene-2-sulfonamide) is revealed, obtaining two new polymorphic forms with enhanced stability. Beyond the known form (lit. mp. 184.8–185.2 °C, Form III, YOCTAO), we succeeded in gaining two new polymorphic forms, Form II and Form I, with higher melting points of 195–196 and 197–198 °C, respectively. Their elemental composition, 1H and 13C NMR spectra have been found to be identical, while their powder XRD patterns and FT-IR spectra are significantly different. Based on the single-crystal structure determination of Form II and redetermination of Form III, we uncover the similarities and differences in their packing arrangement and in their secondary interaction systems, all of which affect the molecular conformations in their crystals. In order to explain their significantly distinguishable melting points, Hirshfeld surface analysis and lattice energy calculations have also been carried out. We have made efforts toward revealing the reproducible conditions under which certain polymorphs are formed. It seems that the solvents or other probable organic contaminations are more likely responsible for the formation, nucleation and growth of crystals of various polymorphic forms, traced by thermogravimetric evolved gas analysis (TG/DTA-EGA-MS). Full article
Show Figures

Figure 1

15 pages, 7066 KiB  
Article
Highly Efficient Catalytic Oxidation of Glucose to Formic Acid over Mn-Mo Doped Carbon Nanotube
by Hongrui Guo, Fan Yang, Siwei Chen, Hejuan Wu, Jirui Yang and Feng Shen
Molecules 2025, 30(7), 1639; https://doi.org/10.3390/molecules30071639 - 7 Apr 2025
Viewed by 278
Abstract
The production of formic acid (FA) from lignocellulose and its derived sugars represents a pivotal upgrading reaction in biorefinery. This work prepared a Mn-Mo doped carbon nanotube composite catalyst for the catalytic oxidation of glucose into FA in an O2 atmosphere, under [...] Read more.
The production of formic acid (FA) from lignocellulose and its derived sugars represents a pivotal upgrading reaction in biorefinery. This work prepared a Mn-Mo doped carbon nanotube composite catalyst for the catalytic oxidation of glucose into FA in an O2 atmosphere, under extremely low Mn (3.27%) and Mo (0.40%) loading conditions, displaying a comparable performance with the traditional vanadium-based catalyst suffering from toxicity issues. It was confirmed that the doping of Mo led to the formation of MnMoOX and increased the contents of low-valence Mn species (Mn2+ + Mn3+), lattice oxygen (Olatt), and surface adsorbed oxygen (Oads) based on various characterization methods, such as XRD, XPS, TEM and ICP, which were beneficial to improve the catalytic performance. The maximum FA yield of 58.8% could be achieved over Mn9Mo1OX@MWCNT after reaction for 6 h at 140 °C, which was far more than that obtained with undoped MnOX@MWCNT (14.5%) at the identical conditions. Glyoxylic acid and arabinose were identified as two main intermediates, suggesting that the transformation of glucose into FA over Mn9Mo1OX@MWCNT involved two different paths. This work proved that manganese-based catalyst was a green alternative for upgrading lignocellulose via catalytic oxidation. Full article
(This article belongs to the Special Issue Recent Advances in Porous Materials, 2nd Edition)
Show Figures

Graphical abstract

23 pages, 15057 KiB  
Article
A Fractal Characteristics Analysis of the Pore Throat Structure in Low-Permeability Sandstone Reservoirs: A Case Study of the Yanchang Formation, Southeast Ordos Basin
by Huanmeng Zhang, Xiaojun Li, Junfeng Liu, Yiping Wang, Ling Guo, Zhiyu Wu and Yafei Tian
Fractal Fract. 2025, 9(4), 224; https://doi.org/10.3390/fractalfract9040224 - 1 Apr 2025
Viewed by 291
Abstract
In the Southeastern Ordos Basin, the Chang 2 low-permeability sandstone reservoir of the Triassic Yanchang Formation is a typical heterogeneous reservoir. Quantitatively characterizing and analyzing its complex pore throat structure has become crucial for enhancing storage and production in the study area. The [...] Read more.
In the Southeastern Ordos Basin, the Chang 2 low-permeability sandstone reservoir of the Triassic Yanchang Formation is a typical heterogeneous reservoir. Quantitatively characterizing and analyzing its complex pore throat structure has become crucial for enhancing storage and production in the study area. The pore throat structure is a key factor influencing reservoir properties. To achieve this, a comprehensive suite of analytical techniques was employed, including cast thin section (CTS), scanning electron microscopy (SEM), cathodoluminescence (CL), X-ray diffraction (XRD), and mercury intrusion capillary pressure (MICP). This study quantitatively characterizes the pore size distribution of reservoirs in the Southeast Ordos Basin. Based on fractal theory, it clarifies the complexity of the pore throat structure and the degree of microscopic heterogeneity at different scales. Finally, this study reveals the correlation between fractal dimensions and storage and permeability capacities and analyzes the controlling factors. The findings indicate that the predominant lithotype in the study area is fine-grained feldspar sandstone, which develops pore types such as intergranular pores, dissolution pores, and microfractures. Based on the shapes of mercury injection curves and pore throat structural parameters, and in conjunction with SEM images, the samples are categorized into three types. Type I samples exhibit good pore throat connectivity and are characterized by a lattice model. Type II samples are characterized by a tubular pore throat model. Type III samples have poor pore throat connectivity and are characterized by an isolated model. The pore throat network of low-permeability sandstone is primarily composed of micropores (pore throat radius r < 0.1 μm), mesopores (0.1 < r < 1.0 μm), and macropores (r > 1.0 μm). The complexity of the reservoir pore throat structure was quantitatively characterized by fractal theory. The total fractal dimension (D) of all the samples is between 2 and 3, which indicates that the reservoir has capillary fractal characteristics. The average fractal dimension of micropores (D1) is 2.57, while that for mesopores (D2) and macropores (D3) is slightly higher, at an average of 2.68. This suggests that micropores have higher self-similarity and homogeneity. The fractal dimensions D1, D2, and D3 of the three types of reservoirs all exhibit a negative correlation with porosity and permeability. This shows that the more complex the pore throat structure is, the worse the storage and seepage capacity of the reservoir. For type I samples, the correlation of D3 with pore throat structural parameters such as entry pressure, skewness, and maximum mercury saturation is better than that of D2 and D1. For type II and type III samples, D2 shows a significant correlation with pore throat structural parameters. This indicates that the heterogeneity and complexity of mesopores are key factors influencing the pore throat structure of poor-quality reservoirs. Different mineral compositions have varying effects on the fractal characteristics of pore structures. Quartz, feldspar, and clay exert both negative and positive dual impacts on reservoir quality by altering the pore throat structure and the diagenetic processes. The mineral content exhibits a complex quadratic relationship with the fractal dimension. Moreover, micropores are more significantly influenced by the mineral content. The study of the relationship between the fractal dimension and physical properties, pore throat structural parameters, and mineral composition can improve the understanding of the reservoir quality of low-permeability reservoirs. This provides a theoretical basis for exploration and improving the recovery rate in the study area. Full article
Show Figures

Figure 1

21 pages, 5191 KiB  
Article
Synergistic Preparation and Mechanistic Investigation of Full Industrial Solid Waste-Based Cementitious Materials for Aeolian Sand Stabilization
by Zilu Xie, Zengzhen Qian, Hao Wang, Yingzhe Qi and Bing Yue
Appl. Sci. 2025, 15(7), 3858; https://doi.org/10.3390/app15073858 - 1 Apr 2025
Viewed by 199
Abstract
Aeolian sand serves as the principal foundation material for construction in desert regions, yet its stabilization predominantly relies on cement, presenting critical carbon emission challenges. This study developed a cementitious material utilizing complementary industrial solid wastes (ISWs)—steel slag (SS), ground granulated blast-furnace slag [...] Read more.
Aeolian sand serves as the principal foundation material for construction in desert regions, yet its stabilization predominantly relies on cement, presenting critical carbon emission challenges. This study developed a cementitious material utilizing complementary industrial solid wastes (ISWs)—steel slag (SS), ground granulated blast-furnace slag (GGBFS), phosphorus slag (PS), and carbide slag (CS)—based on clinker three chemical moduli (TCM) and simplex lattice design, aiming to replace cement for aeolian sand stabilization. ISW dosage effects on stabilized sand strength and mechanical properties were investigated, with stabilization mechanisms studied via phase and microstructural analysis. Results demonstrated that GGBFS exerted the most significant positive influence on the strength of stabilized sand. The optimal proportion was determined as SS:GGBFS:PS:CS = 5:35:20:40, achieving strength comparable to cement-stabilized aeolian sand in the literature. The elastic modulus and ductility of stabilized sand exhibited linear positive and exponential negative correlation with uniaxial compressive strength. The hydration products of ISWs, including C(-A)-S-H gel and ettringite similar to clinker, effectively enhanced interparticle bonding strength and pore-filling capacity. ISW proportions governed the composition and distribution of hydration products, thereby modulating microstructural density and strength, ultimately dictating macroscopic performance variations. The conclusions provide an environmentally friendly solution for aeolian sand stabilization in desert regions. Full article
Show Figures

Figure 1

Back to TopTop