Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,711)

Search Parameters:
Keywords = metabolomic regulations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4183 KiB  
Article
Deep-Sea Cold Seep Campylobacterota: Diversity, Growth, Metabolic Characteristics, and Nutrient Production
by Xiaoman Yan, Qinglei Sun, Ke Xu, Jintao Zhuo, Yuanyuan Sun, Guowei Qian, Xin Zhang and Li Sun
Microorganisms 2025, 13(5), 1028; https://doi.org/10.3390/microorganisms13051028 - 29 Apr 2025
Viewed by 103
Abstract
Deep-sea chemosynthetic ecosystems, including cold seeps and hydrothermal vents, are widely spread in global oceans. Campylobacterota are important primary producers in deep-sea hydrothermal vents and serve as a vital food source for local invertebrates. However, the nutrients that these bacteria can provide to [...] Read more.
Deep-sea chemosynthetic ecosystems, including cold seeps and hydrothermal vents, are widely spread in global oceans. Campylobacterota are important primary producers in deep-sea hydrothermal vents and serve as a vital food source for local invertebrates. However, the nutrients that these bacteria can provide to their hosts are unclear. To date, research on Campylobacterota in cold seeps is very limited. Consequently, little is known about the biological features and ecological potential of Campylobacterota in cold seeps. In the present work, we examined the diversity, growth, metabolic characteristics, and nutrient production of Campylobacterota in a deep-sea cold seep. Over 1000 Campylobacterota ASVs, especially autotrophic Sulfurovum and Sulfurimonas, were identified. By optimizing the culture medium, 9 Sulfurovum and Sulfurimonas strains were isolated, including three potentially novel species. Two novel species were characterized and found to exhibit unique morphological features. These two novel strains possessed complete reverse tricarboxylic acid pathways. One novel strain, FCS5, was a psychrotolerant autotroph with denitrification and phosphorus-removing capacity. FCS5 could grow in the absence of vitamins. Consistently, metabolomics and transcriptome analyses indicated that FCS5 produced multiple vitamins, which regulated the expressions of a large number of genes associated with carbon fixation and multiple-nutrient synthesis. Besides vitamins, autotrophic Campylobacterota also produced abundant free amino acids, fatty acids (short-chain, medium, and long-chain), and proteins. This study indicates that the cold seep abounds with Campylobacterota, which are capable of providing various nutrients for the chemosynthetic ecosystem. In addition, these bacteria may have wide applications, such as in wastewater treatment and carbon emission reduction. Full article
(This article belongs to the Special Issue Chemolithotrophic Microorganisms)
Show Figures

Figure 1

20 pages, 7597 KiB  
Article
Auxin Dynamics and Transcriptome–Metabolome Integration Determine Graft Compatibility in Litchi (Litchi chinensis Sonn.)
by Zhe Chen, Tingting Yan, Mingchao Yang, Xianghe Wang, Biao Lai, Guolu He, Farhat Abbas and Fuchu Hu
Int. J. Mol. Sci. 2025, 26(9), 4231; https://doi.org/10.3390/ijms26094231 - 29 Apr 2025
Viewed by 139
Abstract
Grafting is a prevalent horticultural technique that enhances crop yields and stress resilience; nevertheless, compatibility issues frequently constrain its efficacy. This research examined the physiological, hormonal, and transcriptional factors regulating compatibility between the litchi (Litchi chinensis Sonn.) cultivars Feizixiao (FZX) and Ziniangxi (ZNX). [...] Read more.
Grafting is a prevalent horticultural technique that enhances crop yields and stress resilience; nevertheless, compatibility issues frequently constrain its efficacy. This research examined the physiological, hormonal, and transcriptional factors regulating compatibility between the litchi (Litchi chinensis Sonn.) cultivars Feizixiao (FZX) and Ziniangxi (ZNX). The anatomical and growth investigations demonstrated significant disparities between compatible (FZX as scion and ZNX as rootstock) and incompatible (ZNX as scion and FZX as rootstock) grafts, with the latter showing reduced levels of indole acetic acid (IAA). Exogenous 1-naphthalene acetic acid (NAA) application markedly improved the graft survival, shoot development, and hormonal synergy, whereas the auxin inhibitor tri-iodobenzoic acid (TIBA) diminished these parameters. The incompatible grafts showed downregulation of auxin transporter genes, including ATP-binding cassette (ABC) transporter, AUXIN1/LIKE AUX1 (AUX/LAX), and PIN-FORMED (PIN) genes, suggesting impaired vascular tissue growth. Metabolomic profiling revealed dynamic interactions between auxin, salicylic acid, and jasmonic acid, with NAA-treated grafts exhibiting enhanced levels of stress-responsive metabolites. Transcriptome sequencing identified differentially expressed genes (DEGs) linked to auxin signaling (ARF, GH3), seven additional phytohormones, secondary metabolism (terpenoids, anthocyanins, and phenylpropanoids), and ABC transporters. Gene ontology and KEGG analyses highlighted the significance of hormone interactions and the biosynthesis of secondary metabolites in successful grafting. qRT-PCR validation substantiated the veracity of the transcriptome data, emphasizing the significance of auxin transport and signaling in effective graft development. This study provides an in-depth review of the molecular and physiological factors influencing litchi grafting. These findings provide critical insights for enhancing graft success rates in agricultural operations via targeted hormonal and genetic approaches. Full article
(This article belongs to the Special Issue The Role of Cytokinins and Other Phytohormones in Plant Life)
Show Figures

Figure 1

35 pages, 1503 KiB  
Review
Mechanistic Advances in Hypoglycemic Effects of Natural Polysaccharides: Multi-Target Regulation of Glycometabolism and Gut Microbiota Crosstalk
by Liquan Zhou, Jiani Li, Chen Ding, Yimiao Zhou and Zuowei Xiao
Molecules 2025, 30(9), 1980; https://doi.org/10.3390/molecules30091980 - 29 Apr 2025
Viewed by 284
Abstract
Natural polysaccharides (NPs), as a class of bioactive macromolecules with multitarget synergistic regulatory potential, exhibit significant advantages in diabetes intervention. This review systematically summarizes the core hypoglycemic mechanisms of NPs, covering structure–activity relationships, integration of the gut microbiota–metabolism–immunity axis, and regulation of key [...] Read more.
Natural polysaccharides (NPs), as a class of bioactive macromolecules with multitarget synergistic regulatory potential, exhibit significant advantages in diabetes intervention. This review systematically summarizes the core hypoglycemic mechanisms of NPs, covering structure–activity relationships, integration of the gut microbiota–metabolism–immunity axis, and regulation of key signaling pathways. Studies demonstrate that the molecular weight, branch complexity, and chemical modifications of NPs mediate their hypoglycemic activity by influencing bioavailability and target specificity. NPs improve glucose metabolism through multiple pathways: activating insulin signaling, improving insulin resistance (IR), enhancing glycogen synthesis, inhibiting gluconeogenesis, and regulating gut microbiota homeostasis. Additionally, NPs protect pancreatic β-cell function via the nuclear factor E2-related factor 2 (Nrf2)/Antioxidant Response Element (ARE) antioxidant pathway and Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) anti-inflammatory pathway. Clinical application of NPs still requires overcoming challenges such as resolving complex structure–activity relationships and dynamically integrating cross-organ signaling. Future research should focus on integrating multi-omics technologies (e.g., metagenomics, metabolomics) and organoid models to decipher the cross-organ synergistic action networks of NPs, and promote their translation from basic research to clinical applications. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

29 pages, 16724 KiB  
Article
Chemical, Sensory Variations in Black Teas from Six Tea Cultivars in Jingshan, China
by Rui Wu, Huiling Liang, Nan Hu, Jiajia Lu, Chunfang Li and Desong Tang
Foods 2025, 14(9), 1558; https://doi.org/10.3390/foods14091558 - 29 Apr 2025
Viewed by 203
Abstract
The development of black tea quality is the outcome of the synergistic interaction between tea cultivars and the ecological environment of the production area, including factors such as climate, soil, and cultivation practices. Nevertheless, within a specific geographical region, systematic analysis of the [...] Read more.
The development of black tea quality is the outcome of the synergistic interaction between tea cultivars and the ecological environment of the production area, including factors such as climate, soil, and cultivation practices. Nevertheless, within a specific geographical region, systematic analysis of the environmental regulation mechanisms governing processing adaptability and quality formation among different cultivars remains insufficient. This study evaluated six Camellia sinensis cultivars from the Jingshan region of Hangzhou, China, integrating non-targeted metabolomics, sensory profiling, bioassays, and molecular docking to elucidate cultivar-specific quality attributes. Non-volatile metabolomics identified 84 metabolites linked to color and taste, including amino acids, catechins, flavonoid glycosides, and phenolic acids. Sensory and metabolite correlations revealed that amino acids enhanced brightness and imparted fresh-sweet flavors, while catechins contributed to bitterness and astringency. Specific metabolites, such as 4-hydroxybenzoyl glucose and feruloyl quinic acid, modulated color luminance. Volatile analysis identified 13 aroma-active compounds (OAV ≥ 1), with 1-octen-3-ol, phenylacetaldehyde, and linalool endowing JK with distinct floral-fruity notes. Molecular docking further demonstrated interactions between these volatiles and olfactory receptors (e.g., OR1A1 and OR2J2), providing mechanistic insights into aroma perception. These findings establish a robust link between cultivar-driven metabolic profiles in black tea, offering actionable criteria for cultivar selection and quality optimization in regional tea production. Full article
Show Figures

Figure 1

17 pages, 3587 KiB  
Article
Volvariella volvacea Polypeptide Mitigates Alcohol-Induced Liver Injury: A Multi-Omics Study
by Bingzhi Chen, Juanqin Chen, Huihua Wu, Fangyi Zhang, Lili Chen, Weibin Zhang, Jing Yang, Li Yuan, Yuji Jiang and Youjin Deng
Foods 2025, 14(9), 1557; https://doi.org/10.3390/foods14091557 - 29 Apr 2025
Viewed by 144
Abstract
This study investigated the hepatoprotective mechanisms of Volvariella volvacea fruiting body polypeptide (VVFP, 1–3 kDa) against acute alcohol-induced liver injury using multi-omics approaches. Male ICR mice pretreated with VVFP (100–400 mg/kg) showed significantly prolonged alcohol tolerance latency (p < 0.05) and accelerated [...] Read more.
This study investigated the hepatoprotective mechanisms of Volvariella volvacea fruiting body polypeptide (VVFP, 1–3 kDa) against acute alcohol-induced liver injury using multi-omics approaches. Male ICR mice pretreated with VVFP (100–400 mg/kg) showed significantly prolonged alcohol tolerance latency (p < 0.05) and accelerated sobriety recovery compared to controls. Integrated transcriptomics and metabolomics revealed VVFP’s dual regulatory effects: (1) transcriptional regulation of 36 endoplasmic reticulum stress genes (e.g., ERP57, Derl) through protein processing pathways (KEGG:04141), and (2) metabolic modulation of 23 hepatic metabolites, particularly phosphatidylcholines and organic acids, via amino acid biosynthesis and glycerophospholipid metabolism. Cross-omics analysis identified eight coregulated genes (Got1, Arg2, Srm, etc.) interacting with key metabolites (4-guanidinobutyric acid, GABA) through linoleic acid metabolism. These findings demonstrate VVFP’s therapeutic potential as a functional food ingredient by highlighting its ability to simultaneously target hepatic stress responses and metabolic homeostasis during alcohol detoxification. Full article
Show Figures

Figure 1

16 pages, 2314 KiB  
Article
Indole Acetic Acid: A Key Metabolite That Protects Marine Sulfitobacter mediterraneus Against Oxidative Stress
by Yongliang Gan, Runlin Cai, Guanjing Cai, Jude Juventus Aweya, Jianmin Xie, Ziming Chen and Hui Wang
Microorganisms 2025, 13(5), 1014; https://doi.org/10.3390/microorganisms13051014 - 28 Apr 2025
Viewed by 201
Abstract
For marine bacteria, the phycosphere is attractive as a major source of labile nutrients, but it also presents challenges due to the accumulation of stressors, such as reactive oxygen species (ROS) from algal metabolisms. Therefore, successful colonization of bacteria in the phycosphere requires [...] Read more.
For marine bacteria, the phycosphere is attractive as a major source of labile nutrients, but it also presents challenges due to the accumulation of stressors, such as reactive oxygen species (ROS) from algal metabolisms. Therefore, successful colonization of bacteria in the phycosphere requires an efficient mechanism to fight against oxidative stress, which is still a missing piece in studying bacteria–algae interactions. Here, we demonstrate that a common metabolite, indole acetic acid (IAA), enables the Roseobacter clade Sulfitobacter mediterraneus SC1-11, an IAA-producer, to resist hydrogen peroxide (H2O2) stress and that IAA biosynthesis can be activated by low concentrations of H2O2. Proteomics and metabolomics analyses revealed that bacteria consume high amino acid levels when exposed to H2O2 stress, while exogenous supplementation with IAA effectively protects bacteria from ROS damage and alleviates amino acid starvation by upregulating several proteins responsible for replication, recombination, and repair, as well as two proteins involved in amino acid transport and metabolism. Furthermore, the supplementation of some amino acids, such as arginine, also showed a significant protective effect on bacteria under H2O2 stress. This study highlights an unprecedented role of IAA in regulating amino acid metabolisms for resisting oxidative stress, which may be a specific strategy for adapting to the phycosphere. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

26 pages, 15883 KiB  
Article
Anthocyanin Degradation Drives Heat-Induced Petal Fading in Chrysanthemum morifolium at Full Bloom: A Multi-Omics Analysis
by Ge Zhao, Yanan Li, Jialin Peng, Xiuge Li, Wenhao Xia, Yuhe Tian, Yukun Li and Lijie Zhou
Agriculture 2025, 15(9), 950; https://doi.org/10.3390/agriculture15090950 (registering DOI) - 27 Apr 2025
Viewed by 104
Abstract
Chrysanthemum morifolium, a major cut flower worldwide, undergoes petal fading under heat stress due to reduced anthocyanin accumulation, significantly compromising its ornamental value. While previous studies have focused on heat-induced inhibition of anthocyanin biosynthesis, the mechanisms governing anthocyanin degradation remain unclear. In [...] Read more.
Chrysanthemum morifolium, a major cut flower worldwide, undergoes petal fading under heat stress due to reduced anthocyanin accumulation, significantly compromising its ornamental value. While previous studies have focused on heat-induced inhibition of anthocyanin biosynthesis, the mechanisms governing anthocyanin degradation remain unclear. In this study, ‘Nannong Fencui’ chrysanthemums at full bloom—when anthocyanin accumulation peaks—were exposed to 35 °C, while a control group was maintained at 22 °C, to assess heat stress effects on anthocyanin metabolism, including both biosynthesis and degradation. Transcriptomic analysis identified nine core structural genes and three key transcription factors involved in anthocyanin biosynthesis, along with twelve core genes linked to enzymatic anthocyanin degradation. Notably, the FPKM values of structural genes for anthocyanin biosynthesis were extremely low in both groups, indicating that anthocyanin biosynthesis was largely inactive at full bloom. Untargeted metabolomic analysis identified the 30 most significantly enriched metabolic pathways. Compared to the control, heat treatment led to a significant increase in 93 metabolites (FC > 1.5, p < 0.05, VIP > 1) and a significant decrease in 160 metabolites (FC < 1/1.5, p < 0.05, VIP > 1). Cyanidin glucoside, the primary anthocyanin in chrysanthemum petals, significantly decreased under heat treatment, while its potential degradation product, protocatechuic acid, was undetectable. Meanwhile, 5-carboxyvanillic acid levels significantly increased in heat-treated groups, suggesting that protocatechuic acid may have been converted into 5-carboxyvanillic acid via an O-methylation pathway. These findings provide new insights into the metabolic regulation of anthocyanins in chrysanthemums under heat stress and offer potential strategies for maintaining flower color quality during summer production, highlighting key candidate genes (CmPRXs and CmOMT1) for future functional validation and breeding efforts aimed at improving heat tolerance and color stability. Full article
(This article belongs to the Special Issue Genetics, Breeding and Transcriptomic Analysis of Chrysanthemum)
Show Figures

Figure 1

18 pages, 5617 KiB  
Article
Static Magnetic Field Increases Polyhydroxyalkanoates Biosynthesis in Haloferax mediterranei: Parameter Optimization and Mechanistic Insights from Metabolomics
by Ze-Liang Gao and You-Wei Cui
Polymers 2025, 17(9), 1190; https://doi.org/10.3390/polym17091190 - 27 Apr 2025
Viewed by 209
Abstract
Polyhydroxyalkanoates (PHAs), as biosynthetic and biodegradable polymers, serve as alternatives to petroleum-based plastics, yet face critical cost barriers in large-scale production. While magnetic field (MF) stimulation enhances microbial activity, the optimal MF parameters and metabolic mechanisms for PHA biosynthesis remain unexplored. This study [...] Read more.
Polyhydroxyalkanoates (PHAs), as biosynthetic and biodegradable polymers, serve as alternatives to petroleum-based plastics, yet face critical cost barriers in large-scale production. While magnetic field (MF) stimulation enhances microbial activity, the optimal MF parameters and metabolic mechanisms for PHA biosynthesis remain unexplored. This study optimized magnetic field parameters to increase PHA biosynthesis in Haloferax mediterranei. A custom-engineered electromagnetic system identified 110 mT of static magnetic field (SMF) as the optimal level for biosynthesis, reaching 77.97 mg/(L·h) PHA volumetric productivity. A pulsed magnetic field caused oxidative stress and impaired substrate uptake despite increasing PHA synthesis. Prolonged SMF exposure (72 h) maximized PHA productivity, while 48 h of exposure attained 90% efficiency. Metabolomics revealed that SMF-driven carbon flux redirection via regulated butanoate metabolism led to a 2.10-fold increase in (R)-3-hydroxybutanoyl-CoA), while downregulating acetoacetate (0.51-fold) and suppressing PHA degradation (0.15-fold). This study pioneers the first application of metabolomics in archaea to decode SMF-induced metabolic rewiring in Haloferax mediterranei. Our findings establish SMF as a scalable bioenhancement tool, offering sustainable solutions for the circular bioeconomy. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

17 pages, 5431 KiB  
Article
The Platelet Activation Signaling Pathway Regulated by Fibrinogen and Homo-Gamma-Linolenic Acid (C20:3)-Associated Lipid Metabolism Is Involved in the Maintenance of Early Pregnancy in Chinese Native Yellow Cattle
by Miao Yu, Changzheng Du, Yabo Ma, Yuqin Ma, Pengfei Li, Xianguo Xie, Mengyuan Li, Xueyi Nie, Yueyang Liu, Yuxin Hou, Shenao Miao, Xingping Wang, Jinrui Xu and Yi Yang
Animals 2025, 15(9), 1219; https://doi.org/10.3390/ani15091219 - 25 Apr 2025
Viewed by 118
Abstract
Identifying the specific factors secreted during early pregnancy is an effective method for pregnancy detection in cattle, helping to reduce empty pregnancies in the industry. To systematically investigate metabolic variations between early pregnancy and the estrous cycle and their relationship with pregnancy progression, [...] Read more.
Identifying the specific factors secreted during early pregnancy is an effective method for pregnancy detection in cattle, helping to reduce empty pregnancies in the industry. To systematically investigate metabolic variations between early pregnancy and the estrous cycle and their relationship with pregnancy progression, this study utilized four-dimensional data-independent acquisition (4D-DIA) proteomics and liquid chromatography–tandem mass spectrometry (LC-MS/MS) metabolomics to analyze serum samples collected from Chinese native yellow cattle at day 0 and day 21 post-mating, combining bioinformatics analysis with experimental validation. The platelet activation signaling pathway and angiogenesis-related proteins were significantly upregulated. Among them, fibrinogen alpha/beta/gamma chains (FG) exhibited notable differences, with their branched-chain protein FGB showing highly significant upregulation (p = 0.003, Log2FC = 2.167) and tending to increase gradually during early pregnancy, suggesting that FGB could be one of the important indicators of early pregnancy in Chinese native yellow cattle. Among the differential metabolites, 11-Deoxy prostaglandin F1α (p < 0.001, Log2FC = 1.563), Thromboxane B1 (p = 0.002, Log2FC = 3.335), and Homo-Gamma-Linolenic Acid (C20:3) (p = 0.018, Log2FC = 1.781) were also increased, indicating their involvement in the regulation of the platelet activation signaling pathway. The platelet activation signaling pathway plays a crucial role in maternal immune tolerance and placental vascularization, which are essential for embryo implantation and placental development. These findings indicate that FGB has the potential to be a valuable biomarker for early cattle pregnancy detection, thereby improving pregnancy diagnosis accuracy, reducing economic losses caused by undetected empty pregnancies and enhancing reproductive efficiency in the cattle industry. Undoubtedly, our research outcomes must be validated with future studies, and a larger sample size as well as the evaluation of the potential endocrine effects induced by the synchronized estrus treatment must be considered. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

15 pages, 2895 KiB  
Article
Transcriptome and Metabolome Analyses Reveal High-Altitude Adaptation in the Qinghai Toad-Headed Lizard Phrynocephalus vlangalii
by Jun Zhong, Jian Chen, Yu-Hong Lu, Yu-Fei Huang, Ming-Sheng Hong and Xiang Ji
Biology 2025, 14(5), 459; https://doi.org/10.3390/biology14050459 - 24 Apr 2025
Viewed by 139
Abstract
The plateau environments are always harsh, with low pressure, low oxygen, and low temperature, which are detrimental to the survival of organisms. The Qinghai toad-headed lizard Phrynocephalus vlangalii has a wide range of altitude adaptation from 2000 to 4600 m. But it is [...] Read more.
The plateau environments are always harsh, with low pressure, low oxygen, and low temperature, which are detrimental to the survival of organisms. The Qinghai toad-headed lizard Phrynocephalus vlangalii has a wide range of altitude adaptation from 2000 to 4600 m. But it is still unclear how organisms maintain tissue function by balancing energy supply and demand changes in high-altitude environments of P. vlangalii. We investigated the plateau metabolic adaptation through transcriptome and metabolome analyses of P. vlangalii from three populations at different altitudes of the Qinghai-Tibet Plateau. The genes related to carbohydrate metabolism were significantly down-regulated at the high altitude. The metabolites alpha-D-glucose 1-phosphate, beta-D-fructose 6-phosphate, D-glycerate 1,3-diphosphate, 3-phosphoglycerate, and phosphoenolpyruvate in glycolysis/gluconeogenesis were down-regulated, too. The lipid metabolic and fatty acid synthase-related genes were up-regulated at a high altitude. In conclusion, the glycogen utilization-related genes and metabolites experienced broad down-regulation, while lipid-related genes and metabolites had a clear trend of up-regulation. Thus, we suggest that P. vlangalii tends to increase lipid utilization and reduce the dependence on glycogen consumption to acclimatize to the high-altitude environment. Full article
Show Figures

Figure 1

22 pages, 5127 KiB  
Article
Antipyretic Mechanism of Bai Hu Tang on LPS-Induced Fever in Rat: A Network Pharmacology and Metabolomics Analysis
by Ke Pei, Yuchen Wang, Wentao Guo, He Lin, Zhe Lin and Guangfu Lv
Pharmaceuticals 2025, 18(5), 610; https://doi.org/10.3390/ph18050610 - 23 Apr 2025
Viewed by 230
Abstract
Background: Bai Hu Tang (BHT) is a classic antipyretic in traditional Chinese medicine, however, there is little scientific evidence on the mechanism and material basis of its antipyretic effect. Methods: In LPS-induced febrile rats, after administration of BHT at 42 g/kg [...] Read more.
Background: Bai Hu Tang (BHT) is a classic antipyretic in traditional Chinese medicine, however, there is little scientific evidence on the mechanism and material basis of its antipyretic effect. Methods: In LPS-induced febrile rats, after administration of BHT at 42 g/kg for half an hour, body temperature was measured at hourly intervals for 9 consecutive hours. Then, serum levels of TNF-α, IL-1β, and IL-6, and serum and cerebrospinal fluid (CSF) levels of AVP, cAMP, PGE2, Ca and CRH, and the remaining sera were used for metabolomics. These were then combined with network pharmacology methodology to further analyse the antipyretic effect of BHT and then dock key targets with differential components. Results: Administration of BHT to LPS-induced febrile rats significantly reduced elevated body temperature, TNF-α, IL-1β and IL-6 levels, but serum and CSF levels of AVP, cAMP, PGE2, Ca2+ and CRH were significantly elevated compared to the control group. Network pharmacological analyses indicated that the putative functional targets of BHT were regulation of immune responses, associated protein binding and inflammatory responses, and fine-tuning of phosphatase binding and activation of signalling pathways such as MAPK, PI3K, AKT, NF-kB, cAMP and inflammatory pathways. Metabolomic analysis showed that the antipyretic effect of BHT and its mechanism are likely to be involved in fatty acid metabolism, bile acid metabolism and amino acid metabolism in the organism, with L-arginine, glycyrrhetinic acid and N-acetylpentraxine as the main differential metabolites that play a significant role in heat recovery. The results also showed better docking of glycyrrhetinic acid with TNF-α, IL-6R, PTGS2. Conclusions: BHT provides a valuable adjunct to traditional clinical antipyretics by improving body temperature and metabolism and reducing inflammation. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

26 pages, 10303 KiB  
Article
Integrated Multi-Omics Analysis Reveals Key Regulators of Bovine Oocyte Maturation
by Yassin Kassim, Hao Sheng, Guangjun Xu, Hao Jin, Tariq Iqbal, Mostafa Elashry and Kun Zhang
Int. J. Mol. Sci. 2025, 26(9), 3973; https://doi.org/10.3390/ijms26093973 - 23 Apr 2025
Viewed by 223
Abstract
A well-regulated metabolism is crucial for optimal oocyte development and embryonic health. However, the metabolic framework governing oocyte maturation remains poorly understood. Using bovine oocytes as a model, we examined metabolomic and transcriptomic alterations during the transition from the germinal vesicle (GV) to [...] Read more.
A well-regulated metabolism is crucial for optimal oocyte development and embryonic health. However, the metabolic framework governing oocyte maturation remains poorly understood. Using bovine oocytes as a model, we examined metabolomic and transcriptomic alterations during the transition from the germinal vesicle (GV) to the metaphase II (MII) stage. Our findings reveal distinct metabolic shifts, including suppressed β-oxidation combined with the accumulation of long-chain fatty acids (LCFAs). Notably, progesterone emerged as a key regulator of meiotic resumption through its influence on cAMP levels. We also observed enhanced glycolysis, moderate activation of the citric acid cycle (TCA cycle), and suppression of oxidative phosphorylation (OXPHOS), alongside reduced urea cycle flux and shifts in amino acid metabolism favoring glutamate synthesis. Intriguingly, discrepancies between metabolic and transcriptional activities in pathways such as the TCA cycle and nucleotide metabolism suggest asynchronous regulation. These findings provide a comprehensive multi-omics resource, advancing our understanding of the dynamic metabolic and transcriptional landscape during bovine oocyte maturation. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Graphical abstract

21 pages, 4336 KiB  
Article
Effects of Chicken Protein Hydrolysate as a Protein Source to Partially Replace Chicken Meal on Gut Health, Gut Microbial Structure, and Metabolite Composition in Cats
by Tong Yu, Fabian Humbert, Dan Li, Arnaud Savarin, Mingrui Zhang, Yingyue Cui, Haotian Wang, Tianyu Dong and Yi Wu
Vet. Sci. 2025, 12(4), 388; https://doi.org/10.3390/vetsci12040388 - 21 Apr 2025
Viewed by 402
Abstract
Protein hydrolysates positively affect intestinal function in both humans and animals, but their impact on gut health and the gut microbial profile in cats has not been thoroughly investigated. In this study, a total of 30 adult cats were randomly assigned to one [...] Read more.
Protein hydrolysates positively affect intestinal function in both humans and animals, but their impact on gut health and the gut microbial profile in cats has not been thoroughly investigated. In this study, a total of 30 adult cats were randomly assigned to one of three dietary treatments for a 60-day feeding trial. The three dietary treatments were as follows: (1) basal diet (CON), (2) diet containing 15% powdered chicken protein hydrolysate (HP15%), and (3) diet containing 15% liquid chicken protein hydrolysate (HL15%). Compared to the CON group, the HP15% group had a decreased calprotectin levels and fecal gases emissions (p < 0.05). A higher abundance of Bacteroidota, Veillonellaceae, and Bacteroidaceae, while a lower abundance of Firmicutes was showed in the HL15% group than that in the CON group (p < 0.05). At the genus level, compared with the CON group, an increased abundance of Bacteroides spp. and Bifidobacterium spp. was showed, whereas a reduced abundance of Alloprevotella spp. was presented in the HP15% and HL15% groups (p < 0.05). The metabolomic analysis revealed 1405 distinct metabolites between the HP15% and CON groups (p < 0.05, VIP-pred-OPLS-DA > 1), and the level of cholic acid decreased while the level of isodeoxycholic acid increased in the HP15% group (p < 0.05). The metabolomic analysis revealed 1910 distinct metabolites between the HL15% and CON groups (p < 0.05, VIP-pred-OPLS-DA > 1), and the levels of 4-coumaryl alcohol and enterolactone increased in the HL15% group (p < 0.05). In summary, this study suggested that partially replacing chicken meat with chicken protein hydrolysate in the diet of cats helps regulate the gut microbial community and metabolite profile and improves intestinal health. Full article
(This article belongs to the Topic Research on Companion Animal Nutrition)
Show Figures

Figure 1

15 pages, 6490 KiB  
Article
Metabolomics-Based Analysis of Adaptive Mechanism of Eleutheronema tetradactylum to Low-Temperature Stress
by Minxuan Jin, Anna Zheng, Evodia Moses Mkulo, Linjuan Wang, Huijuan Zhang, Baogui Tang, Hui Zhou, Bei Wang, Jiansheng Huang and Zhongliang Wang
Animals 2025, 15(8), 1174; https://doi.org/10.3390/ani15081174 - 19 Apr 2025
Viewed by 153
Abstract
Temperature is a critical environmental factor that influences the growth, development, metabolism, and overall physiological performance of fish. Eleutheronema tetradactylum is an economically significant fish species; however, its molecular mechanism’s response to long-term cold stress is still unclear. In this study, we investigated [...] Read more.
Temperature is a critical environmental factor that influences the growth, development, metabolism, and overall physiological performance of fish. Eleutheronema tetradactylum is an economically significant fish species; however, its molecular mechanism’s response to long-term cold stress is still unclear. In this study, we investigated the physiological responses of the liver in E. tetradactylum exposed to a constant temperature of 18 °C for durations of both 7 and 14 days, utilizing liquid chromatography–mass spectrometry (LC-MS), metabolomics, and conventional biochemical assays. The antioxidant status, liver histology, and metabolite profiles were examined at different time points. Our results revealed that, following sustained cold exposure, the activities of key antioxidant enzymes—superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)—initially increased and then decreased. Additionally, levels of malondialdehyde (MDA), a marker of oxidative damage, significantly elevated after 7 and 14 days of cold stress. Histopathological examination of liver tissues showed varying degrees of vacuolation and nuclear atrophy in hepatocytes, indicating oxidative damage. Metabolomic profiling identified 87 and 116 differentially expressed metabolites in the liver on days 7 and 14, respectively. Pathway enrichment analysis revealed significant alterations in pathways related to carbohydrate digestion and absorption, glutathione metabolism, and glycerolipid metabolism. These findings suggest that mechanisms regulating cell membrane fluidity, energy metabolism, autophagy, and antioxidant defense are crucial for the adaptation of E. tetradactylum to cold stress. Overall, this study provides valuable insights into the molecular and physiological adaptations of E. tetradactylum to low temperature, highlighting the activation of protective antioxidant responses and modifications of metabolic pathways in the liver. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

23 pages, 5157 KiB  
Article
Faecalibacterium duncaniae Mitigates Intestinal Barrier Damage in Mice Induced by High-Altitude Exposure by Increasing Levels of 2-Ketoglutaric Acid
by Xianduo Sun, Wenjing Li, Guangming Chen, Gaosheng Hu and Jingming Jia
Nutrients 2025, 17(8), 1380; https://doi.org/10.3390/nu17081380 - 19 Apr 2025
Viewed by 235
Abstract
Background/Objectives: Exposure to high altitudes often results in gastrointestinal disorders. This study aimed to identify probiotic strains that can alleviate such disorders. Methods: We conducted a microbiome analysis to investigate the differences in gut microbiota among volunteers during the acute response and acclimatization [...] Read more.
Background/Objectives: Exposure to high altitudes often results in gastrointestinal disorders. This study aimed to identify probiotic strains that can alleviate such disorders. Methods: We conducted a microbiome analysis to investigate the differences in gut microbiota among volunteers during the acute response and acclimatization phases at high altitudes. Subsequently, we established a mouse model of intestinal barrier damage induced by high-altitude exposure to further investigate the roles of probiotic strains and 2-ketoglutaric acid. Additionally, we performed untargeted metabolomics and transcriptomic analyses to elucidate the underlying mechanisms. Results: The microbiome analysis revealed a significant increase in the abundance of Faecalibacterium prausnitzii during the acclimatization phase. Faecalibacterium duncaniae (F. duncaniae) significantly mitigated damage to the intestinal barrier and the reduction of 2-ketoglutaric acid levels in the cecal contents induced by high-altitude exposure in mice. Immunohistochemistry and TUNEL staining demonstrated that high-altitude exposure significantly decreased the expression of ZO-1 and occludin while increasing apoptosis in ileal tissues. In contrast, treatment with F. duncaniae alleviated the loss of ZO-1 and occludin, as well as the apoptosis induced by high-altitude exposure. Furthermore, 2-ketoglutaric acid also mitigated this damage, reducing the loss of occludin and apoptosis in mice. Transcriptomic analysis indicated that high-altitude exposure significantly affects the calcium signaling pathway; conversely, the administration of F. duncaniae significantly influenced the PPAR signaling pathway, mineral absorption, and the regulation of lipolysis in adipocytes. Additionally, the expression of the FBJ osteosarcoma oncogene (Fos) was markedly reduced following the administration of F. duncaniae. Conclusions: F. duncaniae mitigates hypoxia-induced intestinal barrier damage by increasing levels of 2-ketoglutaric acid and shows promise as a probiotic, ultimately aiding travelers in adapting to high-altitude environments. Full article
(This article belongs to the Section Nutritional Immunology)
Show Figures

Figure 1

Back to TopTop