Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = pressurized water test loop

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3297 KB  
Article
Model Predictive Control of Underwater Tethered Payload
by Mark O’Connor, Andy Simoneau and Rickey Dubay
Appl. Sci. 2025, 15(18), 10122; https://doi.org/10.3390/app151810122 - 17 Sep 2025
Viewed by 201
Abstract
A fully automated, buoy-based deployment sensor system is being developed to acquire high-quality water column data, and requires a controller to accurately position an array of sensors at various depths. The sensor system will be potentially deployed under rough ocean conditions. Depth is [...] Read more.
A fully automated, buoy-based deployment sensor system is being developed to acquire high-quality water column data, and requires a controller to accurately position an array of sensors at various depths. The sensor system will be potentially deployed under rough ocean conditions. Depth is measured by a pressure sensor and adjusted through a rotating drum powered by a stepper motor. The proposed controller uses a model predictive control algorithm, a type of optimal control that predicts system response to optimize control actions used to track a desired variable-depth, setpoint profile. The profile is calculated to ensure smooth motion of the system, preventing motor malfunction. A simplified system model was created and used to simulate an open-loop test and system response. Constraints were applied to the control actions to match the practical limitations of the stepper motor. The simulated results show successful tracking of both a shallow and deep profile. At this stage of testing, the effects of ocean currents are considered by using a simple disturbance that provides the effect of ocean currents. A practical prototype that can implement the model predictive controller was tested on the physical buoy-based system with good control performance. Full article
(This article belongs to the Special Issue Optimization, Navigation and Automatic Control of Intelligent Systems)
Show Figures

Figure 1

14 pages, 2287 KB  
Article
Applicability of Reynolds Analogy and Visualization of Coolant Flow Mixing in Downcomer of Land-Based Water-Cooled SMR
by Anton Riazanov, Sergei Dmitriev, Aleksandr Dobrov, Denis Doronkov, Aleksey Pronin, Tatiana Demkina, Daniil Kuritsin, Danil Nikolaev and Dmitriy Solntsev
Fluids 2025, 10(9), 244; https://doi.org/10.3390/fluids10090244 - 16 Sep 2025
Viewed by 236
Abstract
This article presents an experimental study on the hydrodynamics of coolant flow within the pressure vessel of a small modular reactor (SMR) cooled with water, including areas such as the annular downcomer, bottom chamber, and core-simulating channels that are being developed for use [...] Read more.
This article presents an experimental study on the hydrodynamics of coolant flow within the pressure vessel of a small modular reactor (SMR) cooled with water, including areas such as the annular downcomer, bottom chamber, and core-simulating channels that are being developed for use in land-based nuclear power plants. This paper describes the experimental setup and test model, measurement techniques used, experimental conditions under which this research was conducted, and results obtained. This study was conducted at the Nizhny Novgorod State Technical University (NNSTU) using a high-pressure aerodynamic testing facility and a scale model that included structural components similar to those found in loop-type reactors. Experiments were performed with Reynolds numbers (Re) ranging from 20,000 to 50,000 in the annular downcomer space of the test model. Two independent techniques were used to simulate the non-uniform flow field in the pressure vessel: passive impurity injection (adding propane to the airflow) and hot tracer (heating one of the reactor circulation loops). The axial velocity field at the inlet to the reactor core was also investigated. This study provided information about the spatial distribution of a tracer within the coolant flow in the annular downcomer and bottom chamber of the pressure vessel. Data on the distribution of the contrasting admixture are presented in plots. The swirling nature of the coolant flow within the pressurized vessel was analyzed. It was shown that the intensity of mixing within the bottom chamber of the pressure vessel is influenced by the presence of a central vortex. Parameters associated with the mixing of admixtures within the model for the pressure vessel were estimated. Additionally, the possibility for simulating flow with different temperature mixing processes using isothermal models was observed. Full article
(This article belongs to the Special Issue Flow Visualization: Experiments and Techniques, 2nd Edition)
Show Figures

Figure 1

25 pages, 4533 KB  
Article
Real-Time Energy Optimal Control of Two-Stage Reverse Osmosis Desalination
by Larry Gao, Yakubu A. Jarma, Panagiotis D. Christofides and Yoram Cohen
Water 2025, 17(16), 2363; https://doi.org/10.3390/w17162363 - 8 Aug 2025
Viewed by 551
Abstract
A two-level model-based control system for energy-optimal operation of a two-stage reverse osmosis (RO) membrane desalination system was developed and field demonstrated. The control scheme was based on the specific energy consumption (SEC) framework accounting for pump efficiencies, physical system constraints, and temporal [...] Read more.
A two-level model-based control system for energy-optimal operation of a two-stage reverse osmosis (RO) membrane desalination system was developed and field demonstrated. The control scheme was based on the specific energy consumption (SEC) framework accounting for pump efficiencies, physical system constraints, and temporal variability of feed salinity. The SEC framework consisted of a higher-level (supervisory) control system that guided a lower-level controller for real-time SEC optimization. The supervisory controller combined real-time plant data and the SEC model to determine the energy-optimal first-stage water recovery and the overall permeate water recovery (unless specified), and membrane permeability for a target permeate production. The derived operating state was then applied to control the RO plant operation through the lower-level control system, consisting of three separate feedback loops regulating the RO feed flow rate, first-stage RO pressure, and the second-stage RO pressure via control of the first-stage and second-stage RO feed pumps, and the RO concentrate valve. The two-level control system was demonstrated for a mobile brackish water desalination plant capable of permeate productivity up to 98 m3/day. Field testing demonstrated robust simultaneous control of the dynamically coupled control variables and effective energy-optimal operation. Full article
(This article belongs to the Section Water-Energy Nexus)
Show Figures

Figure 1

15 pages, 4298 KB  
Article
Slurry Transportation Characteristics of Potash Mine Cemented Paste Backfills via Loop Test Processing
by Rongzhen Jin, Xue Wang, Siqi Zhang, Huimin Huo, Jiajie Li and Wen Ni
Processes 2024, 12(12), 2929; https://doi.org/10.3390/pr12122929 - 21 Dec 2024
Cited by 4 | Viewed by 1018
Abstract
This study evaluated the properties and processing of cemented paste backfills (CPBs) for potash mining through loop tests. The CPBs were made with steel slags as the binder, granulated potash tailings as the aggregate, and waste brine water as the liquid phase. The [...] Read more.
This study evaluated the properties and processing of cemented paste backfills (CPBs) for potash mining through loop tests. The CPBs were made with steel slags as the binder, granulated potash tailings as the aggregate, and waste brine water as the liquid phase. The effects of solid concentration and steel slag dosage on the transport and mechanical properties of CPBs were assessed. The loop test demonstrated that all CPB slurries performed well, exhibiting strong long-distance pipeline transport capabilities. The 28-day compressive strength of the backfills exceeded 1 MPa, meeting the design requirements for backfill strength. The key rheological parameters, including yield stress (τ0) and viscosity coefficient (η), were comprehensively and theoretically analyzed based on the variations in pressure loss per unit distance of the filling slurry measured during the loop test. The empirical formulas for CPB pressure loss, accounting for varying flow rates and pipeline diameters, were derived with an error margin under 2%. The response surface analysis showed that the affecting extents of factors on pressure loss in CPB slurry were ranked as follows: solid concentration > cementing agent content > flow rate. This study offered valuable guidance for the processing of potash mine backfill operations. Full article
(This article belongs to the Special Issue Advanced Materials for Sustainable and Green Sample Preparation)
Show Figures

Figure 1

15 pages, 2335 KB  
Article
Looping Flexible Fluoropolymer Microcapillary Film Extends Analysis Times for Vertical Microfluidic Blood Testing
by Rüya Meltem Sarıyer, Kirandeep K. Gill, Sarah H. Needs, Nuno M. Reis, Chris I. Jones and Alexander Daniel Edwards
Sensors 2024, 24(18), 5870; https://doi.org/10.3390/s24185870 - 10 Sep 2024
Viewed by 3879
Abstract
The microfluidic measurement of capillary flow can be used to evaluate the response of biological samples to stimulation, where distance and velocity are altered. Melt-extruded multi-bored microfluidic capillaries allow for high-throughput testing with low device cost, but simple devices may limit control over [...] Read more.
The microfluidic measurement of capillary flow can be used to evaluate the response of biological samples to stimulation, where distance and velocity are altered. Melt-extruded multi-bored microfluidic capillaries allow for high-throughput testing with low device cost, but simple devices may limit control over sample flow when compared to the more complex “lab-on-a-chip” devices produced using advanced microfluidic fabrication methods. Previously, we measured the dynamics of global haemostasis stimulated by thrombin by dipping straight vertical microcapillaries into blood, but only the most rapid response could be monitored, as flow slowed significantly within 30 s. Here, we show an innovative method to extend both the stimulation process and flow measurement time without increasing the cost of the device by adding simple loops to the flexible extruded device. The loops enable longer time-scale measurements by increasing resistance to flow, thereby reducing the dependence on high stimulus concentrations for rapid reactions. The instantaneous velocity and equilibrium heights of straight and looped vertical microcapillary films were assessed with water, plasma and whole blood, showing that the loops create additional frictional resistances, reduce flow velocity and prolong residence times for increased time scales of the stimulation process. A modified pressure balance model was used to capture flow dynamics with the added loop. Looped devices loaded with thrombin and collagen showed an improved detection of blood stimulation responses even with lower stimulus concentrations, compared to straight vertical capillaries. Thrombin-activated blood samples in straight capillaries provided a maximum measurement zone of only 4 mm, while the looped design significantly increased this to 11 mm for much longer time scale measurements. Our results suggest that extending stimulation times can be achieved without complex microfluidic fabrication methods, potentially improving concentration–response blood stimulation assays, and may enhance the accuracy and reliability. We conclude adding a loop to low-cost extruded microfluidic devices may bring microfluidic devices closer to delivering on their promise of widespread, decentralized low-cost evaluation of blood response to stimulation in both research and clinical settings. Full article
(This article belongs to the Special Issue Biomedical Sensors Based on Microfluidics)
Show Figures

Figure 1

5 pages, 860 KB  
Proceeding Paper
An Analytical Solution for the Hydraulics of Looped Pipe Networks
by Mohammad Mehdi Riyahi, Amin E. Bakhshipour, Carlo Giudicianni, Ulrich Dittmer, Ali Haghighi and Enrico Creaco
Eng. Proc. 2024, 69(1), 4; https://doi.org/10.3390/engproc2024069004 - 28 Aug 2024
Cited by 2 | Viewed by 893
Abstract
This study introduces an analytical solution for the hydraulic analysis of looped water distribution networks (WDNs). Conventional approaches to solving ∆Q equations for looped water discharge correction entail iterative hydraulic analysis to compute the system pipe flows, velocities, and nodal pressures. In contrast, [...] Read more.
This study introduces an analytical solution for the hydraulic analysis of looped water distribution networks (WDNs). Conventional approaches to solving ∆Q equations for looped water discharge correction entail iterative hydraulic analysis to compute the system pipe flows, velocities, and nodal pressures. In contrast, using the proposed analytical approach, the ∆Q equation is solved with the exact flow directions determined, consolidating known flow directions into a single unknown variable (∆Q) for each loop. Comparative analyses prove that this approach can precisely compute the hydraulic properties of WDNs. Finally, a Z-test hypothesis test is applied to assess the efficacy of the modified shortest-path algorithm. The results show that this algorithm attains an average accuracy of 90% in predicting exact flow directions, with a confidence level of 99%. Full article
Show Figures

Figure 1

16 pages, 9527 KB  
Article
Effect of Heat Exchange Area Margins on Thermal Characteristics of the Heat Exchange System in the Pressurized Water Test Loop during Fuel Assembly Irradiation
by Junping Si, Guang Zhao, Yun Wang, Sheng Sun, Mingyan Tong, Wei Zhu, Jin Lei, Jinkang Cheng, Yueyan Song and Mengkang Lu
Energies 2024, 17(16), 3867; https://doi.org/10.3390/en17163867 - 6 Aug 2024
Cited by 2 | Viewed by 991
Abstract
The performance of heat exchangers in the pressurized water test loop is a critical factor in ensuring the achievement of irradiation parameters for fuel assemblies and the safety of experimental operations. The effect of the heat exchange area margin on the heat exchangers [...] Read more.
The performance of heat exchangers in the pressurized water test loop is a critical factor in ensuring the achievement of irradiation parameters for fuel assemblies and the safety of experimental operations. The effect of the heat exchange area margin on the heat exchangers in the pressurized water test loop for the fuel assembly during the steady-state irradiation is analyzed. Additionally, optimization methods for determining the margin of heat exchange area and corresponding design strategies are further investigated. It shows that the effect of the heat exchange area margin on the heat exchange power is less affected by the inlet temperature of the primary water and is primarily influenced by the flow rate of the primary water. A decrease in the flow rate of the primary water reduces the compensatory effect of the cooling section on power and enhances the weakening effect of the regeneration section on power. Meanwhile, the correspondence between the margin of the regeneration section and the cooling section, established based on design conditions, can be applicable when there are changes in the inlet temperature of the primary water, but it is not suitable when there are changes in the flow rate of the primary water. When the flow rate of the primary water decreases, the cooling section margin required to compensate for the decrease in power caused by the regeneration section margin will increase significantly. In addition, short-circuiting the heat exchange tubes in the regeneration section can effectively enhance the heat transfer capability. Furthermore, setting the heat exchange area margins of the regeneration and cooling sections to zero can serve as a termination condition for iterative calculations in the verification of regenerative heat exchangers under off-design conditions. Full article
(This article belongs to the Section B4: Nuclear Energy)
Show Figures

Figure 1

11 pages, 2165 KB  
Article
Rim Driven Thruster as Innovative Propulsion Element for Dual Phase Flows in Plug Flow Reactors
by Maximilian Lackner, Alexander Löhr, Felix Schill and Martin Van Essche
Fluids 2024, 9(7), 168; https://doi.org/10.3390/fluids9070168 - 22 Jul 2024
Cited by 1 | Viewed by 1771
Abstract
The purpose of this work was to test a new setup to pump water with entrained air for application in gas fermentation. A mixed flow, where gas is contained in a liquid to be pumped, rapidly reduces the efficiency of a conventional pump, [...] Read more.
The purpose of this work was to test a new setup to pump water with entrained air for application in gas fermentation. A mixed flow, where gas is contained in a liquid to be pumped, rapidly reduces the efficiency of a conventional pump, due to the compressibility of the gas. It is not always possible to degas the fluid, for instance in gas fermentation, which is preferably carried out in tubular reactors (loop fermenters) to achieve a high conversion rate of the gaseous feedstocks. Method: In this work, a rim-driven thruster (RDT) was tested in a lab-scale, cold flow model of a loop reactor with 5–30% (by volume) of gas fraction (air) in the liquid (water) as alternative propulsion element (6 m total pipe length, ambient temperature and pressure). As a result, it was found that the RDT, in connection with a guiding vane providing swirling motion to the two-phase fluid, could pump a mixed flow with up to 25.7% of gas content (by volume) at atmospheric pressure and 25 °C and 0.5 to 2 m/s flow speed. In conclusion, an RDT is advantageous over a classic propulsion element like a centrifugal pump or axial flow pump for transporting liquids with entrained gases. This article describes the potential of rim-driven thrusters, as known from marine propulsion, in biotechnology, the chemical industry, and beyond, to handle multiphase flows. Full article
(This article belongs to the Special Issue New Perspectives in Gas–Liquid Reactors)
Show Figures

Figure 1

18 pages, 2358 KB  
Article
Automotive e-Fuels via Hydrocracking of FT-Wax: e-Gasoline and e-Diesel Production
by Athanasios Dimitriadis, Loukia P. Chrysikou and Stella Bezergianni
Energies 2024, 17(11), 2756; https://doi.org/10.3390/en17112756 - 5 Jun 2024
Cited by 3 | Viewed by 2589
Abstract
The main goal of this research is the production of e-fuels in gasoline- and diesel-range hydrocarbons via the hydrocracking of wax from Fischer–Tropsch (FT-wax) synthesis. The hydrogen for the hydrocracking process originated from solar energy via water electrolysis, thus, the produced fuels were [...] Read more.
The main goal of this research is the production of e-fuels in gasoline- and diesel-range hydrocarbons via the hydrocracking of wax from Fischer–Tropsch (FT-wax) synthesis. The hydrogen for the hydrocracking process originated from solar energy via water electrolysis, thus, the produced fuels were called e-fuels. The FT-wax was produced via the Fischer–Tropsch synthesis of syngas stream from the chemical looping gasification (CLG) of biogenic residues. For the hydrocracking tests, a continuous-operation TRL3 (Technology Readiness Level) pilot plant was utilized. At first, hydrocracking catalyst screening was performed for the upgrading of the FT-wax. Three hydrocracking catalysts were investigated (Ni-W, Ni-W zeolite-supported, and Ni-W Al2O3-supported catalyst) via various operating conditions to identify the optimal operating window for each one. These three catalysts were selected, as they are typical catalysts that are used in the petroleum refinery industry. The optimal catalyst was found to be the NiW catalyst, as it led to high e-fuel yields (38 wt% e-gasoline and 47 wt% e-diesel) with an average hydrogen consumption. The optimum operating window was found at a 603 K reactor temperature, 8.3 MPa system pressure, 1 hr−1 LHSV, and 2500 scfb H2/oil ratio. In the next phase, the production of 5 L of hydrocracked wax was performed utilizing the optimum NiW catalyst and the optimal operating parameters. The liquid product was further fractionated to separate the fractions of e-gasoline, e-diesel, and e-heavy fuel. The e-gasoline and e-diesel fractions were qualitatively assessed, indicating that they fulfilled almost all EN 228 and EN 590 for petroleum-based gasoline and diesel, respectively. Furthermore, a 12-month storage study showed that the product can be stored for a period of 4 months in ambient conditions. In general, green transportation e-fuels with favorable properties that met most of the fossil fuels specifications were produced successfully from the hydrocracking of FT-wax. Full article
(This article belongs to the Special Issue Renewable Fuels for Internal Combustion Engines: 2nd Edition)
Show Figures

Figure 1

18 pages, 7360 KB  
Article
An Adjustable Pneumatic Planter with Reduced Source Vibration for Better Precision in Field Seeding
by Jyotirmay Mahapatra, Prem Shanker Tiwari, Krishna Pratap Singh, Balaji Murhari Nandede, Ramesh K. Sahni, Vikas Pagare, Jagjeet Singh, D. J. Shrinivasa and Sandip Mandal
Sensors 2024, 24(11), 3399; https://doi.org/10.3390/s24113399 - 25 May 2024
Cited by 4 | Viewed by 3460
Abstract
The growing demand for agricultural output and limited resources encourage precision applications to generate higher-order output by utilizing minimal inputs of seed, fertilizer, land, and water. An electronically operated planter was developed, considering problems like ground-wheel skidding, field vibration, and the lack of [...] Read more.
The growing demand for agricultural output and limited resources encourage precision applications to generate higher-order output by utilizing minimal inputs of seed, fertilizer, land, and water. An electronically operated planter was developed, considering problems like ground-wheel skidding, field vibration, and the lack of ease in field adjustments of ground-wheel-driven seed-metering plates. The seed-metering plate of each unit of the developed planter is individually driven by a brushless direct current (BLDC) motor, and a BLDC motor-based aspirator is attached for pneumatic suction of seeds. The revolutions per minute (RPM) of the seed-metering plate are controlled by a microcontroller as per the received data relating to RPM from the ground wheel and the current RPM of the seed-metering plate. A feedback loop with proportional integral derivative (PID) control is responsible for reducing the error. Additionally, each row unit is attached to a parallelogram-based depth control system that can provide depth between 0 and 100 mm. The suction pressure in each unit is regulated as per seed type using the RPM control knob of an individual BLDC motor-based aspirator. The row-to-row spacing can be changed from 350 mm to any desired spacing. The cotton variety selected for the study was RCH 659, and the crucial parameters like orifice size, vacuum pressure, and forward speed were optimized in the laboratory with the adoption of a central composite rotatable design. An orifice diameter of 2.947 mm with vacuum pressure of 3.961 kPa and forward speed of 4.261 km/h was found optimal. A quality feed index of 93% with a precision index of 8.01% was observed from laboratory tests under optimized conditions. Quality feed index and precision index values of 88.8 and 12.75%, respectively, were obtained from field tests under optimized conditions. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Graphical abstract

24 pages, 6479 KB  
Article
Variable Pressure Difference Control Method for Chilled Water System Based on the Identification of the Most Unfavorable Thermodynamic Loop
by Tingting Chen and Yuhang Han
Buildings 2024, 14(5), 1360; https://doi.org/10.3390/buildings14051360 - 10 May 2024
Cited by 1 | Viewed by 1286
Abstract
A variable pressure differential fuzzy control method is proposed based on the online identification method for key parameters and the fuzzy subset inference fuzzy control method of the chilled water system network model. Firstly, a phase plane fuzzy identification method is proposed for [...] Read more.
A variable pressure differential fuzzy control method is proposed based on the online identification method for key parameters and the fuzzy subset inference fuzzy control method of the chilled water system network model. Firstly, a phase plane fuzzy identification method is proposed for the most unfavorable thermal loop. The study focuses on analyzing the trend of room temperature deviation and deviation change in different quadrants in the phase plane. Furthermore, we establish a chilled water pipe network model that recalculates flow variation in both the main pipe and each branch pipe section to eliminate the most unfavorable thermal loop. Finally, the test platform for the fan coil variable flow air conditioning water system was designed and constructed to meet the requirements of energy-saving regulation. Additionally, the network monitoring system for the test platform was completed. The calibration and debugging results demonstrate that the monitoring error is within ±5.0%, ensuring precise control of room temperature at the end of the branch within ±0.5 °C. Results demonstrate that our novel method exhibits superior stability in room temperature control compared to traditional linear variable pressure differential set point controls while achieving energy saving ranging from 4.7% to 6.5%. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

29 pages, 6123 KB  
Article
A Water-to-Water Heat Pump Model with Experimental Validation
by Geoffrey Viviescas and Michel Bernier
Energies 2024, 17(8), 1858; https://doi.org/10.3390/en17081858 - 12 Apr 2024
Cited by 3 | Viewed by 2414
Abstract
An experimental validation of a steady-state model for water-to-water heat pumps is conducted on a 10 kW test bench. The objective of the model is to predict the capacity and the required compressor power, based on the inlet conditions of the secondary fluids [...] Read more.
An experimental validation of a steady-state model for water-to-water heat pumps is conducted on a 10 kW test bench. The objective of the model is to predict the capacity and the required compressor power, based on the inlet conditions of the secondary fluids in the evaporator and condenser. Detailed manufacturer performance maps based on the AHRI 540-2020 standard are utilized to model the fixed-speed scroll compressor. A new semi-empirical model for the thermostatic expansion valve incorporates condensing temperature effects on superheating prediction. Sub-models for individual components, including detailed representations of the evaporator and condenser, are integrated into a global model, resulting in a set nonlinear equation solved using an equation solver with appropriate guess values. The validation of the model is conducted in an experimental test facility equipped with two precisely controlled secondary fluid loops. The heat pump is instrumented to measure condensation and evaporation pressures, the compressor discharge temperature, compressor power, superheating, and sub-cooling. The results are divided into three sub-sections: the first validates the complete heat pump model by comparing its power consumption and COPs in heating and cooling; the second compares the predicted and measured operational conditions; finally, it is shown how the model can be used to predict the non-operational conditions of the heat pump for specific scenarios. Full article
(This article belongs to the Collection Advances in Heat Transfer Enhancement)
Show Figures

Figure 1

21 pages, 5653 KB  
Article
Physical Modeling of a Water Hydraulic Proportional Cartridge Valve for a Digital Twin in a Hydraulic Press Machine
by Oscar Bautista Gonzalez and Daniel Rönnow
Processes 2024, 12(4), 693; https://doi.org/10.3390/pr12040693 - 29 Mar 2024
Cited by 4 | Viewed by 1828
Abstract
Digital twins are an emerging technology that can be harnessed for the digitalization of the industry. Steel industry systems contain a large number of electro-hydraulic components as proportional valves. An input–output model for a water proportional cartridge valve was derived from physical modeling [...] Read more.
Digital twins are an emerging technology that can be harnessed for the digitalization of the industry. Steel industry systems contain a large number of electro-hydraulic components as proportional valves. An input–output model for a water proportional cartridge valve was derived from physical modeling based on fluid mechanics, dynamics, and electrical principles. The valve is a two-stage valve with two two/two-way water proportional valves as the pilot stage and a marginally stable poppet-type cartridge valve as the main valve. To our knowledge, this is the first time that an input–output model was derived for a two-stage proportional cartridge valve with a marginally stable main valve. The orifice equation, which is based on Bernoulli principles, was approximated by a polynomial, which made the parameter estimation easier and modeling possible without measuring the pressure of the varying control volume, in contrast with previous studies of similar types of valves situated in the pilot stage part of the valve. This work complements previous studies of similar types of valves in two ways: (1) data were collected when the valve was operating in a closed loop and (2) data were collected when the valve was part of a press mill machine in a steel manufacturing plant. Model parameters were identified from data from these operating conditions. The parameters of the input–output model were estimated by convex optimization with physical constraints to overcome the problems caused by poor system excitation. For comparison, a simple linear model was derived and the least squares method was used for the parameter estimation. A thorough estimation of the parameters’ relative errors is presented. The model contains five parameters related to the design parameters of the valve. The modeled position output was in good agreement with experimental data for the training and test data. The model can be used for the real-time monitoring of the valve’s status by the model parameters. One of the model parameters varied linearly with the production cycles. Thus, the aging of the valve can be monitored. Full article
(This article belongs to the Section Automation Control Systems)
Show Figures

Figure 1

23 pages, 1761 KB  
Article
Comparative Study of Air–Water and Air–Oil Frictional Pressure Drops in Horizontal Pipe Flow
by Enrique Guzmán, Valente Hernández Pérez, Fernando Aragón Rivera, Jaime Klapp and Leonardo Sigalotti
Fluids 2024, 9(3), 67; https://doi.org/10.3390/fluids9030067 - 7 Mar 2024
Cited by 1 | Viewed by 2713
Abstract
Experimental data for frictional pressure drop using both air–water and air–oil mixtures are reported, compared and used to evaluate predictive methods. The data were gathered using the 2-inch (54.8 mm) flow loop of the multiphase flow facility at the National University of Singapore. [...] Read more.
Experimental data for frictional pressure drop using both air–water and air–oil mixtures are reported, compared and used to evaluate predictive methods. The data were gathered using the 2-inch (54.8 mm) flow loop of the multiphase flow facility at the National University of Singapore. Experiments were carried out over a wide range of flow conditions of superficial liquid and gas velocities that were varied from 0.05 to 1.5 m/s and 2 to 23 m/s, respectively. Pressure drops were measured using pressure transducers and a differential pressure (DP) cell. A hitherto unreported finding was achieved, as the pressure drop in air–oil flow can be lower than that in air–water flow for the higher range of flow conditions. Using flow visualization to explain this phenomenon, it was found that it is related to the higher liquid holdup that occurs in the case of air–oil around the annular flow transition and the resulting interfacial friction. This additional key finding can have applications in flow assurance to improve the efficiency of oil and gas transportation in pipelines. Models and correlations from the open literature were tested against the present data. Full article
(This article belongs to the Special Issue Pipe Flow: Research and Applications)
Show Figures

Figure 1

21 pages, 3125 KB  
Article
Predictive Model to Evaluate Water and Nutrient Uptake in Vertically Grown Lettuce under Mediterranean Greenhouse Conditions
by Manuel Felipe López Mora, María Fernanda Quintero Castellanos, Carlos Alberto González Murillo, Calina Borgovan, María del Carmen Salas Sanjuan and Miguel Guzmán
Horticulturae 2024, 10(2), 117; https://doi.org/10.3390/horticulturae10020117 - 25 Jan 2024
Cited by 5 | Viewed by 3959
Abstract
The decrease in arable land, water scarcity, and climate change increase the pressure on natural resources and agricultural production systems. In this context, agriculture must ensure food production for the rapidly growing and increasingly urban population of the world. Efforts must be made [...] Read more.
The decrease in arable land, water scarcity, and climate change increase the pressure on natural resources and agricultural production systems. In this context, agriculture must ensure food production for the rapidly growing and increasingly urban population of the world. Efforts must be made to obtain the highest yield from the unit area and promote the transition to more sustainable production systems Hydroponics is a modern growing technology mainly applied in greenhouses, which has developed rapidly over the past 30–40 years. Substrate-free hydroponic vertical crops (VC) can reduce the pressure conventional agriculture exerts on resources, saving water and nutrients, and increasing crop yields per unit area. Therefore, this study aimed to validate a proposed predictive model (PM) to simulate water and nutrient uptake in vertical crops under greenhouse conditions. On the basis of the Penman–Monteith equation, the PM estimates transpiration, while nutrient uptake was estimated using the Carmassi–Sonneveld submodel. The PM was experimentally evaluated for vertically grown lettuce under Mediterranean greenhouse conditions during spring 2023. The irrigation technique was a closed-loop fertigation circuit. The experiment consisted of testing two densities (50 and 80 plants·m−2) and three plant positions (low, medium, and upper). ANOVA (p < 0.05) and R2 were used to evaluate the PM performance and crop behavior. The low density and the upper position had significantly higher mass values. The results suggest a high degree of performance for the PM, as the R2 ranged from 0.7 to 0.9 for water and nutrient uptake. Both densities had a yield 17–20 times higher than conventional lettuce production and significant savings in water, about 85–88%. In this sense, the PM has great potential to intelligently manage VC fertigation, saving water and nutrients, which represents an advance toward reaching SDG 6 and SDG 12 within the 2030 Agenda. Full article
Show Figures

Figure 1

Back to TopTop