Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (110)

Search Parameters:
Keywords = thioredoxin target protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1871 KB  
Review
Thioredoxin-Interacting Protein (TXNIP) in Gestational Diabetes Mellitus
by Ioanna Kokkinopoulou and Anna Papadopoulou
Metabolites 2025, 15(6), 351; https://doi.org/10.3390/metabo15060351 - 26 May 2025
Viewed by 773
Abstract
Background: Thioredoxin-interacting protein (TXNIP) is a major inhibitor of the thioredoxin (TRX) antioxidant system and an important player in the development and aggravation of intracellular oxidative stress. Although first recognized as a metabolic regulator, recent studies have identified the multifaceted role of this [...] Read more.
Background: Thioredoxin-interacting protein (TXNIP) is a major inhibitor of the thioredoxin (TRX) antioxidant system and an important player in the development and aggravation of intracellular oxidative stress. Although first recognized as a metabolic regulator, recent studies have identified the multifaceted role of this protein in other molecular pathways involving inflammation, apoptosis, and glucose metabolism. Methods: This review aims to highlight the importance of TXNIP in diabetes-related pathophysiology and explore the existing evidence regarding TXNIP’s role in GDM-associated pathogenetic mechanisms, revealing common regulatory pathways. Results: Among other complex diseases, TXNIP has been found upregulated in diabetic pancreatic beta cells, thus contributing to diabetes pathogenesis and its related complications. In addition, depletion of TXNIP has been shown to decrease the negative consequences of excessive stress in various cellular systems and diseases, pointing towards a potential therapeutic target. In line with these findings, TXNIP has been investigated in the pathogenesis of Gestational Diabetes Mellitus (GDM), a common pregnancy complication affecting the mother and the neonate. Overexpression of TXNIP has been found in GDM placentas or trophoblast cell lines mimicking GDM conditions and has been associated with key dysregulated mechanisms of GDM pathophysiology, like oxidative stress, inflammation, apoptosis, impaired autophagy, altered trophoblast behavior, and placental morphology. Interestingly, TXNIP has been found upregulated in GDM maternal serum and downregulated in umbilical cord blood, indicating potential compensatory protective mechanisms to GDM-related oxidative stress. Conclusions: Due to its contribution to the regulation of critical cellular processes such as inflammation, metabolism, and apoptosis, TXNIP finds its place in the pathophysiology of gestational diabetes through a currently limited number of scientific reports. Full article
(This article belongs to the Special Issue Glucose Metabolism in Pregnancy)
Show Figures

Figure 1

21 pages, 7548 KB  
Article
Serum RNA Profile Reflects Fluid Status and Atrophic Retinal Changes in Neovascular Age-Related Macular Degeneration
by Hanna Heloterä, Joanna Kostanek, Mikko Liukkonen, Leea Siintamo, Suvi Linna-Kuosmanen, Cezary Watala, Janusz Blasiak and Kai Kaarniranta
Int. J. Mol. Sci. 2025, 26(10), 4852; https://doi.org/10.3390/ijms26104852 - 19 May 2025
Viewed by 562
Abstract
The increasing prevalence of age-related macular degeneration (AMD), a disease that can result in the loss of central vision, is an emerging problem worldwide due to aging societies. Growing patient numbers create a challenge for the healthcare system. Understanding the mechanisms of AMD [...] Read more.
The increasing prevalence of age-related macular degeneration (AMD), a disease that can result in the loss of central vision, is an emerging problem worldwide due to aging societies. Growing patient numbers create a challenge for the healthcare system. Understanding the mechanisms of AMD pathogenesis will aid in early, personalized, and efficient intervention, helping to mitigate this issue. Current diagnostic methods rely on optical coherence tomography and angiography imaging, which identify existing damages, but do not provide information on the mechanisms behind them. In the present work, we demonstrate a difference in the serum RNA profile between neovascular AMD (nAMD) patients and controls. Moreover, the RNA profile of nAMD patients corresponded with anatomical changes in the retinal fluid compartments as well as atrophic changes of the retina. We followed two independent ways to control false positive leads, and when these approaches were combined, thioredoxin-related transmembrane protein 4 (TMX4) was observed to be differentially expressed by both approaches. This finding opens a new pathway in AMD studies, which are limited due to restricted access to live human target material and the limited value of animal models of human AMD. Full article
(This article belongs to the Special Issue Genetics and Epigenetics of Eye Diseases: 2nd Edition)
Show Figures

Figure 1

11 pages, 1955 KB  
Article
Intranasal Immunization with Nasal Immuno-Inducible Sequence-Fused Antigens Elicits Antigen-Specific Antibody Production
by Hiraku Sasaki, Yoshio Suzuki, Kodai Morimoto, Kazuyoshi Takeda, Koichiro Uchida, Masayuki Iyoda and Hiroki Ishikawa
Int. J. Mol. Sci. 2024, 25(23), 12828; https://doi.org/10.3390/ijms252312828 - 28 Nov 2024
Cited by 1 | Viewed by 1100
Abstract
Intranasal immunization is one of the most effective methods for eliciting lung mucosal immunity. Multiple intranasal immunization with bacterial polypeptide, termed as a modified PnxIIIA (MP3) protein, is known to elicit production of a specific antibody in mice. In this study, a nasal [...] Read more.
Intranasal immunization is one of the most effective methods for eliciting lung mucosal immunity. Multiple intranasal immunization with bacterial polypeptide, termed as a modified PnxIIIA (MP3) protein, is known to elicit production of a specific antibody in mice. In this study, a nasal immuno-inducible sequence (NAIS) was designed to remove the antigenicity of the MP3 protein that can induce mucosal immunity by intranasal immunization, and was examined to induce antigen-specific antibodies against the fused bacterial thioredoxin (Trx) as a model antigen. A NAIS was modified and generated to remove a large number of predicted MHC (Major Histocompatibility Complex)-I and MHC-II binding sites in parent protein PnxIIIA and MP3 in order to reduce the number of antigen epitope sites. For comparative analysis, full-length NAIS291, NAIS230, and NAIS61 fused with Trx and 6× His tag and Trx-fused 6× His tag were used as antigen variants for the intranasal immunization of BALB/c mice every two weeks for three immunizations. Anti-Trx antibody titers in serum and bronchoalveolar lavage fluid (BALF) IgA obtained from NAIS291-fused Trx-immunized mice were significantly higher than those from Trx-immunized mice. The antibody titers against NAIS alone were significantly lower than those against Trx alone in the serum IgG, serum IgA, and BALF IgA. These results indicate that the NAIS contributes to antibody elicitation of the fused antigen as an immunostimulant in intranasal vaccination vaccines. The results indicate that the NAIS and target inactivated antigen fusions can be applied to intranasal vaccine systems. Full article
(This article belongs to the Collection Feature Papers in Molecular Immunology)
Show Figures

Figure 1

15 pages, 5035 KB  
Article
Development and Optimization of a Redox Enzyme-Based Fluorescence Biosensor for the Identification of MsrB1 Inhibitors
by Hyun Bo Shim, Hyunjeong Lee, Hwa Yeon Cho, Young Ho Jo, Lionel Tarrago, Hyunggee Kim, Vadim N. Gladyshev and Byung Cheon Lee
Antioxidants 2024, 13(11), 1348; https://doi.org/10.3390/antiox13111348 - 2 Nov 2024
Viewed by 1547
Abstract
MsrB1 is a thiol-dependent enzyme that reduces protein methionine-R-sulfoxide and regulates inflammatory response in macrophages. Therefore, MsrB1 could be a promising therapeutic target for the control of inflammation. To identify MsrB1 inhibitors, we construct a redox protein-based fluorescence biosensor composed of [...] Read more.
MsrB1 is a thiol-dependent enzyme that reduces protein methionine-R-sulfoxide and regulates inflammatory response in macrophages. Therefore, MsrB1 could be a promising therapeutic target for the control of inflammation. To identify MsrB1 inhibitors, we construct a redox protein-based fluorescence biosensor composed of MsrB1, a circularly permutated fluorescent protein, and the thioredoxin1 in a single polypeptide chain. This protein-based biosensor, named RIYsense, efficiently measures protein methionine sulfoxide reduction by ratiometric fluorescence increase. We used it for high-throughput screening of potential MsrB1 inhibitors among 6868 compounds. A total of 192 compounds were selected based on their ability to reduce relative fluorescence intensity by more than 50% compared to the control. Then, we used molecular docking simulations of the compound on MsrB1, affinity assays, and MsrB1 activity measurement to identify compounds with reliable and strong inhibitory effects. Two compounds were selected as MsrB1 inhibitors: 4-[5-(4-ethylphenyl)-3-(4-hydroxyphenyl)-3,4-dihydropyrazol-2-yl]benzenesulfonamide and 6-chloro-10-(4-ethylphenyl)pyrimido[4,5-b]quinoline-2,4-dione. They are heterocyclic, polyaromatic compounds with a substituted phenyl moiety interacting with the MsrB1 active site, as revealed by docking simulation. These compounds were found to decrease the expression of anti-inflammatory cytokines such as IL-10 and IL-1rn, leading to auricular skin swelling and increased thickness in an ear edema model, effectively mimicking the effects observed in MsrB1 knockout mice. In summary, using a novel redox protein-based fluorescence biosensor, we identified potential MsrB1 inhibitors that can regulate the inflammatory response, particularly by influencing the expression of anti-inflammatory cytokines. These compounds are promising tools for understanding MsrB1’s role during inflammation and eventually controlling inflammation in therapeutic approaches. Full article
(This article belongs to the Special Issue Advances in Redox Biosensor)
Show Figures

Figure 1

19 pages, 3062 KB  
Systematic Review
Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) Ameliorate Heart Failure through Reductions in Oxidative Stress: A Systematic Review and Meta-Analysis
by Jayant Seth, Sohat Sharma, Cameron J. Leong and Simon W. Rabkin
Antioxidants 2024, 13(8), 955; https://doi.org/10.3390/antiox13080955 - 6 Aug 2024
Cited by 12 | Viewed by 6799
Abstract
The objectives of this study were to explore the role that eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA) plays in heart failure (HF), highlighting the potential connection to oxidative stress pathways. Following PRISMA guidelines, we conducted electronic searches of the literature in MEDLINE [...] Read more.
The objectives of this study were to explore the role that eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA) plays in heart failure (HF), highlighting the potential connection to oxidative stress pathways. Following PRISMA guidelines, we conducted electronic searches of the literature in MEDLINE and EMBASE focusing on serum EPA and/or DHA and EPA and/or DHA supplementation in adult patients with heart failure or who had heart failure as an outcome of this study. We screened 254 studies, encompassing RCTs, observational studies, and cohort studies that examined HF outcomes in relation to either serum concentrations or dietary supplementation of EPA and/or DHA. The exclusion criteria were pediatric patients, non-HF studies, abstracts, editorials, case reports, and reviews. Eleven studies met our criteria. In meta-analyses, high serum concentrations of DHA were associated with a lower rate of heart failure with a hazard ratio of 0.74 (CI = 0.59–0.94). High serum concentrations of EPA also were associated with an overall reduction in major adverse cardiovascular events with a hazard ratio of 0.60 (CI = 0.46–0.77). EPA and DHA, or n3-PUFA administration, were associated with an increased LVEF with a mean difference of 1.55 (CI = 0.07–3.03)%. A potential explanation for these findings is the ability of EPA and DHA to inhibit pathways by which oxidative stress damages the heart or impairs cardiac systolic or diastolic function producing heart failure. Specifically, EPA may lower oxidative stress within the heart by reducing the concentration of reactive oxygen species (ROS) within cardiac tissue by (i) upregulating nuclear factor erythroid 2-related factor 2 (Nrf2), which increases the expression of antioxidant enzyme activity, including heme oxygenase-1, thioredoxin reductase 1, ferritin light chain, ferritin heavy chain, and manganese superoxide dismutase (SOD), (ii) increasing the expression of copper–zinc superoxide dismutase (MnSOD) and glutathione peroxidase, (iii) targeting Free Fatty Acid Receptor 4 (Ffar4), (iv) upregulating expression of heme-oxygenase-1, (v) lowering arachidonic acid levels, and (vi) inhibiting the RhoA/ROCK signaling pathway. DHA may lower oxidative stress within the heart by (i) reducing levels of mitochondrial-fission-related protein DRP-1(ser-63), (ii) promoting the incorporation of cardiolipin within the mitochondrial membrane, (iii) reducing myocardial fibrosis, which leads to diastolic heart failure, (iv) reducing the expression of genes such as Appa, Myh7, and Agtr1α, and (v) reducing inflammatory cytokines such as IL-6, TNF-α. In conclusion, EPA and/or DHA have the potential to improve heart failure, perhaps mediated by their ability to modulate oxidative stress. Full article
(This article belongs to the Special Issue Oxidative Stress in Cardiovascular Diseases (CVDs))
Show Figures

Figure 1

15 pages, 10722 KB  
Article
Comparative Transcriptome Analysis of Hepatopancreas Reveals Sexual Dimorphic Response to Methyl Farnesoate Injection in Litopenaeus vannamei
by Zhihui Yang, Xiaoliu Yang, Jiahao Du, Cun Wei, Pingping Liu, Jingjie Hu, Zhenmin Bao and Zhe Qu
Int. J. Mol. Sci. 2024, 25(15), 8152; https://doi.org/10.3390/ijms25158152 - 26 Jul 2024
Cited by 1 | Viewed by 1495
Abstract
Sexually dimorphic traits such as growth and body size are often found in various crustaceans. Methyl farnesoate (MF), the main active form of sesquiterpenoid hormone in crustaceans, plays vital roles in the regulation of their molting and reproduction. However, understanding on the sex [...] Read more.
Sexually dimorphic traits such as growth and body size are often found in various crustaceans. Methyl farnesoate (MF), the main active form of sesquiterpenoid hormone in crustaceans, plays vital roles in the regulation of their molting and reproduction. However, understanding on the sex differences in their hormonal regulation is limited. Here, we carried out a comprehensive investigation on sexual dimorphic responses to MF in the hepatopancreas of the most dominant aquacultural crustacean—the white-leg shrimp (Litopenaeus vannamei). Through comparative transcriptomic analysis of the main MF target tissue (hepatopancreas) from both female and male L. vannamei, two sets of sex-specific and four sets of sex–dose-specific differentially expressed transcripts (DETs) were identified after different doses of MF injection. Functional analysis of DETs showed that the male-specific DETs were mainly related to sugar and lipid metabolism, of which multiple chitinases were significantly up-regulated. In contrast, the female-specific DETs were mainly related to miRNA processing and immune responses. Further co-expression network analysis revealed 8 sex-specific response modules and 55 key regulatory transcripts, of which several key transcripts of genes related to energy metabolism and immune responses were identified, such as arginine kinase, tropomyosin, elongation of very long chain fatty acids protein 6, thioredoxin reductase, cysteine dioxygenase, lysosomal acid lipase, estradiol 17-beta-dehydrogenase 8, and sodium/potassium-transporting ATPase subunit alpha. Altogether, our study demonstrates the sex differences in the hormonal regulatory networks of L. vannamei, providing new insights into the molecular basis of MF regulatory mechanisms and sex dimorphism in prawn aquaculture. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

15 pages, 860 KB  
Review
Progress in Research on the Role of the Thioredoxin System in Chemical Nerve Injury
by Xinwei Xu, Lan Zhang, Yuyun He, Cong Qi and Fang Li
Toxics 2024, 12(7), 510; https://doi.org/10.3390/toxics12070510 - 15 Jul 2024
Cited by 2 | Viewed by 1870
Abstract
(1) Background: Various factors, such as oxidative stress, mitochondrial dysfunction, tumors, inflammation, trauma, immune disorders, and neuronal toxicity, can cause nerve damage. Chemical nerve injury, which results from exposure to toxic chemicals, has garnered increasing research attention. The thioredoxin (Trx) system, comprising Trx, [...] Read more.
(1) Background: Various factors, such as oxidative stress, mitochondrial dysfunction, tumors, inflammation, trauma, immune disorders, and neuronal toxicity, can cause nerve damage. Chemical nerve injury, which results from exposure to toxic chemicals, has garnered increasing research attention. The thioredoxin (Trx) system, comprising Trx, Trx reductase, nicotinamide adenine dinucleotide phosphate, and Trx-interacting protein (TXNIP; endogenous Trx inhibitor), helps maintain redox homeostasis in the central nervous system. The dysregulation of this system can cause dementia, cognitive impairment, nerve conduction disorders, movement disorders, and other neurological disorders. Thus, maintaining Trx system homeostasis is crucial for preventing or treating nerve damage. (2) Objective: In this review study, we explored factors influencing the homeostasis of the Trx system and the involvement of its homeostatic imbalance in chemical nerve injury. In addition, we investigated the therapeutic potential of the Trx system-targeting active substances against chemical nerve injury. (3) Conclusions: Chemicals such as morphine, metals, and methylglyoxal interfere with the activity of TXNIP, Trx, and Trx reductase, disrupting Trx system homeostasis by affecting the phosphatidylinositol-3-kinase/protein kinase B, extracellular signal-regulated kinase, and apoptotic signaling-regulated kinase 1/p38 mitogen-activated protein kinase pathways, thereby leading to neurological disorders. Active substances such as resveratrol and lysergic acid sulfide mitigate the symptoms of chemical nerve injury by regulating the Ras/Raf1/extracellular signal-regulated kinase pathway and the miR-146a-5p/TXNIP axis. This study may guide the development of Trx-targeting modulators for treating neurological disorders and chemical nerve injuries. Full article
(This article belongs to the Special Issue State-of-the-Art Environmental Chemicals Exposomics and Metabolomics)
Show Figures

Figure 1

29 pages, 4774 KB  
Article
Pro-Oxidant Auranofin and Glutathione-Depleting Combination Unveils Synergistic Lethality in Glioblastoma Cells with Aberrant Epidermal Growth Factor Receptor Expression
by Elvis Martinez-Jaramillo, Fatemeh Jamali, Farah H. Abdalbari, Bassam Abdulkarim, Bertrand J. Jean-Claude, Carlos M. Telleria and Siham Sabri
Cancers 2024, 16(13), 2319; https://doi.org/10.3390/cancers16132319 - 25 Jun 2024
Cited by 5 | Viewed by 2333
Abstract
Glioblastoma (GBM) is the most prevalent and advanced malignant primary brain tumor in adults. GBM frequently harbors epidermal growth factor receptor (EGFR) wild-type (EGFRwt) gene amplification and/or EGFRvIII activating mutation. EGFR-driven GBM relies on the thioredoxin (Trx) and/or glutathione (GSH) antioxidant [...] Read more.
Glioblastoma (GBM) is the most prevalent and advanced malignant primary brain tumor in adults. GBM frequently harbors epidermal growth factor receptor (EGFR) wild-type (EGFRwt) gene amplification and/or EGFRvIII activating mutation. EGFR-driven GBM relies on the thioredoxin (Trx) and/or glutathione (GSH) antioxidant systems to withstand the excessive production of reactive oxygen species (ROS). The impact of EGFRwt or EGFRvIII overexpression on the response to a Trx/GSH co-targeting strategy is unknown. In this study, we investigated Trx/GSH co-targeting in the context of EGFR overexpression in GBM. Auranofin is a thioredoxin reductase (TrxR) inhibitor, FDA-approved for rheumatoid arthritis. L-buthionine-sulfoximine (L-BSO) inhibits GSH synthesis by targeting the glutamate–cysteine ligase catalytic (GCLC) enzyme subunit. We analyzed the mechanisms of cytotoxicity of auranofin and the interaction between auranofin and L-BSO in U87MG, U87/EGFRwt, and U87/EGFRvIII GBM isogenic GBM cell lines. ROS-dependent effects were assessed using the antioxidant N-acetylsteine. We show that auranofin decreased TrxR1 activity and increased ROS. Auranofin decreased cell vitality and colony formation and increased protein polyubiquitination through ROS-dependent mechanisms, suggesting the role of ROS in auranofin-induced cytotoxicity in the three cell lines. ROS-dependent PARP-1 cleavage was associated with EGFRvIII downregulation in U87/EGFRvIII cells. Remarkably, the auranofin and L-BSO combination induced the significant depletion of intracellular GSH and synergistic cytotoxicity regardless of EGFR overexpression. Nevertheless, molecular mechanisms associated with cytotoxicity were modulated to a different extent among the three cell lines. U87/EGFRvIII exhibited the most prominent ROS increase, P-AKT(Ser-473), and AKT decrease along with drastic EGFRvIII downregulation. U87/EGFRwt and U87/EGFRvIII displayed lower basal intracellular GSH levels and synergistic ROS-dependent DNA damage compared to U87MG cells. Our study provides evidence for ROS-dependent synergistic cytotoxicity of auranofin and L-BSO combination in GBM in vitro. Unraveling the sensitivity of EGFR-overexpressing cells to auranofin alone, and synergistic auranofin and L-BSO combination, supports the rationale to repurpose this promising pro-oxidant treatment strategy in GBM. Full article
Show Figures

Figure 1

20 pages, 10263 KB  
Article
Subcellular Localization of Thioredoxin/Thioredoxin Reductase System—A Missing Link in Endoplasmic Reticulum Redox Balance
by Krisztina Veszelyi, Ibolya Czegle, Viola Varga, Csilla Emese Németh, Balázs Besztercei and Éva Margittai
Int. J. Mol. Sci. 2024, 25(12), 6647; https://doi.org/10.3390/ijms25126647 - 17 Jun 2024
Viewed by 1389
Abstract
The lumen of the endoplasmic reticulum (ER) is usually considered an oxidative environment; however, oxidized thiol-disulfides and reduced pyridine nucleotides occur there parallelly, indicating that the ER lumen lacks components which connect the two systems. Here, we investigated the luminal presence of the [...] Read more.
The lumen of the endoplasmic reticulum (ER) is usually considered an oxidative environment; however, oxidized thiol-disulfides and reduced pyridine nucleotides occur there parallelly, indicating that the ER lumen lacks components which connect the two systems. Here, we investigated the luminal presence of the thioredoxin (Trx)/thioredoxin reductase (TrxR) proteins, capable of linking the protein thiol and pyridine nucleotide pools in different compartments. It was shown that specific activity of TrxR in the ER is undetectable, whereas higher activities were measured in the cytoplasm and mitochondria. None of the Trx/TrxR isoforms were expressed in the ER by Western blot analysis. Co-localization studies of various isoforms of Trx and TrxR with ER marker Grp94 by immunofluorescent analysis further confirmed their absence from the lumen. The probability of luminal localization of each isoform was also predicted to be very low by several in silico analysis tools. ER-targeted transient transfection of HeLa cells with Trx1 and TrxR1 significantly decreased cell viability and induced apoptotic cell death. In conclusion, the absence of this electron transfer chain may explain the uncoupling of the redox systems in the ER lumen, allowing parallel presence of a reduced pyridine nucleotide and a probably oxidized protein pool necessary for cellular viability. Full article
(This article belongs to the Special Issue Advances in Endoplasmic Reticulum Stress and Apoptosis)
Show Figures

Figure 1

20 pages, 3667 KB  
Article
DPEP Inhibits Cancer Cell Glucose Uptake, Glycolysis and Survival by Upregulating Tumor Suppressor TXNIP
by Qing Zhou, Trang Thi Thu Nguyen, Jeong-Yeon Mun, Markus D. Siegelin and Lloyd A. Greene
Cells 2024, 13(12), 1025; https://doi.org/10.3390/cells13121025 - 12 Jun 2024
Cited by 4 | Viewed by 3125
Abstract
We have designed cell-penetrating peptides that target the leucine zipper transcription factors ATF5, CEBPB and CEBPD and that promote apoptotic death of a wide range of cancer cell types, but not normal cells, in vitro and in vivo. Though such peptides have the [...] Read more.
We have designed cell-penetrating peptides that target the leucine zipper transcription factors ATF5, CEBPB and CEBPD and that promote apoptotic death of a wide range of cancer cell types, but not normal cells, in vitro and in vivo. Though such peptides have the potential for clinical application, their mechanisms of action are not fully understood. Here, we show that one such peptide, Dpep, compromises glucose uptake and glycolysis in a cell context-dependent manner (in about two-thirds of cancer lines assessed). These actions are dependent on induction of tumor suppressor TXNIP (thioredoxin-interacting protein) mRNA and protein. Knockdown studies show that TXNIP significantly contributes to apoptotic death in those cancer cells in which it is induced by Dpep. The metabolic actions of Dpep on glycolysis led us to explore combinations of Dpep with clinically approved drugs metformin and atovaquone that inhibit oxidative phosphorylation and that are in trials for cancer treatment. Dpep showed additive to synergistic activities in all lines tested. In summary, we find that Dpep induces TXNIP in a cell context-dependent manner that in turn suppresses glucose uptake and glycolysis and contributes to apoptotic death of a range of cancer cells. Full article
Show Figures

Graphical abstract

12 pages, 5691 KB  
Article
Critical Involvement of the Thioredoxin Reductase Gene (trxB) in Salmonella Gallinarum-Induced Systemic Infection in Chickens
by Zhihao Zhu, Zuo Hu, Shinjiro Ojima, Xiaoying Yu, Makoto Sugiyama, Hisaya K. Ono and Dong-Liang Hu
Microorganisms 2024, 12(6), 1180; https://doi.org/10.3390/microorganisms12061180 - 11 Jun 2024
Cited by 1 | Viewed by 1370
Abstract
Salmonella enterica serovar Gallinarum biovar Gallinarum (SG) causes fowl typhoid, a notifiable infectious disease in poultry. However, the pathogenic mechanism of SG-induced systemic infection in chickens remains unclear. Thioredoxin reductase (TrxB) is a redox protein crucial for regulating various enzyme activities in Salmonella [...] Read more.
Salmonella enterica serovar Gallinarum biovar Gallinarum (SG) causes fowl typhoid, a notifiable infectious disease in poultry. However, the pathogenic mechanism of SG-induced systemic infection in chickens remains unclear. Thioredoxin reductase (TrxB) is a redox protein crucial for regulating various enzyme activities in Salmonella serovar, but the role in SG-induced chicken systemic infection has yet to be determined. Here, we constructed a mutant SG strain lacking the trxB gene (trxB::Cm) and used chicken embryo inoculation and chicken oral infection to investigate the role of trxB gene in the pathogenicity of SG. Our results showed that trxB::Cm exhibited no apparent differences in colony morphology and growth conditions but exhibited reduced tolerance to H2O2 and increased resistance to bile acids. In the chicken embryo inoculation model, there was no significant difference in the pathogenicity of trxB::Cm and wild-type (WT) strains. In the chicken oral infection, the WT-infected group exhibited typical clinical symptoms of fowl typhoid, with complete mortality between days 6 and 9 post infection. In contrast, the trxB::Cm group showed a 100% survival rate, with no apparent clinical symptoms or pathological changes observed. The viable bacterial counts in the liver and spleen of the trxB::Cm-infected group were significantly reduced, accompanied by decreased expression of cytokines and chemokines (IL-1β, IL-6, IL-12, CXCLi1, TNF-α, and IFN-γ), which were significantly lower than those in the WT group. These results show that the pathogenicity of the trxB-deficient strain was significantly attenuated, indicating that the trxB gene is a crucial virulence factor in SG-induced systemic infection in chickens, suggesting that trxB may become a potentially effective target for controlling and preventing SG infection in chickens. Full article
(This article belongs to the Special Issue Research on Infections and Veterinary Medicine)
Show Figures

Figure 1

29 pages, 3947 KB  
Review
Exploring Immune Redox Modulation in Bacterial Infections: Insights into Thioredoxin-Mediated Interactions and Implications for Understanding Host–Pathogen Dynamics
by Omer M. A. Dagah, Billton Bryson Silaa, Minghui Zhu, Qiu Pan, Linlin Qi, Xinyu Liu, Yuqi Liu, Wenjing Peng, Zakir Ullah, Appolonia F. Yudas, Amir Muhammad, Xianquan Zhang and Jun Lu
Antioxidants 2024, 13(5), 545; https://doi.org/10.3390/antiox13050545 - 29 Apr 2024
Cited by 8 | Viewed by 4102
Abstract
Bacterial infections trigger a multifaceted interplay between inflammatory mediators and redox regulation. Recently, accumulating evidence has shown that redox signaling plays a significant role in immune initiation and subsequent immune cell functions. This review addresses the crucial role of the thioredoxin (Trx) system [...] Read more.
Bacterial infections trigger a multifaceted interplay between inflammatory mediators and redox regulation. Recently, accumulating evidence has shown that redox signaling plays a significant role in immune initiation and subsequent immune cell functions. This review addresses the crucial role of the thioredoxin (Trx) system in the initiation of immune reactions and regulation of inflammatory responses during bacterial infections. Downstream signaling pathways in various immune cells involve thiol-dependent redox regulation, highlighting the pivotal roles of thiol redox systems in defense mechanisms. Conversely, the survival and virulence of pathogenic bacteria are enhanced by their ability to counteract oxidative stress and immune attacks. This is achieved through the reduction of oxidized proteins and the modulation of redox-sensitive signaling pathways, which are functions of the Trx system, thereby fortifying bacterial resistance. Moreover, some selenium/sulfur-containing compounds could potentially be developed into targeted therapeutic interventions for pathogenic bacteria. Taken together, the Trx system is a key player in redox regulation during bacterial infection, and contributes to host–pathogen interactions, offering valuable insights for future research and therapeutic development. Full article
(This article belongs to the Section Antioxidant Enzyme Systems)
Show Figures

Figure 1

22 pages, 9280 KB  
Article
In Silico Comparison of Bioactive Compounds Characterized from Azadirachta indica with an FDA-Approved Drug against Schistosomal Agents: New Insight into Schistosomiasis Treatment
by Babatunji Emmanuel Oyinloye, David Ezekiel Shamaki, Emmanuel Ayodeji Agbebi, Sunday Amos Onikanni, Chukwudi Sunday Ubah, Raphael Taiwo Aruleba, Tran Nhat Phong Dao, Olutunmise Victoria Owolabi, Olajumoke Tolulope Idowu, Makhosazana Siduduzile Mathenjwa-Goqo, Deborah Tolulope Esan, Basiru Olaitan Ajiboye and Olaposi Idowu Omotuyi
Molecules 2024, 29(9), 1909; https://doi.org/10.3390/molecules29091909 - 23 Apr 2024
Cited by 5 | Viewed by 2368
Abstract
The burden of human schistosomiasis, a known but neglected tropical disease in Sub-Saharan Africa, has been worrisome in recent years. It is becoming increasingly difficult to tackle schistosomiasis with praziquantel, a drug known to be effective against all Schistosoma species, due to [...] Read more.
The burden of human schistosomiasis, a known but neglected tropical disease in Sub-Saharan Africa, has been worrisome in recent years. It is becoming increasingly difficult to tackle schistosomiasis with praziquantel, a drug known to be effective against all Schistosoma species, due to reports of reduced efficacy and resistance. Therefore, this study seeks to investigate the antischistosomal potential of phytochemicals from Azadirachta indica against proteins that have been implicated as druggable targets for the treatment of schistosomiasis using computational techniques. In this study, sixty-three (63) previously isolated and characterized phytochemicals from A. indica were identified from the literature and retrieved from the PubChem database. In silico screening was conducted to assess the inhibitory potential of these phytochemicals against three receptors (Schistosoma mansoni Thioredoxin glutathione reductase, dihydroorotate dehydrogenase, and Arginase) that may serve as therapeutic targets for schistosomiasis treatment. Molecular docking, ADMET prediction, ligand interaction, MMGBSA, and molecular dynamics simulation of the hit compounds were conducted using the Schrodinger molecular drug discovery suite. The results show that Andrographolide possesses a satisfactory pharmacokinetic profile, does not violate the Lipinski rule of five, binds with favourable affinity with the receptors, and interacts with key amino acids at the active site. Importantly, its interaction with dihydroorotate dehydrogenase, an enzyme responsible for the catalysis of the de novo pyrimidine nucleotide biosynthetic pathway rate-limiting step, shows a glide score and MMGBSA of −10.19 and −45.75 Kcal/mol, respectively. In addition, the MD simulation shows its stability at the active site of the receptor. Overall, this study revealed that Andrographolide from Azadirachta indica could serve as a potential lead compound for the development of an anti-schistosomal drug. Full article
Show Figures

Figure 1

30 pages, 1427 KB  
Review
Thioredoxin Domain Containing 5 (TXNDC5): Friend or Foe?
by Seyed Hesamoddin Bidooki, María A. Navarro, Susana C. M. Fernandes and Jesus Osada
Curr. Issues Mol. Biol. 2024, 46(4), 3134-3163; https://doi.org/10.3390/cimb46040197 - 4 Apr 2024
Cited by 5 | Viewed by 3545
Abstract
This review focuses on the thioredoxin domain containing 5 (TXNDC5), also known as endoplasmic reticulum protein 46 (ERp46), a member of the protein disulfide isomerase (PDI) family with a dual role in multiple diseases. TXNDC5 is highly expressed in endothelial cells, fibroblasts, pancreatic [...] Read more.
This review focuses on the thioredoxin domain containing 5 (TXNDC5), also known as endoplasmic reticulum protein 46 (ERp46), a member of the protein disulfide isomerase (PDI) family with a dual role in multiple diseases. TXNDC5 is highly expressed in endothelial cells, fibroblasts, pancreatic β-cells, liver cells, and hypoxic tissues, such as cancer endothelial cells and atherosclerotic plaques. TXNDC5 plays a crucial role in regulating cell proliferation, apoptosis, migration, and antioxidative stress. Its potential significance in cancer warrants further investigation, given the altered and highly adaptable metabolism of tumor cells. It has been reported that both high and low levels of TXNDC5 expression are associated with multiple diseases, such as arthritis, cancer, diabetes, brain diseases, and infections, as well as worse prognoses. TXNDC5 has been attributed to both oncogenic and tumor-suppressive features. It has been concluded that in cancer, TXNDC5 acts as a foe and responds to metabolic and cellular stress signals to promote the survival of tumor cells against apoptosis. Conversely, in normal cells, TXNDC5 acts as a friend to safeguard cells against oxidative and endoplasmic reticulum stress. Therefore, TXNDC5 could serve as a viable biomarker or even a potential pharmacological target. Full article
(This article belongs to the Special Issue Advances in Molecular Pathogenesis Regulation in Cancer, 2nd Edition)
Show Figures

Figure 1

20 pages, 1950 KB  
Review
Insights into the Multifaceted Roles of Thioredoxin-1 System: Exploring Knockout Murine Models
by Tetiana Shcholok and Eftekhar Eftekharpour
Biology 2024, 13(3), 180; https://doi.org/10.3390/biology13030180 - 12 Mar 2024
Cited by 6 | Viewed by 3345
Abstract
Redox balance is increasingly identified as a major player in cellular signaling. A fundamentally simple reaction of oxidation and reduction of cysteine residues in cellular proteins is the central concept in this complex regulatory mode of protein function. Oxidation of key cysteine residues [...] Read more.
Redox balance is increasingly identified as a major player in cellular signaling. A fundamentally simple reaction of oxidation and reduction of cysteine residues in cellular proteins is the central concept in this complex regulatory mode of protein function. Oxidation of key cysteine residues occurs at the physiological levels of reactive oxygen species (ROS), but they are reduced by a supply of thiol antioxidant molecules including glutathione, glutaredoxin, and thioredoxin. While these molecules show complex compensatory roles in experimental conditions, transgenic animal models provide a comprehensive picture to pinpoint the role of each antioxidant. In this review, we have specifically focused on the available literature on thioredoxin-1 system transgenic models that include thioredoxin and thioredoxin reductase proteins. As the identification of thioredoxin protein targets is technically challenging, the true contribution of this system in maintaining cellular balance remains unidentified, including the role of this system in the brain. Full article
(This article belongs to the Section Cell Biology)
Show Figures

Figure 1

Back to TopTop