Topic Editors

Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, 80125 Naples, Italy
Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54, Mostra d’Oltremare Pad. 20, 80125 Naples, Italy
Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V. le J. F. Kennedy 54, Mostra d\'Oltremare, Pad. 20, 80125 Naples, Italy

Advanced Biomaterials: Processing and Applications

Abstract submission deadline
closed (31 March 2025)
Manuscript submission deadline
31 May 2025
Viewed by
11181

Topic Information

Dear Colleagues,

The progress of biomaterial science and engineering has allowed the creation of increasingly advanced and innovative interfaces with biological systems capable of performing multiple functions aimed at supporting the growth of new tissue during healing/regeneration processes. To achieve this aim, an accurate design study of the material properties is required to guarantee a controlled structure and the dynamic functionality capable of adapting/integrating with the biological complexity of tissues and organs. In this context, the transition from inert to bioactive materials has been consolidated, leading to the development of new strategies in chemistry and nanotechnologies capable of responding to the growing needs in terms of promotion and control of biological phenomena in vitro and in vivo. In this perspective, this topic issue aims to review recent achievements in the field of hard and soft biomaterials with a specific emphasis on micro and nanotechnology advances which have showed the potential of controlling morphology and static/dynamic functionalities at micro/sub micrometer scale, including tailoring of biomechanical/sensing properties for the creation of bio-complex materials that might be used ad hoc in challenging applications of biomedicine and biotechnology. Research on the potential impact of recent technological developments, including safety laws and toxicology for large scale applications, will also be considered.

Dr. Vincenzo Guarino
Dr. Roberto De Santis
Dr. Ugo D'Amora
Topic Editors

Keywords

  • electro fluid dynamics
  • 3D/4D printing
  • nanomedicine
  • regenerative medicine
  • tissue engineering

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Chemistry
chemistry
2.4 3.2 2019 17.2 Days CHF 1800 Submit
Materials
materials
3.1 5.8 2008 13.9 Days CHF 2600 Submit
Molecules
molecules
4.2 7.4 1996 15.1 Days CHF 2700 Submit
Polymers
polymers
4.7 8.0 2009 14.5 Days CHF 2700 Submit
Pharmaceutics
pharmaceutics
4.9 7.9 2009 15.5 Days CHF 2900 Submit

Preprints.org is a multidisciplinary platform offering a preprint service designed to facilitate the early sharing of your research. It supports and empowers your research journey from the very beginning.

MDPI Topics is collaborating with Preprints.org and has established a direct connection between MDPI journals and the platform. Authors are encouraged to take advantage of this opportunity by posting their preprints at Preprints.org prior to publication:

  1. Share your research immediately: disseminate your ideas prior to publication and establish priority for your work.
  2. Safeguard your intellectual contribution: Protect your ideas with a time-stamped preprint that serves as proof of your research timeline.
  3. Boost visibility and impact: Increase the reach and influence of your research by making it accessible to a global audience.
  4. Gain early feedback: Receive valuable input and insights from peers before submitting to a journal.
  5. Ensure broad indexing: Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (10 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
14 pages, 5556 KiB  
Article
Lipidated DAPEG Polymers as a Non-Toxic Transfection Agent—Influence of Fatty Acid Side Chain on Transfection Efficacy
by Wiktoria Mallek, Anita Romanowska, Wiktoria Machowicz, Agnieszka Piwkowska, Adam Lesner and Magdalena Wysocka
Molecules 2025, 30(7), 1644; https://doi.org/10.3390/molecules30071644 - 7 Apr 2025
Viewed by 173
Abstract
This study describes the synthesis, interaction with DNA, and transfection efficacy of eight lipidated compounds based on a recently published non-lipidated parent molecule, an octamer of 2,3-l-Dap, carrying the guanidine group on its side chain. The compounds obtained were found to [...] Read more.
This study describes the synthesis, interaction with DNA, and transfection efficacy of eight lipidated compounds based on a recently published non-lipidated parent molecule, an octamer of 2,3-l-Dap, carrying the guanidine group on its side chain. The compounds obtained were found to be non-toxic up to 5 µM and efficient DNA binders and showed greater transfection efficiency than the parent compound, with two leading molecules containing acetic and decanoic moieties. DLS experiments indicated two groups of interaction with DNA. One group modified by short-chain lipids (up to eight carbon atoms in the main chain) forms large structures due to the aggregation of multiple nucleic acids. The second group (from twelve to sixteen carbon atoms) with dominant condensation creates smaller forms and is less effective in transporting DNA into the cells. Full article
(This article belongs to the Topic Advanced Biomaterials: Processing and Applications)
Show Figures

Graphical abstract

21 pages, 9554 KiB  
Article
Dual-Scale Collaborative Optimization of Microtubule Self-Healing Composites Based on Variable-Angle Fiber Design
by Peng Li, Baijia Fan, Shenbiao Wang, Jianbin Tan and Wentao Cheng
Materials 2025, 18(4), 905; https://doi.org/10.3390/ma18040905 - 19 Feb 2025
Viewed by 409
Abstract
To enhance the mechanics and self-healing properties of the self-healing composite, this study introduces an innovative optimization method for variable-angle fiber-reinforced self-healing composites with microtubule network carriers. The study aims to minimize macroscopic structural compliance and carrier head loss. Firstly, a topological description [...] Read more.
To enhance the mechanics and self-healing properties of the self-healing composite, this study introduces an innovative optimization method for variable-angle fiber-reinforced self-healing composites with microtubule network carriers. The study aims to minimize macroscopic structural compliance and carrier head loss. Firstly, a topological description function (TDF) for the self-healing composite was introduced, taking into account the configuration and geometry of the macroscopic structure and microtubule network carrier as design variables. Secondly, the relationship between the fiber laying angle and component spindle direction was established. An element stiffness matrix for variable-angle fibers was derived to determine the compliance of the self-healing composite. Then, the microtubule network head loss was calculated based on the Hardy Cross method. Finally, by integrating the Moving Morphable Component (MMC) method and the enumeration method, a dual-scale collaborative optimization framework was developed. The set of double-objective Pareto non-inferior solutions of the self-healing composite was obtained by iteration. Numerical examples show that (1) under the same optimization conditions, the non-inferior solution set of variable-angle fiber design is superior to those of fixed-angle fiber designs (0°, 45°, and 90°). (2) Compared with single-objective (compliance) optimization of the carrier-free composite, the Pareto solution set of the variable-angle dual-scale collaborative optimization can provide a better compliance optimization solution, and the maximum compliance solution of the solution set is only 10.64% higher. This paper proposes a method combining variable-angle and dual-scale collaborative optimization, which provides a useful reference for the topology design of a self-healing composite. Full article
(This article belongs to the Topic Advanced Biomaterials: Processing and Applications)
Show Figures

Figure 1

17 pages, 5184 KiB  
Article
Ultrashort Pulse Laser Fabrication and Evaluation of Innovative Resorbable Barbed Sutures
by Karuna Nambi Gowri, Walid Al Asad, Shubha Majumder, Xin Zhao and Martin William King
Polymers 2025, 17(4), 544; https://doi.org/10.3390/polym17040544 - 19 Feb 2025
Viewed by 376
Abstract
Laser micro-machining is a rapidly growing technique to create, manufacture and fabricate microstructures on different materials ranging from metals and ceramics to polymers. Micro- and nano-machining on different materials has been helpful and useful for various biomedical applications. This study focuses on the [...] Read more.
Laser micro-machining is a rapidly growing technique to create, manufacture and fabricate microstructures on different materials ranging from metals and ceramics to polymers. Micro- and nano-machining on different materials has been helpful and useful for various biomedical applications. This study focuses on the micro-machining of innovative barbed sutures using an ultrashort pulse laser, specifically a femtosecond (fs) laser system. Two bioresorbable polymeric materials, namely, catgut and poly (4-hydroxybutyrate) (P4HB), were studied and micro-machined using the femtosecond (fs) laser system. The optimized laser parameter was used to fabricate two different barb geometries, namely, straight and curved barbs. The mechanical properties were evaluated via tensile testing, and the anchoring performance was studied by means of a suture–tissue pull-out protocol using porcine dermis tissue which was harvested from the medial dorsal site. Along with the evaluation of the mechanical and anchoring properties, the thermal characteristics and degradation profiles were assessed and compared against mechanically cut barbed sutures using a flat blade. The mechanical properties of laser-fabricated barbed sutures were significantly improved when compared to the mechanical properties of the traditionally/mechanically cut barbed sutures, while there was not any significant difference in the anchoring properties of the barbed sutures fabricated through either of the fabrication techniques. Based on the differential scanning calorimetry (DSC) results for thermal transitions, there was no major impact on the inherent material properties due to the laser treatment. This was also observed in the degradation results, where both the mechanically cut and laser-fabricated barbed sutures exhibited similar profiles throughout the evaluation time period. It was concluded that switching the fabrication technique from mechanical cutting to laser fabrication would be beneficial in producing a more reproducible and consistent barb geometry with more precision and accuracy. Full article
(This article belongs to the Topic Advanced Biomaterials: Processing and Applications)
Show Figures

Graphical abstract

19 pages, 8711 KiB  
Article
Production and Characterization of H. perforatum Oil-Loaded, Semi-Resorbable, Tri-Layered Hernia Mesh
by Özlem Eğri, Feyza Güneş and Sinan Eğri
Polymers 2025, 17(2), 240; https://doi.org/10.3390/polym17020240 - 19 Jan 2025
Viewed by 774
Abstract
Hernia repair is the most common surgical operation applied worldwide. Mesh prostheses are used to support weakened or damaged tissue to decrease the risk of hernia recurrence. However, the patches currently used in clinic applications have significant short-term and long-term risks. This study [...] Read more.
Hernia repair is the most common surgical operation applied worldwide. Mesh prostheses are used to support weakened or damaged tissue to decrease the risk of hernia recurrence. However, the patches currently used in clinic applications have significant short-term and long-term risks. This study aimed to design, produce, and characterize a three-layered semi-resorbable composite hernia mesh using the electrospinning technique, where the upper layer (parietal side) was made of non-resorbable polypropylene (PP-Cl) fibers, the partially resorbable middle layer was made of PP-Cl and polycaprolactone (PCL) fibers, and the fully resorbable lower layer (visceral side) was made of H. perforatum oil-loaded polyethylene glycol (PEG) fibers. The extracellular matrix-like fibrous structure of the patches provided low density and high porosity, minimizing the risk of long-term foreign body reactions, and the hydrophilic/hydrophobic character of the surfaces and the detected swelling rates supported biocompatibility. The patches exhibited mechanical properties comparable to commercially available products. Controlled release of therapeutic oil could be achieved from the oil-integrated patches due to the dissolution of PEG in the acute process. In vitro cell culture studies with the L929 mouse fibroblast cell line revealed that the meshes do not have a cytotoxic nor a biomaterial-induced necrotic effect that will induce apoptosis of the cells. The visceral side of the meshes exhibited non-adherence of cell-like structures to the surface due to the dissolution of PEG. The composite hernia patches were concluded to reduce the risk of adhering to internal organs in the hernia area, have the potential to be used in in vivo biomedical applications, and will support the search for an ideal hernia mesh that can be used in the treatment of abdominal hernias. Full article
(This article belongs to the Topic Advanced Biomaterials: Processing and Applications)
Show Figures

Figure 1

27 pages, 5077 KiB  
Article
Green Synthesis of Ag and Cu Nanoparticles Using E. telmateia Ehrh Extract: Coating, Characterization, and Bioactivity on PEEK Polymer Substrates
by Şakir Altınsoy, Kadriye Kızılbey and Hümeyra Berfin İlim
Materials 2024, 17(22), 5501; https://doi.org/10.3390/ma17225501 - 11 Nov 2024
Viewed by 1242
Abstract
PEEK-based implant materials have gained increasing attention as an alternative to titanium due to their biocompatibility and bone-like elasticity. However, PEEK’s surface quality and wear resistance are lower than those of metals. This study aimed to enhance the bioactivity and surface quality of [...] Read more.
PEEK-based implant materials have gained increasing attention as an alternative to titanium due to their biocompatibility and bone-like elasticity. However, PEEK’s surface quality and wear resistance are lower than those of metals. This study aimed to enhance the bioactivity and surface quality of PEEK by coating it with silver and copper nanoparticles synthesized via a green method using Equisetum telmateia Ehrh. extract. PEEK samples (Ø 25 mm, 3 mm thick) were coated with single and double layers using spray (airbrush-spray) and drop-coating methods. Comprehensive analyses including SEM, EDX, FT-IR, UV-Vis, surface roughness, release studies, antioxidant and cytotoxicity activity, and antibacterial tests were conducted on the coated samples. The results demonstrated that AgNPs and CuNPs coatings significantly improved the surface quality of PEEK. SEM analysis revealed particle sizes ranging from 48 to 160 nm for AgNPs and 50–135 nm for CuNPs, with superior dispersion obtained using the airbrush-spray method. Surface roughness measurements showed a reduction of 17–33% for AgNPs-coated samples and 7–15% for CuNPs-coated samples compared to uncoated PEEK, with airbrush-spray coatings providing smoother surfaces. Antioxidant activity tests indicated that AgNPs provided 35% higher antioxidant activity compared to CuNPs. Additionally, antibacterial tests revealed that AgNPs exhibited a higher zone of inhibition (up to 14 mm for S. aureus and 18 mm for E. coli) compared to CuNPs, which exhibited zones of 8 mm and 10 mm, respectively. This study concludes that green-synthesized AgNPs, in particular, enhance the bioactivity and surface properties of PEEK, making it a promising material for biomedical applications such as infection-resistant implants. Full article
(This article belongs to the Topic Advanced Biomaterials: Processing and Applications)
Show Figures

Figure 1

14 pages, 5048 KiB  
Article
Design and Characterization of an Antimicrobial Biocomposite for Wound Dressings
by Leslie Becerril-Serna, Blanca Rosa Aguilar-Uscanga, Mario Flores-Soto, Josué Raymundo Solís-Pacheco and Erick Omar Cisneros-López
Materials 2024, 17(19), 4705; https://doi.org/10.3390/ma17194705 - 25 Sep 2024
Viewed by 1122
Abstract
Skin wounds, due to their high vulnerability to infections, represent a significant public health issue. These wounds are not only disabling but also entail costly treatments and slow recovery. Consequently, it is crucial to implement new treatments based on bioactive and natural antimicrobial [...] Read more.
Skin wounds, due to their high vulnerability to infections, represent a significant public health issue. These wounds are not only disabling but also entail costly treatments and slow recovery. Consequently, it is crucial to implement new treatments based on bioactive and natural antimicrobial compounds utilizing fibers, polymers, hydrocolloids, and hydrogels to control potential infections and promote wound healing. This study aimed to develop a biocomposite with antimicrobial activity for the treatment of skin wounds, using sodium alginate, bamboo fiber, and a natural antimicrobial as ingredients. The physico-mechanical properties (Young’s modulus, tensile strength, elongation at break, moisture absorption, and water vapor permeability) and antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Staphylococcus hominis were determined. The results demonstrated that the designed biocomposite possesses adequate physico-mechanical properties, such as flexibility, strength, and water absorption capacity, in addition to exhibiting antibacterial activity, making it suitable to be used as a dressing in wound treatment. Full article
(This article belongs to the Topic Advanced Biomaterials: Processing and Applications)
Show Figures

Graphical abstract

17 pages, 6199 KiB  
Article
Design and Synthesis of an Azo Reductase Responsive Flavonol–Indomethacin Hybrid Used for the Diagnosis and Treatment of Colitis
by Yaqin Gu, Rui Yang, Jine Chen, Yu Fan, Wenna Xie, Hongyan Wu and Jinfeng Ding
Molecules 2024, 29(17), 4244; https://doi.org/10.3390/molecules29174244 - 6 Sep 2024
Viewed by 1228
Abstract
Human intestinal bacteria are the primary producers of azo reductase, and the content of azo reductase is closely associated with various intestinal diseases, including ulcerative colitis (UC). The rapid detection of changes in azo reductase levels is crucial for diagnosing and promptly intervening [...] Read more.
Human intestinal bacteria are the primary producers of azo reductase, and the content of azo reductase is closely associated with various intestinal diseases, including ulcerative colitis (UC). The rapid detection of changes in azo reductase levels is crucial for diagnosing and promptly intervening in UC. In this study, a therapeutic agent, FAI, specifically targeting UC, was designed and synthesized. This agent was developed by linking the anti-inflammatory drug indomethacin to flavonols with antioxidant activity via an azo bond (off–on). Breakage of the azo bond breaks results in the release of both fluorophores and drugs, achieving targeted tracing and integrated treatment effects. In vivo and in vitro fluorescence imaging experiments were used to demonstrate the potential of FAI in the diagnosis of UC, together with synergistic therapeutic effects through the release of both fluorophores and anti-inflammatory agents. Therefore, this diagnostic agent shows promise as a potential tool for diagnosing and treating UC. Full article
(This article belongs to the Topic Advanced Biomaterials: Processing and Applications)
Show Figures

Figure 1

15 pages, 4963 KiB  
Article
Desmodium intortum (Mill.) Urb. Protein Isolate Aggregates as Pickering Stabilizers: Physicochemical Characteristics and Emulsifying Properties
by Xuemei Tang, Hui Chang, Guanglong Yao, Jian Chen and Rongshu Dong
Molecules 2024, 29(16), 3923; https://doi.org/10.3390/molecules29163923 - 20 Aug 2024
Viewed by 1096
Abstract
This work aimed to investigate the feasibility of fabricating Pickering emulsions stabilized by Desmodium intortum protein isolate (DIPI) aggregates. The DIPI aggregates were formed using heat treatment, and the effects of ionic strength and pH on their properties were investigated. The heat-treated protein [...] Read more.
This work aimed to investigate the feasibility of fabricating Pickering emulsions stabilized by Desmodium intortum protein isolate (DIPI) aggregates. The DIPI aggregates were formed using heat treatment, and the effects of ionic strength and pH on their properties were investigated. The heat-treated protein exposes its hydrophobic groups due to structural damage, resulting in rapid aggregation of the protein into aggregates with a size of 236 nm. The results showed that the aggregates induced by ionic strength had larger particle size and higher surface hydrophobicity and partial wettability. Moreover, this study explored effective strategies for bolstering Pickering emulsion stability through optimized DIPI aggregate concentration (c) and oil fraction (ø). The DIPI Pickering emulsion (DIPIPE) formed at c = 5% and ø = 0.7 was still highly stable after 30 days of storage. As confirmed by laser confocal microscopy, DIPI aggregates could be adsorbed onto the oil–water interface to form a network structure that could trap oil droplets in the network. Collectively, the Pickering emulsion stabilized by DIPI aggregates exhibited excellent stability, which not only deeply utilizes the low-value protein resources in the Desmodium intortum for the first time, but also demonstrates the potential of DIPI for the bio-based field. Full article
(This article belongs to the Topic Advanced Biomaterials: Processing and Applications)
Show Figures

Figure 1

26 pages, 5993 KiB  
Article
Unveiling the Impact of Eco-Friendly Synthesized Nanoparticles on Vegetative Growth and Gene Expression in Pelargonium graveolens and Sinapis alba L.
by Maha M. Kamel, Abdelfattah Badr, Dalal Hussien M. Alkhalifah, Rehab Mahmoud, Yasser GadelHak and Wael N. Hozzein
Molecules 2024, 29(14), 3394; https://doi.org/10.3390/molecules29143394 - 19 Jul 2024
Viewed by 1669
Abstract
Nanoscale geranium waste (GW) and magnesium nanoparticle/GW nanocomposites (Mg NP/GW) were prepared using green synthesis. The Mg NP/GW samples were subjected to characterization using X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR-FT). The surface morphology of the materials was examined using a scanning [...] Read more.
Nanoscale geranium waste (GW) and magnesium nanoparticle/GW nanocomposites (Mg NP/GW) were prepared using green synthesis. The Mg NP/GW samples were subjected to characterization using X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR-FT). The surface morphology of the materials was examined using a scanning electron microscope (SEM), and their thermal stability was assessed through thermal gravimetric analysis (TG). The BET-specific surface area, pore volume, and pore size distribution of the prepared materials were determined using the N2 adsorption–desorption method. Additionally, the particle size and zeta potentials of the materials were also measured. The influence of the prepared nanomaterials on seed germination was intensively investigated. The results revealed an increase in seed germination percent at low concentrations of Mg NP/GWs. Upon treatment with Mg NP/GW nanoparticles, a reduction in the mitotic index (MI) was observed, indicating a decrease in cell division. Additionally, an increase in chromosomal abnormalities was detected. The efficacy of GW and Mg NP/GW nanoparticles as new elicitors was evaluated by studying their impact on the expression levels of the farnesyl diphosphate synthase (FPPS1) and geranylgeranyl pyrophosphate (GPPS1) genes. These genes play a crucial role in the terpenoid biosynthesis pathway in Sinapis alba (S. alba) and Pelargonium graveolens (P. graveolens) plants. The expression levels were analyzed using reverse transcription–quantitative polymerase chain reaction (RT-qPCR) analysis. The qRT-PCR analysis of FPPS and GPPS gene expression was performed. The outputs of FPPS1 gene expression demonstrated high levels of mRNA in both S. alba and P. graveolens with fold changes of 25.24 and 21.68, respectively. In contrast, the minimum expression levels were observed for the GPPS1 gene, with fold changes of 11.28 and 6.48 in S. alba and P. graveolens, respectively. Thus, this study offers the employment of medicinal plants as an alternative to fertilizer usage resulting in promoting environmental preservation, optimal waste utilization, reducing water consumption, and cost reduction. Full article
(This article belongs to the Topic Advanced Biomaterials: Processing and Applications)
Show Figures

Figure 1

17 pages, 3385 KiB  
Article
Multifunctional Hydrogel with 3D Printability, Fluorescence, Biodegradability, and Biocompatibility for Biomedical Microrobots
by Gang Wang, Sisi Wang, Tao Hu and Famin Shi
Molecules 2024, 29(14), 3351; https://doi.org/10.3390/molecules29143351 - 17 Jul 2024
Cited by 4 | Viewed by 1433
Abstract
As micron-sized objects, mobile microrobots have shown significant potential for future biomedical applications, such as targeted drug delivery and minimally invasive surgery. However, to make these microrobots viable for clinical applications, several crucial aspects should be implemented, including customizability, motion-controllability, imageability, biodegradability, and [...] Read more.
As micron-sized objects, mobile microrobots have shown significant potential for future biomedical applications, such as targeted drug delivery and minimally invasive surgery. However, to make these microrobots viable for clinical applications, several crucial aspects should be implemented, including customizability, motion-controllability, imageability, biodegradability, and biocompatibility. Developing materials to meet these requirements is of utmost importance. Here, a gelatin methacryloyl (GelMA) and (2-(4-vinylphenyl)ethene-1,1,2-triyl)tribenzene (TPEMA)-based multifunctional hydrogel with 3D printability, fluorescence imageability, biodegradability, and biocompatibility is demonstrated. By using 3D direct laser writing method, the hydrogel exhibits its versatility in the customization and fabrication of 3D microstructures. Spherical hydrogel microrobots were fabricated and decorated with magnetic nanoparticles on their surface to render them magnetically responsive, and have demonstrated excellent movement performance and motion controllability. The hydrogel microstructures also represented excellent drug loading/release capacity and degradability by using collagenase, along with stable fluorescence properties. Moreover, cytotoxicity assays showed that the hydrogel was non-toxic, as well as able to support cell attachment and growth, indicating excellent biocompatibility of the hydrogel. The developed multifunctional hydrogel exhibits great potential for biomedical microrobots that are integrated with customizability, 3D printability, motion controllability, drug delivery capacity, fluorescence imageability, degradability, and biocompatibility, thus being able to realize the real in vivo biomedical applications of microrobots. Full article
(This article belongs to the Topic Advanced Biomaterials: Processing and Applications)
Show Figures

Figure 1

Back to TopTop