Topic Editors

1. Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organisation, ELGO – DEMETER, Thermi, GR-57001 Thessaloniki, Greece
2. Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
Dipartimento di Agraria, Università Mediterranea di Reggio Calabria, Loc. Feo di Vito, I-89129 Reggio Calabria, Italy

Plants Nutrients, 2nd Volume

Abstract submission deadline
31 October 2025
Manuscript submission deadline
31 January 2026
Viewed by
9827

Topic Information

Dear Colleagues,

Following the successful completion of Volume I of “Plants Nutrients” and considering the great interest in this research topic, we are pleased to announce the launch of Volume II. The study of the manner in which plants obtain and use nutrients, namely plant nutrition, is central for feeding the ever-growing global population, improving modern agricultural practices, environmental protection, as well as understanding plant ecological interactions in natural ecosystems. Recently, there has been an upsurge in research and a renewed interest in the field of plant nutrition as contemporary experimental approaches are being used to examine the mechanisms underlying plant nutrient transport and utilization. This has been driven by the availability of new powerful tools, including molecular techniques and complete genome sequences, and the development of model plant systems and sophisticated tools to study plant physiology. The present Topic aims to host and gather relevant high-quality papers concerned with multiple different aspects of the biology of plant nutrients, such as: uptake mechanisms; short- and long-distance transport; functions in planta; source–sink relationships; yield and yield quality; relationships with plant diseases and pests; diagnosis of deficiency and toxicity; as well as plant–soil relationships, including rhizosphere chemistry; symbiotic interactions; and the involvement of carbon fluxes in terrestrial agricultural and forestry ecosystems.

Dr. Georgia Ntatsi
Dr. Maurizio Badiani
Topic Editors

Keywords

  • plant macronutrients
  • plant micronutrients
  • plant nutrition’s molecular physiology
  • plant nutrients’ source–sink relationships
  • plant nutrition and yield
  • plant nutrition and yield quality
  • plant–soil interactions
  • rhizosphere
  • nitrogen fixation
  • plant nutrients and carbon cycling

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Agronomy
agronomy
3.3 6.2 2011 17.6 Days CHF 2600 Submit
Crops
crops
- - 2021 22.1 Days CHF 1000 Submit
Forests
forests
2.4 4.4 2010 16.2 Days CHF 2600 Submit
Horticulturae
horticulturae
3.1 3.5 2015 16.9 Days CHF 2200 Submit
Plants
plants
4.0 6.5 2012 18.9 Days CHF 2700 Submit

Preprints.org is a multidisciplinary platform offering a preprint service designed to facilitate the early sharing of your research. It supports and empowers your research journey from the very beginning.

MDPI Topics is collaborating with Preprints.org and has established a direct connection between MDPI journals and the platform. Authors are encouraged to take advantage of this opportunity by posting their preprints at Preprints.org prior to publication:

  1. Share your research immediately: disseminate your ideas prior to publication and establish priority for your work.
  2. Safeguard your intellectual contribution: Protect your ideas with a time-stamped preprint that serves as proof of your research timeline.
  3. Boost visibility and impact: Increase the reach and influence of your research by making it accessible to a global audience.
  4. Gain early feedback: Receive valuable input and insights from peers before submitting to a journal.
  5. Ensure broad indexing: Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (7 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
13 pages, 3336 KiB  
Article
Effects and Mechanism of Auxin and Its Inhibitors on Root Growth and Mineral Nutrient Absorption in Citrus (Trifoliate Orange, Poncirus trifoliata) Seedlings via Its Synthesis and Transport Pathways
by Yuwei Yang, Yidong Shi, Cuiling Tong and Dejian Zhang
Agronomy 2025, 15(3), 719; https://doi.org/10.3390/agronomy15030719 - 16 Mar 2025
Viewed by 300
Abstract
As an endogenous hormone, auxin plays a crucial role in regulating plants’ growth and development, and also in the responses to abiotic stresses. However, the effects and mechanism of auxin and its inhibitors on plant growth and mineral nutrient absorption in citrus have [...] Read more.
As an endogenous hormone, auxin plays a crucial role in regulating plants’ growth and development, and also in the responses to abiotic stresses. However, the effects and mechanism of auxin and its inhibitors on plant growth and mineral nutrient absorption in citrus have not been thoroughly studied. Therefore, we used trifoliate orange (citrus’s rootstock, Poncirus trifoliata) as the experimental material to supplement the research content in this area. The trifoliate orange seedlings were treated with exogenous auxin (indolebutyric acid, IBA) and auxin inhibitor (2-naphthoxyacetic acid, 2-NOA) in a sand culture system. The results showed that compared to the control, exogenous auxin (1.0 µmol L−1 IBA) significantly enhanced the taproot length, lateral root length, and lateral root number by 17.56%, 123.07%, and 88.89%, respectively, while also markedly elevating the levels of nitrogen (N), phosphorus (P), potassium (K), copper (Cu), and zinc (Zn) by 14.29%, 45.61%, 23.28%, 42.86%, and 59.80%, respectively. Again compared to the control, the auxin inhibitor (50.0 µmol L−1 2-NOA) dramatically reduced the taproot length, lateral root length, and lateral root number by 21.37%, 10.25%, and 43.33%, respectively, while also markedly decreasing the levels of N, magnesium (Mg), iron (Fe), Cu, and Zn by 7.94%, 10.42%, 24.65%, 39.25%, and 18.76%, respectively. Furthermore, IBA increased auxin accumulation in the root hair, stele, and epidermal tissues of citrus taproots, and promoted the up-regulation of auxin synthesis genes (TAR2, YUC3, YUC4, YUC6, YUC8) and transport genes (ABCB1, ABCB19, AUX1, LAX1, LAX2, PIN1, PIN3, PIN4). In contrast, 2-NOA decreased auxin levels in the root hair, stele, and epidermal tissues of citrus taproots, and was involved in the down-regulation of auxin synthesis genes (TAR2, YUC3, YUC4, YUC6) and transport genes (ABCB1, AUX1, LAX1, LAX2, LAX3, PIN3). Interestingly, 2-NOA dramatically elevated auxin level specifically in the root tip of citrus taproot. Therefore, 2-NOA disrupts auxin reflux from the root tip to root hair and epidermal tissues in citrus taproot through down-regulation of auxin transport genes, thereby creating localized (i.e., root hair zone and epidermal tissues) auxin deficiencies that compromise root system architecture and nutrient acquisition capacity. According to the results of this study, exogenous auxin analogs could regulate citrus growth and mineral nutrient absorption through the auxin synthesis and transport pathways. Full article
(This article belongs to the Topic Plants Nutrients, 2nd Volume)
Show Figures

Figure 1

26 pages, 2832 KiB  
Article
Selenium Improves Yield and Quality in Prunella vulgaris by Regulating Antioxidant Defense, Photosynthesis, Growth, Secondary Metabolites, and Gene Expression Under Acid Stress
by Lixia Zhang, Qingshan Chang, Xingli Zhao, Qi Guo, Shuangchen Chen, Qiaoming Zhang, Yinglong He, Sudan Chen, Ke Chen, Ruiguo Ban, Yuhang Hao and Xiaogai Hou
Plants 2025, 14(6), 920; https://doi.org/10.3390/plants14060920 - 14 Mar 2025
Viewed by 341
Abstract
Prunella vulgaris, an essential component of traditional Chinese medicine, is suitable for growing in soil with a pH value ranging from 6.5 to 7.5. However, it is primarily cultivated in acidic soil regions of China, where its growth is frequently compromised by [...] Read more.
Prunella vulgaris, an essential component of traditional Chinese medicine, is suitable for growing in soil with a pH value ranging from 6.5 to 7.5. However, it is primarily cultivated in acidic soil regions of China, where its growth is frequently compromised by acidic stress. Selenium (Se) has been recognized for its potential to enhance stress tolerance in plants. However, its role in acid-stress-induced oxidative stress is not clear. In this study, the effects of varying Se concentrations on the growth and quality of P. vulgaris under acidic stress were investigated. The results showed that acid stress enhanced antioxidant enzyme activities, non-enzymatic antioxidant substances, and osmolyte content, accompanied by an increase in oxidant production and membrane damage. Furthermore, it decreased the photosynthetic capacity, inhibited root and shoot growth, and diminished the yield of P. vulgaris. In contrast, exogenous application of Se, particularly at 5 mg L−1, markedly ameliorated these adverse effects. Compared to acid-stressed plants, 5 mg L−1 Se treatment enhanced superoxide dismutase, peroxidase, ascorbate peroxidase, and glutathione peroxidase activities by 150.19%, 54.94%, 43.43%, and 45.55%, respectively. Additionally, soluble protein, soluble sugar, and proline contents increased by 11.75%, 23.32%, and 40.39%, respectively. Se application also improved root architecture and alleviated membrane damage by reducing hydrogen peroxide, superoxide anion, malondialdehyde, and electrolyte leakage levels. Furthermore, it significantly enhanced the photosynthetic capacity by elevating pigment levels, the performance of PSI and PSII, electron transfer, and the coordination of PSI and PSII. Consequently, plant growth and spica weight were significantly promoted, with a 12.50% increase in yield. Moreover, Se application upregulated key genes involved in flavonoid and phenolic acid metabolic pathways, leading to elevated levels of total flavonoids, caffeic acid, ferulic acid, rosmarinic acid, and hyperoside by 31.03%, 22.37%, 40.78%, 15.11%, and 20.84%, respectively, compared to acid-stressed plants. In conclusion, exogenous Se effectively alleviated the adverse effects of acid stress by improving the antioxidant system, growth, and photosynthetic capacity under acid stress, thus enhancing the yield and quality of P. vulgaris. Full article
(This article belongs to the Topic Plants Nutrients, 2nd Volume)
Show Figures

Figure 1

22 pages, 3173 KiB  
Article
The Nitrogen Preference of Cactus Pear (Opuntia ficus-indica): A Sand Culture Snapshot
by Nicholas A. Niechayev, Paula N. Pereira and John C. Cushman
Plants 2024, 13(24), 3489; https://doi.org/10.3390/plants13243489 - 13 Dec 2024
Viewed by 813
Abstract
Cactus pear (Opuntia-ficus indica (L.) Mill.) is an important agricultural crassulacean acid metabolism (CAM) species used as a source of food, forage, fodder, and secondary products and as a biofuel feedstock. However, the preferred source of nitrogen for this species, whether it [...] Read more.
Cactus pear (Opuntia-ficus indica (L.) Mill.) is an important agricultural crassulacean acid metabolism (CAM) species used as a source of food, forage, fodder, and secondary products and as a biofuel feedstock. However, the preferred source of nitrogen for this species, whether it be nitrate (NO3), ammonium (NH4+), or a combination of both, is not well understood. To investigate the nitrate and ammonium preference of cactus pear, we grew cladodes in sand culture with deionized water as a control or with a cross-factorial set of nutrient solutions of 0.0, 2.5, 5.0, and 10.0 mmol of nitrate and/or ammonium for one month. We then assessed a set of physiological parameters including cladode growth, relative water content, chlorophyll, tissue acidity, soluble sugars, starch, nitrate, ammonium, glyoxylic acid, nitrate reductase activity, and nitrogen and carbon content. We found significant differences in all measured parameters except for cladode length, relative water content, and carbon content. Cladodes provided with only deionized water produced no new cladodes and showed decreased soluble sugar content, increased starch content, and increased tissue acidity. We also determined the relative steady-state transcript abundance of genes that encode enzymes involved in N metabolism and CAM. Compared with control cladodes, nutrient-supplied cladodes generally showed increased or variable steady-state mRNA expression of selected CAM-related genes and nitrogen-metabolism-related genes. Our results suggest that O. ficus-indica prefers fertilizers containing either equal concentrations nitrate and ammonium or more nitrate than ammonium. Full article
(This article belongs to the Topic Plants Nutrients, 2nd Volume)
Show Figures

Figure 1

12 pages, 4231 KiB  
Article
Calcium Uptake Pattern and Its Transport Pathway in ‘Shixia’ Longan Fruit
by Wenpei Song, Siqi Huang, Odit F. Kurniadinata, Ziqin Yang and Xuming Huang
Agronomy 2024, 14(11), 2480; https://doi.org/10.3390/agronomy14112480 - 24 Oct 2024
Cited by 1 | Viewed by 996
Abstract
Calcium plays an irreplaceable role as an essential mineral nutrient in plants, particularly in the formation of calcium pectinate, which is critical for cell wall construction. Fruits deficient in calcium are more susceptible to cell wall disintegration, bacterial infections, and the development of [...] Read more.
Calcium plays an irreplaceable role as an essential mineral nutrient in plants, particularly in the formation of calcium pectinate, which is critical for cell wall construction. Fruits deficient in calcium are more susceptible to cell wall disintegration, bacterial infections, and the development of various physiological disorders and fungal diseases. Despite its importance, limited research has focused on calcium nutrition in longan, and the pathways and regulatory mechanisms underlying calcium uptake in this fruit remain unclear. In this study, we investigated calcium uptake in longan at different developmental stages, examined its variation patterns, analyzed the correlations between calcium concentrations in the pedicel and the fruit, and explored the distribution of calcium in the pedicel. We also studied the functions of xylem/apoplastic and symplastic pathways using dye tracers. Our findings contribute to a deeper understanding of calcium nutrition in longan and clarify the transportation characteristics of calcium within longan fruit. Full article
(This article belongs to the Topic Plants Nutrients, 2nd Volume)
Show Figures

Figure 1

16 pages, 4447 KiB  
Article
New Intrinsic Ecological Mechanisms of Leaf Nutrient Resorption in Temperate Deciduous Trees
by Xingchang Wang, Yanmin Guo, Qi Wang, Jun Pan, Xiankui Quan, Jiacun Gu and Chuankuan Wang
Plants 2024, 13(12), 1659; https://doi.org/10.3390/plants13121659 - 15 Jun 2024
Cited by 1 | Viewed by 1458
Abstract
Leaf nutrient resorption is a critical process in plant nutrient conservation during leaf senescence. However, the ecological mechanisms underlying the large variability in nitrogen (NRE) and phosphorous (PRE) resorption efficiencies among trees remain poorly understood. We conducted a comprehensive study on NRE and [...] Read more.
Leaf nutrient resorption is a critical process in plant nutrient conservation during leaf senescence. However, the ecological mechanisms underlying the large variability in nitrogen (NRE) and phosphorous (PRE) resorption efficiencies among trees remain poorly understood. We conducted a comprehensive study on NRE and PRE variability using 61 tree individuals of 10 temperate broad-leaved tree species. Three potentially interrelated intrinsic ecological mechanisms (i.e., leaf senescence phenology, leaf pigments, and energy residual) were verified. We found that a delayed leaf senescence date, increased degradation of chlorophylls and carotenoids, biosynthesis of anthocyanins, and reduced nonstructural carbohydrates were all positively correlated with NRE and PRE at the individual tree level. The intrinsic factors affecting resorption efficiency were ranked in decreasing order of importance: leaf pigments > energy residual > senescence phenology. These factors explained more variability in NRE than in PRE. Our findings highlight the significance of these three ecological mechanisms in leaf nutrient resorption and have important implications for understanding how nutrient resorption responds to climate change. Full article
(This article belongs to the Topic Plants Nutrients, 2nd Volume)
Show Figures

Figure 1

18 pages, 289 KiB  
Article
Sustaining the Yield of Maize, Blackgram, Greengram, Groundnut, Cotton, Sugarcane, and Coconut through the Application of Nutrients and Plant Growth Regulator Mixture
by Senthil Alagarswamy, Kalarani M. Karuppasami, Maduraimuthu Djanaguiraman, Prasad B. R. Venugopal, Sritharan Natarajan, Sivakumar Rathinavelu, Vijayalakshmi Dhashnamurthi, Ravichandran Veerasamy and Boominathan Parasuraman
Plants 2024, 13(11), 1549; https://doi.org/10.3390/plants13111549 - 4 Jun 2024
Viewed by 1404
Abstract
The foliar application of nutrients and plant growth regulators (PGRs) at critical crop growth periods can improve the yield of field crops. Hence, the present study was conducted to quantify the effects of the combined application of nutrients and PGRs (crop-specific formulation) on [...] Read more.
The foliar application of nutrients and plant growth regulators (PGRs) at critical crop growth periods can improve the yield of field crops. Hence, the present study was conducted to quantify the effects of the combined application of nutrients and PGRs (crop-specific formulation) on maize, blackgram, greengram, groundnut, cotton, sugarcane, and coconut yield. In all the crops except coconut, the treatments included (i) a foliar spray of crop-specific nutrients and PGR combinations and (ii) an unsprayed control. In coconut, the treatments included (i) the root feeding of coconut-specific nutrients and PGR combinations and (ii) an untreated control. Crop-specific nutrient and PGR formulations were sprayed, namely, Tamil Nadu Agricultural University (TNAU) maize maxim 1.5% at the tassel initiation and grain-filling stages of maize, TNAU pulse wonder 1.0% at the peak flowering stage of green gram and black gram, TNAU groundnut-rich 1.0% at the flowering and pod-filling stages of groundnut, TNAU cotton plus 1.25% at the flowering and boll development stages of cotton, and TNAU sugarcane booster 0.5% at 45 days after planting (DAP), 0.75% at 60 DAP, and 1.0% at 75 DAP of sugarcane. The results showed that the foliar application of TNAU maize maxim, TNAU pulse wonder, TNAU groundnut-rich, TNAU cotton plus and TNAU sugarcane booster and the root feeding of TNAU coconut tonic increased the yield of maize, pulses, groundnut, cotton, sugarcane, and coconut, resulting in higher economic returns. Full article
(This article belongs to the Topic Plants Nutrients, 2nd Volume)
13 pages, 1601 KiB  
Article
Optimizing Soybean Crop Performance through the Integrated Application of Organic and Chemical Fertilizers: A Study on Alkaline Soil in Afghanistan
by Abdul Basir Turabi, Safiullah Habibi, Kifayatullah Kakar, Shafiqullah Aryan, Mohammad Daud Haidari and Sabqatullah Alipour
Crops 2024, 4(1), 82-94; https://doi.org/10.3390/crops4010007 - 7 Mar 2024
Cited by 1 | Viewed by 2516
Abstract
The excess application of chemical fertilizer contributes to environmental pollution. Therefore, this study aims to explore the integrated use of animal manure and chemical fertilizer to identify a more sustainable and environmentally friendly alternative to nitrogen fertilizer. Two experiments were conducted in 2018 [...] Read more.
The excess application of chemical fertilizer contributes to environmental pollution. Therefore, this study aims to explore the integrated use of animal manure and chemical fertilizer to identify a more sustainable and environmentally friendly alternative to nitrogen fertilizer. Two experiments were conducted in 2018 and 2019 at Kabul University, Afghanistan, using an LD04-13265 soybean variety. The integration of animal manure and chemical fertilizer was categorized into six treatments: (1) control (no fertilizer), (2) animal manure low dose (AMLD), (3) animal manure high dose (AMHD), (4) chemical fertilizer (CF), (5) CF 50% + AMLD, and (6) CF 75% + AMLD. The results revealed that AMHD and its integration with 75% chemical fertilizer greatly influenced the vegetative growth of soybean plants in experiments I and II. The number of pods per plant and pod length significantly (p < 0.05) increased under the CF 75% + AMLD treatment. In experiment I, soybean yield increased the most with the CF treatment, followed by CF 75% + AMLD. In contrast, in experiment II, the highest yield per hectare was observed in the CF 75% + AMLD treatment, followed by CF. The CF 75% + AMLD treatment significantly increased the SPAD value in both experiments. Consequently, a strong relationship was observed between the SPAD value and yield (r = 0.74) in experiment I and between SPAD and pod length (r = 0.82) in experiment II. Incorporating animal manure with chemical fertilizer significantly impacted soybean growth and yield, offering a potential possibility for reducing reliance on nitrogen fertilizer application to mitigate environmental pollution. Full article
(This article belongs to the Topic Plants Nutrients, 2nd Volume)
Show Figures

Figure 1

Back to TopTop