Progress in Polymer Composites, Volume III

A special issue of Journal of Composites Science (ISSN 2504-477X). This special issue belongs to the section "Polymer Composites".

Deadline for manuscript submissions: closed (1 February 2024) | Viewed by 12660

Special Issue Editor


E-Mail Website
Guest Editor
1. Biorefining and Advanced Materials Research Centre, SRUC, Edinburgh EH9 3JG, UK
2. Enhanced Composites and Structures Center, School of Aerospace, Transport and Manufacturing, Cranfield University, Bedfordshire MK43 0AL, UK
Interests: biorefining, chemistry, nanotechnology, biomass, and waste; biomedical engineering; composites; sensors; manufacturing of functional materials; aerospace materials; nanomaterials; renewable energy; smart materials; surface engineering; water science and engineering; additive manufacturing of polymers and composites; multifunctional polymer composites and nanocomposites: self-healing, nanoelectronic materials; hydrogels; membranes; nanofibre; composites for extreme environments and manufacturing technology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Polymer composites are rapidly emerging as novel materials for a number of advanced engineering applications. Polymer composites are materials that are prepared/manufactured via the combination of one or more dissimilar kinds of fillers in a common polymer matrix. In particular, polymer composites materials from different synthetic and natural resources have attracted considerable attraction from research communities all around the globe owing to their unique intrinsic properties, such as flexibility, low cost, easy processing, and impressive physicomechanical properties in comparison to their metallic/ceramic counterparts. A variety of polymer composite materials have been developed using various strategies. Seeing the immense advantages of polymer composites, this Special Issue focuses on the progress of polymer composites.

More specifically, this Special Issue invites innovative contributions in terms of research articles, reviews, communications, and letters from around the globe, with potential topics including but not limited to polymer composites; polymer nanocomposites; polymer synthesis, structural design and novel processing of polymer composites; modeling and simulation of polymer composite materials; design for manufacture of composite materials; and properties and characterisation of composite materials and their applications.

Dr. Vijay Kumar Thakur
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Composites Science is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • synthesis of polymer composites (micro/nano) ranging from natural to synthetic
  • mechanical properties
  • different composites manufacturing processes
  • characterisation
  • modelling of polymer composites
  • natural/synthetic fibre hybrid composites
  • additives in polymer composites
  • green hybrid polymer composites
  • testing and characterisation of natural/synthetic fibre hybrid polymer composites
  • mechanics theory of hybrid polymer composites
  • modelling and simulation of hybrid polymer composites
  • future directions for developing hybrid polymer composites

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

21 pages, 9529 KiB  
Article
Quantification of Irgafos P-168 and Degradative Profile in Samples of a Polypropylene/Polyethylene Composite Using Microwave, Ultrasound and Soxhlet Extraction Techniques
by Joaquín Hernández-Fernández, Jaime Pérez-Mendoza and Rodrigo Ortega-Toro
J. Compos. Sci. 2024, 8(4), 156; https://doi.org/10.3390/jcs8040156 - 21 Apr 2024
Viewed by 437
Abstract
In polypropylene/polyethylene composite (C-PP/PE) production, stabilizing additives such as Irgafos P-168 are essential as antioxidant agents. In this study, an investigation was carried out that covers different solid–liquid extraction methods (Soxhlet, ultrasound, and microwaves); various variables were evaluated, such as temperature, extraction time, [...] Read more.
In polypropylene/polyethylene composite (C-PP/PE) production, stabilizing additives such as Irgafos P-168 are essential as antioxidant agents. In this study, an investigation was carried out that covers different solid–liquid extraction methods (Soxhlet, ultrasound, and microwaves); various variables were evaluated, such as temperature, extraction time, the choice of solvents, and the type of C-PP/PE used, and the gas chromatography coupled to mass spectrometry (GC-MS) technique was used to quantify the presence of Irgafos P-168 in the C-PP/PE samples. The results revealed that microwave extraction was the most effective in recovering Irgafos P-168. A recovery of 96.7% was achieved when using dichloromethane as a solvent, and 92.83% was achieved when using limonene as a solvent. The ultrasound technique recovered 91.74% using dichloromethane and 89.71% using limonene. The Soxhlet extraction method showed the lowest recovery percentages of 57.39% using dichloromethane as a solvent and 55.76% with limonene, especially when the C-PP/PE was in the form of pellets. The degradation products that obtained the highest degradation percentages were Bis (di-test-butyl phenyl) phosphate and Mono (di-test-butyl phenyl) phosphate using the microwave method with dichloromethane as a solvent and PP in film. Finally, the possible mechanisms for forming the degradation compounds of Irgafos P-168 were postulated. Full article
(This article belongs to the Special Issue Progress in Polymer Composites, Volume III)
Show Figures

Figure 1

12 pages, 3034 KiB  
Article
Tailoring Basalt Fibers and E-Glass Fibers as Reinforcements for Increased Impact Resistance
by Elango Natarajan, Santhosh Mozhuguan Sekar, Kalaimani Markandan, Chun Kit Ang and Gérald Franz
J. Compos. Sci. 2024, 8(4), 137; https://doi.org/10.3390/jcs8040137 - 09 Apr 2024
Viewed by 537
Abstract
The usage of basalt fiber in the engineering industries has gained significant interest due to its characteristics such as alkali resistance and enhanced mechanical properties. Similarly, E-glass-fiber-reinforced composites have been widely used in the fabrication of electrically resistive industrial components such as switches, [...] Read more.
The usage of basalt fiber in the engineering industries has gained significant interest due to its characteristics such as alkali resistance and enhanced mechanical properties. Similarly, E-glass-fiber-reinforced composites have been widely used in the fabrication of electrically resistive industrial components such as switches, circuit panels, and covering cases. In the present study, the tensile, flexural, thermogravimetric, and low-velocity impact characteristics of various percentages of basalt/E-glass-fiber-reinforced polymer composites fabricated via vacuum-assisted resin transfer molding were investigated. The results show that a higher volume percentage of basalt (39%) significantly enhances the impact resistance up to 45% with a moderate improvement in flexural properties. The higher the vol % of E-glass (40%), the more the tensile and flexural properties are increased, i.e., 185 N/mm2 and 227.87 N/mm2, respectively. It is concluded that by choosing the optimum hybridization method, impact resistance and other mechanical properties can be improved significantly. The thermogravimetric analysis results show that PC313534 (35 vol % basalt and 34 vol % E-glass) possesses the lowest decomposition temperature of 381.10 °C. The results from the present study indicate that the polymer composite fabricated in the present study is suitable for applications where higher structural-load-resistive properties are required. Full article
(This article belongs to the Special Issue Progress in Polymer Composites, Volume III)
Show Figures

Figure 1

18 pages, 9745 KiB  
Article
The Polyurethane-Polystyrene Composite—Influence of the Blowing Agent Type on the Foaming Process, the Structure and the Properties
by Elżbieta Malewska, Aleksander Prociak, Natalia Świdzińska-Grela and Maria Kurańska
J. Compos. Sci. 2024, 8(4), 135; https://doi.org/10.3390/jcs8040135 - 05 Apr 2024
Viewed by 637
Abstract
In this study, polyurethane-polystyrene composites (RPURF-EPS) were obtained with the co-expansion method. This method consists of utilizing the heat of the exothermic reaction of polyurethane (PUR) formation to expand polystyrene beads (PSBs). The materials were obtained using polyurethane systems based on the selected [...] Read more.
In this study, polyurethane-polystyrene composites (RPURF-EPS) were obtained with the co-expansion method. This method consists of utilizing the heat of the exothermic reaction of polyurethane (PUR) formation to expand polystyrene beads (PSBs). The materials were obtained using polyurethane systems based on the selected blowing agents, such as cyclopentane, a mixture of fluorocarbons and water. The analysis of the foaming process was carried out using a special device called FOAMAT. The characteristic start, rise, gelation and curing times were defined. The rise profile, the reaction temperature, the pressure and the dielectric polarization were measured. The influence of selected blowing agents on the cell structure and physical–mechanical properties of reference rigid polyurethane foam (RPURF) and RPURF-EPS, such as apparent density, compressive strength and thermal conductivity, were evaluated. Based on the research, the blowing agents that have the most beneficial influence on the properties and structure of the composites and that provide the most efficient expansion of PSBs in a light porous composite were found. Full article
(This article belongs to the Special Issue Progress in Polymer Composites, Volume III)
Show Figures

Figure 1

14 pages, 8261 KiB  
Article
Surface-Modified Wheat Straw for the Production of Cement-Free Geopolymer Composite: Effects of Wheat Variety and Pre-Treatment Method
by Regina Kalpokaitė-Dičkuvienė, Inna Pitak, Anastasiia Sholokhova, Rita Kriūkienė and Arūnas Baltušnikas
J. Compos. Sci. 2024, 8(4), 116; https://doi.org/10.3390/jcs8040116 - 22 Mar 2024
Viewed by 826
Abstract
The development of new composite materials with specific properties and reduced environmental pollution can be achieved by the incorporation of agricultural residues, whose morphology is strongly affected by their variety and growing conditions. Herein, the functional properties of a cement-free geopolymer composite reinforced [...] Read more.
The development of new composite materials with specific properties and reduced environmental pollution can be achieved by the incorporation of agricultural residues, whose morphology is strongly affected by their variety and growing conditions. Herein, the functional properties of a cement-free geopolymer composite reinforced with straw from two wheat varieties (Ada and Malibu) were investigated through different straw pre-treatment methods and their surface modification with silane coupling agents. The characterization of the wheat surface and the geopolymer composites involved SEM-EDS, TGA, FTIR, and gas physisorption analysis methods supplemented with mechanical strength and moisture ingress measurements. Mild (23 °C) and severe (100 °C) physical pre-treatment methods with chemical soaking in 7.3 M isopropanol solution were applied on wheat straw. Tetraethoxysilane (TEOS) with octadecylamine was employed for chemical surface modification. The set of geopolymer compositions was prepared with untreated, pre-treated, and modified straws. The results revealed the hot pre-treatment method caused a higher degradation of siliceous layers of straw, especially in the Ada variety. The modification with TEOS resulted in irregular silane coating formation regardless of the wheat variety and pre-treatment method. Despite good interfacial bonding of the modified straw with the geopolymer matrix, the mechanical strength of the composites was reduced, although the resistance to water ingress slightly increased. Comparing both varieties, Ada wheat showed better performance than Malibu. Full article
(This article belongs to the Special Issue Progress in Polymer Composites, Volume III)
Show Figures

Figure 1

18 pages, 4018 KiB  
Article
Polymer Composites of Low-Density Polyethylene (LDPE) with Elongated Hematite (α-Fe2O3) Particles of Different Shapes
by Ljerka Kratofil Krehula, Ana Peršić, Nina Popov and Stjepko Krehula
J. Compos. Sci. 2024, 8(2), 73; https://doi.org/10.3390/jcs8020073 - 11 Feb 2024
Viewed by 1094
Abstract
Due to the intensive search for new types of advanced polymer materials for targeted applications, this work offers insight into the properties of low-density polyethylene/hematite composites. The specific feature of this study lies in the use of elongated hematite particles of different shapes. [...] Read more.
Due to the intensive search for new types of advanced polymer materials for targeted applications, this work offers insight into the properties of low-density polyethylene/hematite composites. The specific feature of this study lies in the use of elongated hematite particles of different shapes. Uniform ellipsoid-, peanut- and rod-shaped hematite particles were hydrothermally synthesized and incorporated into the polymer matrix of low-density polyethylene (LDPE). LDPE/hematite composites are prepared by melt mixing. Hematite particles are characterized by scanning electron microscopy (SEM) and powder X-ray diffraction (PXRD). The pure LDPE polymer and LDPE/hematite composites were studied by FT-IR and UV-Vis-NIR spectroscopy and by thermogravimetric analysis (TGA). The determination of the mechanical and barrier properties was also carried out. The obtained results indicate the influence of the elongated particles on the improvement of LDPE properties. An increase in thermal stability and UV-absorption was observed as well as the improvement of mechanical and barrier properties. The improvement of the composites’ properties in comparison to the pure LDPE is especially visible in the composites prepared with low content of hematite (0.25%). LDPE/hematite composites have promising characteristics for application as packaging materials with enhanced mechanical, thermal and barrier properties as well as UV-protective materials. Full article
(This article belongs to the Special Issue Progress in Polymer Composites, Volume III)
Show Figures

Figure 1

21 pages, 4649 KiB  
Article
Kaolin–Polyvinyl Alcohol–Potato Starch Composite Films for Environmentally Friendly Packaging: Optimization and Characterization
by Noshabah Tabassum, Uzaira Rafique, Maria Qayyum, Abdallah A. A. Mohammed, Saira Asif and Awais Bokhari
J. Compos. Sci. 2024, 8(1), 29; https://doi.org/10.3390/jcs8010029 - 11 Jan 2024
Viewed by 1815
Abstract
This research paper introduces an innovative methodology to produce biodegradable composite films by combining kaolin, polyvinyl alcohol (PVA), and potato starch (PS) using a solvent casting technique. The novelty of this study resides in the identification and implementation of optimal synthesis conditions, which [...] Read more.
This research paper introduces an innovative methodology to produce biodegradable composite films by combining kaolin, polyvinyl alcohol (PVA), and potato starch (PS) using a solvent casting technique. The novelty of this study resides in the identification and implementation of optimal synthesis conditions, which were achieved by utilizing the Response Surface Methodology—Central Composite Design. The study defines starch, polyvinyl alcohol (PVA), and kaolin as independent variables and examines their influence on important mechanical qualities, water absorption capacity, moisture content, and degradability as primary outcomes. The study establishes the ideal parameters as 5.5 weight percent Kaolin, 2.5 g of starch, and 3.5 g of PVA. These settings yield notable outcomes, including a tensile strength of 26.5 MPa, an elongation at break of 96%, a water absorption capacity of 21%, a moisture content of 3%, and a remarkable degradability of 48%. The study emphasizes that the augmentation of kaolin content has a substantial impact on many properties, including degradability, tensile strength, and elongation at break. Simultaneously, it leads to a reduction in the water absorption capacity and moisture content. The study’s novelty is reinforced by conducting an additional examination on the ideal composite film, which includes investigations using FTIR, TGA, and SEM-EDX techniques. The consistency between the predicted and experimental results is noteworthy, as it provides further validation for the prediction accuracy of Design Expert software’s quadratic equations. These equations effectively capture the complex interactions that exist between process parameters and selected responses. This study presents novel opportunities for the extensive utilization of PVA/PS composite films, including kaolin in various packaging scenarios, thereby significantly advancing sustainable packaging alternatives. The statistical analysis provides strong evidence supporting the relevance of the models, hence increasing our level of trust in the software’s prediction skills. This conclusion is based on a 95% confidence level and p-values that are below a threshold of 0.05. Full article
(This article belongs to the Special Issue Progress in Polymer Composites, Volume III)
Show Figures

Figure 1

18 pages, 5588 KiB  
Article
Fabrication and Characterization of Hollow Polysiloxane Microsphere Polymer Matrix Composites with Improved Energy Absorption
by Sofia Gabriela Gomez, Andrea Irigoyen, Stephanie Gonzalez, Kevin Estala-Rodriguez, Evgeny Shafirovich, Md Sahid Hassan, Saqlain Zaman and Yirong Lin
J. Compos. Sci. 2023, 7(3), 98; https://doi.org/10.3390/jcs7030098 - 04 Mar 2023
Cited by 1 | Viewed by 1277
Abstract
Hollow polymer microspheres with superior elastic properties, high thermal stability, and energy absorbance capabilities are essential in many applications where shock and vibration need to be mitigated, such as in civil, medical, and defense industries. In this paper, the synthesis, fabrication, and characterization [...] Read more.
Hollow polymer microspheres with superior elastic properties, high thermal stability, and energy absorbance capabilities are essential in many applications where shock and vibration need to be mitigated, such as in civil, medical, and defense industries. In this paper, the synthesis, fabrication, and characterization of hollow thermoset microspheres for syntactic polymer foam were studied. The hollow polymer microspheres (HPMs) were made by developing core–shell composites and thermally removing the polystyrene core to yield a polysiloxane shell. The HPMs were embedded into a polydimethylsiloxane (PDMS) matrix to form a polymer syntactic foam. The mechanical energy absorption characteristic of polymer syntactic foams was measured by cyclic uniaxial compression testing following ASTM 575. The engineered compression response was demonstrated by fabricating and testing syntactic foams with different porosities, ranging from a 50 vol% to 70 vol% of HPMs. Through scanning electron microscopy (SEM), we observed that the HPM contributes to the energy absorption of the syntactic foam. Moreover, Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) determined the necessity of a profound study to understand the effects of varying HPM synthesis parameters, as well as the syntactic foam fabrication methods. It was shown that the compressive modulus and toughness can be increased by 20% using a 70 vol% of porosity with synthesized HPM syntactic foams over bulk PDMS. We also found that the energy absorbed increased by 540% when using a 50 vol% of porosity with fabricated HPM-PDMS syntactic foams. Full article
(This article belongs to the Special Issue Progress in Polymer Composites, Volume III)
Show Figures

Figure 1

Review

Jump to: Research

36 pages, 7429 KiB  
Review
Structure, Properties, and Recent Developments in Polysaccharide- and Aliphatic Polyester-Based Packaging—A Review
by Wasana N. Marasinghe, K. G. L. R. Jayathunge, Rohan S. Dassanayake, Rumesh Liyanage, Pasan C. Bandara, Suranga M. Rajapaksha and Chamila Gunathilake
J. Compos. Sci. 2024, 8(3), 114; https://doi.org/10.3390/jcs8030114 - 21 Mar 2024
Viewed by 924
Abstract
Food packaging plays an imperative role in the food processing sector by safeguarding foods from their point of harvesting until the moment of consumption. In recent years, biopolymers have attracted the attention of the scientific community as an alternative to conventional packaging materials. [...] Read more.
Food packaging plays an imperative role in the food processing sector by safeguarding foods from their point of harvesting until the moment of consumption. In recent years, biopolymers have attracted the attention of the scientific community as an alternative to conventional packaging materials. Among the available biopolymer sources, a lot of the focus has been on polysaccharides due to their superior barrier properties against gases, oils, and odors and their processing versatility. Moreover, there is also a growing interest in aliphatic polyester as a potential replacement for petrochemical-based synthetic plastics. Both polysaccharides and aliphatic polyesters have gained popularity in sustainable food packaging due to their unique characteristics, including their low cost, availability, biodegradability, gas and moisture barrier properties, film-forming capabilities, excellent heat resistance, and ability to be processed into films, trays, and coatings. This review highlights the structural features, properties, and recent advancements of several vital polysaccharides, namely, starch, chitosan, cellulose, alginate, pectin, carrageenan, and aliphatic polyesters, including polylactic acid (PLA) and polyhydroxybutyrate (PHB) for developing packaging materials, and their applications in the food industry. Conventional packaging and future perspectives of biopolymer-based food packaging are also comprehensively covered in this review. Full article
(This article belongs to the Special Issue Progress in Polymer Composites, Volume III)
Show Figures

Figure 1

17 pages, 882 KiB  
Review
Polylactic Acid Polymer Matrix (Pla) Biocomposites with Plant Fibers for Manufacturing 3D Printing Filaments: A Review
by Victor Hugo M. Almeida, Raildo M. Jesus, Gregório M. Santana and Thaís B. Pereira
J. Compos. Sci. 2024, 8(2), 67; https://doi.org/10.3390/jcs8020067 - 09 Feb 2024
Viewed by 1414
Abstract
The escalating global demand for polymer products and the consequent disposal challenge necessitate technological and sustainable solutions. Recent advances in the development of materials used in 3D printing equipment are described in this review, with a focus on new biocomposite materials. The investigation [...] Read more.
The escalating global demand for polymer products and the consequent disposal challenge necessitate technological and sustainable solutions. Recent advances in the development of materials used in 3D printing equipment are described in this review, with a focus on new biocomposite materials. The investigation delves into biocomposites comprising PLA and its blends with other polymers, reinforced by plant fibers, with a particular focus on research conducted over the last five years. The information related to the raw materials’ physical, chemical, and processing properties necessary for creating biocomposite filament and printed parts were summarized. The best results in terms of tensile and flexural strength were presented and discussed, signposting future research avenues and desirable objectives. The findings elucidate that the inclusion of plant fibers led to a reduction in mechanical strength relative to pure PLA; however, when smaller particle sizes of plant fibers were added in volumes below 10%, it resulted in improved performance. Moreover, physical and/or chemical pretreatment of fibers, along with the isolation of cellulose fibrils, emerged as pivotal strategies for bolstering mechanical strengths. Noteworthy are the promising prospects presented by the incorporation of additives, while the refinement of printing parameters is key to improving the tensile and flexural strength of printed components. Full article
(This article belongs to the Special Issue Progress in Polymer Composites, Volume III)
Show Figures

Figure 1

23 pages, 5605 KiB  
Review
Recent Advances in pH and Redox Responsive Polymer Nanocomposites for Cancer Therapy
by Shivalingayya Gaddimath, Shivanand Payamalle, Keshavananada Prabhu Channabasavana Hundi Puttaningaiah and Jaehyun Hur
J. Compos. Sci. 2024, 8(1), 28; https://doi.org/10.3390/jcs8010028 - 11 Jan 2024
Cited by 1 | Viewed by 1582
Abstract
Cancer therapy currently focuses on personalized targeted treatments. A promising approach uses stimuli-responsive biomaterials for site-specific drug release, such as pH- and redox-triggered polymer nanocomposites. These materials respond to the tumor microenvironment, enhance efficacy, and reduce off-target effects. Cancer cells with anomalous properties [...] Read more.
Cancer therapy currently focuses on personalized targeted treatments. A promising approach uses stimuli-responsive biomaterials for site-specific drug release, such as pH- and redox-triggered polymer nanocomposites. These materials respond to the tumor microenvironment, enhance efficacy, and reduce off-target effects. Cancer cells with anomalous properties such as acidic cytosolic pH and elevated redox potential are targeted by these biomaterials. An imbalance in ions and biological thiols in the cytoplasm contributes to tumor growth. Functionalized polymer nanocomposites with large surface areas and specific targeting outperform conventional small-molecule materials. To overcome problems such as low bioavailability, uncontrolled drug release, and poor cell penetration, multifunctional nanomaterials make it easier for drugs to enter certain cellular or subcellular systems. High therapeutic efficacy is achieved through surface functionalization, site-specific targeting, and the use of stimuli-responsive components. In particular, pH and redox dual-stimuli-based polymeric nanocomposites for cancer therapeutics have scarcely been reported. This article provides recent progress in pH- and redox-responsive polymer nanocomposites for site-specific drug delivery in cancer therapy. It explores the design principles, fabrication methods, mechanisms of action, and prospects of these dual-stimuli-responsive biomaterials. Full article
(This article belongs to the Special Issue Progress in Polymer Composites, Volume III)
Show Figures

Graphical abstract

27 pages, 6818 KiB  
Review
Progress in Studies of Disentangled Polymers and Composites
by Andrzej Pawlak and Justyna Krajenta
J. Compos. Sci. 2023, 7(12), 521; https://doi.org/10.3390/jcs7120521 - 18 Dec 2023
Viewed by 1533
Abstract
Macromolecule entanglements are common in polymers. The first part of this review describes their influence on the properties of entangled polymers. Then, methods for reducing the entanglement density of macromolecule chains are discussed. It has been shown that research on partially disentangled polymers [...] Read more.
Macromolecule entanglements are common in polymers. The first part of this review describes their influence on the properties of entangled polymers. Then, methods for reducing the entanglement density of macromolecule chains are discussed. It has been shown that research on partially disentangled polymers has provided a lot of new information about the relationship between the entangled state and properties of polymers. This research concerns, among others, mechanical and thermal properties and the crystallization process. A special disentangled polymer case, ultra-high-molecular-weight polyethylene, is also discussed. The results of research on polymer composites in which macromolecules were disentangled via processing and composites were produced using already disentangled polymers are presented in particular detail. It has been indicated that such composites and blends of disentangled polymers are promising and will probably be intensively researched in the near future. Full article
(This article belongs to the Special Issue Progress in Polymer Composites, Volume III)
Show Figures

Graphical abstract

Back to TopTop