Advanced Nanomaterials and Applied Nanotechnologies: Devices, Processes and Systems, 2nd Edition

A special issue of Micromachines (ISSN 2072-666X). This special issue belongs to the section "D:Materials and Processing".

Deadline for manuscript submissions: closed (31 March 2024) | Viewed by 17398

Special Issue Editors

Special Issue Information

Dear Colleagues,

Advances in nanotechnology facilitate the development of nanomaterials capable of achieving enhanced properties, such as higher transparency, flexibility, conductivity and environmental friendliness. Furthermore, it increases the power of electronic devices, improves the density of memory chips, and helps to reduce power consumption and the size of transistors used in integrated circuits, leading to the development of faster, lighter, and more portable systems that can store and transfer higher volumes of information. In the area of energy scavenging, various nanoscience-based solutions are being adapted to convert waste heat from computers, automobiles, homes, power plants, etc., into usable energy. Computer-based methods have been powerful tools for facing the challenges in developing next-generation nanotechnology, providing insights into the complex mechanisms of molecular dynamics at a micro or nano scale, and valuable directions for future experiments.

Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on the following areas:

  • Processes and systems for advanced nanomaterials synthesis and device manufacturing;
  • Applications of nanomaterials in electronics and information technologies, medical and healthcare, energy storage and conversion;
  • Theory, modeling, simulation and data analysis/visualization tools to understand the fundamentals of nanomaterials and nanotechnology.

We look forward to receiving your submissions

 

Dr. Tianyu Yan
Dr. Kieu The Loan Trinh
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micromachines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Dr. Tianyu Yan
Dr. Kieu The Loan Trinh
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micromachines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanomaterials
  • microelectromechanical systems
  • applied nanotechnologies
  • microfabrication
  • electronic devices
  • materials informatics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issue

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

10 pages, 2627 KiB  
Article
Experimental and Theoretical Investigations of Direct and Indirect Band Gaps of WSe2
by Yingtao Wang and Xian Zhang
Micromachines 2024, 15(6), 761; https://doi.org/10.3390/mi15060761 - 6 Jun 2024
Cited by 1 | Viewed by 1226
Abstract
Low-dimension materials such as transition metal dichalcogenides (TMDCs) have received extensive research interest and investigation for electronic and optoelectronic applications. Due to their unique widely tunable band structures, they are good candidates for next-generation optoelectronic devices. Particularly, their photoluminescence properties, which are fundamental [...] Read more.
Low-dimension materials such as transition metal dichalcogenides (TMDCs) have received extensive research interest and investigation for electronic and optoelectronic applications. Due to their unique widely tunable band structures, they are good candidates for next-generation optoelectronic devices. Particularly, their photoluminescence properties, which are fundamental for optoelectronic applications, are highly sensitive to the nature of the band gap. Monolayer TMDCs in the room temperature range have presented a direct band gap behavior and bright photoluminescence. In this work, we investigate a popular TMDC material WSe2’s photoluminescence performance using a Raman spectroscopy laser with temperature dependence. With temperature variation, the lattice constant and the band gap change dramatically, and thus the photoluminescence spectra are changed. By checking the photoluminescence spectra at different temperatures, we are able to reveal the nature of direct-to-indirect band gap in monolayer WSe2. We also implemented density function theory (DFT) simulations to computationally investigate the band gap of WSe2 to provide comprehensive evidence and confirm the experimental results. Our study suggests that monolayer WSe2 is at the transition boundary between the indirect and direct band gap at room temperature. This result provides insights into temperature-dependent optical transition in monolayer WSe2 for quantum control, and is important for cultivating the potential of monolayer WSe2 in thermally tunable optoelectronic devices operating at room temperature. Full article
Show Figures

Figure 1

13 pages, 3032 KiB  
Article
Preparation and Investigation of a Nanosized Piroxicam Containing Orodispersible Lyophilizate
by Petra Party, Sándor Soma Sümegi and Rita Ambrus
Micromachines 2024, 15(4), 532; https://doi.org/10.3390/mi15040532 - 15 Apr 2024
Viewed by 1267
Abstract
Non-steroidal anti-inflammatory piroxicam (PRX) is a poorly water-soluble drug that provides relief in different arthritides. Reducing the particle size of PRX increases its bioavailability. For pediatric, geriatric, and dysphagic patients, oral dispersible systems ease administration. Moreover, fast disintegration followed by drug release and [...] Read more.
Non-steroidal anti-inflammatory piroxicam (PRX) is a poorly water-soluble drug that provides relief in different arthritides. Reducing the particle size of PRX increases its bioavailability. For pediatric, geriatric, and dysphagic patients, oral dispersible systems ease administration. Moreover, fast disintegration followed by drug release and absorption through the oral mucosa can induce rapid systemic effects. We aimed to produce an orodispersible lyophilizate (OL) consisting of nanosized PRX. PRX was solved in ethyl acetate and then sonicated into a poloxamer-188 solution to perform spray-ultrasound-assisted solvent diffusion-based nanoprecipitation. The solid form was formulated via freeze drying in blister sockets. Mannitol and sodium alginate were applied as excipients. Dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA) were used to determine the particle size. The morphology was characterized by scanning electron microscopy (SEM). To establish the crystallinity, X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) were used. A disintegration and in vitro dissolution test were performed. DLS and NTA presented a nanosized PRX diameter. The SEM pictures showed a porous structure. PRX became amorphous according to the XRPD and DSC curves. The disintegration time was less than 1 min and the dissolution profile improved. The final product was an innovative anti-inflammatory drug delivery system. Full article
Show Figures

Figure 1

17 pages, 5675 KiB  
Article
Aptasensor Integrated with Two-Dimensional Nanomaterial for Selective and Sensitive Electrochemical Detection of Ketamine Drug
by Shariq Suleman, Nigar Anzar, Shikha Patil, Shadan, Suhel Parvez, Manika Khanuja, Roberto Pilloton and Jagriti Narang
Micromachines 2024, 15(3), 312; https://doi.org/10.3390/mi15030312 - 24 Feb 2024
Cited by 1 | Viewed by 1791
Abstract
Ketamine is one of the most commonly abused drugs globally, posing a severe risk to social stability and human health, not only it is being used for recreational purposes, but this tasteless, odourless, and colourless drug also facilitates sexual assaults when it is [...] Read more.
Ketamine is one of the most commonly abused drugs globally, posing a severe risk to social stability and human health, not only it is being used for recreational purposes, but this tasteless, odourless, and colourless drug also facilitates sexual assaults when it is mixed with drinks. Ketamine abuse is a threat for safety, and this misuse is one of the main uses of the drug. The crucial role of ketamine detection is evident in its contributions to forensic investigations, law enforcement, drug control, workplace integrity, and public health. Electrochemical sensors have gained considerable interest among researchers due to their various advantages, such as low cost and specificity, and particularly screen-printed paper-based electrode (SPBE) biosensors have gained attention. Here, we reported an ePAD (electrochemical paper-based analytical device) for detecting the recreational drug ketamine. The advantages of using a paper-based electrode are that it reduces the electrode’s production costs and is disposable and environmentally friendly. At the same time, nanographite sheets (NGSs) assisted in amplifying the signals generated in the cyclic voltammetry system when ketamine was present. This ePAD was developed by immobilizing a ketamine aptamer on NGS electrodes. The characterization of proper synthesized NGSs was performed by Scanning Electron Microscopy (SEM), XRD (X-ray Diffraction), Fourier-transform infrared spectroscopy (FTIR), and UV-Vis spectroscopy. Electrochemical techniques, including cyclic voltammetry (CV) and linear sweep voltammetry (LSV), were employed to validate the results and confirm each attachment. Furthermore, the versatility of the proposed sensor was explored in both alcoholic and non-alcoholic beverages. The developed sensor showed a low LOD of about 0.01 μg/mL, and the linear range was between 0.01 and 5 μg/mL. This approach offers a valid diagnostic technique for onsite service with minimal resources. This cost effective and portable platform offers desirable characteristics like sensitivity and selectivity and can also be used for POC (point of care) testing to help in the quick identification of suspicious samples and for testing at trafficking sites, amusement parks, and by the side of the road. Full article
Show Figures

Figure 1

15 pages, 4244 KiB  
Article
Compressive Behavior of Some Balls Manufactured by 3D Printing from Ceramic–Polymer Composite Materials
by Adelina Hrițuc, Vasile Ermolai, Andrei Marius Mihalache, Liviu Andrușcă, Oana Dodun, Gheorghe Nagîț, Marius Andrei Boca and Laurențiu Slătineanu
Micromachines 2024, 15(1), 150; https://doi.org/10.3390/mi15010150 - 19 Jan 2024
Cited by 2 | Viewed by 1134
Abstract
It is known that ceramic–polymer composite materials can be used to manufacture spherical bodies in the category of balls. Since balls are frequently subjected to compression loads, the paper presents some research results on the compression behavior of balls made of ceramic composite [...] Read more.
It is known that ceramic–polymer composite materials can be used to manufacture spherical bodies in the category of balls. Since balls are frequently subjected to compression loads, the paper presents some research results on the compression behavior of balls made of ceramic composite materials with a polymer matrix. The mathematical model of the pressure variation inside the balls highlights the existence of maximum values in the areas of contact with other parts. Experimental research was carried out on balls with a diameter of 20 mm, manufactured by 3D printing from four ceramic–polymer composite materials with a polymer matrix: pottery clay, terracotta, concrete, and granite. The same ceramic–polymer composite material was used, but different dyes were added to it. A gravimetric analysis revealed similar behavior of the four materials upon controlled heating. Through the mathematical processing of the experimental results obtained by compression tests, empirical mathematical models of the power-type function type were determined. These models highlight the influence exerted by different factors on the force at which the initiation of cracks in the ball materials occurs. The decisive influence of the infill factor on the size of the force at which the cracking of the balls begins was found. Full article
Show Figures

Figure 1

14 pages, 4226 KiB  
Article
New Insights into Improving the Photovoltaic Performance of Dye-Sensitized Solar Cells by Removing Platinum from the Counter Electrode Using a Graphene-MoS2 Composite or Hybrid
by Mozhgan Hosseinnezhad, Mehdi Ghahari, Ghazal Mobarhan, Mohsen Fathi, Arvydas Palevicius, Venkatramaiah Nutalapati, Giedrius Janusas and Sohrab Nasiri
Micromachines 2023, 14(12), 2161; https://doi.org/10.3390/mi14122161 - 26 Nov 2023
Cited by 4 | Viewed by 1403
Abstract
Photovoltaic systems, such as dye-sensitized solar cells (DSSCs), are one of the useful tools for generating renewable and green energy. To develop this technology, obstacles such as cost and the use of expensive compounds must be overcome. Here, we employed a new MoS [...] Read more.
Photovoltaic systems, such as dye-sensitized solar cells (DSSCs), are one of the useful tools for generating renewable and green energy. To develop this technology, obstacles such as cost and the use of expensive compounds must be overcome. Here, we employed a new MoS2/graphene hybrid or composite instead of platinum in the DSSCs. Furthermore, the correctness of the preparation of the MoS2/graphene hybrid or composite was evaluated by field emission scanning electron microscope (FESEM), and the results showed that the desired compound was synthesized correctly. Inexpensive organic dyes were used to prepare the DSSCs, and their chemical structure was investigated by density functional theory (DFT) and cyclic voltammetry (CV). Finally, the DSSCs were fabricated using MoS2/graphene composite or hybrid, and to compare the results, the DSSCs were also prepared using platinum. Under the same conditions, the DSSCs with MoS2/graphene composite illustrated better efficiency than MoS2/graphene hybrid or/and graphene. Full article
Show Figures

Figure 1

17 pages, 5395 KiB  
Article
Electric Field Effects on Curved Graphene Quantum Dots
by Sergio de-la-Huerta-Sainz, Angel Ballesteros and Nicolás A. Cordero
Micromachines 2023, 14(11), 2035; https://doi.org/10.3390/mi14112035 - 31 Oct 2023
Cited by 3 | Viewed by 1456
Abstract
The recent and continuous research on graphene-based systems has opened their usage to a wide range of applications due to their exotic properties. In this paper, we have studied the effects of an electric field on curved graphene nanoflakes, employing the Density Functional [...] Read more.
The recent and continuous research on graphene-based systems has opened their usage to a wide range of applications due to their exotic properties. In this paper, we have studied the effects of an electric field on curved graphene nanoflakes, employing the Density Functional Theory. Both mechanical and electronic analyses of the system have been made through its curvature energy, dipolar moment, and quantum regeneration times, with the intensity and direction of a perpendicular electric field and flake curvature as parameters. A stabilisation of non-planar geometries has been observed, as well as opposite behaviours for both classical and revival times with respect to the direction of the external field. Our results show that it is possible to modify regeneration times using curvature and electric fields at the same time. This fine control in regeneration times could allow for the study of new phenomena on graphene. Full article
Show Figures

Figure 1

11 pages, 4224 KiB  
Article
Facile Synthesis of Microsphere-like Co0.85Se Structures on Nickel Foam for a Highly Efficient Hydrogen Evolution Reaction
by John Anthuvan Rajesh, Jae-Young Kim, Soon-Hyung Kang and Kwang-Soon Ahn
Micromachines 2023, 14(10), 1905; https://doi.org/10.3390/mi14101905 - 5 Oct 2023
Cited by 1 | Viewed by 1194
Abstract
Microsphere-shaped cobalt selenide (Co0.85Se) structures were efficiently synthesized via a two-step hydrothermal process. Initially, cobalt hydroxide fluoride (Co(OH)F) microcrystals were prepared using a hydrothermal method. Subsequently, Co0.85Se microsphere-like structures were obtained through selenization. Compared to Co(OH)F, the microsphere-like Co [...] Read more.
Microsphere-shaped cobalt selenide (Co0.85Se) structures were efficiently synthesized via a two-step hydrothermal process. Initially, cobalt hydroxide fluoride (Co(OH)F) microcrystals were prepared using a hydrothermal method. Subsequently, Co0.85Se microsphere-like structures were obtained through selenization. Compared to Co(OH)F, the microsphere-like Co0.85Se structure exhibited outstanding catalytic activity for the hydrogen evolution reaction (HER) in a 1.0 M KOH solution. Electrocatalytic experiments demonstrated an exceptional HER performance by the Co0.85Se microspheres, characterized by a low overpotential of 148 mV and a Tafel slope of 55.7 mV dec−1. Furthermore, the Co0.85Se electrocatalyst displayed remarkable long-term stability, maintaining its activity for over 24 h. This remarkable performance is attributed to the excellent electrical conductivity of selenides and the highly electroactive sites present in the Co0.85Se structure compared to Co(OH)F, emphasizing its promise for advanced electrocatalytic applications. Full article
Show Figures

Figure 1

11 pages, 3986 KiB  
Article
Electronic Structure and Transport Properties of Bi2Te3 and Bi2Se3 Single Crystals
by Vyacheslav V. Marchenkov, Alexey V. Lukoyanov, Semyon T. Baidak, Alexandra N. Perevalova, Bogdan M. Fominykh, Sergey V. Naumov and Elena B. Marchenkova
Micromachines 2023, 14(10), 1888; https://doi.org/10.3390/mi14101888 - 30 Sep 2023
Cited by 2 | Viewed by 2013
Abstract
The electrical resistivity and the Hall effect of topological insulator Bi2Te3 and Bi2Se3 single crystals were studied in the temperature range from 4.2 to 300 K and in magnetic fields up to 10 T. Theoretical calculations of [...] Read more.
The electrical resistivity and the Hall effect of topological insulator Bi2Te3 and Bi2Se3 single crystals were studied in the temperature range from 4.2 to 300 K and in magnetic fields up to 10 T. Theoretical calculations of the electronic structure of these compounds were carried out in density functional approach, taking into account spin–orbit coupling and crystal structure data for temperatures of 5, 50 and 300 K. A clear correlation was found between the density of electronic states at the Fermi level and the current carrier concentration. In the case of Bi2Te3, the density of states at the Fermi level and the current carrier concentration increase with increasing temperature, from 0.296 states eV−1 cell−1 (5 K) to 0.307 states eV−1 cell−1 (300 K) and from 0.9 × 1019 cm−3 (5 K) to 2.6 × 1019 cm−3 (300 K), respectively. On the contrary, in the case of Bi2Se3, the density of states decreases with increasing temperature, from 0.201 states eV−1 cell−1 (5 K) to 0.198 states eV−1 cell−1 (300 K), and, as a consequence, the charge carrier concentration also decreases from 2.94 × 1019 cm−3 (5 K) to 2.81 × 1019 cm−3 (300 K). Full article
Show Figures

Figure 1

Review

Jump to: Research

34 pages, 15412 KiB  
Review
Progress in Electronic, Energy, Biomedical and Environmental Applications of Boron Nitride and MoS2 Nanostructures
by Join Uddin, Raksha Dubey, Vinaayak Sivam Balasubramaniam, Jeff Kabel, Vedika Khare, Zohreh Salimi, Sambhawana Sharma, Dongyan Zhang and Yoke Khin Yap
Micromachines 2024, 15(3), 349; https://doi.org/10.3390/mi15030349 - 29 Feb 2024
Cited by 2 | Viewed by 2580
Abstract
In this review, we examine recent progress using boron nitride (BN) and molybdenum disulfide (MoS2) nanostructures for electronic, energy, biomedical, and environmental applications. The scope of coverage includes zero-, one-, and two-dimensional nanostructures such as BN nanosheets, BN nanotubes, BN quantum [...] Read more.
In this review, we examine recent progress using boron nitride (BN) and molybdenum disulfide (MoS2) nanostructures for electronic, energy, biomedical, and environmental applications. The scope of coverage includes zero-, one-, and two-dimensional nanostructures such as BN nanosheets, BN nanotubes, BN quantum dots, MoS2 nanosheets, and MoS2 quantum dots. These materials have sizable bandgaps, differentiating them from other metallic nanostructures or small-bandgap materials. We observed two interesting trends: (1) an increase in applications that use heterogeneous materials by combining BN and MoS2 nanostructures with other nanomaterials, and (2) strong research interest in environmental applications. Last, we encourage researchers to study how to remove nanomaterials from air, soil, and water contaminated with nanomaterials. As nanotechnology proceeds into various applications, environmental contamination is inevitable and must be addressed. Otherwise, nanomaterials will go into our food chain much like microplastics. Full article
Show Figures

Figure 1

37 pages, 9032 KiB  
Review
Structural Control of Nanofibers According to Electrospinning Process Conditions and Their Applications
by Trong Danh Nguyen, Sojeong Roh, My Thi Ngoc Nguyen and Jun Seop Lee
Micromachines 2023, 14(11), 2022; https://doi.org/10.3390/mi14112022 - 30 Oct 2023
Cited by 3 | Viewed by 2514
Abstract
Nanofibers have gained much attention because of the large surface area they can provide. Thus, many fabrication methods that produce nanofiber materials have been proposed. Electrospinning is a spinning technique that can use an electric field to continuously and uniformly generate polymer and [...] Read more.
Nanofibers have gained much attention because of the large surface area they can provide. Thus, many fabrication methods that produce nanofiber materials have been proposed. Electrospinning is a spinning technique that can use an electric field to continuously and uniformly generate polymer and composite nanofibers. The structure of the electrospinning system can be modified, thus making changes to the structure, and also the alignment of nanofibers. Moreover, the nanofibers can also be treated, modifying the nanofiber structure. This paper thoroughly reviews the efforts to change the configuration of the electrospinning system and the effects of these configurations on the nanofibers. Excellent works in different fields of application that use electrospun nanofibers are also introduced. The studied materials functioned effectively in their application, thereby proving the potential for the future development of electrospinning nanofiber materials. Full article
Show Figures

Figure 1

Back to TopTop