remotesensing-logo

Journal Browser

Journal Browser

Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5553 KiB  
Article
Urban Vulnerability Analysis Based on Micro-Geographic Unit with Multi-Source Data—Case Study in Urumqi, Xinjiang, China
by Jianghua Zheng, Danlin Yu, Chuqiao Han and Zhe Wang
Remote Sens. 2023, 15(16), 3944; https://doi.org/10.3390/rs15163944 - 09 Aug 2023
Viewed by 1098
Abstract
This study introduces a novel approach to urban public safety analysis inspired by a streetscape analysis commonly applied in urban criminology, leveraging the concept of micro-geographical units to account for urban spatial heterogeneity. Recognizing the intrinsic uniformity within these smaller, distinct environments of [...] Read more.
This study introduces a novel approach to urban public safety analysis inspired by a streetscape analysis commonly applied in urban criminology, leveraging the concept of micro-geographical units to account for urban spatial heterogeneity. Recognizing the intrinsic uniformity within these smaller, distinct environments of a city, the methodology represents a shift from large-scale regional studies to a more localized and precise exploration of urban vulnerability. The research objectives focus on three key aspects: first, establishing a framework for identifying and dividing cities into micro-geographical units; second, determining the type and nature of data that effectively illustrate the potential vulnerability of these units; and third, developing a robust and reliable evaluation index system for urban vulnerability. We apply this innovative method to Urumqi’s Tianshan District in Xinjiang, China, resulting in the formation of 30 distinct micro-geographical units. Using WorldView-2 remote sensing imagery and the object-oriented classification method, we extract and evaluate features related to vehicles, roads, buildings, and vegetation for each unit. This information feeds into the construction of a comprehensive index, used to assess public security vulnerability at a granular level. The findings from our study reveal a wide spectrum of vulnerability levels across the 30 units. Notably, units X1 (Er Dao Bridge) and X7 (Gold Coin Mountain International Plaza) showed high vulnerability due to factors such as a lack of green spaces, poor urban planning, dense building development, and traffic issues. Our research validates the utility and effectiveness of the micro-geographical unit concept in assessing urban vulnerability, thereby introducing a new paradigm in urban safety studies. This micro-geographical approach, combined with a multi-source data strategy involving high-resolution remote sensing and field survey data, offers a robust and comprehensive tool for urban vulnerability assessment. Moreover, the urban vulnerability evaluation index developed through this study provides a promising model for future urban safety research across different cities. Full article
Show Figures

Figure 1

23 pages, 21155 KiB  
Article
Developing a Pixel-Scale Corrected Nighttime Light Dataset (PCNL, 1992–2021) Combining DMSP-OLS and NPP-VIIRS
by Shijie Li, Xin Cao, Chenchen Zhao, Na Jie, Luling Liu, Xuehong Chen and Xihong Cui
Remote Sens. 2023, 15(16), 3925; https://doi.org/10.3390/rs15163925 - 08 Aug 2023
Cited by 3 | Viewed by 1479
Abstract
The spatial extent and values of nighttime light (NTL) data are widely used to reflect the scope and intensity of human activities, such as extracting urban boundaries, spatializing population density, analyzing economic development levels, etc. DMSP-OLS and NPP-VIIRS are widely used global NTL [...] Read more.
The spatial extent and values of nighttime light (NTL) data are widely used to reflect the scope and intensity of human activities, such as extracting urban boundaries, spatializing population density, analyzing economic development levels, etc. DMSP-OLS and NPP-VIIRS are widely used global NTL datasets, but their severe inconsistencies hinder long-time series studies. At present, global coverage, long time series, and public NTL products are still rare and have room for improvement in terms of pixel-scale correction, temporal and spatial consistency, etc. We proposed a set of inter-correction methods for DMSP-OLS and NPP-VIIRS based on two corrected DMSP-OLS and NPP-VIIRS products, i.e., CCNL-DMSP and VNL-VIIRS, with the goal of temporal and spatial consistency at the pixel-scale. A pixel-scale corrected nighttime light dataset (PCNL, 1992–2021) that met the needs of pixel-scale studies was developed through outlier removal, resampling, masking, regression, and calibration processes, optimizing spatial and temporal consistency. To examine the quality of PCNL, we compared it with two existing global long time series NTL products, i.e., LiNTL and ChenNTL, in terms of overall accuracy, spatial consistency, temporal consistency, and applicability in the socio-economic field. PCNL demonstrates great overall accuracy at both the pixel-scale (R2: 0.93) and the city scale (R2: 0.98). In developing, developed, and war regions, PCNL shows excellent spatial consistency. At global, national, urban, and pixel-scales, PCNL has excellent temporal consistency and can portray stable trends in stable developing regions and abrupt changes in areas experiencing sudden development or disaster. Globally, PCNL has a high correlation coefficient with GDP (r: 0.945) and population (r: 0.971). For more than half of the countries, the correlation coefficients of PCNL with GDP and population are higher than the results of ChenNTL and LiNTL. PCNL can analyze the dynamic changes in socio-economic characteristics over the past 30 years at global, regional, and pixel-scales. Full article
(This article belongs to the Special Issue Remote Sensing of Night-Time Light II)
Show Figures

Figure 1

17 pages, 3199 KiB  
Article
NDVI Analysis for Monitoring Land-Cover Evolution on Selected Deglaciated Areas in the Gran Paradiso Group (Italian Western Alps)
by Simona Gennaro, Riccardo Cerrato, Maria Cristina Salvatore, Roberto Salzano, Rosamaria Salvatori and Carlo Baroni
Remote Sens. 2023, 15(15), 3847; https://doi.org/10.3390/rs15153847 - 02 Aug 2023
Cited by 1 | Viewed by 1455
Abstract
The ongoing climate warming is affecting high-elevation areas, reducing the extent and the duration of glacier and snow covers, driving a widespread greening effect on the Alpine region. The impact assessment requires therefore the integration of the geomorphological context with altitudinal and ecological [...] Read more.
The ongoing climate warming is affecting high-elevation areas, reducing the extent and the duration of glacier and snow covers, driving a widespread greening effect on the Alpine region. The impact assessment requires therefore the integration of the geomorphological context with altitudinal and ecological features of the study areas. The proposed approach introduces chronologically-constrained zones as geomorphological evidence for selecting deglaciated areas in the alpine and non-alpine belts. In the present study, the protected and low-anthropic-impacted areas of the Gran Paradiso Group (Italian Western Alps) were analysed using Landsat NDVI time series (1984–2022 CE). The obtained results highlighted a progressive greening even at a higher altitude, albeit not ubiquitous. The detected NDVI trends showed, moreover, how the local factors trigger the greening in low-elevation areas. Spectral reflectance showed a general decrease over time, evidencing the progressive colonisation of recently deglaciated surfaces. The results improved the discrimination between different greening rates in the deglaciated areas of the Alpine regions. The geomorphological-driven approach showed significant potential to support the comprehension of these processes, especially for fast-changing areas such as the high mountain regions. Full article
(This article belongs to the Special Issue New Insights in Remote Sensing of Snow and Glaciers)
Show Figures

Figure 1

21 pages, 4344 KiB  
Article
Wavelet Analysis of GPR Data for Belowground Mass Assessment of Sorghum Hybrid for Soil Carbon Sequestration
by Matthew Wolfe, Iliyana D. Dobreva, Henry A. Ruiz-Guzman, Da Huo, Brody L. Teare, Tyler Adams, Mark E. Everett, Michael Bishop, Russell Jessup and Dirk B. Hays
Remote Sens. 2023, 15(15), 3832; https://doi.org/10.3390/rs15153832 - 01 Aug 2023
Viewed by 1393
Abstract
Among many agricultural practices proposed to cut carbon emissions in the next 30 years is the deposition of carbon in soils as plant matter. Adding rooting traits as part of a sequestration strategy would result in significantly increased carbon sequestration. Integrating these traits [...] Read more.
Among many agricultural practices proposed to cut carbon emissions in the next 30 years is the deposition of carbon in soils as plant matter. Adding rooting traits as part of a sequestration strategy would result in significantly increased carbon sequestration. Integrating these traits into production agriculture requires a belowground phenotyping method compatible with high-throughput breeding (i.e., rapid, inexpensive, reliable, and non-destructive). However, methods that fulfill these criteria currently do not exist. We hypothesized that ground-penetrating radar (GPR) could fill this need as a phenotypic selection tool. In this study, we employed a prototype GPR antenna array to scan and discriminate the root and rhizome mass of the perennial sorghum hybrid PSH09TX15. B-scan level time/discrete frequency analyses using continuous wavelet transform were utilized to extract features of interest that could be correlated to the biomass of the subsurface roots and rhizome. Time frequency analysis yielded strong correlations between radar features and belowground biomass (max R −0.91 for roots and −0.78 rhizomes, respectively) These results demonstrate that continued refinement of GPR data analysis workflows should yield an applicable phenotyping tool for breeding efforts in contexts where selection is otherwise impractical. Full article
(This article belongs to the Special Issue Digital Farming with Remote Sensing)
Show Figures

Graphical abstract

14 pages, 2932 KiB  
Technical Note
How Important Is Satellite-Retrieved Aerosol Optical Depth in Deriving Surface PM2.5 Using Machine Learning?
by Zhongyan Tian, Jing Wei and Zhanqing Li
Remote Sens. 2023, 15(15), 3780; https://doi.org/10.3390/rs15153780 - 29 Jul 2023
Cited by 2 | Viewed by 1193
Abstract
PM2.5 refers to the total mass concentration of tiny particulates in the atmosphere near the surface, obtained by means of in situ observations and satellite remote sensing. Given the highly limited number of ground observation stations of inhomogeneous distribution and an ill-posed [...] Read more.
PM2.5 refers to the total mass concentration of tiny particulates in the atmosphere near the surface, obtained by means of in situ observations and satellite remote sensing. Given the highly limited number of ground observation stations of inhomogeneous distribution and an ill-posed remote sensing approach, increasing efforts have been devoted to the application of machine-learning (ML) models to both ground and satellite data. A key satellite-derived parameter, aerosol optical thickness (AOD), has been most commonly used as a proxy of PM2.5, although their correlation is fraught with large uncertainties. A critical question that has been overlooked concerns how much AOD helps to improve the retrieval of PM2.5 relative to its uncertainty incurred concurrently. The question is addressed here by taking advantage of high-density PM2.5 stations in eastern China to evaluate the contributions of AOD, determined as the difference in the accuracy of PM2.5 retrievals with and without AOD for varying densities of PM2.5 stations, using four popular ML models (i.e., Random Forest, Extra-trees, XGBoost, and LightGBM). Our results reveal that as the density of monitoring stations decreases, both the feature importance and permutation importance of satellite AOD demonstrate a consistent upward trend (p < 0.05). Furthermore, the ML models without AOD exhibit faster declines in overall accuracy and predictive ability compared with the models with AOD assessed using the sample-based and station-based (spatial) independent cross-validation approaches. Overall, a 10% reduction in the number of stations results in an increase of 0.7–1.2% and 0.6–1.2% in uncertainty in estimated and predicted accuracies, respectively. These findings attest to the indispensable role of satellite AOD in the PM2.5 retrieval process through ML because it can significantly mitigate the negative impact of the sparse distribution of monitoring sites. This role becomes more important as the number of PM2.5 stations decreases. Full article
Show Figures

Figure 1

17 pages, 6867 KiB  
Article
An Improved UAV-Based ATI Method Incorporating Solar Radiation for Farm-Scale Bare Soil Moisture Measurement
by Renhao Jia, Jianli Liu, Jiabao Zhang, Yujie Niu, Yifei Jiang, Kefan Xuan, Can Wang, Jingchun Ji, Bin Ma and Xiaopeng Li
Remote Sens. 2023, 15(15), 3769; https://doi.org/10.3390/rs15153769 - 29 Jul 2023
Viewed by 1256
Abstract
The use of UAV-based remote sensing for soil moisture has developed rapidly in recent decades, with advantages such as high spatial resolution, flexible work arrangement, and ease of operation. In bare and low-vegetation-covered soils, the apparent thermal inertia (ATI) method, which adopts thermal [...] Read more.
The use of UAV-based remote sensing for soil moisture has developed rapidly in recent decades, with advantages such as high spatial resolution, flexible work arrangement, and ease of operation. In bare and low-vegetation-covered soils, the apparent thermal inertia (ATI) method, which adopts thermal infrared data from UAV-based remote sensing, has been widely used for soil moisture estimation at the field scale. However, the ATI method may not perform well under inconsistent weather conditions due to inconsistency of the intensity of the soil surface energy input. In this study, an improvement of the ATI method (ATI-R), considering the variation in soil surface energy input, was developed by the incorporation of solar radiation measurements. The performances of the two methods were compared using field experiment data during multiple heating processes under various weather conditions. It showed that on consistently sunny days, both ATI-R and ATI methods obtained good correlations with the volumetric water contents (VWC) (R2ATI-R = 0.775, RMSEATI-R = 0.023 cm3·cm−3 and R2ATI = 0.778, RMSEATI = 0.018 cm3·cm−3) on cloudy or a combination of sunny and cloudy days as long as there were significant soil-heating processes despite the different energy input intensities; the ATI-R method could perform better than the ATI method (cloudy: R2ATI-R = 0.565, RMSEATI-R = 0.024 cm3·cm−3 and R2ATI = 0.156, RMSEATI = 0.033 cm3·cm−3; combined: R2ATI-R = 0.673, RMSEATI-R = 0.028 cm3·cm−3 and R2ATI = 0.310, RMSEATI = 0.032 cm3·cm−3); and on overcast days, both the ATI-R and ATI methods could not perform satisfactorily (R2ATI-R = 0.027, RMSEATI-R = 0.024 cm3·cm−3 and R2ATI = 0.027, RMSEATI = 0.031 cm3·cm−3). The results indicate that supplemental solar radiation data could effectively expand applications of the ATI method, especially for inconsistent weather conditions. Full article
Show Figures

Figure 1

30 pages, 6565 KiB  
Review
Google Earth Engine: A Global Analysis and Future Trends
by Andrés Velastegui-Montoya, Néstor Montalván-Burbano, Paúl Carrión-Mero, Hugo Rivera-Torres, Luís Sadeck and Marcos Adami
Remote Sens. 2023, 15(14), 3675; https://doi.org/10.3390/rs15143675 - 23 Jul 2023
Cited by 12 | Viewed by 16343
Abstract
The continuous increase in the volume of geospatial data has led to the creation of storage tools and the cloud to process data. Google Earth Engine (GEE) is a cloud-based platform that facilitates geoprocessing, making it a tool of great interest to the [...] Read more.
The continuous increase in the volume of geospatial data has led to the creation of storage tools and the cloud to process data. Google Earth Engine (GEE) is a cloud-based platform that facilitates geoprocessing, making it a tool of great interest to the academic and research world. This article proposes a bibliometric analysis of the GEE platform to analyze its scientific production. The methodology consists of four phases. The first phase corresponds to selecting “search” criteria, followed by the second phase focused on collecting data during the 2011 and 2022 periods using Elsevier’s Scopus database. Software and bibliometrics allowed to review the published articles during the third phase. Finally, the results were analyzed and interpreted in the last phase. The research found 2800 documents that received contributions from 125 countries, with China and the USA leading as the countries with higher contributions supporting an increment in the use of GEE for the visualization and processing of geospatial data. The intellectual structure study and knowledge mapping showed that topics of interest included satellites, sensors, remote sensing, machine learning, land use and land cover. The co-citations analysis revealed the connection between the researchers who used the GEE platform in their research papers. GEE has proven to be an emergent web platform with the potential to manage big satellite data easily. Furthermore, GEE is considered a multidisciplinary tool with multiple applications in various areas of knowledge. This research adds to the current knowledge about the Google Earth Engine platform, analyzing its cognitive structure related to the research in the Scopus database. In addition, this study presents inferences and suggestions to develop future works with this methodology. Full article
(This article belongs to the Special Issue Google Earth Engine for Geo-Big Data Applications)
Show Figures

Figure 1

22 pages, 19447 KiB  
Article
Greening and Browning Trends on the Pacific Slope of Peru and Northern Chile
by Hugo V. Lepage, Eustace Barnes, Eleanor Kor, Morag Hunter and Crispin H. W. Barnes
Remote Sens. 2023, 15(14), 3628; https://doi.org/10.3390/rs15143628 - 21 Jul 2023
Cited by 1 | Viewed by 12768
Abstract
Accurate detection and quantification of regional vegetation trends are essential for understanding the dynamics of landscape ecology and vegetation distribution. We applied a comprehensive trend analysis to satellite data to describe geospatial changes in vegetation along the Pacific slope of Peru and northern [...] Read more.
Accurate detection and quantification of regional vegetation trends are essential for understanding the dynamics of landscape ecology and vegetation distribution. We applied a comprehensive trend analysis to satellite data to describe geospatial changes in vegetation along the Pacific slope of Peru and northern Chile, from sea level to the continental divide, a region characterised by biologically unique and highly sensitive arid and semi-arid environments. Our statistical analyses show broad regional patterns of positive trends in EVI, called “greening”, alongside patterns of “browning”, where trends are negative between 2000 and 2020. The coastal plain and foothills, up 1000 m, contain notable greening of the coastal Lomas and newly irrigated agricultural lands occurring alongside browning trends related to changes in land use practices and urban development. Strikingly, the precordilleras show a distinct ‘greening strip’, which extends from approximately 6°S to 22°S, with an altitudinal trend, ascending from the tropical lowlands (170–780 m) in northern Peru to the subtropics (1000–2800 m) in central Peru and temperate zone (2600–4300 m) in southern Peru and northern Chile. We find that the geographical characteristics of the greening strip do not match climate zones previously established by Köppen and Geiger. Greening and browning trends in the coastal deserts and the high Andes lie within well defined climatic and life zones, producing variable but identifiable trends. However, the distinct Pacific slope greening presents an unexpected distribution with respect to the regional Köppen–Geiger climate and life zones. This work provides insights on understanding the effects of climate change on Peru’s diverse ecosystems in highly sensitive, biologically unique arid and semi-arid environments on the Pacific slope. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

22 pages, 5258 KiB  
Article
A Critical Analysis of NeRF-Based 3D Reconstruction
by Fabio Remondino, Ali Karami, Ziyang Yan, Gabriele Mazzacca, Simone Rigon and Rongjun Qin
Remote Sens. 2023, 15(14), 3585; https://doi.org/10.3390/rs15143585 - 18 Jul 2023
Cited by 16 | Viewed by 11608
Abstract
This paper presents a critical analysis of image-based 3D reconstruction using neural radiance fields (NeRFs), with a focus on quantitative comparisons with respect to traditional photogrammetry. The aim is, therefore, to objectively evaluate the strengths and weaknesses of NeRFs and provide insights into [...] Read more.
This paper presents a critical analysis of image-based 3D reconstruction using neural radiance fields (NeRFs), with a focus on quantitative comparisons with respect to traditional photogrammetry. The aim is, therefore, to objectively evaluate the strengths and weaknesses of NeRFs and provide insights into their applicability to different real-life scenarios, from small objects to heritage and industrial scenes. After a comprehensive overview of photogrammetry and NeRF methods, highlighting their respective advantages and disadvantages, various NeRF methods are compared using diverse objects with varying sizes and surface characteristics, including texture-less, metallic, translucent, and transparent surfaces. We evaluated the quality of the resulting 3D reconstructions using multiple criteria, such as noise level, geometric accuracy, and the number of required images (i.e., image baselines). The results show that NeRFs exhibit superior performance over photogrammetry in terms of non-collaborative objects with texture-less, reflective, and refractive surfaces. Conversely, photogrammetry outperforms NeRFs in cases where the object’s surface possesses cooperative texture. Such complementarity should be further exploited in future works. Full article
(This article belongs to the Special Issue Photogrammetry Meets AI)
Show Figures

Graphical abstract

20 pages, 1319 KiB  
Article
UAV-Based Computer Vision System for Orchard Apple Tree Detection and Health Assessment
by Hela Jemaa, Wassim Bouachir, Brigitte Leblon, Armand LaRocque, Ata Haddadi and Nizar Bouguila
Remote Sens. 2023, 15(14), 3558; https://doi.org/10.3390/rs15143558 - 15 Jul 2023
Cited by 3 | Viewed by 2371
Abstract
Accurate and efficient orchard tree inventories are essential for acquiring up-to-date information, which is necessary for effective treatments and crop insurance purposes. Surveying orchard trees, including tasks such as counting, locating, and assessing health status, plays a vital role in predicting production volumes [...] Read more.
Accurate and efficient orchard tree inventories are essential for acquiring up-to-date information, which is necessary for effective treatments and crop insurance purposes. Surveying orchard trees, including tasks such as counting, locating, and assessing health status, plays a vital role in predicting production volumes and facilitating orchard management. However, traditional manual inventories are known to be labor-intensive, expensive, and prone to errors. Motivated by recent advancements in UAV imagery and computer vision methods, we propose a UAV-based computer vision framework for individual tree detection and health assessment. Our proposed approach follows a two-stage process. Firstly, we propose a tree detection model by employing a hard negative mining strategy using RGB UAV images. Subsequently, we address the health classification problem by leveraging multi-band imagery-derived vegetation indices. The proposed framework achieves an F1-score of 86.24% for tree detection and an overall accuracy of 97.52% for tree health assessment. Our study demonstrates the robustness of the proposed framework in accurately assessing orchard tree health from UAV images. Moreover, the proposed approach holds potential for application in various other plantation settings, enabling plant detection and health assessment using UAV imagery. Full article
Show Figures

Figure 1

27 pages, 5382 KiB  
Article
Insuring Alpine Grasslands against Drought-Related Yield Losses Using Sentinel-2 Satellite Data
by Mariapina Castelli, Giovanni Peratoner, Luca Pasolli, Giulia Molisse, Alexander Dovas, Gabriel Sicher, Alice Crespi, Mattia Rossi, Mohammad Hussein Alasawedah, Evelyn Soini, Roberto Monsorno and Claudia Notarnicola
Remote Sens. 2023, 15(14), 3542; https://doi.org/10.3390/rs15143542 - 14 Jul 2023
Cited by 1 | Viewed by 1581
Abstract
This work estimates yield losses due to drought events in the mountain grasslands in north-eastern Italy, laying the groundwork for index-based insurance. Given the high correlation between the leaf area index (LAI) and grassland yield, we exploit the LAI as a proxy for [...] Read more.
This work estimates yield losses due to drought events in the mountain grasslands in north-eastern Italy, laying the groundwork for index-based insurance. Given the high correlation between the leaf area index (LAI) and grassland yield, we exploit the LAI as a proxy for yield. We estimate the LAI by using the Sentinel-2 biophysical processor and compare different gap-filling methods, including time series interpolation and fusion with Sentinel-1 SAR data. We derive the grassland production index (GPI) as the growing season cumulate of the daily product between the LAI and a meteorological water stress coefficient. Finally, we calculate the drought index as an anomaly of the GPI. The validation of the Sentinel-2 LAI with ground measurements showed an RMSE of 0.92 [m2 m−2] and an R2 of 0.81 over all the measurement sites. A comparison between the GPI and yield showed, on average, an R2 of 0.56 at the pixel scale and an R2 of 0.74 at the parcel scale. The developed prototype GPI index was used at the end of the growing season of the year 2022 to calculate the payments of an experimental insurance scheme which was proposed to a group of farmers in Trentino-South Tyrol. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Graphical abstract

15 pages, 18780 KiB  
Communication
The Changes in Nighttime Lights Caused by the Turkey–Syria Earthquake Using NOAA-20 VIIRS Day/Night Band Data
by Yuan Yuan, Congxiao Wang, Shaoyang Liu, Zuoqi Chen, Xiaolong Ma, Wei Li, Lingxian Zhang and Bailang Yu
Remote Sens. 2023, 15(13), 3438; https://doi.org/10.3390/rs15133438 - 07 Jul 2023
Cited by 5 | Viewed by 1745
Abstract
The Turkey–Syria earthquake on 6 February 2023 resulted in losses such as casualties, road damage, and building collapses. We mapped and quantified the areas impacted by the earthquake at different distances and directions using NOAA-20 VIIRS nighttime light (NTL) data. We then explored [...] Read more.
The Turkey–Syria earthquake on 6 February 2023 resulted in losses such as casualties, road damage, and building collapses. We mapped and quantified the areas impacted by the earthquake at different distances and directions using NOAA-20 VIIRS nighttime light (NTL) data. We then explored the relationship between the average changes in the NTL intensity, population density, and building density using the bivariate local indicators of the spatial association (LISA) method. In Turkey, Hatay, Gaziantep, and Sanliurfa experienced the largest NTL losses. Ar Raqqah was the most affected city in Syria, with the highest NTL loss rate. A correlation analysis showed that the number of injured populations in the provinces in Turkey and the number of pixels with a decreased NTL intensity exhibited a linear correlation, with an R-squared value of 0.7395. Based on the changing value of the NTL, the areas with large NTL losses were located 50 km from the earthquake epicentre in the east-by-south and north-by-west directions and 130 km from the earthquake epicentre in the southwest direction. The large NTL increase areas were distributed 130 km from the earthquake epicentre in the north-by-west and north-by-east directions and 180 km from the earthquake epicentre in the northeast direction, indicating a high resilience and effective earthquake rescue. The areas with large NTL losses had large populations and building densities, particularly in the areas approximately 130 km from the earthquake epicentre in the south-by-west direction and within 40 km of the earthquake epicentre in the north-by-west direction, which can be seen from the low–high (L-H) pattern of the LISA results. Our findings provide insights for evaluating natural disasters and can help decision makers to plan post-disaster reconstruction and determine risk levels on a national or regional scale. Full article
Show Figures

Graphical abstract

19 pages, 42392 KiB  
Article
Detection of Solar Photovoltaic Power Plants Using Satellite and Airborne Hyperspectral Imaging
by Christoph Jörges, Hedwig Sophie Vidal, Tobias Hank and Heike Bach
Remote Sens. 2023, 15(13), 3403; https://doi.org/10.3390/rs15133403 - 05 Jul 2023
Cited by 3 | Viewed by 3195
Abstract
Solar photovoltaic panels (PV) provide great potential to reduce greenhouse gas emissions as a renewable energy technology. The number of solar PV has increased significantly in recent years and is expected to increase even further. Therefore, accurate and global mapping and monitoring of [...] Read more.
Solar photovoltaic panels (PV) provide great potential to reduce greenhouse gas emissions as a renewable energy technology. The number of solar PV has increased significantly in recent years and is expected to increase even further. Therefore, accurate and global mapping and monitoring of PV modules with remote sensing methods is important for predicting energy production potentials, revealing socio-economic drivers, supporting urban planning, and estimating ecological impacts. Hyperspectral imagery provides crucial information to identify PV modules based on their physical absorption and reflection properties. This study investigated spectral signatures of spaceborne PRISMA data of 30 m low resolution for the first time, as well as airborne AVIRIS-NG data of 5.3 m medium resolution for the detection of solar PV. The study region is located around Irlbach in southern Germany. A physics-based approach using the spectral indices nHI, NSPI, aVNIR, PEP, and VPEP was used for the classification of the hyperspectral images. By validation with a solar PV ground truth dataset of the study area, a user’s accuracy of 70.53% and a producer’s accuracy of 88.06% for the PRISMA hyperspectral data, and a user’s accuracy of 65.94% and a producer’s accuracy of 82.77% for AVIRIS-NG were achieved. Full article
Show Figures

Figure 1

35 pages, 5319 KiB  
Article
Crop Mapping without Labels: Investigating Temporal and Spatial Transferability of Crop Classification Models Using a 5-Year Sentinel-2 Series and Machine Learning
by Tomáš Rusňák, Tomáš Kasanický, Peter Malík, Ján Mojžiš, Ján Zelenka, Michal Sviček, Dominik Abrahám and Andrej Halabuk
Remote Sens. 2023, 15(13), 3414; https://doi.org/10.3390/rs15133414 - 05 Jul 2023
Cited by 4 | Viewed by 1634
Abstract
Multitemporal crop classification approaches have demonstrated high performance within a given season. However, cross-season and cross-region crop classification presents a unique transferability challenge. This study addresses this challenge by adopting a domain generalization approach, e.g., by training models on multiple seasons to improve [...] Read more.
Multitemporal crop classification approaches have demonstrated high performance within a given season. However, cross-season and cross-region crop classification presents a unique transferability challenge. This study addresses this challenge by adopting a domain generalization approach, e.g., by training models on multiple seasons to improve generalization to new, unseen target years. We utilize a comprehensive five-year Sentinel-2 dataset over different agricultural regions in Slovakia and a diverse crop scheme (eight crop classes). We evaluate the performance of different machine learning classification algorithms, including random forests, support vector machines, quadratic discriminant analysis, and neural networks. Our main findings reveal that the transferability of models across years differs between regions, with the Danubian lowlands demonstrating better performance (overall accuracies ranging from 91.5% in 2022 to 94.3% in 2020) compared to eastern Slovakia (overall accuracies ranging from 85% in 2022 to 91.9% in 2020). Quadratic discriminant analysis, support vector machines, and neural networks consistently demonstrated high performance across diverse transferability scenarios. The random forest algorithm was less reliable in generalizing across different scenarios, particularly when there was a significant deviation in the distribution of unseen domains. This finding underscores the importance of employing a multi-classifier analysis. Rapeseed, grasslands, and sugar beet consistently show stable transferability across seasons. We observe that all periods play a crucial role in the classification process, with July being the most important and August the least important. Acceptable performance can be achieved as early as June, with only slight improvements towards the end of the season. Finally, employing a multi-classifier approach allows for parcel-level confidence determination, enhancing the reliability of crop distribution maps by assuming higher confidence when multiple classifiers yield similar results. To enhance spatiotemporal generalization, our study proposes a two-step approach: (1) determine the optimal spatial domain to accurately represent crop type distribution; and (2) apply interannual training to capture variability across years. This approach helps account for various factors, such as different crop rotation practices, diverse observational quality, and local climate-driven patterns, leading to more accurate and reliable crop classification models for nationwide agricultural monitoring. Full article
(This article belongs to the Special Issue Crop Quantitative Monitoring with Remote Sensing)
Show Figures

Figure 1

29 pages, 44178 KiB  
Article
Cloud-Free Global Maps of Essential Vegetation Traits Processed from the TOA Sentinel-3 Catalogue in Google Earth Engine
by Dávid D. Kovács, Pablo Reyes-Muñoz, Matías Salinero-Delgado, Viktor Ixion Mészáros, Katja Berger and Jochem Verrelst
Remote Sens. 2023, 15(13), 3404; https://doi.org/10.3390/rs15133404 - 05 Jul 2023
Cited by 4 | Viewed by 2613
Abstract
Global mapping of essential vegetation traits (EVTs) through data acquired by Earth-observing satellites provides a spatially explicit way to analyze the current vegetation states and dynamics of our planet. Although significant efforts have been made, there is still a lack of global and [...] Read more.
Global mapping of essential vegetation traits (EVTs) through data acquired by Earth-observing satellites provides a spatially explicit way to analyze the current vegetation states and dynamics of our planet. Although significant efforts have been made, there is still a lack of global and consistently derived multi-temporal trait maps that are cloud-free. Here we present the processing chain for the spatiotemporally continuous production of four EVTs at a global scale: (1) fraction of absorbed photosynthetically active radiation (FAPAR), (2) leaf area index (LAI), (3) fractional vegetation cover (FVC), and (4) leaf chlorophyll content (LCC). The proposed workflow presents a scalable processing approach to the global cloud-free mapping of the EVTs. Hybrid retrieval models, named S3-TOA-GPR-1.0-WS, were implemented into Google Earth Engine (GEE) using Sentinel-3 Ocean and Land Color Instrument (OLCI) Level-1B for the mapping of the four EVTs along with associated uncertainty estimates. We used the Whittaker smoother (WS) for the temporal reconstruction of the four EVTs, which led to continuous data streams, here applied to the year 2019. Cloud-free maps were produced at 5 km spatial resolution at 10-day time intervals. The consistency and plausibility of the EVT estimates for the resulting annual profiles were evaluated by per-pixel intra-annually correlating against corresponding vegetation products of both MODIS and Copernicus Global Land Service (CGLS). The most consistent results were obtained for LAI, which showed intra-annual correlations with an average Pearson correlation coefficient (R) of 0.57 against the CGLS LAI product. Globally, the EVT products showed consistent results, specifically obtaining higher correlation than R> 0.5 with reference products between 30 and 60° latitude in the Northern Hemisphere. Additionally, intra-annual goodness-of-fit statistics were also calculated locally against reference products over four distinct vegetated land covers. As a general trend, vegetated land covers with pronounced phenological dynamics led to high correlations between the different products. However, sparsely vegetated fields as well as areas near the equator linked to smaller seasonality led to lower correlations. We conclude that the global gap-free mapping of the four EVTs was overall consistent. Thanks to GEE, the entire OLCI L1B catalogue can be processed efficiently into the EVT products on a global scale and made cloud-free with the WS temporal reconstruction method. Additionally, GEE facilitates the workflow to be operationally applicable and easily accessible to the broader community. Full article
(This article belongs to the Special Issue Remote Sensing of Vegetation Biochemical and Biophysical Parameters)
Show Figures

Figure 1

35 pages, 2670 KiB  
Review
Unmanned Aerial Vehicles for Search and Rescue: A Survey
by Mingyang Lyu, Yibo Zhao, Chao Huang and Hailong Huang
Remote Sens. 2023, 15(13), 3266; https://doi.org/10.3390/rs15133266 - 25 Jun 2023
Cited by 16 | Viewed by 9145
Abstract
In recent years, unmanned aerial vehicles (UAVs) have gained popularity due to their flexibility, mobility, and accessibility in various fields, including search and rescue (SAR) operations. The use of UAVs in SAR can greatly enhance the task success rates in reaching inaccessible or [...] Read more.
In recent years, unmanned aerial vehicles (UAVs) have gained popularity due to their flexibility, mobility, and accessibility in various fields, including search and rescue (SAR) operations. The use of UAVs in SAR can greatly enhance the task success rates in reaching inaccessible or dangerous areas, performing challenging operations, and providing real-time monitoring and modeling of the situation. This article aims to help readers understand the latest progress and trends in this field by synthesizing and organizing papers related to UAV search and rescue. An introduction to the various types and components of UAVs and their importance in SAR operations is settled first. Additionally, we present a comprehensive review of sensor integrations in UAVs for SAR operations, highlighting their roles in target perception, localization, and identification. Furthermore, we elaborate on the various applications of UAVs in SAR, including on-site monitoring and modeling, perception and localization of targets, and SAR operations such as task assignment, path planning, and collision avoidance. We compare different approaches and methodologies used in different studies, assess the strengths and weaknesses of various approaches, and provide insights on addressing the research questions relating to specific UAV operations in SAR. Overall, this article presents a comprehensive overview of the significant role of UAVs in SAR operations. It emphasizes the vital contributions of drones in enhancing mission success rates, augmenting situational awareness, and facilitating efficient and effective SAR activities. Additionally, the article discusses potential avenues for enhancing the performance of UAVs in SAR. Full article
Show Figures

Figure 1

21 pages, 11097 KiB  
Article
Implementing Cloud Computing for the Digital Mapping of Agricultural Soil Properties from High Resolution UAV Multispectral Imagery
by Samuel Pizarro, Narcisa G. Pricope, Deyanira Figueroa, Carlos Carbajal, Miriam Quispe, Jesús Vera, Lidiana Alejandro, Lino Achallma, Izamar Gonzalez, Wilian Salazar, Hildo Loayza, Juancarlos Cruz and Carlos I. Arbizu
Remote Sens. 2023, 15(12), 3203; https://doi.org/10.3390/rs15123203 - 20 Jun 2023
Cited by 1 | Viewed by 3423
Abstract
The spatial heterogeneity of soil properties has a significant impact on crop growth, making it difficult to adopt site-specific crop management practices. Traditional laboratory-based analyses are costly, and data extrapolation for mapping soil properties using high-resolution imagery becomes a computationally expensive procedure, taking [...] Read more.
The spatial heterogeneity of soil properties has a significant impact on crop growth, making it difficult to adopt site-specific crop management practices. Traditional laboratory-based analyses are costly, and data extrapolation for mapping soil properties using high-resolution imagery becomes a computationally expensive procedure, taking days or weeks to obtain accurate results using a desktop workstation. To overcome these challenges, cloud-based solutions such as Google Earth Engine (GEE) have been used to analyze complex data with machine learning algorithms. In this study, we explored the feasibility of designing and implementing a digital soil mapping approach in the GEE platform using high-resolution reflectance imagery derived from a thermal infrared and multispectral camera Altum (MicaSense, Seattle, WA, USA). We compared a suite of multispectral-derived soil and vegetation indices with in situ measurements of physical-chemical soil properties in agricultural lands in the Peruvian Mantaro Valley. The prediction ability of several machine learning algorithms (CART, XGBoost, and Random Forest) was evaluated using R2, to select the best predicted maps (R2 > 0.80), for ten soil properties, including Lime, Clay, Sand, N, P, K, OM, Al, EC, and pH, using multispectral imagery and derived products such as spectral indices and a digital surface model (DSM). Our results indicate that the predictions based on spectral indices, most notably, SRI, GNDWI, NDWI, and ExG, in combination with CART and RF algorithms are superior to those based on individual spectral bands. Additionally, the DSM improves the model prediction accuracy, especially for K and Al. We demonstrate that high-resolution multispectral imagery processed in the GEE platform has the potential to develop soil properties prediction models essential in establishing adaptive soil monitoring programs for agricultural regions. Full article
Show Figures

Figure 1

17 pages, 2862 KiB  
Article
Satellite Sensed Data-Dose Response Functions: A Totally New Approach for Estimating Materials’ Deterioration from Space
by Georgios Kouremadas, John Christodoulakis, Costas Varotsos and Yong Xue
Remote Sens. 2023, 15(12), 3194; https://doi.org/10.3390/rs15123194 - 20 Jun 2023
Viewed by 1169
Abstract
When construction materials are exposed to the atmospheric environment, they are subject to deterioration, which varies according to the time period of exposure and the location. A tool named Dose–Response Functions (DRFs) has been developed to estimate this deterioration. DRFs use specific air [...] Read more.
When construction materials are exposed to the atmospheric environment, they are subject to deterioration, which varies according to the time period of exposure and the location. A tool named Dose–Response Functions (DRFs) has been developed to estimate this deterioration. DRFs use specific air pollutants and climatic parameters as input data. Existing DRFs in the literature use only ground-based measurements as input data. This fact constitutes a limitation for the application of this tool because it is too expensive to establish and maintain such a large network of ground-based stations for pollution monitoring. In this study, we present the development of new DRFs using only satellite data as an input named Satellite Sensed Data Dose-Response Functions (SSD-DRFs). Due to the global coverage provided by satellites, this new tool for monitoring the corrosion/soiling of materials overcomes the previous limitation because it can be applied to any area of interest. To develop SSD-DRFs, we used measurements from MODIS (Moderate Resolution Imaging Spectroradiometer) and AIRS (Atmospheric Infrared Sounder) on board Aqua and OMI (Ozone Monitoring Instrument) on Aura. According to the obtained results, SSD-DRFs were developed for the case of carbon steel, zinc, limestone and modern glass materials. SSD-DRFs are shown to produce more reliable corrosion/soiling estimates than “traditional” DRFs using ground-based data. Furthermore, research into the development of the SSD-DRFs revealed that the different corrosion mechanisms taking place on the surface of a material do not act additively with each other but rather synergistically. Full article
Show Figures

Figure 1

19 pages, 7596 KiB  
Article
Assessing the Magnitude of the Amazonian Forest Blowdowns and Post-Disturbance Recovery Using Landsat-8 and Time Series of PlanetScope Satellite Constellation Data
by Dazhou Ping, Ricardo Dalagnol, Lênio Soares Galvão, Bruce Nelson, Fabien Wagner, David M. Schultz and Polyanna da C. Bispo
Remote Sens. 2023, 15(12), 3196; https://doi.org/10.3390/rs15123196 - 20 Jun 2023
Cited by 2 | Viewed by 7003
Abstract
Blowdown events are a major natural disturbance in the central Amazon Forest, but their impact and subsequent vegetation recovery have been poorly understood. This study aimed to track post-disturbance regeneration after blowdown events in the Amazon Forest. We analyzed 45 blowdown sites identified [...] Read more.
Blowdown events are a major natural disturbance in the central Amazon Forest, but their impact and subsequent vegetation recovery have been poorly understood. This study aimed to track post-disturbance regeneration after blowdown events in the Amazon Forest. We analyzed 45 blowdown sites identified after September 2020 at Amazonas, Mato Grosso, and Colombia jurisdictions using Landsat-8 and PlanetScope NICFI satellite imagery. Non-photosynthetic vegetation (NPV), green vegetation (GV), and shade fractions were calculated for each image and sensor using spectral mixture analysis in Google Earth Engine. The results showed that PlanetScope NICFI data provided more regular and higher-spatial-resolution observations of blowdown areas than Landsat-8, allowing for more accurate characterization of post-disturbance vegetation recovery. Specifically, NICFI data indicated that just four months after the blowdown event, nearly half of ΔNPV, which represents the difference between the NPV after blowdown and the NPV before blowdown, had disappeared. ΔNPV and GV values recovered to pre-blowdown levels after approximately 15 months of regeneration. Our findings highlight that the precise timing of blowdown detection has huge implications on quantification of the magnitude of damage. Landsat data may miss important changes in signal due to the difficulty of obtaining regular monthly observations. These findings provide valuable insights into vegetation recovery dynamics following blowdown events. Full article
(This article belongs to the Special Issue Remote Sensing of the Amazon Region)
Show Figures

Graphical abstract

27 pages, 13888 KiB  
Article
A New Blind Selection Approach for Lunar Landing Zones Based on Engineering Constraints Using Sliding Window
by Hengxi Liu, Yongzhi Wang, Shibo Wen, Jianzhong Liu, Jiaxiang Wang, Yaqin Cao, Zhiguo Meng and Yuanzhi Zhang
Remote Sens. 2023, 15(12), 3184; https://doi.org/10.3390/rs15123184 - 19 Jun 2023
Viewed by 1213
Abstract
Deep space exploration has risen in interest among scientists in recent years, with soft landings being one of the most straightforward ways to acquire knowledge about the Moon. In general, landing mission success depends on the selection of landing zones, and there are [...] Read more.
Deep space exploration has risen in interest among scientists in recent years, with soft landings being one of the most straightforward ways to acquire knowledge about the Moon. In general, landing mission success depends on the selection of landing zones, and there are currently few effective quantitative models that can be used to select suitable landing zones. When automatic landing zones are selected, the grid method used for data partitioning tends to miss potentially suitable landing sites between grids. Therefore, this study proposes a new engineering-constrained approach for landing zone selection using LRO LOLA-based slope data as original data based on the sliding window method, which solves the spatial omission problem of the grid method. Using the threshold ratio, mean, coefficient of variation, Moran’s I, and overall rating, this method quantifies the suitability of each sliding window. The k-means clustering algorithm is adopted to determine the suitability threshold for the overall rating. The results show that 20 of 22 lunar soft landing sites are suitable for landing. Additionally, 43 of 50 landing sites preselected by the experts (suitable landing sites considering a combination of conditions) are suitable for landing, accounting for 90.9% and 86% of the total number, respectively, for a window size of 0.5° × 0.5°. Among them, there are four soft landing sites: Surveyor 3, 6, 7, and Apollo 15, which are not suitable for landing in the evaluation results of the grid method. However, they are suitable for landing in the overall evaluation results of the sliding window method, which significantly reduces the spatial omission problem of the grid method. In addition, four candidate landing regions, including Aristarchus Crater, Marius Hills, Moscoviense Basin, and Orientale Basin, were evaluated for landing suitability using the sliding window method. The suitability of the landing area within the candidate range of small window sizes was 0.90, 0.97, 0.49, and 0.55. This indicates the capacity of the method to analyze an arbitrary range during blind landing zone selection. The results can quantify the slope suitability of the landing zones from an engineering perspective and provide different landing window options. The proposed method for selecting lunar landing zones is clearly superior to the gridding method. It enhances data processing for automatic lunar landing zone selection and progresses the selection process from qualitative to quantitative. Full article
Show Figures

Figure 1

20 pages, 5006 KiB  
Article
An Intelligent Detection Method for Small and Weak Objects in Space
by Yuman Yuan, Hongyang Bai, Panfeng Wu, Hongwei Guo, Tianyu Deng and Weiwei Qin
Remote Sens. 2023, 15(12), 3169; https://doi.org/10.3390/rs15123169 - 18 Jun 2023
Cited by 2 | Viewed by 1522
Abstract
In the case of a boom in space resource development, space debris will increase dramatically and cause serious problems for the spacecraft in orbit. To address this problem, a novel context sensing-YOLOv5 (CS-YOLOv5) is proposed for small and weak space object detection, which [...] Read more.
In the case of a boom in space resource development, space debris will increase dramatically and cause serious problems for the spacecraft in orbit. To address this problem, a novel context sensing-YOLOv5 (CS-YOLOv5) is proposed for small and weak space object detection, which could realize the extraction of local context information and the enhancement and fusion of spatial information. To enhance the expression ability of feature information and the identification ability of the network, we propose the cross-layer context fusion module (CCFM) through multiple branches in parallel to learn the context information of different scales. At the same time, to map the small-scale features sequentially to the features of the previous layer, we design the adaptive weighting module (AWM) to assist the CCFM in further enhancing the expression of features. Additionally, to solve the problem that the spatial information of small objects is easily lost, we designed the spatial information enhancement module (SIEM) to adaptively learn the weak spatial information of small objects that need to be protected. To further enhance the generalization ability of CS-YOLOv5, we propose a contrast mosaic data augmentation to enrich the diversity of the sample. Extensive experiments are conducted on self-built datasets, which strongly prove the effectiveness of our method in space object detection. Full article
Show Figures

Figure 1

17 pages, 5355 KiB  
Technical Note
Flying Laboratory of Imaging Systems: Fusion of Airborne Hyperspectral and Laser Scanning for Ecosystem Research
by Jan Hanuš, Lukáš Slezák, Tomáš Fabiánek, Lukáš Fajmon, Tomáš Hanousek, Růžena Janoutová, Daniel Kopkáně, Jan Novotný, Karel Pavelka, Miroslav Pikl, František Zemek and Lucie Homolová
Remote Sens. 2023, 15(12), 3130; https://doi.org/10.3390/rs15123130 - 15 Jun 2023
Cited by 2 | Viewed by 1492
Abstract
Synergies of optical, thermal and laser scanning remotely sensed data provide valuable information to study the structure and functioning of terrestrial ecosystems. One of the few fully operational airborne multi-sensor platforms for ecosystem research in Europe is the Flying Laboratory of Imaging Systems [...] Read more.
Synergies of optical, thermal and laser scanning remotely sensed data provide valuable information to study the structure and functioning of terrestrial ecosystems. One of the few fully operational airborne multi-sensor platforms for ecosystem research in Europe is the Flying Laboratory of Imaging Systems (FLIS), operated by the Global Change Research Institute of the Czech Academy of Sciences. The system consists of three commercial imaging spectroradiometers. One spectroradiometer covers the visible and near-infrared, and the other covers the shortwave infrared part of the electromagnetic spectrum. These two provide full spectral data between 380–2450 nm, mainly for the assessment of biochemical properties of vegetation, soil and water. The third spectroradiometer covers the thermal long-wave infrared part of the electromagnetic spectrum and allows for mapping of surface emissivity and temperature properties. The fourth instrument onboard is the full waveform laser scanning system, which provides data on landscape orography and 3D structure. Here, we describe the FLIS design, data acquisition plan and primary data pre-processing. The synchronous acquisition of multiple data sources provides a complex analytical and data framework for the assessment of vegetation ecosystems (such as plant species composition, plant functional traits, biomass and carbon stocks), as well as for studying the role of greenery or blue-green infrastructure on the thermal behaviour of urban systems. In addition, the FLIS airborne infrastructure supports calibration and validation activities for existing and upcoming satellite missions (e.g., FLEX, PRISMA). Full article
Show Figures

Graphical abstract

16 pages, 4820 KiB  
Article
Validation of Himawari-8 Sea Surface Temperature Retrievals Using Infrared SST Autonomous Radiometer Measurements
by Haifeng Zhang, Helen Beggs, Christopher Griffin and Pallavi Devidas Govekar
Remote Sens. 2023, 15(11), 2841; https://doi.org/10.3390/rs15112841 - 30 May 2023
Viewed by 1336
Abstract
This study has evaluated five years (2016–2020) of Himawari-8 (H8) Sea Surface Temperature (SST) Level 2 Pre-processed (L2P) data produced by the Australian Bureau of Meteorology (Bureau) against shipborne radiometer SST measurements obtained from the Infrared SST Autonomous Radiometer (ISAR) onboard research vessel [...] Read more.
This study has evaluated five years (2016–2020) of Himawari-8 (H8) Sea Surface Temperature (SST) Level 2 Pre-processed (L2P) data produced by the Australian Bureau of Meteorology (Bureau) against shipborne radiometer SST measurements obtained from the Infrared SST Autonomous Radiometer (ISAR) onboard research vessel RV Investigator. Before being used, all data sets employed in this study have gone through careful quality control, and only the most trustworthy measurements are retained. With a large matchup database (31,871 collocations in total, including 16,418 during daytime and 15,453 during night-time), it is found that the Bureau H8 SST product is of good quality, with a mean bias ± standard deviation (SD) of −0.12 °C ± 0.47 °C for the daytime and −0.04 °C ± 0.37 °C for the night-time. The performance of the H8 data under different environmental conditions, determined by the observations obtained concurrently from RV Investigator, is examined. Daytime and night-time satellite data behave slightly differently. During the daytime, a cold bias can be seen under almost all environmental conditions, including for most values of wind speed, SST, and relative humidity. On the other hand, the performance of the night-time H8 SST product is consistently more stable under most meteorological conditions with the mean bias usually close to zero. Full article
(This article belongs to the Section Earth Observation Data)
Show Figures

Figure 1

25 pages, 23610 KiB  
Article
MT-InSAR and Dam Modeling for the Comprehensive Monitoring of an Earth-Fill Dam: The Case of the Benínar Dam (Almería, Spain)
by Miguel Marchamalo-Sacristán, Antonio Miguel Ruiz-Armenteros, Francisco Lamas-Fernández, Beatriz González-Rodrigo, Rubén Martínez-Marín, José Manuel Delgado-Blasco, Matus Bakon, Milan Lazecky, Daniele Perissin, Juraj Papco and Joaquim J. Sousa
Remote Sens. 2023, 15(11), 2802; https://doi.org/10.3390/rs15112802 - 28 May 2023
Cited by 3 | Viewed by 1932
Abstract
The Benínar Dam, located in Southeastern Spain, is an earth-fill dam that has experienced filtration issues since its construction in 1985. Despite the installation of various monitoring systems, the data collected are sparse and inadequate for the dam’s lifetime. The present research integrates [...] Read more.
The Benínar Dam, located in Southeastern Spain, is an earth-fill dam that has experienced filtration issues since its construction in 1985. Despite the installation of various monitoring systems, the data collected are sparse and inadequate for the dam’s lifetime. The present research integrates Multi-Temporal Interferometric Synthetic Aperture Radar (MT-InSAR) and dam modeling to validate the monitoring of this dam, opening the way to enhanced integrated monitoring systems. MT-InSAR was proved to be a reliable and continuous monitoring system for dam deformation, surpassing previously installed systems in terms of precision. MT-InSAR allowed the almost-continuous monitoring of this dam since 1992, combining ERS, Envisat, and Sentinel-1A/B data. Line-of-sight (LOS) velocities of settlement in the crest of the dam evolved from maximums of −6 mm/year (1992–2000), −4 mm/year (2002–2010), and −2 mm/year (2015–2021) with median values of −2.6 and −3.0 mm/year in the first periods (ERS and Envisat) and −1.3 mm/year in the Sentinel 1-A/B period. These results are consistent with the maximum admissible modeled deformation from construction, confirming that settlement was more intense in the dam’s early stages and decreased over time. MT-InSAR was also used to integrate the monitoring of the dam basin, including critical slopes, quarries, and infrastructures, such as roads, tracks, and spillways. This study allows us to conclude that MT-InSAR and dam modeling are important elements for the integrated monitoring systems of embankment dams. This conclusion supports the complete integration of MT-InSAR and 3D modeling into the monitoring systems of embankment dams, as they are a key complement to traditional geotechnical monitoring and can overcome the main limitations of topographical monitoring. Full article
(This article belongs to the Special Issue Dam Stability Monitoring with Satellite Geodesy)
Show Figures

Graphical abstract

17 pages, 12058 KiB  
Article
Drone-Based Imaging Polarimetry of Dark Lake Patches from the Viewpoint of Flying Polarotactic Insects with Ecological Implication
by Dénes Száz, Péter Takács, Balázs Bernáth, György Kriska, András Barta, István Pomozi and Gábor Horváth
Remote Sens. 2023, 15(11), 2797; https://doi.org/10.3390/rs15112797 - 27 May 2023
Cited by 3 | Viewed by 1250
Abstract
Aquatic insects detect water by the horizontal polarization of water-reflected light and thus are attracted to such light. Recently, in the Hungarian Lake Balaton we observed dark water patches forming between every autumn and spring because of the inflow of black suspended/dissolved organic [...] Read more.
Aquatic insects detect water by the horizontal polarization of water-reflected light and thus are attracted to such light. Recently, in the Hungarian Lake Balaton we observed dark water patches forming between every autumn and spring because of the inflow of black suspended/dissolved organic matter into the bright lake water. Earlier, the polarization characteristics of such water surfaces were mapped by imaging polarimeters from the ground. In order to measure the reflection-polarization patterns of these dark lake patches from the higher viewpoint of flying polarotactic aquatic insects, we designed a drone-based imaging polarimeter. We found that the dark lake patches reflected light with very high (60% ≤ d ≤ 80%) degrees of horizontal polarization at the Brewster’s angle, while the bright lake water was only weakly (d < 20%) horizontally polarizing. There was a large contrast in both the radiance and degree of polarization between dark lake patches and bright lake water, while there was no such contrast in the angle of polarization. The ecological implication of these findings could be that these dark lake patches attract water-seeking polarotactic insects, which may oviposit more frequently in them than in the brighter lake water. However, it might not matter if they lay their eggs in these dark patches rather than the bright lake water, because this may simply increase the abundance of breeding flying insects in areas where dark patches are common. Full article
(This article belongs to the Topic Drones for Coastal and Coral Reef Environments)
Show Figures

Graphical abstract

20 pages, 21214 KiB  
Article
Line Scan Hyperspectral Imaging Framework for Open Source Low-Cost Platforms
by Akram Al-Hourani, Sivacarendran Balendhran, Sumeet Walia and Tetiana Hourani
Remote Sens. 2023, 15(11), 2787; https://doi.org/10.3390/rs15112787 - 26 May 2023
Cited by 1 | Viewed by 3016
Abstract
With advancements in computer processing power and deep learning techniques, hyperspectral imaging is continually being explored for improved sensing applications in various fields. However, the high cost associated with such imaging platforms impedes their widespread use in spite of the availability of the [...] Read more.
With advancements in computer processing power and deep learning techniques, hyperspectral imaging is continually being explored for improved sensing applications in various fields. However, the high cost associated with such imaging platforms impedes their widespread use in spite of the availability of the needed processing power. In this paper, we develop a novel theoretical framework required for an open source ultra-low-cost hyperspectral imaging platform based on the line scan method suitable for remote sensing applications. Then, we demonstrate the design and fabrication of an open source platform using consumer-grade commercial off-the-shelf components that are both affordable and easily accessible to researchers and users. At the heart of the optical system is a consumer-grade spectroscope along with a basic galvanometer mirror that is widely used in laser scanning devices. The utilized pushbroom scanning method provides a very high spectral resolution of 2.8 nm, as tested against commercial spectral sensors. Since the resolution is limited by the slit width of the spectroscope, we also provide a deconvolution method for the line scan in order to improve the monochromatic spatial resolution. Finally, we provide a cost-effective testing method for the hyperspectral imaging platform where the results validate both the spectral and spatial performances of the platform. Full article
Show Figures

Figure 1

24 pages, 7856 KiB  
Article
Ionospheric–Thermospheric Responses to Geomagnetic Storms from Multi-Instrument Space Weather Data
by Rasim Shahzad, Munawar Shah, M. Arslan Tariq, Andres Calabia, Angela Melgarejo-Morales, Punyawi Jamjareegulgarn and Libo Liu
Remote Sens. 2023, 15(10), 2687; https://doi.org/10.3390/rs15102687 - 22 May 2023
Cited by 6 | Viewed by 2812
Abstract
We analyze vertical total electron content (vTEC) variations from the Global Navigation Satellite System (GNSS) at different latitudes in different continents of the world during the geomagnetic storms of June 2015, August 2018, and November 2021. The resulting ionospheric perturbations at the low [...] Read more.
We analyze vertical total electron content (vTEC) variations from the Global Navigation Satellite System (GNSS) at different latitudes in different continents of the world during the geomagnetic storms of June 2015, August 2018, and November 2021. The resulting ionospheric perturbations at the low and mid-latitudes are investigated in terms of the prompt penetration electric field (PPEF), the equatorial electrojet (EEJ), and the magnetic H component from INTERMAGNET stations near the equator. East and Southeast Asia, Russia, and Oceania exhibited positive vTEC disturbances, while South American stations showed negative vTEC disturbances during all the storms. We also analyzed the vTEC from the Swarm satellites and found similar results to the retrieved vTEC data during the June 2015 and August 2018 storms. Moreover, we observed that ionospheric plasma tended to increase rapidly during the local afternoon in the main phase of the storms and has the opposite behavior at nighttime. The equatorial ionization anomaly (EIA) crest expansion to higher latitudes is driven by PPEF during daytime at the main and recovery phases of the storms. The magnetic H component exhibits longitudinal behavior along with the EEJ enhancement near the magnetic equator. Full article
(This article belongs to the Special Issue Satellite Observations of the Global Ionosphere and Plasma Dynamics)
Show Figures

Graphical abstract

29 pages, 2126 KiB  
Review
Climate-Change-Driven Droughts and Tree Mortality: Assessing the Potential of UAV-Derived Early Warning Metrics
by Ewane Basil Ewane, Midhun Mohan, Shaurya Bajaj, G. A. Pabodha Galgamuwa, Michael S. Watt, Pavithra Pitumpe Arachchige, Andrew T. Hudak, Gabriella Richardson, Nivedhitha Ajithkumar, Shruthi Srinivasan, Ana Paula Dalla Corte, Daniel J. Johnson, Eben North Broadbent, Sergio de-Miguel, Margherita Bruscolini, Derek J. N. Young, Shahid Shafai, Meshal M. Abdullah, Wan Shafrina Wan Mohd Jaafar, Willie Doaemo, Carlos Alberto Silva and Adrian Cardiladd Show full author list remove Hide full author list
Remote Sens. 2023, 15(10), 2627; https://doi.org/10.3390/rs15102627 - 18 May 2023
Cited by 4 | Viewed by 3344
Abstract
Protecting and enhancing forest carbon sinks is considered a natural solution for mitigating climate change. However, the increasing frequency, intensity, and duration of droughts due to climate change can threaten the stability and growth of existing forest carbon sinks. Extreme droughts weaken plant [...] Read more.
Protecting and enhancing forest carbon sinks is considered a natural solution for mitigating climate change. However, the increasing frequency, intensity, and duration of droughts due to climate change can threaten the stability and growth of existing forest carbon sinks. Extreme droughts weaken plant hydraulic systems, can lead to tree mortality events, and may reduce forest diversity, making forests more vulnerable to subsequent forest disturbances, such as forest fires or pest infestations. Although early warning metrics (EWMs) derived using satellite remote sensing data are now being tested for predicting post-drought plant physiological stress and mortality, applications of unmanned aerial vehicles (UAVs) are yet to be explored extensively. Herein, we provide twenty-four prospective approaches classified into five categories: (i) physiological complexities, (ii) site-specific and confounding (abiotic) factors, (iii) interactions with biotic agents, (iv) forest carbon monitoring and optimization, and (v) technological and infrastructural developments, for adoption, future operationalization, and upscaling of UAV-based frameworks for EWM applications. These UAV considerations are paramount as they hold the potential to bridge the gap between field inventory and satellite remote sensing for assessing forest characteristics and their responses to drought conditions, identifying and prioritizing conservation needs of vulnerable and/or high-carbon-efficient tree species for efficient allocation of resources, and optimizing forest carbon management with climate change adaptation and mitigation practices in a timely and cost-effective manner. Full article
(This article belongs to the Collection Feature Paper Special Issue on Forest Remote Sensing)
Show Figures

Graphical abstract

22 pages, 6387 KiB  
Article
Source Model of the 2023 Turkey Earthquake Sequence Imaged by Sentinel-1 and GPS Measurements: Implications for Heterogeneous Fault Behavior along the East Anatolian Fault Zone
by Shuiping Li, Xin Wang, Tingye Tao, Yongchao Zhu, Xiaochuan Qu, Zhenxuan Li, Jianwei Huang and Shunyue Song
Remote Sens. 2023, 15(10), 2618; https://doi.org/10.3390/rs15102618 - 18 May 2023
Cited by 19 | Viewed by 4622
Abstract
On 6 February 2023, a devastating doublet of earthquakes with magnitudes of Mw 7.8 and Mw 7.6 successively struck southeastern Turkey near the border of Syria. The earthquake sequence represents the strongest earthquakes in Turkey during the past 80 years and caused an [...] Read more.
On 6 February 2023, a devastating doublet of earthquakes with magnitudes of Mw 7.8 and Mw 7.6 successively struck southeastern Turkey near the border of Syria. The earthquake sequence represents the strongest earthquakes in Turkey during the past 80 years and caused an extensive loss of life and property. In this study, we processed Sentinel-1 and GPS data to derive the complete surface displacement caused by the earthquake sequence. The surface displacements were adopted to invert for the fault geometry and coseismic slip distribution on the seismogenic faults of the earthquake sequence. The results indicate that the coseismic rupture of the Turkey earthquake sequence was dominated by left-lateral strike slips with a maximum slip of ~10 m on the East Anatolian Fault Zone (EAFZ) and the Sürgü fault (SF). Significant surface ruptures are recognized based on the geodetic inversion, which is consistent with the analysis of post-earthquake satellite images. The cumulative released moment of the two earthquakes reached 9.62 × 1020 Nm, which corresponds to an event of Mw 7.95. Additionally, the interseismic fault slip rates and locking depths along the central and western segments of the EAFZ were estimated using the high-resolution long-term velocity field. The results reveal significant lateral variations of fault slip rates and locking depths along the central and western segments of the EAFZ. Generally, the estimated fault locking zone showed good spatial consistency with the coseismic fault rupture of the Mw 7.8 shock on the EAFZ. The static coulomb failure stress (CFS) change due to the Mw 7.8 earthquakes suggests that the subsequent Mw 7.6 event was certainly promoted by the Mw 7.8 shock. The stress transfers from the fault EAFZ to the fault SF were realized by unclamping the interface of the fault SF, which significantly reduces the effective normal stress on the fault plane. Large CFS increases in the western Puturge segment of the EAFZ, which was not ruptured in the 2020 Mw 6.8 and the 2023 Mw 7.8 earthquakes, highlight the future earthquake risk in this fault segment. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

20 pages, 4694 KiB  
Article
Vegetation Growth Response and Trends after Water Deficit Exposure in the Loess Plateau, China
by Yuanyuan Luo, Wei Liang, Jianwu Yan, Weibin Zhang, Fen Gou, Chengxi Wang and Xiaoru Liang
Remote Sens. 2023, 15(10), 2593; https://doi.org/10.3390/rs15102593 - 16 May 2023
Cited by 3 | Viewed by 3405
Abstract
Understanding the impact of water availability on vegetation growth in the context of climate change is crucial for assessing the resilience of vegetation to environmental shifts. In this study, the relationship between vegetation growth and water availability was studied using a variety of [...] Read more.
Understanding the impact of water availability on vegetation growth in the context of climate change is crucial for assessing the resilience of vegetation to environmental shifts. In this study, the relationship between vegetation growth and water availability was studied using a variety of indicators. The Normalized Difference Vegetation Index (NDVI), the Enhanced Vegetation Index (EVI), and Solar-Induced Chlorophyll Fluorescence (SIF) were utilized as vegetation growth indicators, while the standardized precipitation evapotranspiration index (SPEI) and soil moisture indicators served as water use indices. To investigate the vegetation response to water deficit in the Loess Plateau during the growing season from 2000 to 2020, Spearman’s rank correlation coefficients were calculated using a 5-year sliding window approach. The spatial and temporal heterogeneity of vegetation response to water deficit during the growing seasons were also explored. The results showed that: (1) with the improvement of moisture conditions, vegetation growth recovered significantly, and there was no expansion trend for vegetation water deficit. (2) The most sensitive timescale of vegetation to water deficit was 6–8 months; the response degree and sensitivity of vegetation to water surplus and deficit were the highest from June to August; and broadleaved forest was the vegetation type most sensitive to water deficit in the early growing season, while grass was the vegetation type most sensitive to water deficit during the mid and late growing seasons. (3) Soil moisture emerged as the dominant factor influencing vegetation growth in the Loess Plateau, followed by precipitation, albeit to a lesser extent. These findings contribute to understanding the mechanism and characteristics of the response of vegetation to climate fluctuations induced by global climate change. Full article
(This article belongs to the Special Issue Remote Sensing of Arid/Semiarid Lands II)
Show Figures

Figure 1

16 pages, 17072 KiB  
Article
A Multi-Pixel Split-Window Approach to Sea Surface Temperature Retrieval from Thermal Imagers with Relatively High Radiometric Noise: Preliminary Studies
by Gian Luigi Liberti, Mattia Sabatini, David S. Wethey and Daniele Ciani
Remote Sens. 2023, 15(9), 2453; https://doi.org/10.3390/rs15092453 - 06 May 2023
Viewed by 1951
Abstract
In the following decade(s), a set of satellite missions carrying thermal infrared (TIR) imagers with a relatively high noise equivalent differential temperature (NEdT) are expected, e.g., the high resolution TIR imagers flying on the future Thermal infraRed Imaging Satellite for High-resolution Natural resource [...] Read more.
In the following decade(s), a set of satellite missions carrying thermal infrared (TIR) imagers with a relatively high noise equivalent differential temperature (NEdT) are expected, e.g., the high resolution TIR imagers flying on the future Thermal infraRed Imaging Satellite for High-resolution Natural resource Assessment (TRISHNA), Land Surface Temperature Monitoring (LSTM) and NASA-JPL/ASI Surface Biology and Geology Thermal (SBG) missions or the secondary payload on board the ESA Earth Explorer 10 Harmony. The instruments on board these missions are expected to be characterized by an NEdT of ⪆0.1 K. In order to reduce the impact of radiometric noise on the retrieved sea surface temperature (SST), this study investigates the possibility of applying a multi-pixel atmospheric correction based on the hypotheses that (i) the spatial variability scales of radiatively active atmospheric variables are, on average, larger than those of the SST and (ii) the effect of atmosphere is accounted for via the split window (SW) difference. Based on 32 Sentinel 3 SLSTR case studies selected in oceanic regions where SST features are mainly driven by meso to sub-mesoscale turbulence (e.g., corresponding to major western boundary currents), this study documents that the local spatial variability of the SW difference term on the scale of ≃3 × 3 km2 is comparable with the noise associated with the SW difference. Similarly, the power spectra of the SW term are shown to have, for small scales, the behavior of white noise spectra. On this basis, we suggest to average the SW term and to use it for the atmospheric correction procedure to reduce the impact of radiometric noise. In principle, this methodology can be applied on proper scales that can be dynamically defined for each pixel. The applicability of our findings to high-resolution TIR missions is discussed and an example of an application to ECOSTRESS data is reported. Full article
(This article belongs to the Special Issue Atmospheric Correction of Remote Sensing Imagery)
Show Figures

Figure 1

10 pages, 2896 KiB  
Communication
Enhanced Doppler Resolution and Sidelobe Suppression Performance for Golay Complementary Waveforms
by Jiahua Zhu, Yongping Song, Nan Jiang, Zhuang Xie, Chongyi Fan and Xiaotao Huang
Remote Sens. 2023, 15(9), 2452; https://doi.org/10.3390/rs15092452 - 06 May 2023
Cited by 33 | Viewed by 1539
Abstract
An enhanced Doppler resolution and sidelobe suppression have long been practical issues for moving target detection using Golay complementary waveforms. In this paper, Golay complementary waveform radar returns are combined with a proposed processor, the pointwise thresholding processor (PTP). Compared to the pointwise [...] Read more.
An enhanced Doppler resolution and sidelobe suppression have long been practical issues for moving target detection using Golay complementary waveforms. In this paper, Golay complementary waveform radar returns are combined with a proposed processor, the pointwise thresholding processor (PTP). Compared to the pointwise minimization processor (PMP) illustrated in a previous work, which could only achieve a Doppler resolution comparable to existing methods, this approach essentially increases the Doppler resolution to a very high level in theory. This study also introduced a further filtering process for the delay-Doppler map of the PTP, and simulations verified that the method results in a delay-Doppler map virtually free of range sidelobes. Full article
(This article belongs to the Special Issue Advanced Array Signal Processing for Target Imaging and Detection)
Show Figures

Figure 1

16 pages, 10668 KiB  
Communication
Ionospheric Response to the 6 February 2023 Turkey–Syria Earthquake
by Artem Vesnin, Yury Yasyukevich, Natalia Perevalova and Erman Şentürk
Remote Sens. 2023, 15(9), 2336; https://doi.org/10.3390/rs15092336 - 28 Apr 2023
Cited by 9 | Viewed by 3038
Abstract
Two strong earthquakes occurred in Turkey on 6 February 2023, at 01:17:34 (nighttime, Mw = 7.8) and at 10:24:50 UT (daytime, Mw = 7.5). The seismo-ionospheric impact is an important part of the near-Earth environment state. This paper provides the first results on [...] Read more.
Two strong earthquakes occurred in Turkey on 6 February 2023, at 01:17:34 (nighttime, Mw = 7.8) and at 10:24:50 UT (daytime, Mw = 7.5). The seismo-ionospheric impact is an important part of the near-Earth environment state. This paper provides the first results on the ionospheric effects associated with the aforementioned earthquakes. We used data from global navigation satellite system (GNSS) receivers and ionosondes. We found that both earthquakes generated circle disturbance in the ionosphere, detected by GNSS data. The amplitude of the ionospheric response caused by daytime M7.5 earthquake exceeded by five times that caused by nighttime M7.8 earthquake: 0.5 TECU/min and 0.1 TECU/min, respectively, according to the ROTI data. The velocities of the earthquake-related ionospheric waves were ~2000 m/s, as measured by ROTI, for the M7.5 earthquake. TEC variations with 2–10 min periods showed velocities from 1500 to 900 m/s as disturbances evolved. Ionospheric disturbances occurred around epicenters and propagated to the south by means of 2–10 min TEC variations. ROTI data showed a more symmetric distribution with irregularities observed both to the South and to the North from 10:24:50 UT epicenter. The ionospheric effects were recorded over 750 km from the epicenters. Ionosonde located 420/490 km from the epicenters did not catch ionospheric effects. The results show significant asymmetry in the propagation of coseismic ionospheric disturbances. We observed coseismic ionospheric disturbances associated with Rayleigh mode and acoustic modes, but we did not observe disturbances associated with acoustic gravity mode. Full article
Show Figures

Figure 1

19 pages, 3507 KiB  
Article
Validation of NASA Sea Surface Temperature Satellite Products Using Saildrone Data
by Kalliopi Koutantou, Philip Brunner and Jorge Vazquez-Cuervo
Remote Sens. 2023, 15(9), 2277; https://doi.org/10.3390/rs15092277 - 25 Apr 2023
Cited by 1 | Viewed by 3745
Abstract
Sea Surface Temperature (SST) is at the core of many processes in the oceans. Various remote sensing platforms have been used to obtain SST products of different scales, but their validation remains a topic of ongoing research. One promising platform is an uncrewed [...] Read more.
Sea Surface Temperature (SST) is at the core of many processes in the oceans. Various remote sensing platforms have been used to obtain SST products of different scales, but their validation remains a topic of ongoing research. One promising platform is an uncrewed surface vehicle called Saildrone. We use the data from eight Saildrone deployments of the USA West Coast 2019 campaign to validate MODIS level-2 and Multi-scale Ultra-high Resolution (MUR) level-4 satellite SST products at 1 km spatial resolution and to assess the robustness of the quality levels of MODIS level-2 products over the California Coast. Pixel-based SST comparisons between Saildrone and the satellite products were performed, as well as thermal gradient comparisons computed both at the pixel-base level and using kriging interpolation. The results generally showed better accuracies for the MUR products. The characterization of the MODIS quality level proved to be valid in areas covered by bad-quality MODIS pixels but less valid in areas covered by lower-quality pixels. The latter implies possible errors in the MODIS quality level characterization and MUR interpolation processes. We have demonstrated the ability of the Saildrones to accurately validate near-shore satellite SST products and provide important information for the quality assessment of satellite products. Full article
Show Figures

Figure 1

41 pages, 2368 KiB  
Article
Fast, Efficient, and Viable Compressed Sensing, Low-Rank, and Robust Principle Component Analysis Algorithms for Radar Signal Processing
by Reinhard Panhuber
Remote Sens. 2023, 15(8), 2216; https://doi.org/10.3390/rs15082216 - 21 Apr 2023
Cited by 1 | Viewed by 1539
Abstract
Modern radar signal processing techniques make strong use of compressed sensing, affine rank minimization, and robust principle component analysis. The corresponding reconstruction algorithms should fulfill the following desired properties: complex valued, viable in the sense of not requiring parameters that are unknown in [...] Read more.
Modern radar signal processing techniques make strong use of compressed sensing, affine rank minimization, and robust principle component analysis. The corresponding reconstruction algorithms should fulfill the following desired properties: complex valued, viable in the sense of not requiring parameters that are unknown in practice, fast convergence, low computational complexity, and high reconstruction performance. Although a plethora of reconstruction algorithms are available in the literature, these generally do not meet all of the aforementioned desired properties together. In this paper, a set of algorithms fulfilling these conditions is presented. The desired requirements are met by a combination of turbo-message-passing algorithms and smoothed 0-refinements. Their performance is evaluated by use of extensive numerical simulations and compared with popular conventional algorithms. Full article
Show Figures

Graphical abstract

20 pages, 8340 KiB  
Article
Analysis of Spatial and Temporal Criteria for Altimeter Collocation of Significant Wave Height and Wind Speed Data in Deep Waters
by Ricardo M. Campos
Remote Sens. 2023, 15(8), 2203; https://doi.org/10.3390/rs15082203 - 21 Apr 2023
Cited by 1 | Viewed by 1436
Abstract
This paper investigates the spatial and temporal variability of significant wave height (Hs) and wind speed (U10) using altimeter data from the Australian Ocean Data Network (AODN) and buoy data from the National Data Buoy Center (NDBC). The main goal is to evaluate [...] Read more.
This paper investigates the spatial and temporal variability of significant wave height (Hs) and wind speed (U10) using altimeter data from the Australian Ocean Data Network (AODN) and buoy data from the National Data Buoy Center (NDBC). The main goal is to evaluate spatial and temporal criteria for collocating altimeter data to fixed-point positions and to provide practical guidance on altimeter collocation in deep waters. The results show that a temporal criterion of 30 min and a spatial criterion between 25 km and 50 km produce the best results for altimeter collocation, in close agreement with buoy data. Applying a 25 km criterion leads to slightly better error metrics but at the cost of fewer matchups, whereas using 50 km augments the resulting collocated dataset while keeping the differences to buoy measurements very low. Furthermore, the study demonstrates that using the single closest altimeter record to the buoy position leads to worse results compared to the collocation method based on temporal and spatial averaging. The final validation of altimeter data against buoy observations shows an RMSD of 0.21 m, scatter index of 0.09, and correlation coefficient of 0.98 for Hs, confirming the optimal choice of temporal and spatial criteria employed and the high quality of the calibrated AODN altimeter dataset. Full article
Show Figures

Figure 1

18 pages, 3883 KiB  
Article
Methods of Analyzing the Error and Rectifying the Calibration of a Solar Tracking System for High-Precision Solar Tracking in Orbit
by Yingqiu Shao, Zhanfeng Li, Xiaohu Yang, Yu Huang, Bo Li, Guanyu Lin and Jifeng Li
Remote Sens. 2023, 15(8), 2213; https://doi.org/10.3390/rs15082213 - 21 Apr 2023
Cited by 2 | Viewed by 1089
Abstract
Reliability is the most critical characteristic of space missions, for example in capturing and tracking moving targets. To this end, two methods are designed to track sunlight using solar remote-sensing instruments (SRSIs). The primary method is to use the offset angles of the [...] Read more.
Reliability is the most critical characteristic of space missions, for example in capturing and tracking moving targets. To this end, two methods are designed to track sunlight using solar remote-sensing instruments (SRSIs). The primary method is to use the offset angles of the guide mirror for closed-loop tracking, while the alternative method is to use the sunlight angles, calculated from the satellite attitude, solar vector, and mechanical installation correction parameters, for open-loop tracking. By comprehensively analyzing the error and rectifying the calibration of the solar tracking system, we demonstrate that the absolute value of the azimuth tracking precision is less than 0.0121° and the pitch is less than 0.0037° with the primary method. Correspondingly, they are 0.0992° and 0.0960° with the alternative method. These precisions meet the requirements of SRSIs. In addition, recalibration due to mechanical vibration during the satellite’s launch may invalidate the above methods, leading to the failure of SRSIs. Hence, we propose a dedicated injection parameter strategy to rectify the sunlight angles to capture and track the sunlight successfully. The stable and effective results in the ultraviolet to near-infrared spectrum validate the SRSI’s high-precision sunlight tracking performance. Furthermore, the above methods can also be applied to all orbital inclinations and may provide a solution for capturing and tracking moving targets. Full article
Show Figures

Graphical abstract

24 pages, 16057 KiB  
Article
KaRIn Noise Reduction Using a Convolutional Neural Network for the SWOT Ocean Products
by Anaëlle Tréboutte, Elisa Carli, Maxime Ballarotta, Benjamin Carpentier, Yannice Faugère and Gérald Dibarboure
Remote Sens. 2023, 15(8), 2183; https://doi.org/10.3390/rs15082183 - 20 Apr 2023
Cited by 4 | Viewed by 1885
Abstract
The SWOT (Surface Water Ocean Topography) mission will provide high-resolution and two-dimensional measurements of sea surface height (SSH). However, despite its unprecedented precision, SWOT’s Ka-band Radar Interferometer (KaRIn) still exhibits a substantial amount of random noise. In turn, the random noise limits the [...] Read more.
The SWOT (Surface Water Ocean Topography) mission will provide high-resolution and two-dimensional measurements of sea surface height (SSH). However, despite its unprecedented precision, SWOT’s Ka-band Radar Interferometer (KaRIn) still exhibits a substantial amount of random noise. In turn, the random noise limits the ability of SWOT to capture the smallest scales of the ocean’s topography and its derivatives. In that context, this paper explores the feasibility, strengths and limits of a noise-reduction algorithm based on a convolutional neural network. The model is based on a U-Net architecture and is trained and tested with simulated data from the North Atlantic. Our results are compared to classical smoothing methods: a median filter, a Lanczos kernel smoother and the SWOT de-noising algorithm developed by Gomez-Navarro et al. Our U-Net model yields better results for all the evaluation metrics: 2 mm root mean square error, sub-millimetric bias, variance reduction by factor of 44 (16 dB) and an accurate power spectral density down to 10–20 km wavelengths. We also tested various scenarios to infer the robustness and the stability of the U-Net. The U-Net always exhibits good performance and can be further improved with retraining if necessary. This robustness in simulation is very encouraging: our findings show that the U-Net architecture is likely one of the best candidates to reduce the noise of flight data from KaRIn. Full article
(This article belongs to the Special Issue Applications of Satellite Altimetry in Ocean Observation)
Show Figures

Figure 1

14 pages, 4294 KiB  
Article
Stratospheric Water Vapor from the Hunga Tonga–Hunga Ha’apai Volcanic Eruption Deduced from COSMIC-2 Radio Occultation
by William J. Randel, Benjamin R. Johnston, John J. Braun, Sergey Sokolovskiy, Holger Vömel, Aurelien Podglajen and Bernard Legras
Remote Sens. 2023, 15(8), 2167; https://doi.org/10.3390/rs15082167 - 20 Apr 2023
Cited by 8 | Viewed by 2007
Abstract
The eruption of the Hunga Tonga–Hunga Ha’apai (HTHH) volcano on 15 January 2022 injected large amounts of water vapor (H2O) directly into the stratosphere. While normal background levels of stratospheric H2O are not detectable in radio occultation (RO) measurements, [...] Read more.
The eruption of the Hunga Tonga–Hunga Ha’apai (HTHH) volcano on 15 January 2022 injected large amounts of water vapor (H2O) directly into the stratosphere. While normal background levels of stratospheric H2O are not detectable in radio occultation (RO) measurements, effects of the HTHH eruption are clearly observed as anomalous refractivity profiles from COSMIC-2, suggesting the possibility of detecting the HTHH H2O signal. To separate temperature and H2O effects on refractivity, we use co-located temperature observations from the Microwave Limb Sounder (MLS) to constrain a simplified H2O retrieval. Our results show enhancements of H2O up to ~2500–3500 ppmv in the stratosphere (~29–33 km) in the days following the HTHH eruption, with propagating patterns that follow the dispersing volcanic plume. The stratospheric H2O profiles derived from RO are in reasonable agreement with limited radiosonde observations over Australia. The H2O profiles during the first few days after the eruption show descent of the plume at a rate of ~−1 km/day, likely due to strong radiative cooling (~−10 K/day) induced by high H2O concentrations; slower descent (~−200 m/day) is observed over the following week as the plume disperses. The total mass of H2O injected by HTHH is estimated as 110 ± 14 Tg from measurements in the early plumes during 16–18 January, which equates to approximately 8% of the background global mass of stratospheric H2O. These RO measurements provide novel quantification of the unprecedented H2O amounts and the plume evolution during the first week after the HTHH eruption. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

27 pages, 4773 KiB  
Article
The InflateSAR Campaign: Developing Refugee Vessel Detection Capabilities with Polarimetric SAR
by Peter Lanz, Armando Marino, Morgan David Simpson, Thomas Brinkhoff, Frank Köster and Matthias Möller
Remote Sens. 2023, 15(8), 2008; https://doi.org/10.3390/rs15082008 - 10 Apr 2023
Cited by 3 | Viewed by 1963
Abstract
In the efforts to mitigate the ongoing humanitarian crisis at the European sea borders, this work builds detection capabilities to help find refugee boats in distress. For this paper, we collected dual-pol and quad-pol synthetic aperture radar (SAR) data over a 12 m [...] Read more.
In the efforts to mitigate the ongoing humanitarian crisis at the European sea borders, this work builds detection capabilities to help find refugee boats in distress. For this paper, we collected dual-pol and quad-pol synthetic aperture radar (SAR) data over a 12 m rubber inflatable in a test-bed lake near Berlin, Germany. To consider a real scenario, we prepared the vessel so that its backscattering emulated that of a vessel fully occupied with people. Further, we collected SAR imagery over the ocean with different sea states, categorized by incidence angle and by polarization. These were used to emulate the conditions for a vessel located in ocean waters. This setup enabled us to test nine well-known vessel-detection systems (VDS), to explore the capabilities of new detection algorithms and to benchmark different combinations of detectors (detector fusion) with respect to different sensor and scene parameters (e.g., the polarization, wind speed, wind direction and boat orientation). This analysis culminated in designing a system that is specifically tailored to accommodate different situations and sea states. Full article
(This article belongs to the Special Issue Remote Sensing for Marine Environmental Disaster Response)
Show Figures

Graphical abstract

24 pages, 2950 KiB  
Article
Can Plot-Level Photographs Accurately Estimate Tundra Vegetation Cover in Northern Alaska?
by Hana L. Sellers, Sergio A. Vargas Zesati, Sarah C. Elmendorf, Alexandra Locher, Steven F. Oberbauer, Craig E. Tweedie, Chandi Witharana and Robert D. Hollister
Remote Sens. 2023, 15(8), 1972; https://doi.org/10.3390/rs15081972 - 08 Apr 2023
Cited by 1 | Viewed by 1837
Abstract
Plot-level photography is an attractive time-saving alternative to field measurements for vegetation monitoring. However, widespread adoption of this technique relies on efficient workflows for post-processing images and the accuracy of the resulting products. Here, we estimated relative vegetation cover using both traditional field [...] Read more.
Plot-level photography is an attractive time-saving alternative to field measurements for vegetation monitoring. However, widespread adoption of this technique relies on efficient workflows for post-processing images and the accuracy of the resulting products. Here, we estimated relative vegetation cover using both traditional field sampling methods (point frame) and semi-automated classification of photographs (plot-level photography) across thirty 1 m2 plots near Utqiaġvik, Alaska, from 2012 to 2021. Geographic object-based image analysis (GEOBIA) was applied to generate objects based on the three spectral bands (red, green, and blue) of the images. Five machine learning algorithms were then applied to classify the objects into vegetation groups, and random forest performed best (60.5% overall accuracy). Objects were reliably classified into the following classes: bryophytes, forbs, graminoids, litter, shadows, and standing dead. Deciduous shrubs and lichens were not reliably classified. Multinomial regression models were used to gauge if the cover estimates from plot-level photography could accurately predict the cover estimates from the point frame across space or time. Plot-level photography yielded useful estimates of vegetation cover for graminoids. However, the predictive performance varied both by vegetation class and whether it was being used to predict cover in new locations or change over time in previously sampled plots. These results suggest that plot-level photography may maximize the efficient use of time, funding, and available technology to monitor vegetation cover in the Arctic, but the accuracy of current semi-automated image analysis is not sufficient to detect small changes in cover. Full article
(This article belongs to the Special Issue Advanced Technologies in Wetland and Vegetation Ecological Monitoring)
Show Figures

Figure 1

22 pages, 8449 KiB  
Article
Accuracy Assessment of High-Resolution Globally Available Open-Source DEMs Using ICESat/GLAS over Mountainous Areas, A Case Study in Yunnan Province, China
by Menghua Li, Xiebing Yin, Bo-Hui Tang and Mengshi Yang
Remote Sens. 2023, 15(7), 1952; https://doi.org/10.3390/rs15071952 - 06 Apr 2023
Cited by 2 | Viewed by 1754
Abstract
The Open-Source Digital Elevation Model (DEM) is fundamental data of the geoscientific community. However, the variation of its accuracy with land cover type and topography has not been thoroughly studied. This study evaluates the accuracy of five globally covered and open-accessed DEM products [...] Read more.
The Open-Source Digital Elevation Model (DEM) is fundamental data of the geoscientific community. However, the variation of its accuracy with land cover type and topography has not been thoroughly studied. This study evaluates the accuracy of five globally covered and open-accessed DEM products (TanDEM-X90 m, SRTEM, NASADEM, ASTER GDEM, and AW3D30) in the mountain area using ICESat/GLAS data as the GCPs. The robust evaluation indicators were utilized to compare the five DEMs’ accuracy and explore the relationship between these errors and slope, aspect, landcover types, and vegetation coverage, thereby revealing the consistency differences in DEM quality under different geographical feature conditions. The Taguchi method is introduced to quantify the impact of these surface characteristics on DEM errors. The results show that the slope is the main factor affecting the accuracy of DEM products, accounting for about 90%, 81%, 85%, 83%, and 65% for TanDEM-X90, SRTM, NASADEM, ASTER GDEM, and AW3D30, respectively. TanDEM-X90 has the highest accuracy in very flat areas (slope < 2°), NASADEM and SRTM have the greatest accuracy in flat areas (2 ≤ slope < 5°), while AW3D30 accuracy is the best in other cases and shows the best consistency on slopes. This study makes a new attempt to quantify the factors affecting the accuracy of DEM, and the results can guide the selection of open-source DEMs in related geoscience research. Full article
Show Figures

Figure 1

23 pages, 9006 KiB  
Article
Terrestrial Laser Scanning for Non-Destructive Estimation of Aboveground Biomass in Short-Rotation Poplar Coppices
by María Menéndez-Miguélez, Guillermo Madrigal, Hortensia Sixto, Nerea Oliveira and Rafael Calama
Remote Sens. 2023, 15(7), 1942; https://doi.org/10.3390/rs15071942 - 05 Apr 2023
Cited by 2 | Viewed by 1624
Abstract
Poplar plantations in high-density and short-rotation coppices (SRC) are a suitable way for the fast production of wood that can be transformed into bioproducts or bioenergy. Optimal management of these coppices requires accurate assessment of the total standing biomass. However, traditional field inventory [...] Read more.
Poplar plantations in high-density and short-rotation coppices (SRC) are a suitable way for the fast production of wood that can be transformed into bioproducts or bioenergy. Optimal management of these coppices requires accurate assessment of the total standing biomass. However, traditional field inventory is a challenging task, given the existence of multiple shoots, the difficulty of identifying terminal shoots, and the extreme high density. As an alternative, in this work, we propose to develop individual stool and plot biomass models using metrics derived from terrestrial laser scanning (TLS) as predictors. To this aim, we used data from a SRC poplar plantation, including nine plots and 154 individual stools. Every plot was scanned from different positions, and individual stools were felled, weighed, and dried to compute aboveground biomass (AGB). Individual stools were segmented from the cloud point, and different TLS metrics at stool and plot level were derived following processes of bounding box, slicing, and voxelization. These metrics were then used, either alone or combined with field-measured metrics, to fit biomass models. Our results indicate that at individual-stool level, the biomass models combining TLS metrics and easy to measure in field metrics (stool diameter) perform similarly to the traditional allometric models based on field inventories, while at plot scales, TLS-derived models show superiority over traditional models. Our proposed methodology permits accurate and non-destructive estimates of the biomass fixed in SRC plantations. Full article
Show Figures

Figure 1

19 pages, 2390 KiB  
Technical Note
Radiometric Terrain Flattening of Geocoded Stacks of SAR Imagery
by Piyush S. Agram, Michael S. Warren, Scott A. Arko and Matthew T. Calef
Remote Sens. 2023, 15(7), 1932; https://doi.org/10.3390/rs15071932 - 04 Apr 2023
Cited by 3 | Viewed by 1819
Abstract
We have described an efficient approach to radiometrically flatten geocoded stacks of calibrated synthetic aperture radar (SAR) data for terrain-related effects. We have used simulation to demonstrate that, for the Sentinel-1 mission, one static radiometric terrain-flattening factor derived from actual SAR imaging metadata [...] Read more.
We have described an efficient approach to radiometrically flatten geocoded stacks of calibrated synthetic aperture radar (SAR) data for terrain-related effects. We have used simulation to demonstrate that, for the Sentinel-1 mission, one static radiometric terrain-flattening factor derived from actual SAR imaging metadata per imaging geometry is sufficient for flattening interferometrically compliant stacks of SAR data. We have quantified the loss of precision due to the application of static flattening factors, and show that these are well below the stated requirements of change-detection algorithms. Finally, we have discussed the implications of applying radiometric terrain flattening to geocoded SAR data instead of the traditional approach of flattening data provided in the original SAR image geometry. The proposed approach allows for efficient and consistent generation of five different Committee of Earth-Observation Satellites (CEOS) Analysis-Ready Dataset (ARD) families—Geocoded Single-Look Complex (GSLC), Interferometric Radar (InSAR), Normalized Radar Backscatter (NRB), Polarimetric Radar (POL) and Ocean Radar Backscatter (ORB) from SAR missions in a common framework. Full article
(This article belongs to the Section Engineering Remote Sensing)
Show Figures

Figure 1

30 pages, 19069 KiB  
Article
Insights into the Magmatic Feeding System of the 2021 Eruption at Cumbre Vieja (La Palma, Canary Islands) Inferred from Gravity Data Modeling
by Fuensanta G. Montesinos, Sergio Sainz-Maza, David Gómez-Ortiz, José Arnoso, Isabel Blanco-Montenegro, Maite Benavent, Emilio Vélez, Nieves Sánchez and Tomás Martín-Crespo
Remote Sens. 2023, 15(7), 1936; https://doi.org/10.3390/rs15071936 - 04 Apr 2023
Cited by 6 | Viewed by 2775
Abstract
This study used spatiotemporal land gravity data to investigate the 2021 eruption that occurred in the Cumbre Vieja volcano (La Palma, Canary Islands). First, we produced a density model by inverting the local gravity field using data collected in July 2005 and July [...] Read more.
This study used spatiotemporal land gravity data to investigate the 2021 eruption that occurred in the Cumbre Vieja volcano (La Palma, Canary Islands). First, we produced a density model by inverting the local gravity field using data collected in July 2005 and July 2021. This model revealed a low-density body beneath the western flank of the volcano that explains a highly fractured and altered structure related to the active hydrothermal system. Then, we retrieved changes in gravity and GNSS vertical displacements from repeated measurements made in a local network before (July 2021) and after (January 2022) the eruption. After correcting the vertical surface displacements, the gravity changes produced by mass variation during the eruptive process were used to build a forward model of the magmatic feeding system consisting of dikes and sills based on an initial model defined by the paths of the earthquake hypocenters preceding the eruption. Our study provides a final model of the magma plumbing system, which establishes a spatiotemporal framework tracing the path of magma ascent from the crust–mantle boundary to the surface from 11–19 September 2021, where the shallowest magma path was strongly influenced by the low-density body identified in the inversion process. Full article
Show Figures

Figure 1

16 pages, 6277 KiB  
Article
A 3D Interferometer-Type Lightning Mapping Array for Observation of Winter Lightning in Japan
by Junchen Yang, Daohong Wang, Haitao Huang, Ting Wu, Nobuyuki Takagi and Kazuo Yamamoto
Remote Sens. 2023, 15(7), 1923; https://doi.org/10.3390/rs15071923 - 03 Apr 2023
Cited by 4 | Viewed by 1775
Abstract
We have developed and deployed a 3D Interferometer-type Lightning Mapping Array (InLMA) for observing winter lightning in Japan. InLMA consists of three broadband interferometers installed at three stations with a distance from 3 to 5 km. At each interferometer station, three discone antennas [...] Read more.
We have developed and deployed a 3D Interferometer-type Lightning Mapping Array (InLMA) for observing winter lightning in Japan. InLMA consists of three broadband interferometers installed at three stations with a distance from 3 to 5 km. At each interferometer station, three discone antennas were installed, forming a right triangle with a separation of 75 m along their two orthogonal baselines. The output of each InLMA antenna is passed through a 400 MHz low-pass filter and then recorded at 1 GS/s with 16-bit accuracy. A new method has been proposed for finding 3D solutions of a lightning mapping system that consists of multiple interferometers. Using the InLMA, we have succeeded in mapping a positive cloud-to-ground (CG) lightning flash in winter, particularly its preliminary breakdown (PB) process. A study on individual PB pulse processes allows us to infer that each PB pulse process contains many small-scale discharges scattering in a height range of about 150 m. These small-scale discharges in a series of PB pulses appear to be continuous in space, though discontinuous in time. We have also examined the positive return stroke in the CG flash and found a 3D average return stroke speed of 7.5 × 107 m/s. Full article
Show Figures

Figure 1

20 pages, 4886 KiB  
Article
Accuracy Assessment of Surveying Strategies for the Characterization of Microtopographic Features That Influence Surface Water Flooding
by Rakhee Ramachandran, Yadira Bajón Fernández, Ian Truckell, Carlos Constantino, Richard Casselden, Paul Leinster and Mónica Rivas Casado
Remote Sens. 2023, 15(7), 1912; https://doi.org/10.3390/rs15071912 - 02 Apr 2023
Cited by 1 | Viewed by 2125
Abstract
With the increase in rainfall intensity, population, and urbanised areas, surface water flooding (SWF) is an increasing concern impacting properties, businesses, and human lives. Previous studies have shown that microtopography significantly influences flow paths, flow direction, and velocity, impacting flood extent and depth, [...] Read more.
With the increase in rainfall intensity, population, and urbanised areas, surface water flooding (SWF) is an increasing concern impacting properties, businesses, and human lives. Previous studies have shown that microtopography significantly influences flow paths, flow direction, and velocity, impacting flood extent and depth, particularly for the shallow flow associated with urban SWF. This study compares two survey strategies commonly used by flood practitioners, S1 (using Unmanned Aerial Systems-based RGB data) and S2 (using manned aircraft with LiDAR scanners), to develop guidelines on where to use each strategy to better characterise microtopography for a range of flood features. The difference between S1 and S2 in elevation and their accuracies were assessed using both traditional and robust statistical measures. The results showed that the difference in elevation between S1 and S2 varies between 11 cm and 37 cm on different land use and microtopographic flood features. Similarly, the accuracy of S1 ranges between 3 cm and 70 cm, and the accuracy of S2 ranges between 3.8 cm and 30.3 cm on different microtopographic flood features. Thus, this study suggests that the flood features of interest in any given flood study would be key to select the most suitable survey strategy. A decision framework was developed to inform data collection and integration of the two surveying strategies to better characterise microtopographic features. The findings from this study will help improve the microtopographic representation of flood features in flood models and, thus, increase the ability to identify high flood-risk prompt areas accurately. It would also help manage and maintain drainage assets, spatial planning of sustainable drainage systems, and property level flood resilience and insurance to better adapt to the effects of climate change. This study is another step towards standardising flood extent and impact surveying strategies. Full article
Show Figures

Graphical abstract

14 pages, 2757 KiB  
Communication
Underwater 3D Scanning System for Cultural Heritage Documentation
by Christian Bräuer-Burchardt, Christoph Munkelt, Michael Bleier, Matthias Heinze, Ingo Gebhart, Peter Kühmstedt and Gunther Notni
Remote Sens. 2023, 15(7), 1864; https://doi.org/10.3390/rs15071864 - 31 Mar 2023
Cited by 7 | Viewed by 2705
Abstract
Three-dimensional capturing of underwater archeological sites or sunken shipwrecks can support important documentation purposes. In this study, a novel 3D scanning system based on structured illumination is introduced, which supports cultural heritage documentation and measurement tasks in underwater environments. The newly developed system [...] Read more.
Three-dimensional capturing of underwater archeological sites or sunken shipwrecks can support important documentation purposes. In this study, a novel 3D scanning system based on structured illumination is introduced, which supports cultural heritage documentation and measurement tasks in underwater environments. The newly developed system consists of two monochrome measurement cameras, a projection unit that produces aperiodic sinusoidal fringe patterns, two flashlights, a color camera, an inertial measurement unit (IMU), and an electronic control box. The opportunities and limitations of the measurement principles of the 3D scanning system are discussed and compared to other 3D recording methods such as laser scanning, ultrasound, and photogrammetry, in the context of underwater applications. Some possible operational scenarios concerning cultural heritage documentation are introduced and discussed. A report on application activities in water basins and offshore environments including measurement examples and results of the accuracy measurements is given. The study shows that the new 3D scanning system can be used for both the topographic documentation of underwater sites and to generate detailed true-scale 3D models including the texture and color information of objects that must remain under water. Full article
Show Figures

Graphical abstract

19 pages, 1145 KiB  
Article
CRSNet: Cloud and Cloud Shadow Refinement Segmentation Networks for Remote Sensing Imagery
by Chao Zhang, Liguo Weng, Li Ding, Min Xia and Haifeng Lin
Remote Sens. 2023, 15(6), 1664; https://doi.org/10.3390/rs15061664 - 20 Mar 2023
Cited by 19 | Viewed by 2009
Abstract
Cloud detection is a critical task in remote sensing image tasks. Due to the influence of ground objects and other noises, the traditional detection methods are prone to miss or false detection and rough edge segmentation in the detection process. To avoid the [...] Read more.
Cloud detection is a critical task in remote sensing image tasks. Due to the influence of ground objects and other noises, the traditional detection methods are prone to miss or false detection and rough edge segmentation in the detection process. To avoid the defects of traditional methods, Cloud and Cloud Shadow Refinement Segmentation Networks are proposed in this paper. The network can correctly and efficiently detect smaller clouds and obtain finer edges. The model takes ResNet-18 as the backbone to extract features at different levels, and the Multi-scale Global Attention Module is used to strengthen the channel and spatial information to improve the accuracy of detection. The Strip Pyramid Channel Attention Module is used to learn spatial information at multiple scales to detect small clouds better. Finally, the high-dimensional feature and low-dimensional feature are fused by the Hierarchical Feature Aggregation Module, and the final segmentation effect is obtained by up-sampling layer by layer. The proposed model attains excellent results compared to methods with classic or special cloud segmentation tasks on Cloud and Cloud Shadow Dataset and the public dataset CSWV. Full article
Show Figures

Figure 1

39 pages, 7209 KiB  
Article
AVHRR NDVI Compositing Method Comparison and Generation of Multi-Decadal Time Series—A TIMELINE Thematic Processor
by Sarah Asam, Christina Eisfelder, Andreas Hirner, Philipp Reiners, Stefanie Holzwarth and Martin Bachmann
Remote Sens. 2023, 15(6), 1631; https://doi.org/10.3390/rs15061631 - 17 Mar 2023
Cited by 3 | Viewed by 2294
Abstract
Remote sensing image composites are crucial for a wide range of remote sensing applications, such as multi-decadal time series analysis. The Advanced Very High Resolution Radiometer (AVHRR) instrument has provided daily data since the early 1980s at a spatial resolution of 1 km, [...] Read more.
Remote sensing image composites are crucial for a wide range of remote sensing applications, such as multi-decadal time series analysis. The Advanced Very High Resolution Radiometer (AVHRR) instrument has provided daily data since the early 1980s at a spatial resolution of 1 km, allowing analyses of climate change-related environmental processes. For monitoring vegetation conditions, the Normalized Difference Vegetation Index (NDVI) is the most widely used metric. However, to actually enable such analyses, a consistent NDVI time series over the AVHRR time-span needs to be created. In this context, the aim of this study is to thoroughly assess the effect of different compositing procedures on AVHRR NDVI composites, as no standard procedure has been established. Thirteen different compositing methods have been implemented; daily, decadal, and monthly composites over Europe and Northern Africa have been calculated for the year 2007, and the resulting data sets have been thoroughly evaluated according to six criteria. The median approach was selected as the best-performing compositing algorithm considering all the investigated aspects. However, the combination of the NDVI value and viewing and illumination angles as the criteria for the best-pixel selection proved to be a promising approach, too. The generated NDVI time series, currently ranging from 1981–2018, shows a consistent behavior and close agreement to the standard MODIS NDVI product. The conducted analyses demonstrate the strong influence of compositing procedures on the resulting AVHRR NDVI composites. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

Back to TopTop