Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 745 KiB  
Article
What Is the Value of a “Mountain Product” Claim? A Ranking Conjoint Experiment on Goat’s Milk Yoghurt
by Raffaele Zanchini, Giuseppe Di Vita, Luca Panzone and Filippo Brun
Foods 2023, 12(10), 2059; https://doi.org/10.3390/foods12102059 - 19 May 2023
Cited by 7 | Viewed by 1746
Abstract
Rural development is complex in marginal and disadvantaged areas, such as mountains, which impose high labour costs and restrict farmers in their choices of crop and livestock. To recognise this problem, the European Union regulates the use of the optional quality term “ [...] Read more.
Rural development is complex in marginal and disadvantaged areas, such as mountains, which impose high labour costs and restrict farmers in their choices of crop and livestock. To recognise this problem, the European Union regulates the use of the optional quality term “Mountain product” on the label. Consumers may recognise this label and be more willing to pay for it, resulting in higher revenues for producers using it. This study estimates the willingness to pay (WTP) for a mountain quality label. This WTP is then compared to that of functional and nutrition claims. For this purpose, we used a ranking conjoint experiment, using goat’s milk yoghurt—a typical mountain product—as a case study. Using a rank-ordered logit, we show that mountain quality labels generate a significant WTP, higher than that of functional claims. WTP differs by the demographic profile of the consumer. The study provided useful insights about the combination of the mountain quality label with different attributes. However, future studies are needed to adequately understand the potential of mountain certification as a supporting tool for farmers in marginal areas and for rural development. Full article
Show Figures

Figure 1

25 pages, 695 KiB  
Review
Pressurized Liquid Extraction: A Powerful Tool to Implement Extraction and Purification of Food Contaminants
by Laura Barp, Ana Miklavčič Višnjevec and Sabrina Moret
Foods 2023, 12(10), 2017; https://doi.org/10.3390/foods12102017 - 16 May 2023
Cited by 34 | Viewed by 8821
Abstract
Pressurized liquid extraction (PLE) is considered an advanced extraction technique developed in the mid-1990s with the aim of saving time and reducing solvent with respect to traditional extraction processes. It is commonly used with solid and semi-solid samples and employs solvent extraction at [...] Read more.
Pressurized liquid extraction (PLE) is considered an advanced extraction technique developed in the mid-1990s with the aim of saving time and reducing solvent with respect to traditional extraction processes. It is commonly used with solid and semi-solid samples and employs solvent extraction at elevated temperatures and pressures, always below the respective critical points, to maintain the solvent in a liquid state throughout the extraction procedure. The use of these particular pressure and temperature conditions changes the physicochemical properties of the extraction solvent, allowing easier and deeper penetration into the matrix to be extracted. Furthermore, the possibility to combine the extraction and clean-up steps by including a layer of an adsorbent retaining interfering compounds directly in the PLE extraction cells makes this technique extremely versatile and selective. After providing a background on the PLE technique and parameters to be optimized, the present review focuses on recent applications (published in the past 10 years) in the field of food contaminants. In particular, applications related to the extraction of environmental and processing contaminants, pesticides, residues of veterinary drugs, mycotoxins, parabens, ethyl carbamate, and fatty acid esters of 3-monochloro-1,2-propanediol and 2-monochloro-1,3-propanediol from different food matrices were considered. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

16 pages, 20735 KiB  
Article
Three-Dimensional Appearance and Physicochemical Properties of Pleurotus eryngii under Different Drying Methods
by Jun-Wen Bai, Yu-Chi Wang, Jian-Rong Cai, Lu Zhang, Yi Dai, Xiao-Yu Tian and Hong-Wei Xiao
Foods 2023, 12(10), 1999; https://doi.org/10.3390/foods12101999 - 15 May 2023
Cited by 12 | Viewed by 1710
Abstract
This study investigated the effects of different drying methods on the drying characteristics, three-dimensional (3D) appearance, color, total polysaccharide content (TPC), antioxidant activity, and microstructure of Pleurotus eryngii slices. The drying methods included hot air drying (HAD), infrared drying (ID), and microwave drying [...] Read more.
This study investigated the effects of different drying methods on the drying characteristics, three-dimensional (3D) appearance, color, total polysaccharide content (TPC), antioxidant activity, and microstructure of Pleurotus eryngii slices. The drying methods included hot air drying (HAD), infrared drying (ID), and microwave drying (MD). The results showed that the drying method and conditions significantly influenced the drying time, with MD having a significant advantage in reducing the drying time. The 3D appearance of P. eryngii slices was evaluated based on shrinkage and roughness as quantitative indexes, and the best appearance was obtained by hot air drying at 55 and 65 °C. HAD and ID at lower drying temperatures obtained better color, TPC, and antioxidant activity, but MD significantly damaged the color and nutritional quality of P. eryngii. The microstructure of dried P. eryngii slices was observed using scanning electron microscopy, and the results showed that drying methods and conditions had an obvious effect on the microstructure of P. eryngii slices. Scattered mycelia were clearly observed in P. eryngii samples dried by HAD and ID at lower drying temperatures, while high drying temperatures led to the cross-linking and aggregation of mycelia. This study offers scientific and technical support for choosing appropriate drying methods to achieve a desirable appearance and quality of dried P. eryngii. Full article
Show Figures

Figure 1

30 pages, 1776 KiB  
Review
Encapsulation of Bioactive Peptides by Spray-Drying and Electrospraying
by Carmen Berraquero-García, Raúl Pérez-Gálvez, F. Javier Espejo-Carpio, Antonio Guadix, Emilia M. Guadix and Pedro J. García-Moreno
Foods 2023, 12(10), 2005; https://doi.org/10.3390/foods12102005 - 15 May 2023
Cited by 17 | Viewed by 4019
Abstract
Bioactive peptides derived from enzymatic hydrolysis are gaining attention for the production of supplements, pharmaceutical compounds, and functional foods. However, their inclusion in oral delivery systems is constrained by their high susceptibility to degradation during human gastrointestinal digestion. Encapsulating techniques can be used [...] Read more.
Bioactive peptides derived from enzymatic hydrolysis are gaining attention for the production of supplements, pharmaceutical compounds, and functional foods. However, their inclusion in oral delivery systems is constrained by their high susceptibility to degradation during human gastrointestinal digestion. Encapsulating techniques can be used to stabilize functional ingredients, helping to maintain their activity after processing, storage, and digestion, thus improving their bioaccessibility. Monoaxial spray-drying and electrospraying are common and economical techniques used for the encapsulation of nutrients and bioactive compounds in both the pharmaceutical and food industries. Although less studied, the coaxial configuration of both techniques could potentially improve the stabilization of protein-based bioactives via the formation of shell–core structures. This article reviews the application of these techniques, both monoaxial and coaxial configurations, for the encapsulation of bioactive peptides and protein hydrolysates, focusing on the factors affecting the properties of the encapsulates, such as the formulation of the feed solution, selection of carrier and solvent, as well as the processing conditions used. Furthermore, this review covers the release, retention of bioactivity, and stability of peptide-loaded encapsulates after processing and digestion. Full article
Show Figures

Figure 1

18 pages, 1116 KiB  
Review
Improving the Sustainability of Processing By-Products: Extraction and Recent Biological Activities of Collagen Peptides
by Shumin Xu, Yuping Zhao, Wenshan Song, Chengpeng Zhang, Qiuting Wang, Ruimin Li, Yanyan Shen, Shunmin Gong, Mingbo Li and Leilei Sun
Foods 2023, 12(10), 1965; https://doi.org/10.3390/foods12101965 - 12 May 2023
Cited by 20 | Viewed by 4812
Abstract
Society and consumers are increasingly concerned about food safety and the sustainability of food production systems. A significant amount of by-products and discards are generated during the processing of aquatic animals, which still needs to be fully utilized by the food industry. The [...] Read more.
Society and consumers are increasingly concerned about food safety and the sustainability of food production systems. A significant amount of by-products and discards are generated during the processing of aquatic animals, which still needs to be fully utilized by the food industry. The management and sustainable use of these resources are essential to avoiding environmental pollution and resource waste. These by-products are rich in biologically active proteins, which can be converted into peptides by enzymatic hydrolysis or fermentation treatment. Therefore, exploring the extraction of collagen peptides from these by-products using an enzymatic hydrolysis technology has attracted a wide range of attention from numerous researchers. Collagen peptides have been found to possess multiple biological activities, including antioxidant, anticancer, antitumor, hypotensive, hypoglycemic, and anti-inflammatory properties. These properties can enhance the physiological functions of organisms and make collagen peptides useful as ingredients in food, pharmaceuticals, or cosmetics. This paper reviews the general methods for extracting collagen peptides from various processing by-products of aquatic animals, including fish skin, scales, bones, and offal. It also summarizes the functional activities of collagen peptides as well as their applications. Full article
Show Figures

Figure 1

17 pages, 1724 KiB  
Review
Current Technologies and Uses for Fruit and Vegetable Wastes in a Sustainable System: A Review
by Yingdan Zhu, Yueting Luan, Yingnan Zhao, Jiali Liu, Zhangqun Duan and Roger Ruan
Foods 2023, 12(10), 1949; https://doi.org/10.3390/foods12101949 - 11 May 2023
Cited by 28 | Viewed by 17237
Abstract
The fruit and vegetable industry produces millions of tons of residues, which can cause large economic losses. Fruit and vegetable wastes and by-products contain a large number of bioactive substances with functional ingredients that have antioxidant, antibacterial, and other properties. Current technologies can [...] Read more.
The fruit and vegetable industry produces millions of tons of residues, which can cause large economic losses. Fruit and vegetable wastes and by-products contain a large number of bioactive substances with functional ingredients that have antioxidant, antibacterial, and other properties. Current technologies can utilize fruit and vegetable waste and by-products as ingredients, food bioactive compounds, and biofuels. Traditional and commercial utilization in the food industry includes such technologies as microwave-assisted extraction (MAE), supercritical fluid extraction (SFE), ultrasonic-assisted extraction (UAE), and high hydrostatic pressure technique (HHP). Biorefinery methods for converting fruit and vegetable wastes into biofuels, such as anaerobic digestion (AD), fermentation, incineration, pyrolysis and gasification, and hydrothermal carbonization, are described. This study provides strategies for the processing of fruit and vegetable wastes using eco-friendly technologies and lays a foundation for the utilization of fruit and vegetable loss/waste and by-products in a sustainable system. Full article
Show Figures

Graphical abstract

48 pages, 7394 KiB  
Review
Analyzing the Quality Parameters of Apples by Spectroscopy from Vis/NIR to NIR Region: A Comprehensive Review
by Justyna Grabska, Krzysztof B. Beć, Nami Ueno and Christian W. Huck
Foods 2023, 12(10), 1946; https://doi.org/10.3390/foods12101946 - 10 May 2023
Cited by 27 | Viewed by 8061
Abstract
Spectroscopic methods deliver a valuable non-destructive analytical tool that provides simultaneous qualitative and quantitative characterization of various samples. Apples belong to the world’s most consumed crops and with the current challenges of climate change and human impacts on the environment, maintaining high-quality apple [...] Read more.
Spectroscopic methods deliver a valuable non-destructive analytical tool that provides simultaneous qualitative and quantitative characterization of various samples. Apples belong to the world’s most consumed crops and with the current challenges of climate change and human impacts on the environment, maintaining high-quality apple production has become critical. This review comprehensively analyzes the application of spectroscopy in near-infrared (NIR) and visible (Vis) regions, which not only show particular potential in evaluating the quality parameters of apples but also in optimizing their production and supply routines. This includes the assessment of the external and internal characteristics such as color, size, shape, surface defects, soluble solids content (SSC), total titratable acidity (TA), firmness, starch pattern index (SPI), total dry matter concentration (DM), and nutritional value. The review also summarizes various techniques and approaches used in Vis/NIR studies of apples, such as authenticity, origin, identification, adulteration, and quality control. Optical sensors and associated methods offer a wide suite of solutions readily addressing the main needs of the industry in practical routines as well, e.g., efficient sorting and grading of apples based on sweetness and other quality parameters, facilitating quality control throughout the production and supply chain. This review also evaluates ongoing development trends in the application of handheld and portable instruments operating in the Vis/NIR and NIR spectral regions for apple quality control. The use of these technologies can enhance apple crop quality, maintain competitiveness, and meet the demands of consumers, making them a crucial topic in the apple industry. The focal point of this review is placed on the literature published in the last five years, with the exceptions of seminal works that have played a critical role in shaping the field or representative studies that highlight the progress made in specific areas. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

17 pages, 3041 KiB  
Article
Hot-Air Drying Significantly Improves the Quality and Functional Activity of Orange Black Tea Compared with Traditional Sunlight Drying
by Zhi Yan, Zhihu Zhou, Yuanfang Jiao, Jiasheng Huang, Zhi Yu, De Zhang, Yuqiong Chen and Dejiang Ni
Foods 2023, 12(9), 1913; https://doi.org/10.3390/foods12091913 - 7 May 2023
Cited by 14 | Viewed by 2610
Abstract
The quality of traditional sunlight-dried orange black tea can be affected by weather variations, leading to its quality instability. This study investigated the feasibility of replacing sunlight drying with a new hot-air drying method in orange black tea production. The hot-air-dried orange black [...] Read more.
The quality of traditional sunlight-dried orange black tea can be affected by weather variations, leading to its quality instability. This study investigated the feasibility of replacing sunlight drying with a new hot-air drying method in orange black tea production. The hot-air-dried orange black tea showed better sensory quality than the traditional outdoor-sunlight-dried tea, with a harmonious fruity aroma and sweet–mellow taste. The content of polyphenols and other quality components in the peel and tea leaves was significantly higher after hot-air drying than after sunlight drying. GC-MS analysis showed that the total number of volatile components of hot-air-dried tea (3103.46 μg/g) was higher than that of sunlight-dried tea (3019.19 μg/g). Compared with sunlight-dried orange black tea, the hot-air-dried orange black tea showed higher total antioxidant capacity, with an increase of 21.5% (FRAP), 7.5% (DPPH), and 17.4% (ABTS), as well as an increase of 38.1% and 36.3% in the inhibitory capacity on α-glucosidase and α-amylase activities. Further analysis of the effects of different drying temperatures (40, 45, 50, and 60 °C) on the quality of orange black tea showed that the tea quality gradually decreased with the increase in drying temperature, with the most obvious decrease in the quality of orange black tea at the drying temperature of 60 °C. Low-temperature (40 °C) dried tea had better aroma coordination, higher fruit flavor, greater sweet–mellow taste, and higher retention of functional active substances in orange peel and black tea. In summary, compared with traditional sunlight drying, the hot-air drying method could reduce the drying time from 90 h to 20 h and improve the sensory quality and functional activity of orange black tea, suggesting it can replace the traditional sunlight drying process. This work is significant for improving the quality of orange black tea in practical production. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

18 pages, 1525 KiB  
Review
Metal Oxide Nanoparticles in Food Packaging and Their Influence on Human Health
by Mariana Stuparu-Cretu, Gheorghe Braniste, Gina-Aurora Necula, Silvius Stanciu, Dimitrie Stoica and Maricica Stoica
Foods 2023, 12(9), 1882; https://doi.org/10.3390/foods12091882 - 3 May 2023
Cited by 15 | Viewed by 3580
Abstract
It is a matter of common knowledge in the literature that engineered metal oxide nanoparticles have properties that are efficient for the design of innovative food/beverage packages. Although nanopackages have many benefits, there are circumstances when these materials are able to release nanoparticles [...] Read more.
It is a matter of common knowledge in the literature that engineered metal oxide nanoparticles have properties that are efficient for the design of innovative food/beverage packages. Although nanopackages have many benefits, there are circumstances when these materials are able to release nanoparticles into the food/beverage matrix. Once dispersed into food, engineered metal oxide nanoparticles travel through the gastrointestinal tract and subsequently enter human cells, where they display various behaviors influencing human health or wellbeing. This review article provides an insight into the antimicrobial mechanisms of metal oxide nanoparticles as essential for their benefits in food/beverage packaging and provides a discussion on the oral route of these nanoparticles from nanopackages to the human body. This contribution also highlights the potential toxicity of metal oxide nanoparticles for human health. The fact that only a small number of studies address the issue of food packaging based on engineered metal oxide nanoparticles should be particularly noted. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Graphical abstract

21 pages, 14216 KiB  
Review
Advances in the Potential Application of 3D Food Printing to Enhance Elderly Nutritional Dietary Intake
by Yisha Xie, Qingqing Liu, Wenwen Zhang, Feng Yang, Kangyu Zhao, Xiuping Dong, Sangeeta Prakash and Yongjun Yuan
Foods 2023, 12(9), 1842; https://doi.org/10.3390/foods12091842 - 28 Apr 2023
Cited by 21 | Viewed by 6777
Abstract
The contradiction between the growing demand from consumers for “nutrition & personalized” food and traditional industrialized food production has consistently been a problem in the elderly diet that researchers face and discuss. Three-dimensional (3D) food printing could potentially offer a solution to this [...] Read more.
The contradiction between the growing demand from consumers for “nutrition & personalized” food and traditional industrialized food production has consistently been a problem in the elderly diet that researchers face and discuss. Three-dimensional (3D) food printing could potentially offer a solution to this problem. This article reviews the recent research on 3D food printing, mainly including the use of different sources of protein to improve the performance of food ink printing, high internal phase emulsion or oleogels as a fat replacement and nutrition delivery system, and functional active ingredients and the nutrition delivery system. In our opinion, 3D food printing is crucial for improving the appetite and dietary intake of the elderly. The critical obstacles of 3D-printed food for the elderly regarding energy supplements, nutrition balance, and even the customization of the recipe in a meal are discussed in this paper. By combining big data and artificial intelligence technology with 3D food printing, comprehensive, personalized, and customized geriatric foods, according to the individual traits of each elderly consumer, will be realized via food raw materials-appearance-processing methods. This article provides a theoretical basis and development direction for future 3D food printing for the elderly. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

16 pages, 2340 KiB  
Article
Identification of Key Components Responsible for the Aromatic Quality of Jinmudan Black Tea by Means of Molecular Sensory Science
by Qingyang Wu, Ziwei Zhou, Yining Zhang, Huiqing Huang, Xiaoxi Ou and Yun Sun
Foods 2023, 12(9), 1794; https://doi.org/10.3390/foods12091794 - 26 Apr 2023
Cited by 19 | Viewed by 2306
Abstract
A fruity aroma is regarded as an important factor in the evaluation of black tea quality. However, the compounds contributing to a particularly fruity aroma still garner less attention. In this study, we aimed to identify the aroma-active compounds of the peach-like aroma [...] Read more.
A fruity aroma is regarded as an important factor in the evaluation of black tea quality. However, the compounds contributing to a particularly fruity aroma still garner less attention. In this study, we aimed to identify the aroma-active compounds of the peach-like aroma of Jinmudan black tea (JBT). We used gas chromatography–mass spectrometry (GC-MS) to reveal the profile of the chemical compounds integrated into JBT and identified terpenoids, heterocyclic, and esters that contribute to its floral and fruity aroma. Under the PCA and PLS-DA modes, JBT and Fuyun NO. 6 black tea (FBT) can be divided into two classes, respectively (class 1 and class 2); several compounds, including indole, methyl salicylate, and δ-decalactone, have a higher VIP value (Variable Importance in Projection), and it has been found that δ-decalactone was the characteristic aromatic compound of peach fruit. Gas chromatography–olfactometry (GC-O) and the odor activity value (OAV) indicated that, in JBT, linalool, phenylacetaldehyde, and δ-decalactone could be considered aroma-active compounds (AACs). However, in FBT, the high content of heterocyclic compounds contribute to its caramel-like aroma. As for the biochemical compounds measurement, JBT has a higher content of theaflavins (TFs), thearubigins (TRs), and flavonoids. These results provide a theoretical basis for the quality and processing improvement in JBT. Full article
(This article belongs to the Section Sensory and Consumer Sciences)
Show Figures

Figure 1

18 pages, 696 KiB  
Review
A Review of Ketogenic Dietary Therapies for Epilepsy and Neurological Diseases: A Proposal to Implement an Adapted Model to Include Healthy Mediterranean Products
by Cinzia Ferraris, Monica Guglielmetti, Lenycia de Cassya Lopes Neri, Sabika Allehdan, Jamila Mohammed Mohsin Albasara, Hajar Hussain Fareed Alawadhi, Claudia Trentani, Simone Perna and Anna Tagliabue
Foods 2023, 12(9), 1743; https://doi.org/10.3390/foods12091743 - 22 Apr 2023
Cited by 8 | Viewed by 5078
Abstract
Based on the growing evidence of the therapeutic role of high-fat ketogenic dietary therapies (KDTs) for neurological diseases and on the protective effect of the Mediterranean diet (MD), it could be important to delineate a Mediterranean version of KDTs in order to maintain [...] Read more.
Based on the growing evidence of the therapeutic role of high-fat ketogenic dietary therapies (KDTs) for neurological diseases and on the protective effect of the Mediterranean diet (MD), it could be important to delineate a Mediterranean version of KDTs in order to maintain a high ketogenic ratio, and thus avoid side effects, especially in patients requiring long-term treatment. This narrative review aims to explore the existing literature on this topic and to elaborate recommendations for a Mediterranean version of the KDTs. It presents practical suggestions based on MD principles, which consist of key elements for the selection of foods (both from quantitative and qualitative prospective), and indications of the relative proportions and consumption frequency of the main food groups that constitute the Mediterranean version of the KDTs. We suggest the adoption of a Mediterranean version of ketogenic diets in order to benefit from the multiple protective effects of the MD. This translates to: (i) a preferential use of olive oil and vegetable fat sources in general; (ii) the limitation of foods rich in saturated fatty acids; (iii) the encouragement of high biological value protein sources; (iv) inserting fruit and vegetables at every meal possible, varying their choices according to seasonality. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

18 pages, 348 KiB  
Review
A Prospective Review of the Sensory Properties of Plant-Based Dairy and Meat Alternatives with a Focus on Texture
by Rachael Moss, Jeanne LeBlanc, Mackenzie Gorman, Christopher Ritchie, Lisa Duizer and Matthew B. McSweeney
Foods 2023, 12(8), 1709; https://doi.org/10.3390/foods12081709 - 20 Apr 2023
Cited by 29 | Viewed by 9606
Abstract
Consumers are interested in plant-based alternatives (PBAs) to dairy and meat products, and as such, the food industry is responding by developing a variety of different plant-based food items. For these products to be successful, their textural properties must be acceptable to consumers. [...] Read more.
Consumers are interested in plant-based alternatives (PBAs) to dairy and meat products, and as such, the food industry is responding by developing a variety of different plant-based food items. For these products to be successful, their textural properties must be acceptable to consumers. These textural properties need to be thoroughly investigated using different sensory methodologies to ensure consumer satisfaction. This review paper aims to summarize the various textural properties of PBAs, as well as to discuss the sensory methodologies that can be used in future studies of PBAs. PBAs to meat have been formulated using a variety of production technologies, but these products still have textural properties that differ from animal-based products. Most dairy and meat alternatives attempt to mimic their conventional counterparts, yet sensory trials rarely compare the PBAs to their meat or dairy counterparts. While most studies rely on consumers to investigate the acceptability of their products’ textural properties, future studies should include dynamic sensory methodologies, and attribute diagnostics questions to help product developers characterize the key sensory properties of their products. Studies should also indicate whether the product is meant to mimic a conventional product and should define the target consumer segment (ex. flexitarian, vegan) for the product. The importance of textural properties to PBAs is repeatedly mentioned in the literature and thus should be thoroughly investigated using robust sensory methodologies. Full article
(This article belongs to the Special Issue Sensory Analysis of Plant-Based Products)
23 pages, 1624 KiB  
Article
Habits, Health and Environment in the Purchase of Bakery Products: Consumption Preferences and Sustainable Inclinations before and during COVID-19
by Agata Nicolosi, Valentina Rosa Laganà and Donatella Di Gregorio
Foods 2023, 12(8), 1661; https://doi.org/10.3390/foods12081661 - 16 Apr 2023
Cited by 20 | Viewed by 8192
Abstract
The aim of the research is to investigate whether purchasing decisions about bakery products (bread, snacks and biscuits) are influenced by concerns about health, climate change, biodiversity loss and food waste. The exploratory survey was carried out in two successive moments before and [...] Read more.
The aim of the research is to investigate whether purchasing decisions about bakery products (bread, snacks and biscuits) are influenced by concerns about health, climate change, biodiversity loss and food waste. The exploratory survey was carried out in two successive moments before and during the health emergency from COVID-19. Before the health emergency, face-to-face interviews were carried out using a structured questionnaire. Data were analyzed by factor analysis, reliability tests and descriptive analysis. Structural equation modeling (SEM) was employed to test the research hypotheses. The results of the modeling analysis of the structural equations highlighted that health and the environment represent an important background in the consumer experience of the respondents and influence the attitude and intention to purchase safe and environmentally friendly bakery products. Furthermore, the results suggest that informed, modern and aware consumers have direct and indirect effects on the intentions to adopt sustainable attitudes. On the contrary, the perception relating to the shops where consumers buy bakery products does not always show a significant influence on the propensity for sustainability. During the health emergency, the interviews were conducted online. Families confined to their homes, buying less in stores, have prepared many baked goods manually at home. The descriptive analysis of this group of consumers shows a growing attention to points of sale and the tendency to use online shopping. Furthermore, the changes in the type of purchases and the importance attributed to the need to reduce food waste emerge. Full article
(This article belongs to the Special Issue Advances in the Quality of the Food Supply Chain for Bakery Products)
Show Figures

Figure 1

21 pages, 2495 KiB  
Article
Characterization of Aroma Active Compound Production during Kombucha Fermentation: Towards the Control of Sensory Profiles
by Sarah Suffys, Gaëtan Richard, Clément Burgeon, Pierre-Yves Werrie, Eric Haubruge, Marie-Laure Fauconnier and Dorothée Goffin
Foods 2023, 12(8), 1657; https://doi.org/10.3390/foods12081657 - 15 Apr 2023
Cited by 15 | Viewed by 4045
Abstract
Since the sensorial profile is the cornerstone for the development of kombucha as a beverage with mass market appeal, advanced analytical tools are needed to gain a better understanding of the kinetics of aromatic compounds during the fermentation process to control the sensory [...] Read more.
Since the sensorial profile is the cornerstone for the development of kombucha as a beverage with mass market appeal, advanced analytical tools are needed to gain a better understanding of the kinetics of aromatic compounds during the fermentation process to control the sensory profiles of the drink. The kinetics of volatile organic compounds (VOCs) was determined using stir bar sorptive extraction—gas chromatography—mass spectrometry, and odor-active compounds were considered to estimate consumer perception. A total of 87 VOCs were detected in kombucha during the fermentation stages. The synthesis of mainly phenethyl alcohol and isoamyl alcohol probably by Saccharomyces genus led to ester formation. Moreover, the terpene synthesis occurring at the beginning of fermentation (Δ-3-carene, α-phellandrene, γ-terpinene, m- and p-cymene) could be related to yeast activity as well. Principal component analysis identified classes that allowed the major variability explanation, which are carboxylic acids, alcohols, and terpenes. The aromatic analysis accounted for 17 aroma-active compounds. These changes in the evolution of VOCs led to flavor variations: from citrus-floral-sweet notes (geraniol and linalool domination), and fermentation brought intense citrus-herbal-lavender-bergamot notes (α-farnesene). Finally, sweet-floral-bready-honey notes dominated the kombucha flavor (2-phenylethanol). As this study allowed to estimate kombucha sensory profiles, an insight for the development of new drinks by controlling the fermentation process was suggested. Such a methodology should allow a better control and optimization of their sensory profile, which could in turn lead to greater consumer acceptance. Full article
(This article belongs to the Special Issue Changes of Volatile Flavor Compounds during the Fermentation in Foods)
Show Figures

Graphical abstract

25 pages, 7174 KiB  
Article
Physico-Chemical Properties and Texturization of Pea, Wheat and Soy Proteins Using Extrusion and Their Application in Plant-Based Meat
by Delaney Webb, Hulya Dogan, Yonghui Li and Sajid Alavi
Foods 2023, 12(8), 1586; https://doi.org/10.3390/foods12081586 - 8 Apr 2023
Cited by 22 | Viewed by 5825
Abstract
Four commercial pea protein isolates were analyzed for their physico-chemical properties including water absorption capacity (WAC), least gelation concentration (LGC), rapid visco analyzer (RVA) pasting, differential scanning calorimetry (DSC)-based heat-induced denaturation and phase transition (PTA) flow temperature. The proteins were also extruded using [...] Read more.
Four commercial pea protein isolates were analyzed for their physico-chemical properties including water absorption capacity (WAC), least gelation concentration (LGC), rapid visco analyzer (RVA) pasting, differential scanning calorimetry (DSC)-based heat-induced denaturation and phase transition (PTA) flow temperature. The proteins were also extruded using pilot-scale twin-screw extrusion with relatively low process moisture to create texturized plant-based meat analog products. Wheat-gluten- and soy-protein-based formulations were similarly analyzed, with the intent to study difference between protein types (pea, wheat and soy). Proteins with a high WAC also had cold-swelling properties, high LGC, low PTA flow temperature and were most soluble in non-reducing SDS-PAGE. These proteins had the highest cross-linking potential, required the least specific mechanical energy during extrusion and led to a porous and less layered texturized internal structure. The formulation containing soy protein isolate and most pea proteins were in this category, although there were notable differences within the latter depending on the commercial source. On the other hand, soy-protein-concentrate- and wheat-gluten-based formulations had almost contrary functional properties and extrusion characteristics, with a dense, layered extrudate structure due to their heat-swelling and/or low cold-swelling characteristics. The textural properties (hardness, chewiness and springiness) of the hydrated ground product and patties also varied depending on protein functionality. With a plethora of plant protein options for texturization, understanding and relating the differences in raw material properties to the corresponding extruded product quality can help tailor formulations and accelerate the development and design of plant-based meat with the desired textural qualities. Full article
(This article belongs to the Special Issue Functionality and Food Applications of Plant Proteins)
Show Figures

Figure 1

20 pages, 55995 KiB  
Article
Development and Characterization of an Edible Zein/Shellac Composite Film Loaded with Curcumin
by Tao Han, Wenxue Chen, Qiuping Zhong, Weijun Chen, Yaping Xu, Jiawu Wu and Haiming Chen
Foods 2023, 12(8), 1577; https://doi.org/10.3390/foods12081577 - 7 Apr 2023
Cited by 16 | Viewed by 3319
Abstract
The development of functional edible films is promising for the food industry, and improving the water barrier of edible films has been a research challenge in recent years. In this study, curcumin (Cur) was added to zein (Z) and shellac (S) to prepare [...] Read more.
The development of functional edible films is promising for the food industry, and improving the water barrier of edible films has been a research challenge in recent years. In this study, curcumin (Cur) was added to zein (Z) and shellac (S) to prepare an edible composite film with a strong water barrier and antioxidant properties. The addition of curcumin significantly reduced the water vapor permeability (WVP), water solubility (WS), and elongation at break (EB), and it clearly improved the tensile strength (TS), water contact angle (WCA), and optical properties of the composite film. The ZS–Cur films were characterized by SEM, FT-IR, XRD, DSC, and TGA; the results indicated that hydrogen bonds were formed among the curcumin, zein, and shellac, which changed the microstructure and improved the thermal stability of the film. A test of curcumin release behavior showed controlled release of curcumin from the film matrix. ZS–Cur films displayed remarkable pH responsiveness, strong antioxidant properties, and inhibitory effects on E. coli. Therefore, the insoluble active food packaging prepared in this study provides a new strategy for the development of functional edible films and also provides a possibility for the application of edible films to extend the shelf life of fresh food. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

34 pages, 1491 KiB  
Review
Extraction, Composition, Functionality, and Utilization of Brewer’s Spent Grain Protein in Food Formulations
by Bhanu Devnani, Galo Chuchuca Moran and Lutz Grossmann
Foods 2023, 12(7), 1543; https://doi.org/10.3390/foods12071543 - 5 Apr 2023
Cited by 22 | Viewed by 8242
Abstract
In recent years, brewer’s spent grain (BSG) has gained attention as a plant-based protein source because it occurs in large quantities as a by-product of beer brewing. BSG can contribute to future food requirements and support the development of a circular economy. In [...] Read more.
In recent years, brewer’s spent grain (BSG) has gained attention as a plant-based protein source because it occurs in large quantities as a by-product of beer brewing. BSG can contribute to future food requirements and support the development of a circular economy. In light of the dynamic developments in this area, this review aims to understand the proteins present in BSG, and the effect of extraction techniques and conditions on the composition, physicochemical, and techno-functional properties of the obtained protein extracts. The water-insoluble hordeins and glutelins form the major protein fractions in BSG. Depending on the beer brewing process, the extraction technique, and conditions, the BSG protein isolates predominantly contain B, C, and ϒ hordeins, and exhibit a broad molecular weight distribution ranging between <5 kDa and >250 kDa. While the BSG isolates obtained through chemical extraction methods seem promising to obtain gelled food products, physical and enzymatic modifications of BSG proteins through ultrasound and proteolytic hydrolysis offer an effective way to produce soluble and functional protein isolates with good emulsifying and foaming capabilities. Specifically tailored protein extracts to suit different applications can thus be obtained from BSG, highlighting that it is a highly valuable protein source. Full article
Show Figures

Figure 1

20 pages, 3560 KiB  
Article
Microbial and Biochemical Profile of Different Types of Greek Table Olives
by Niki Mougiou, Antiopi Tsoureki, Spyros Didos, Ioanna Bouzouka, Sofia Michailidou and Anagnostis Argiriou
Foods 2023, 12(7), 1527; https://doi.org/10.3390/foods12071527 - 4 Apr 2023
Cited by 11 | Viewed by 2678
Abstract
Analysis of table olives microbiome using next-generation sequencing has enriched the available information about the microbial community composition of this popular fermented food. In this study, 16S and 18S rRNA sequencing was performed on table olives of five Greek popular cultivars, Halkidikis, Thassou, [...] Read more.
Analysis of table olives microbiome using next-generation sequencing has enriched the available information about the microbial community composition of this popular fermented food. In this study, 16S and 18S rRNA sequencing was performed on table olives of five Greek popular cultivars, Halkidikis, Thassou, Kalamon, Amfissis, and Konservolia, fermented either by Greek style (in brine or salt-drying) or by Spanish style, in order to evaluate their microbial communities. Moreover, analytical methods were used to evaluate their biochemical properties. The prevailing bacterial species of all olives belonged to Lactobacillaceae, Leuconostocaceae, and Erwiniaceae families, while the most abundant yeasts were of the Pichiaceae family. Principal coordinates analysis showed a clustering of samples cured by salt-drying and of samples stored in brine, regardless of their cultivar. The biochemical evaluation of total phenol content, antioxidant activity, hydroxytyrosol, oleuropein, oleocanthal, and oleacein showed that salt-dried olives had low amounts of hydroxytyrosol, while Spanish-style green olives had the highest amounts of oleocanthal. All the other values exhibited various patterns, implying that more than one factor affects the biochemical identity of the final product. The protocols applied in this study can provide useful insights for the final product, both for the producers and the consumers. Full article
(This article belongs to the Special Issue New Insight in Microbial Diversity and Genomic in Foods)
Show Figures

Figure 1

19 pages, 4332 KiB  
Article
Characterization of the Biofilms Formed by Histamine-Producing Lentilactobacillus parabuchneri Strains in the Dairy Environment
by Agustina Sarquis, Diellza Bajrami, Boris Mizaikoff, Victor Ladero, Miguel A. Alvarez and Maria Fernandez
Foods 2023, 12(7), 1503; https://doi.org/10.3390/foods12071503 - 3 Apr 2023
Cited by 8 | Viewed by 8643
Abstract
Lentilactobacillus parabuchneri, a lactic acid bacterium, is largely responsible for the production and accumulation of histamine, a toxic biogenic amine, in cheese. L. parabuchneri strains can form biofilms on the surface of industry equipment. Since they are resistant to cleaning and disinfection, [...] Read more.
Lentilactobacillus parabuchneri, a lactic acid bacterium, is largely responsible for the production and accumulation of histamine, a toxic biogenic amine, in cheese. L. parabuchneri strains can form biofilms on the surface of industry equipment. Since they are resistant to cleaning and disinfection, they may act as reservoirs of histamine-producing contaminants in cheese. The aim of this study was to investigate the biofilm-producing capacity of L. parabuchneri strains. Using the crystal violet technique, the strains were first categorized as weak, moderate or strong biofilm producers. Analysis of their biofilm matrices revealed them to be mainly composed of proteins. Two strains of each category were then selected to analyze the influence on the biofilm-forming capacity of temperature, pH, carbon source, NaCl concentration and surface material (i.e., focusing on those used in the dairy industry). In general, low temperature (8 °C), high NaCl concentrations (2–3% w/v) and neutral pH (pH 6) prevented biofilm formation. All strains were found to adhere easily to beech wood. These findings increase knowledge of the biofilm-forming capacity of histamine-producing L. parabuchneri strains and how their formation may be prevented for improving food safety. Full article
Show Figures

Graphical abstract

23 pages, 872 KiB  
Review
Emulsion-Based Delivery Systems to Enhance the Functionality of Bioactive Compounds: Towards the Use of Ingredients from Natural, Sustainable Sources
by Júlia Teixé-Roig, Gemma Oms-Oliu, Isabel Odriozola-Serrano and Olga Martín-Belloso
Foods 2023, 12(7), 1502; https://doi.org/10.3390/foods12071502 - 3 Apr 2023
Cited by 18 | Viewed by 5080
Abstract
In recent years, the trend in the population towards consuming more natural and sustainable foods has increased significantly. This claim has led to the search for new sources of bioactive compounds and extraction methods that have less impact on the environment. Moreover, the [...] Read more.
In recent years, the trend in the population towards consuming more natural and sustainable foods has increased significantly. This claim has led to the search for new sources of bioactive compounds and extraction methods that have less impact on the environment. Moreover, the formulation of systems to protect these compounds is also focusing on the use of ingredients of natural origin. This article reviews novel, natural alternative sources of bioactive compounds with a positive impact on sustainability. In addition, it also contains information on the most recent studies based on the use of natural (especially from plants) emulsifiers in the design of emulsion-based delivery systems to protect bioactive compounds. The properties of these natural-based emulsion-delivery systems, as well as their functionality, including in vitro and in vivo studies, are also discussed. This review provides relevant information on the latest advances in the development of emulsion delivery systems based on ingredients from sustainable natural sources. Full article
(This article belongs to the Topic Innovative Food Processing Technologies—2nd Volume)
Show Figures

Graphical abstract

18 pages, 775 KiB  
Article
Phytochemicals Determination, and Antioxidant, Antimicrobial, Anti-Inflammatory and Anticancer Activities of Blackberry Fruits
by Lidia Gil-Martínez, Nuria Mut-Salud, José Antonio Ruiz-García, Ana Falcón-Piñeiro, Mònica Maijó-Ferré, Alberto Baños, José Manuel De la Torre-Ramírez, Enrique Guillamón, Vito Verardo and Ana María Gómez-Caravaca
Foods 2023, 12(7), 1505; https://doi.org/10.3390/foods12071505 - 3 Apr 2023
Cited by 24 | Viewed by 4045
Abstract
A comprehensive characterization of the phytochemicals present in a blackberry fruit extract by HPLC-TOF-MS has been carried out. The main compounds in the extract were ursane-type terpenoids which, along with phenolic compounds, may be responsible for the bioactivity of the extract. In vitro [...] Read more.
A comprehensive characterization of the phytochemicals present in a blackberry fruit extract by HPLC-TOF-MS has been carried out. The main compounds in the extract were ursane-type terpenoids which, along with phenolic compounds, may be responsible for the bioactivity of the extract. In vitro antioxidant capacity was assessed through Folin–Ciocalteu (31.05 ± 4.9 mg GAE/g d.w.), FRAP (637.8 ± 3.2 μmol Fe2+/g d.w.), DPPH (IC50 97.1 ± 2.4 μg d.w./mL) and TEAC (576.6 ± 8.3 μmol TE/g d.w.) assays. Furthermore, the extract exerted remarkable effects on in vitro cellular antioxidant activity in HUVEC cells at a concentration of 5 mg/mL. Antimicrobial activity of the extract was also tested. Most sensible microorganisms were Gram-positive bacteria, such as E. faecalis, B. cereus and Gram-negative E. coli (MBC of 12.5 mg/mL). IC50 values against colon tumoral cells HT-29 (4.9 ± 0.2 mg/mL), T-84 (5.9 ± 0.3 mg/mL) and SW-837 (5.9 ± 0.2 mg/mL) were also obtained. Furthermore, blackberry extract demonstrated anti-inflammatory activity inhibiting the secretion of pro-inflammatory IL-8 cytokines in two cellular models (HT-29 and T-84) in a concentration-dependent manner. These results support that blackberry fruits are an interesting source of bioactive compounds that may be useful in the prevention and treatment of different diseases, mainly related to oxidative stress. Full article
(This article belongs to the Special Issue Nutrient-Rich Foods for a Healthy Diet, Volume II)
Show Figures

Figure 1

18 pages, 1003 KiB  
Article
Ultra-Processed Foods in the Mediterranean Diet according to the NOVA Classification System; A Food Level Analysis of Branded Foods in Greece
by Alexandra Katidi, Antonis Vlassopoulos, Stamoulis Noutsos and Maria Kapsokefalou
Foods 2023, 12(7), 1520; https://doi.org/10.3390/foods12071520 - 3 Apr 2023
Cited by 15 | Viewed by 4740
Abstract
While the Mediterranean diet (MD) is championed as a healthy and sustainable dietary pattern, the NOVA classification is discussed as a tool to identify ultra-processed foods and further specify healthy food choices. We tested whether the NOVA System aligns with the MD recommendations [...] Read more.
While the Mediterranean diet (MD) is championed as a healthy and sustainable dietary pattern, the NOVA classification is discussed as a tool to identify ultra-processed foods and further specify healthy food choices. We tested whether the NOVA System aligns with the MD recommendations as presented in the MD pyramids. Foods from the Greek branded food composition database, HelTH, (n = 4581) were scored according to NOVA and assigned to the tiers of the traditional and/or sustainable MD pyramids. Nutritional quality was measured as nutrient content and Nutri-Score grades. NOVA identified 70.2% of all foods as UPFs, and 58.7% or 41.0% of foods included in the sustainable and the traditional MD, respectively. Although foods at the top of the pyramids were mostly (>80%) UPFs, NOVA identified > 50% of foods in the MD base as UPFs. Only 22–39% of foods in the MD base were not UPFs and of high nutritional quality (Nutri-Score A-B). NOVA has low discriminatory capacity across the MD tiers, and it restricts food choices to <30% of foods currently available in supermarkets and <60% within the recommended MD tiers. Therefore, the NOVA classification cannot always identify suitable food choices under the MD pyramid in the modern packaged food environment. Full article
(This article belongs to the Special Issue Mediterranean Diet: Promoting Health and Sustainability)
Show Figures

Figure 1

15 pages, 3749 KiB  
Article
Optimization of Soybean Protein Extraction with Ammonium Hydroxide (NH4OH) Using Response Surface Methodology
by Ibrahim Bello, Adewale Adeniyi, Taofeek Mukaila and Ademola Hammed
Foods 2023, 12(7), 1515; https://doi.org/10.3390/foods12071515 - 3 Apr 2023
Cited by 12 | Viewed by 4151
Abstract
Plants have been recognized as renewable and sustainable sources of proteins. However, plant protein extraction is challenged by the plant’s recalcitrant cell wall. The conventional extraction methods make use of non-reusable strong alkali chemicals in protein-denaturing extraction conditions. In this study, soy protein [...] Read more.
Plants have been recognized as renewable and sustainable sources of proteins. However, plant protein extraction is challenged by the plant’s recalcitrant cell wall. The conventional extraction methods make use of non-reusable strong alkali chemicals in protein-denaturing extraction conditions. In this study, soy protein was extracted using NH4OH, a weak, recoverable, and reusable alkali. The extraction conditions were optimized using response surface methodology (RSM). A central composite design (CCD) with four independent variables: temperature (25, 40, 55, 70, and 85 °C); NH4OH concentration (0.5, 1, and 1.5%); extraction time (6, 12, 18, and 24 h) and solvent ratio (1:5, 1:10, 1:15 and 1:20 w/v) were used to study the response variables (protein yield and amine concentration). Amine concentration indicates the extent of protein hydrolysis. The RSM model equation for the independent and response variables was computed and used to create the contour plots. A predicted yield of 64.89% protein and 0.19 mM amine revealed a multiple R-squared value of 0.83 and 0.78, respectively. The optimum conditions to obtain the maximum protein yield (65.66%) with the least amine concentration (0.14 Mm) were obtained with 0.5% NH4OH concentration, 12 h extraction time, and a 1:10 (w/v) solvent ratio at 52.5 °C. The findings suggest that NH4OH is suitable to extract soybean protein with little or no impact on protein denaturation. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

19 pages, 13622 KiB  
Article
Chitosan Coating Functionalized with Flaxseed Oil and Green Tea Extract as a Bio-Based Solution for Beef Preservation
by Cíntia G. Mendes, Joana T. Martins, Fernanda L. Lüdtke, Ana Geraldo, Alfredo Pereira, António A. Vicente and Jorge M. Vieira
Foods 2023, 12(7), 1447; https://doi.org/10.3390/foods12071447 - 29 Mar 2023
Cited by 9 | Viewed by 2582
Abstract
Ecological and safe packaging solutions arise as pivotal points in the development of an integrated system for sustainable meat production. The aim of this study was to assess the effect of a combined chitosan (Ch) + green tea extract (GTE) + essential oil [...] Read more.
Ecological and safe packaging solutions arise as pivotal points in the development of an integrated system for sustainable meat production. The aim of this study was to assess the effect of a combined chitosan (Ch) + green tea extract (GTE) + essential oil (thyme oil, TO; flaxseed oil, FO; or oregano oil, OO) coating on the safety and quality of vacuum-packaged beef during storage at 4 °C. An optimized bio-based coating formulation was selected (2% Ch + 2% GTE + 0.1% FO) to be applied to three fresh beef cuts (shoulder, Sh; knuckle, Kn; Striploin, St) based on its pH (5.8 ± 0.1), contact angle (22.3 ± 0.4°) and rheological parameters (viscosity = 0.05 Pa.s at shear rate > 20 s−1). Shelf-life analysis showed that the Ch–GTE–FO coating delayed lipid oxidation and reduced total viable counts (TVC) and Enterobacteriaceae growth compared with uncoated beef samples over five days. In addition, Ch–GTE–FO coating decreased total color changes of beef samples (e.g., ∆E* = 9.84 and 3.94, for non-coated and coated Kn samples, respectively) for up to five days. The original textural parameters (hardness, adhesiveness and springiness) of beef cuts were maintained during storage when Ch–GTE–FO coating was applied. Based on the physicochemical and microbial characterization results, the combination of the Ch–GTE–FO coating developed was effective in preserving the quality of fresh beef cuts during refrigerated storage along with vacuum packaging. Full article
Show Figures

Graphical abstract

16 pages, 1194 KiB  
Article
Effects of Protein Components on the Chemical Composition and Sensory Properties of Millet Huangjiu (Chinese Millet Wine)
by Chenguang Zhou, Yaojie Zhou, Tianrui Liu, Bin Li, Yuqian Hu, Xiaodong Zhai, Min Zuo, Siyao Liu and Zhen Yang
Foods 2023, 12(7), 1458; https://doi.org/10.3390/foods12071458 - 29 Mar 2023
Cited by 9 | Viewed by 2079
Abstract
Millet Huangjiu is a national alcoholic beverage in China. The quality of Chinese millet Huangjiu is significantly influenced by the protein components in the raw materials of millet. Therefore, in this study, the impact of different protein components on the quality of millet [...] Read more.
Millet Huangjiu is a national alcoholic beverage in China. The quality of Chinese millet Huangjiu is significantly influenced by the protein components in the raw materials of millet. Therefore, in this study, the impact of different protein components on the quality of millet Huangjiu was investigated by adding exogenous proteins glutelin and albumin either individually or in combination. The study commenced with the determination of the oenological parameters of different millet Huangjiu samples, followed by the assessment of free amino acids and organic acids. In addition, the volatile profiles of millet Huangjiu were characterized by employing HS-SPME-GC/MS. Finally, a sensory evaluation was conducted to evaluate the overall aroma profiles of millet Huangjiu. The results showed that adding glutelin significantly increased the contents of total soluble solids, amino acid nitrogen, and ethanol in millet Huangjiu by 32.2%, 41.5%, and 17.7%, respectively. Furthermore, the fortification of the fermentation substrate with glutelin protein was found to significantly enhance the umami (aspartic and glutamic acids) and sweet-tasting (alanine and proline) amino acids in the final product. Gas chromatography-quadrupole mass spectrometry coupled with multivariate statistical analysis revealed distinct impacts of protein composition on the volatile organic compound (VOC) profiles of millet Huangjiu. Excessive glutelin led to an over-accumulation of alcohol aroma, while the addition of albumin protein proved to be a viable approach for enhancing the ester and fruity fragrances. Sensory analysis suggested that the proper amount of protein fortification using a Glu + Alb combination could enhance the sensory attributes of millet Huangjiu while maintaining its unique flavor characteristics. These findings suggest that reasonable adjustment of the glutelin and albumin contents in millet could effectively regulate the chemical composition and improve the sensory quality of millet Huangjiu. Full article
Show Figures

Figure 1

26 pages, 1214 KiB  
Review
Synergistic Effect of Combination of Various Microbial Hurdles in the Biopreservation of Meat and Meat Products—Systematic Review
by Marcelina Karbowiak, Piotr Szymański and Dorota Zielińska
Foods 2023, 12(7), 1430; https://doi.org/10.3390/foods12071430 - 28 Mar 2023
Cited by 7 | Viewed by 3667
Abstract
The control of spoilage microorganisms and foodborne pathogens in meat and meat products is a challenge for food producers, which potentially can be overcome through the combined use of biopreservatives, in the form of a mix of various microbial hurdles. The objective of [...] Read more.
The control of spoilage microorganisms and foodborne pathogens in meat and meat products is a challenge for food producers, which potentially can be overcome through the combined use of biopreservatives, in the form of a mix of various microbial hurdles. The objective of this work is to systematically review the available knowledge to reveal whether various microbial hurdles applied in combination can pose an effective decontamination strategy for meat and meat products. PubMed, Web of Science, and Scopus were utilized to identify and evaluate studies through February 2023. Search results yielded 45 articles that met the inclusion criteria. The most common meat biopreservatives were combinations of various starter cultures (24 studies), and the use of mixtures of non-starter protective cultures (13 studies). In addition, studies evaluating antimicrobial combinations of bacteriocins with other bacteriocins, BLIS (bacteriocin-like inhibitory substance), non-starter protective cultures, reuterin, and S-layer protein were included in the review (7 studies). In one study, a biopreservative mixture comprised antifungal protein PgAFP and protective cultures. The literature search revealed a positive effect, in most of the included studies, of the combination of various bacterial antimicrobials in inhibiting the growth of pathogenic and spoilage bacteria in meat products. The main advantages of the synergistic effect achieved were: (1) the induction of a stronger antimicrobial effect, (2) the extension of the spectrum of antibacterial action, and (3) the prevention of the regrowth of undesirable microorganisms. Although further research is required in this area, the combination of various microbial hurdles can pose a green and valuable biopreservation approach for maintaining the safety and quality of meat products. Full article
(This article belongs to the Special Issue Meat Microflora and the Quality of Meat Products)
Show Figures

Figure 1

22 pages, 2329 KiB  
Article
Manufacture of a Potential Antifungal Ingredient Using Lactic Acid Bacteria from Dry-Cured Sausages
by Tiago de Melo Nazareth, Jorge Calpe, Carlos Luz, Jordi Mañes and Giuseppe Meca
Foods 2023, 12(7), 1427; https://doi.org/10.3390/foods12071427 - 27 Mar 2023
Cited by 10 | Viewed by 2466
Abstract
The growing interest in functional foods has fueled the hunt for novel lactic acid bacteria (LAB) found in natural sources such as fermented foods. Thus, the aims of this study were to isolate, identify, characterize, and quantify LAB’s antifungal activity and formulate an [...] Read more.
The growing interest in functional foods has fueled the hunt for novel lactic acid bacteria (LAB) found in natural sources such as fermented foods. Thus, the aims of this study were to isolate, identify, characterize, and quantify LAB’s antifungal activity and formulate an ingredient for meat product applications. The overlay method performed a logical initial screening by assessing isolated bacteria’s antifungal activity in vitro. Next, the antifungal activity of the fermented bacteria-free supernatants (BFS) was evaluated by agar diffusion assay against six toxigenic fungi. Subsequently, the antifungal activity of the most antifungal BFS was quantified using the microdilution method in 96-well microplates. The meat broth that showed higher antifungal activity was selected to elaborate on an ingredient to be applied to meat products. Finally, antifungal compounds such as organic acids, phenolic acids, and volatile organic compounds were identified in the chosen-fermented meat broth. The most promising biological candidates belonged to the Lactiplantibacillus plantarum and Pediococcus pentosaceus. P. pentosaceus C15 distinguished from other bacteria by the production of antifungal compounds such as nonanoic acid and phenyl ethyl alcohol, as well as the higher production of lactic and acetic acid. Full article
Show Figures

Figure 1

15 pages, 325 KiB  
Article
Determination by ICP-MS of Essential and Toxic Trace Elements in Gums and Carrageenans Used as Food Additives Commercially Available in the Portuguese Market
by Rui Azevedo, Ana Rafaela Oliveira, Agostinho Almeida and Lígia Rebelo Gomes
Foods 2023, 12(7), 1408; https://doi.org/10.3390/foods12071408 - 26 Mar 2023
Cited by 9 | Viewed by 3106
Abstract
Gums and carrageenans are food additives widely used in food preparations to improve texture and as viscosifiers. Although they are typically added in small amounts, nowadays people tend to use more and more pre-prepared food. In this work, the content of a wide [...] Read more.
Gums and carrageenans are food additives widely used in food preparations to improve texture and as viscosifiers. Although they are typically added in small amounts, nowadays people tend to use more and more pre-prepared food. In this work, the content of a wide panel of trace elements in commercial products were analyzed. Carrageenans and gums (n = 13) were purchased in the Portuguese market and were from European suppliers. Samples were solubilized by closed-vessel microwave-assisted acid digestion and analyzed by ICP-MS. Globally, the content of essential trace elements decreased in the following order: Fe (on average, on the order of several tens of µg/g) > Mn > Zn > Cr > Cu > Co > Se > Mo (typically < 0.1 µg/g), while the content of non-essential/toxic trace elements decreased in the following order: Al > Sr > Rb > As > Li > Cd > Pb > Hg. The consumption of these food additives can significantly contribute to the daily requirements of some essential trace elements, namely Cr and Mo. The toxic trace elements Cd, As, Pb, and Hg were below the EU regulatory limits in all analyzed samples. Additional research is needed to define the potential risk of introducing toxic trace elements into food products through the use of these additives. Full article
(This article belongs to the Section Food Quality and Safety)
25 pages, 763 KiB  
Article
Effects of Marinades Prepared from Food Industry By-Products on Quality and Biosafety Parameters of Lamb Meat
by Paulina Zavistanaviciute, Jolita Klementaviciute, Dovile Klupsaite, Egle Zokaityte, Modestas Ruzauskas, Vilija Buckiuniene, Pranas Viskelis and Elena Bartkiene
Foods 2023, 12(7), 1391; https://doi.org/10.3390/foods12071391 - 24 Mar 2023
Cited by 9 | Viewed by 2676
Abstract
This study aimed to develop marinade formulas based on by-products from the dairy, berry, and fruit industries and apply them to lamb meat (LM) treatments to improve the safety and quality characteristics of the meat. To fulfil this aim, six marinade (M) formulations [...] Read more.
This study aimed to develop marinade formulas based on by-products from the dairy, berry, and fruit industries and apply them to lamb meat (LM) treatments to improve the safety and quality characteristics of the meat. To fulfil this aim, six marinade (M) formulations were created based on acid whey (AW) fermented with Lacticaseibacillus casei (Lc) and Liquorilactobacillus uvarum (Lu), either alone or combined with freeze-dried apple (AP) or blackcurrant (BC) pomace. The most appropriate fermentation times for the marinades were selected according to the lower pH values and higher viable LAB counts in the samples. Additionally, the antimicrobial activity of the selected marinades against pathogenic and opportunistic bacterial strains was tested. The characteristics of the LM were analysed after 24 and 48 h of treatment, including physicochemical, technological, and microbiological parameters, as well as overall acceptability. It was established that, after 48 h of fermentation, all of the tested marinades, except M-AWLuBC, had lactic acid bacterial counts > 8.0 log10 CFU·mL−1 and pH values < 3.74. The broadest spectra of pathogen inhibition were observed in the M-AWLuAP and M-AWLuBC marinades. The latter formulations improved the water holding capacity (WHC) and overall acceptability of the LM, while, in the LM-AWLcAP samples, histamine, cadaverine, putrescine, tryptamine, and phenylethylamine were not formed. Lastly, LM treatment with the M-AWLcAP and M-AWLuAP formulas for 48 h achieved the highest overall acceptability (9.04 and 9.43), tenderness (1.53 and 1.47 kg·cm−2) and WHC (2.95% and 3.5%) compared to the control samples. Full article
(This article belongs to the Topic Sustainable Food Processing)
Show Figures

Figure 1

16 pages, 3184 KiB  
Article
Effect of Grape Pomace Flour in Savory Crackers: Technological, Nutritional and Sensory Properties
by Joana Marcos, Raquel Carriço, Maria João Sousa, M. Lídia Palma, Paula Pereira, M. Cristiana Nunes and Marisa Nicolai
Foods 2023, 12(7), 1392; https://doi.org/10.3390/foods12071392 - 24 Mar 2023
Cited by 6 | Viewed by 3097
Abstract
The wine industry generates large amounts of by-products that are usually destined as waste. Grape pomace is the residue of the winemaking process and is rich in compounds with functional properties, such as dietary fiber and phenolic compounds. The aim of this research [...] Read more.
The wine industry generates large amounts of by-products that are usually destined as waste. Grape pomace is the residue of the winemaking process and is rich in compounds with functional properties, such as dietary fiber and phenolic compounds. The aim of this research was to study the influence of white and red grape pomace flour (GPF) addition in the enhancement of functional properties of savory crackers. Different levels of incorporation were tested (5%, 10% and 15% (w/w)). Analysis of physical properties, nutritional composition and sensory acceptability were conducted to evaluate the effect of GPF incorporation. GPF cracker stability throughout a four-week period was achieved with regard to firmness and color. These products presented distinctive and appealing colors, ranging from a violet (GPF of Touriga Nacional variety) to a brown hue (GPF of Arinto variety). Concerning nutritional composition, both crackers incorporated with 10% GPF of Arinto or Touriga Nacional varieties could be considered “high in fiber”, as per the Regulation (EC) No. 1924/2006, suggesting a functional food. GPF crackers demonstrated an overall great acceptance of this kind of innovative foods, with the majority indicating that they would certainly/probably buy them. Moreover, the cracker with 10% Arinto GPF achieved the most balanced and overall preference. Full article
Show Figures

Figure 1

19 pages, 906 KiB  
Review
Purple Wheat: Food Development, Anthocyanin Stability, and Potential Health Benefits
by Tamer H. Gamel, Syed Muhammad Ghufran Saeed, Rashida Ali and El-Sayed M. Abdel-Aal
Foods 2023, 12(7), 1358; https://doi.org/10.3390/foods12071358 - 23 Mar 2023
Cited by 18 | Viewed by 3681
Abstract
Colored wheats such as black, blue, or purple wheat are receiving a great interest as healthy food ingredients due to their potential health-enhancing attributes. Purple wheat is an anthocyanin-pigmented grain that holds huge potential in food applications since wheat is the preferred source [...] Read more.
Colored wheats such as black, blue, or purple wheat are receiving a great interest as healthy food ingredients due to their potential health-enhancing attributes. Purple wheat is an anthocyanin-pigmented grain that holds huge potential in food applications since wheat is the preferred source of energy and protein in human diet. Purple wheat is currently processed into a variety of foods with potent antioxidant properties, which have been demonstrated by in vitro studies. However, the health impacts of purple wheat foods in humans still require further investigations. Meanwhile, anthocyanins are vulnerable molecules that require special stabilization treatments during food preparation and processing. A number of stabilization methods such as co-pigmentation, self-association, encapsulation, metal binding, and adjusting processing conditions have been suggested as a means to diminish the loss of anthocyanins in processed foods and dietary supplements. The present review was intended to provide insights about purple wheat food product development and its roles in human health. In addition, methods for stabilizing anthocyanins during processing were briefly discussed. Full article
Show Figures

Figure 1

23 pages, 2002 KiB  
Article
Effect of Frying Process on the Flavor Variations of Allium Plants
by Jing Wang, Lina Qiao, Ruifang Wang, Ning Zhang, Yuping Liu, Haitao Chen, Jie Sun, Shuqi Wang and Yu Zhang
Foods 2023, 12(7), 1371; https://doi.org/10.3390/foods12071371 - 23 Mar 2023
Cited by 5 | Viewed by 2468
Abstract
The Allium plant is widely used in cuisines around the world for its characteristic flavor. The general profile of the plant changes a lot and presents quite different smells after the frying process. In this work, five Allium plants and their fried oils [...] Read more.
The Allium plant is widely used in cuisines around the world for its characteristic flavor. The general profile of the plant changes a lot and presents quite different smells after the frying process. In this work, five Allium plants and their fried oils were compared to find out how the frying process impacts the general flavor profile. The results of sensory analysis indicated that the frying process could substantially increase the flavor acceptability of fresh Allium plants. Meanwhile, according to gas chromatography-mass spectrometry (GC-MS) analysis, fewer volatile compounds were detected in fresh Allium plants than in their fried oils. Furthermore, contents of nitrogen-containing compounds (ranging from 0.17 μg/g to 268.97 μg/g), aldehydes (ranging from 71.82 μg/g to 1164.84 μg/g), and lactones (ranging from 0 μg/g to 12.38 μg/g) increased significantly. In addition, more aroma-active substances were identified in the fried Allium oils revealed by gas chromatography-olfactometry (GC-O) analysis. Sulfur-containing compounds were the most abundant in fresh Allium plants, whereas nitrogen-containing compounds dominated in fried oils. The thermal degradation of sugars, amino acids and lipids as well as interactions between carbohydrates, proteins, and fats during the frying process were thought to be the main contributors to these variations. Therefore, this research provides a theoretical basis for the quality control of onion oil flavor and promotes the further development of the onion plant industry. Consequently, the research provided a theoretical basis for the quality control of Allium oils’ flavor and promoted the further development of Allium plant industries. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

19 pages, 2330 KiB  
Article
Dough Rheological Behavior and Bread Quality as Affected by Addition of Soybean Flour in a Germinated Form
by Denisa Atudorei, Silvia Mironeasa and Georgiana Gabriela Codină
Foods 2023, 12(6), 1316; https://doi.org/10.3390/foods12061316 - 20 Mar 2023
Cited by 7 | Viewed by 2782
Abstract
This study analyzes the possibility of using soybeans as an addition to the main ingredients used to make bread, with the aim of improving its quality characteristics. To maximize the nutritional profile of soybeans they were subjected to the germination and lyophilization process [...] Read more.
This study analyzes the possibility of using soybeans as an addition to the main ingredients used to make bread, with the aim of improving its quality characteristics. To maximize the nutritional profile of soybeans they were subjected to the germination and lyophilization process before being used in bread making. The addition levels of 5%, 10%, 15%, and 20% germinated soybean flour (GSF) on dough rheology and bread quality were used. From the rheology point of view, the GSF addition had the effect of decreasing the values of the creep and recovery parameters: JCo, JCm, μCo, Jmax, JRo, JRm, and Jr. At the same time, the rheological parameters λC and λR increased. The GSF addition did not affect dough homogeneity as may be seen from EFLM analysis. Regarding the quality of the bread, it may be concluded that a maximum of 15% GSF addition in wheat flour had a desirable effect on loaf volume, porosity, elasticity, and sensory properties of the bread. The bread samples with GSF additions showed a higher brightness and a less pronounced red and yellow tint. When the percentage of GSF in wheat flour increased, the value of the firmness parameter increased and the value of the gumminess, cohesiveness, and resilience parameters decreased. The addition of GSF had a desirable influence on the crumb structure of the bread samples. Thus, taking into account the results of the determinations outlined above, it can be stated that GSF addition in wheat flour leads to bread samples with good quality characteristics. Full article
(This article belongs to the Special Issue Food Rheology and Applications in Food Product Design)
Show Figures

Figure 1

15 pages, 3708 KiB  
Article
Combined Effects of Acrylamide and Ochratoxin A on the Intestinal Barrier in Caco-2 Cells
by Dan Su, Jiawen Lu, Chunchao Nie, Ziyan Guo, Chang Li, Qiang Yu, Jianhua Xie and Yi Chen
Foods 2023, 12(6), 1318; https://doi.org/10.3390/foods12061318 - 20 Mar 2023
Cited by 9 | Viewed by 2120
Abstract
Acrylamide (AA) and ochratoxin A (OTA) are contaminants that co-exist in the same foods, and may create a serious threat to human health. However, the combined effects of AA and OTA on intestinal epithelial cells remain unclear. The purpose of this research was [...] Read more.
Acrylamide (AA) and ochratoxin A (OTA) are contaminants that co-exist in the same foods, and may create a serious threat to human health. However, the combined effects of AA and OTA on intestinal epithelial cells remain unclear. The purpose of this research was to investigate the effects of AA and OTA individually and collectively on Caco-2 cells. The results showed that AA and OTA significantly inhibited Caco-2 cell viability in a concentration- and time-dependent manner, decreased transepithelial electrical resistance (TEER) values, and increased the lucifer yellow (LY) permeabilization, lactate dehydrogenase (LDH) release and reactive oxygen species (ROS) levels. In addition, the levels of IL-1β, IL-6, and TNF-α increased, while the levels of IL-10 decreased after AA and OTA treatment. Western blot analysis revealed that AA and OTA damaged the intestinal barrier by reducing the expression of the tight junction (TJ) protein. The collective effects of AA and OTA exhibited enhanced toxicity compared to either single compound and, for most of the intestinal barrier function indicators, AA and OTA combined exposure tended to produce synergistic toxicity to Caco-2 cells. Overall, this research suggests the possibility of toxic reactions arising from the interaction of toxic substances present in foodstuffs with those produced during processing. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

17 pages, 916 KiB  
Review
Relationship between Dietary Polyphenols and Gut Microbiota: New Clues to Improve Cognitive Disorders, Mood Disorders and Circadian Rhythms
by Siyu Liu, Lu Cheng, Yanan Liu, Shengnan Zhan, Zufang Wu and Xin Zhang
Foods 2023, 12(6), 1309; https://doi.org/10.3390/foods12061309 - 19 Mar 2023
Cited by 15 | Viewed by 6110
Abstract
Cognitive, mood and sleep disorders are common and intractable disorders of the central nervous system, causing great inconvenience to the lives of those affected. The gut–brain axis plays a vital role in studying neurological disorders such as neurodegenerative diseases by acting as a [...] Read more.
Cognitive, mood and sleep disorders are common and intractable disorders of the central nervous system, causing great inconvenience to the lives of those affected. The gut–brain axis plays a vital role in studying neurological disorders such as neurodegenerative diseases by acting as a channel for a bidirectional information exchange between the gut microbiota and the nervous system. Dietary polyphenols have received widespread attention because of their excellent biological activity and their wide range of sources, structural diversity and low toxicity. Dietary intervention through the increased intake of dietary polyphenols is an emerging strategy for improving circadian rhythms and treating metabolic disorders. Dietary polyphenols have been shown to play an essential role in regulating intestinal flora, mainly by maintaining the balance of the intestinal flora and enhancing host immunity, thereby suppressing neurodegenerative pathologies. This paper reviewed the bidirectional interactions between the gut microbiota and the brain and their effects on the central nervous system, focusing on dietary polyphenols that regulate circadian rhythms and maintain the health of the central nervous system through the gut–brain axis. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

14 pages, 1387 KiB  
Review
Isoflavone Metabolism by Lactic Acid Bacteria and Its Application in the Development of Fermented Soy Food with Beneficial Effects on Human Health
by Susana Langa, Ángela Peirotén, José Antonio Curiel, Ana Ruiz de la Bastida and José María Landete
Foods 2023, 12(6), 1293; https://doi.org/10.3390/foods12061293 - 18 Mar 2023
Cited by 17 | Viewed by 3337
Abstract
Isoflavones are phenolic compounds (considered as phytoestrogens) with estrogenic and antioxidant function, which are highly beneficial for human health, especially in the aged population. However, isoflavones in foods are not bioavailable and, therefore, have low biological activity. Additionally, their transformation into bioactive compounds [...] Read more.
Isoflavones are phenolic compounds (considered as phytoestrogens) with estrogenic and antioxidant function, which are highly beneficial for human health, especially in the aged population. However, isoflavones in foods are not bioavailable and, therefore, have low biological activity. Additionally, their transformation into bioactive compounds by microorganisms is necessary to obtain bioavailable isoflavones with beneficial effects on human health. Many lactic acid bacteria (LAB) can transform the methylated and glycosylated forms of isoflavones naturally present in foods into more bioavailable aglycones, such as daidzein, genistein and glycitein. In addition, certain LAB strains are capable of transforming isoflavone aglycones into compounds with a greater biological activity, such as dihydrodaidzein (DHD), O-desmethylangolensin (O-DMA), dihydrogenistein (DHG) and 6-hydroxy-O-desmethylangolensin (6-OH-O-DMA). Moreover, Lactococcus garviae 20-92 is able to produce equol. Another strategy in the bioconversion of isoflavones is the heterologous expression of genes from Slackia isoflavoniconvertens DSM22006, which have allowed the production of DHD, DHG, equol and 5-hydroxy-equol in high concentrations by engineered LAB strains. Accordingly, the consequences of isoflavone metabolism by LAB and its application in the development of foods enriched in bioactive isoflavones, as well as health benefits attributed to their consumption, will be addressed in this work. Full article
(This article belongs to the Special Issue Functional Properties of Lactic Acid Bacteria in Fermented Foods)
Show Figures

Graphical abstract

30 pages, 1188 KiB  
Review
Shaping the Physicochemical, Functional, Microbiological and Sensory Properties of Yoghurts Using Plant Additives
by Joanna Wajs, Aneta Brodziak and Jolanta Król
Foods 2023, 12(6), 1275; https://doi.org/10.3390/foods12061275 - 17 Mar 2023
Cited by 16 | Viewed by 4736
Abstract
Nowadays, consumers pay particular attention to the quality of the products they buy. They also expect a high level of innovation. Hence, the offer from the dairy sector is increasingly focusing on the use of various additives with proven health benefits. Many scientific [...] Read more.
Nowadays, consumers pay particular attention to the quality of the products they buy. They also expect a high level of innovation. Hence, the offer from the dairy sector is increasingly focusing on the use of various additives with proven health benefits. Many scientific teams from various regions of the world are engaged in research, and their aim is to identify plant additives that have beneficial effects on the human body. The aim of this article was to summarize the latest literature pertaining to the effects of plant additives used in the production of yoghurts on their physicochemical, functional, microbiological and sensory properties. It was found that a wide range of additives in a variety of forms are used in the production of yoghurts. The most common include fruits, vegetables, cereals, nuts, seeds, oils, plant or herbal extracts, fruit or vegetable fibre, and waste from fruit processing. The additives very often significantly affected the physicochemical and microbiological characteristics as well as the texture and sensory properties of yoghurt. As follows from the analysed reports, yoghurts enriched with additives are more valuable, especially in terms of the content of health-promoting compounds, including fibre, phenolic compounds, vitamins, fatty acids and minerals. A properly selected, high quality plant supplement can contribute to the improvement in the generally health-promoting as well as antioxidant properties of the product. For sensory reasons, however, a new product may not always be tolerated, and its acceptance depends mainly on the amount of the additive used. In conclusion, “superfood” yoghurt is one of the products increasingly recommended both preventively and as a way of reducing existing dysfunctions caused by civilization diseases, i.e., diabetes, cancer and neurodegenerative diseases. The studies conducted in recent years have not shown any negative impact of fortified yoghurts on the human body. Full article
(This article belongs to the Special Issue Utilization of Plant Foods as Functional Ingredient)
Show Figures

Figure 1

15 pages, 973 KiB  
Article
“Got Milk Alternatives?” Understanding Key Factors Determining U.S. Consumers’ Willingness to Pay for Plant-Based Milk Alternatives
by Meike Rombach, David L. Dean and Vera Bitsch
Foods 2023, 12(6), 1277; https://doi.org/10.3390/foods12061277 - 17 Mar 2023
Cited by 22 | Viewed by 5840
Abstract
Milk is an important dairy product in U.S. food retail. Lifestyle changes toward climate-conscious consumption, animal welfare, and food safety concerns have increased the popularity of plant-based milk alternatives. This study is focused on such beverages and provides insights and best practice recommendations [...] Read more.
Milk is an important dairy product in U.S. food retail. Lifestyle changes toward climate-conscious consumption, animal welfare, and food safety concerns have increased the popularity of plant-based milk alternatives. This study is focused on such beverages and provides insights and best practice recommendations for marketing managers in the U.S. food retail sector. An online survey was distributed to explore factors explaining the intentions of U.S. consumers to purchase and pay a premium for plant-based milk alternatives. Food curiosity and food price inflation were identified as relevant for both willingness to buy and willingness to pay a price premium. In addition, animal welfare concerns and the green and clean product image of plant-based alternatives were relevant to the willingness to pay a premium for plant-based milk. Full article
(This article belongs to the Section Sensory and Consumer Sciences)
Show Figures

Figure 1

20 pages, 1328 KiB  
Review
Natural Sources of Selenium as Functional Food Products for Chemoprevention
by Małgorzata Dobrzyńska, Sławomira Drzymała-Czyż, Dagmara Woźniak, Sylwia Drzymała and Juliusz Przysławski
Foods 2023, 12(6), 1247; https://doi.org/10.3390/foods12061247 - 15 Mar 2023
Cited by 10 | Viewed by 3542
Abstract
Cancer is one of the leading causes of death worldwide, the incidence of which is increasing annually. Interest has recently grown in the anti-cancer effect of functional foods rich in selenium (Se). Although clinical studies are inconclusive and anti-cancer mechanisms of Se are [...] Read more.
Cancer is one of the leading causes of death worldwide, the incidence of which is increasing annually. Interest has recently grown in the anti-cancer effect of functional foods rich in selenium (Se). Although clinical studies are inconclusive and anti-cancer mechanisms of Se are not fully understood, daily doses of 100–200 µg of Se may inhibit genetic damage and the development of cancer in humans. The anti-cancer effects of this trace element are associated with high doses of Se supplements. The beneficial anti-cancer properties of Se and the difficulty in meeting the daily requirements for this micronutrient in some populations make it worth considering the use of functional foods enriched in Se. This review evaluated studies on the anti-cancer activity of the most used functional products rich in Se on the European market. Full article
(This article belongs to the Special Issue Nutrient-Rich Foods for a Healthy Diet, Volume II)
Show Figures

Figure 1

33 pages, 5963 KiB  
Review
Artificial Intelligence in Food Safety: A Decade Review and Bibliometric Analysis
by Zhe Liu, Shuzhe Wang, Yudong Zhang, Yichen Feng, Jiajia Liu and Hengde Zhu
Foods 2023, 12(6), 1242; https://doi.org/10.3390/foods12061242 - 14 Mar 2023
Cited by 38 | Viewed by 22083
Abstract
Artificial Intelligence (AI) technologies have been powerful solutions used to improve food yield, quality, and nutrition, increase safety and traceability while decreasing resource consumption, and eliminate food waste. Compared with several qualitative reviews on AI in food safety, we conducted an in-depth quantitative [...] Read more.
Artificial Intelligence (AI) technologies have been powerful solutions used to improve food yield, quality, and nutrition, increase safety and traceability while decreasing resource consumption, and eliminate food waste. Compared with several qualitative reviews on AI in food safety, we conducted an in-depth quantitative and systematic review based on the Core Collection database of WoS (Web of Science). To discover the historical trajectory and identify future trends, we analysed the literature concerning AI technologies in food safety from 2012 to 2022 by CiteSpace. In this review, we used bibliometric methods to describe the development of AI in food safety, including performance analysis, science mapping, and network analysis by CiteSpace. Among the 1855 selected articles, China and the United States contributed the most literature, and the Chinese Academy of Sciences released the largest number of relevant articles. Among all the journals in this field, PLoS ONE and Computers and Electronics in Agriculture ranked first and second in terms of annual publications and co-citation frequency. The present character, hot spots, and future research trends of AI technologies in food safety research were determined. Furthermore, based on our analyses, we provide researchers, practitioners, and policymakers with the big picture of research on AI in food safety across the whole process, from precision agriculture to precision nutrition, through 28 enlightening articles. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

18 pages, 1810 KiB  
Review
Structure, Merits, Gel Formation, Gel Preparation and Functions of Konjac Glucomannan and Its Application in Aquatic Food Preservation
by Yilan Sun, Xiaowei Xu, Zhenzhen Wu, Hanlin Zhou, Xiaoyu Xie, Qinhua Zhang, Renyi Liu and Jie Pang
Foods 2023, 12(6), 1215; https://doi.org/10.3390/foods12061215 - 13 Mar 2023
Cited by 13 | Viewed by 4592
Abstract
Konjac glucomannan (KGM) is a natural polysaccharide extracted from konjac tubers that has a topological structure composed of glucose and mannose. KGM can be used as a gel carrier to load active molecules in food preservation. The three-dimensional gel network structure based on [...] Read more.
Konjac glucomannan (KGM) is a natural polysaccharide extracted from konjac tubers that has a topological structure composed of glucose and mannose. KGM can be used as a gel carrier to load active molecules in food preservation. The three-dimensional gel network structure based on KGM provides good protection for the loaded active molecules and allows for sustained release, thus enhancing the antioxidant and antimicrobial activities of these molecules. KGM loaded with various active molecules has been used in aquatic foods preservation, with great potential for different food preservation applications. This review summarizes recent advances in KGM, including: (i) structural characterization, (ii) the formation mechanism, (iii) preparation methods, (iv) functional properties and (v) the preservation of aquatic food. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

15 pages, 8201 KiB  
Article
Impact of Matrix Species and Mass Spectrometry on Matrix Effects in Multi-Residue Pesticide Analysis Based on QuEChERS-LC-MS
by Shuang Zhang, Zhiyong He, Maomao Zeng and Jie Chen
Foods 2023, 12(6), 1226; https://doi.org/10.3390/foods12061226 - 13 Mar 2023
Cited by 9 | Viewed by 2676
Abstract
With the popularity of multi-residue pesticide analysis based on quick, easy, cheap, effective, rugged, and safe (QuEChERS) cleanup and liquid chromatography–mass spectrometry (LC-MS), matching optimal matrix-matched calibration protocols and LC-MS conditions to reduce matrix effects (MEs) has become a crucial task for analysts [...] Read more.
With the popularity of multi-residue pesticide analysis based on quick, easy, cheap, effective, rugged, and safe (QuEChERS) cleanup and liquid chromatography–mass spectrometry (LC-MS), matching optimal matrix-matched calibration protocols and LC-MS conditions to reduce matrix effects (MEs) has become a crucial task for analysts in their routines. However, dozens to hundreds of pesticide analytes in a single run generate increasingly multi-dimensional ME data, requiring appropriate tools to handle these data sets. Therefore, we established an ME analysis strategy by drawing on analytical thinking and tools from metabolomics analysis. Using this, matrix species-induced and mass spectrometry-induced systematic ME variations were distinguished, and pesticides contributed to the variations were scanned out. A simultaneous weakening of MEs on 24 pesticides in 32 different matrices was achieved using the time-of-flight-mass spectrometry (TOF-MS) scan under the information-dependent acquisition (IDA) mode of high-resolution mass spectrometry (HR-MS), compared to multiple reaction monitoring (MRM) scanning by tandem mass spectrometry (MS/MS). Bay leaf, ginger, rosemary, Amomum tsao-ko, Sichuan pepper, cilantro, Houttuynia cordata, and garlic sprout showed enhanced signal suppression in the MRM scan for 105 differential MRM transitions for 42 pesticides and in IDA mode for 33 pesticides, respectively. This study revealed the interference of matrix species and mass spectrometry on MEs and provided a novel strategy for ME analysis. Full article
(This article belongs to the Special Issue Metabolomics Analysis for Food Authenticity and Safety)
Show Figures

Graphical abstract

20 pages, 2580 KiB  
Article
An Ethereum-Based Distributed Application for Enhancing Food Supply Chain Traceability
by Evripidis P. Kechagias, Sotiris P. Gayialis, Georgios A. Papadopoulos and Georgios Papoutsis
Foods 2023, 12(6), 1220; https://doi.org/10.3390/foods12061220 - 13 Mar 2023
Cited by 21 | Viewed by 6726
Abstract
In today’s era, humanity has been overwhelmed by technological revolutions that have changed and will continue to change how business operations are performed, directly or indirectly. At the same time, the processes within the supply chain are quite complex, and as technology and [...] Read more.
In today’s era, humanity has been overwhelmed by technological revolutions that have changed and will continue to change how business operations are performed, directly or indirectly. At the same time, the processes within the supply chain are quite complex, and as technology and processes evolve, they become more and more challenging. Traceability has become a critical issue in the food industry to ensure safety, quality, and compliance with regulations. The adoption of blockchain technology in the food supply chain has gained significant attention as a potential solution to improve traceability. This paper presents the development of a distributed application for table olives’ traceability on the Ethereum network. The paper also presents a methodological framework, which can help anyone aiming to implement an Ethereum decentralized application and demonstrates the practical use of the developed application by a Greek table olives producer. The application significantly improved the producer’s product traceability by providing a secure, transparent, and efficient solution for tracking and tracing the products in the supply chain. The app reduced the time, increased the accuracy and reliability of data, improved supply chain efficiency, and helped the producer comply with international regulations and standards. Full article
Show Figures

Figure 1

20 pages, 2891 KiB  
Article
Assessing Future Climate Change Impacts on Potato Yields — A Case Study for Prince Edward Island, Canada
by Toyin Adekanmbi, Xiuquan Wang, Sana Basheer, Rana Ali Nawaz, Tianze Pang, Yulin Hu and Suqi Liu
Foods 2023, 12(6), 1176; https://doi.org/10.3390/foods12061176 - 10 Mar 2023
Cited by 20 | Viewed by 5045
Abstract
Crop yields are adversely affected by climate change; therefore, it is crucial to develop climate adaptation strategies to mitigate the impacts of increasing climate variability on the agriculture system to ensure food security. As one of the largest potato-producing provinces in Canada, Prince [...] Read more.
Crop yields are adversely affected by climate change; therefore, it is crucial to develop climate adaptation strategies to mitigate the impacts of increasing climate variability on the agriculture system to ensure food security. As one of the largest potato-producing provinces in Canada, Prince Edward Island (PEI) has recently experienced significant instability in potato production. PEI’s local farmers and stakeholders are extremely concerned about the prospects for the future of potato farming industries in the context of climate change. This study aims to use the Decision Support System for Agrotechnology Transfer (DSSAT) potato model to simulate future potato yields under the Coupled Model Intercomparison Project Phase 6 (CMIP6) climate scenarios (including SSP1–1.9, SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5). The study evaluates the combined effects of changing climatic conditions at local scales (i.e., warming temperature and changing precipitation patterns) and increasing carbon dioxide (CO2) concentration in the atmosphere. The results indicate future significant declines in potato yield in PEI under the current farming practices. In particular, under the high-emission scenarios (e.g., SSP3–7.0 and SSP5–8.5), the potato yield in PEI would decline by 48% and 60% in the 2070s and by 63% and 80% by 2090s; even under the low-emission scenarios (i.e., SSP1–1.9 and SSP1–2.6), the potato yield in PEI would still decline by 6–10%. This implies that it is important to develop effective climate adaptation measures (e.g., adjusting farming practices and introducing supplemental irrigation plans) to ensure the long-term sustainability of potato production in PEI. Full article
(This article belongs to the Topic Sustainable Development and Food Insecurity)
Show Figures

Figure 1

19 pages, 806 KiB  
Article
Developing Green Innovations in the Wine Industry: An Applied Analysis
by Eduardo Sánchez-García, Javier Martínez-Falcó, Antonio Alcon-Vila and Bartolomé Marco-Lajara
Foods 2023, 12(6), 1157; https://doi.org/10.3390/foods12061157 - 9 Mar 2023
Cited by 35 | Viewed by 6793
Abstract
Winemaking is an ancestral activity characterized by its strong roots in the culture, heritage, and people of the producing regions. In addition to providing important health benefits, wine is a product that is widely accepted by society. However, the socioeconomic context is evolving [...] Read more.
Winemaking is an ancestral activity characterized by its strong roots in the culture, heritage, and people of the producing regions. In addition to providing important health benefits, wine is a product that is widely accepted by society. However, the socioeconomic context is evolving at a rapid pace, and new requirements and needs are forcing companies to innovate in order to remain competitive in the markets, especially in terms of sustainability. The main aim of this paper is to analyze the relationship between green transformational leadership and green innovation, as well as the mediating effect of green motivation and green creativity in this relationship. Data were obtained from a sample of 196 Spanish companies belonging to the wine industry and, as a method of analysis, was used partial least squares structural equation modeling PLS-SEM. The results show a positive and significant relationship between green transformational leadership and green innovation in wine companies. Furthermore, green motivation and green creativity exert a mediating effect in this relationship. It is concluded that the managers of wine companies should encourage employee motivation and creativity, especially in ecological terms, by creating an environment conducive to the development of environmentally friendly innovations. Full article
(This article belongs to the Special Issue Winemaking: Advanced Technology and Flavor Research)
Show Figures

Figure 1

17 pages, 2242 KiB  
Article
Transforming Spent Coffee Grounds’ Hydrolysates with Yeast Lachancea thermotolerans and Lactic Acid Bacterium Lactiplantibacillus plantarum to Develop Potential Novel Alcoholic Beverages
by Yunjiao Liu, Yuyun Lu and Shao-Quan Liu
Foods 2023, 12(6), 1161; https://doi.org/10.3390/foods12061161 - 9 Mar 2023
Cited by 6 | Viewed by 2823
Abstract
In the present work, the modification of spent coffee grounds (SCG) hydrolysate composition by mixed cultures of a non-Saccharomyces yeast, Lachancea thermotolerans, and a lactic acid bacterium, Lactiplantibacillus plantarum, as well as their interactions, were evaluated. It was found that [...] Read more.
In the present work, the modification of spent coffee grounds (SCG) hydrolysate composition by mixed cultures of a non-Saccharomyces yeast, Lachancea thermotolerans, and a lactic acid bacterium, Lactiplantibacillus plantarum, as well as their interactions, were evaluated. It was found that L. plantarum inhibited the growth and survival of L. thermotolerans as compared with that in the yeast alone. On the other hand, the growth and survival of L. plantarum was slowed in sequential fermentation, but not in co-culture. Compared with co-culture, higher ethanol content, less residual sugars, and less acetic and succinic acids were found in sequential fermentation. In addition, lower amounts of caffeine and phenolic acids (e.g., ferulic, caffeic, and p-coumaric acids) were obtained in mixed (co- and sequential) cultures with corresponding levels of volatile phenols relative to the yeast monoculture. Moreover, co-culturing resulted in the highest contents of total alcohols (ethanol excluded) and total esters. Therefore, mixed culturing of L. plantarum and L. thermotolerans presented positive effects on the chemical constituents of fermented SCG hydrolysates, which might be a new alternative approach to valorizing the SCG into novel alcoholic drinks with different ethanol and flavor constituents. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

21 pages, 1670 KiB  
Review
Microbial Detoxification of Residual Pesticides in Fermented Foods: Current Status and Prospects
by Nadya Armenova, Lidia Tsigoriyna, Alexander Arsov, Kaloyan Petrov and Penka Petrova
Foods 2023, 12(6), 1163; https://doi.org/10.3390/foods12061163 - 9 Mar 2023
Cited by 22 | Viewed by 6199
Abstract
The treatment of agricultural areas with pesticides is an indispensable approach to improve crop yields and cannot be avoided in the coming decades. At the same time, significant amounts of pesticides remain in food and their ingestion causes serious damage such as neurological, [...] Read more.
The treatment of agricultural areas with pesticides is an indispensable approach to improve crop yields and cannot be avoided in the coming decades. At the same time, significant amounts of pesticides remain in food and their ingestion causes serious damage such as neurological, gastrointestinal, and allergic reactions; cancer; and even death. However, during the fermentation processing of foods, residual amounts of pesticides are significantly reduced thanks to enzymatic degradation by the starter and accompanying microflora. This review concentrates on foods with the highest levels of pesticide residues, such as milk, yogurt, fermented vegetables (pickles, kimchi, and olives), fruit juices, grains, sourdough, and wines. The focus is on the molecular mechanisms of pesticide degradation due to the presence of specific microbial species. They contain a unique genetic pool that confers an appropriate enzymological profile to act as pesticide detoxifiers. The prospects of developing more effective biodetoxification strategies by engaging probiotic lactic acid bacteria are also discussed. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

26 pages, 836 KiB  
Review
Perspectives in the Application of High, Medium, and Low Molecular Weight Oat β-d-Glucans in Dietary Nutrition and Food Technology—A Short Overview
by Leonid Sushytskyi, Andriy Synytsya, Jana Čopíková, Pavol Lukáč, Lenka Rajsiglová, Paolo Tenti and Luca E. Vannucci
Foods 2023, 12(6), 1121; https://doi.org/10.3390/foods12061121 - 7 Mar 2023
Cited by 11 | Viewed by 3230
Abstract
For centuries human civilization has cultivated oats, and now they are consumed in various forms of food, from instant breakfasts to beverages. They are a nutrient-rich food containing linear mixed-linkage (1 → 3) (1 → 4)-β-d-glucans, which are relatively [...] Read more.
For centuries human civilization has cultivated oats, and now they are consumed in various forms of food, from instant breakfasts to beverages. They are a nutrient-rich food containing linear mixed-linkage (1 → 3) (1 → 4)-β-d-glucans, which are relatively well soluble in water and responsible for various biological effects: the regulation of the blood cholesterol level, as well as being anti-inflammatory, prebiotic, antioxidant, and tumor-preventing. Numerous studies, especially in the last two decades, highlight the differences in the biological properties of the oat β-d-glucan fractions of low, medium, and high molecular weight. These fractions differ in their features due to variations in bioavailability related to the rheological properties of these polysaccharides, and their association with food matrices, purity, and mode of preparation or modification. There is strong evidence that, under different conditions, the molecular weight may determine the potency of oat-extracted β-d-glucans. In this review, we intend to give a concise overview of the properties and studies of the biological activities of oat β-d-glucan preparations depending on their molecular weight and how they represent a prospective ingredient of functional food with the potential to prevent or modulate various pathological conditions. Full article
Show Figures

Figure 1

19 pages, 2588 KiB  
Article
Microclimate and Genotype Impact on Nutritional and Antinutritional Quality of Locally Adapted Landraces of Common Bean (Phaseolus vulgaris L.)
by Irene Bosmali, Ilias Giannenas, Styliani Christophoridou, Christos G. Ganos, Aggelos Papadopoulos, Fokion Papathanasiou, Alexandros Kolonas and Olga Gortzi
Foods 2023, 12(6), 1119; https://doi.org/10.3390/foods12061119 - 7 Mar 2023
Cited by 6 | Viewed by 2147
Abstract
This study aimed to assess the impact of genotype, location, and type of cultivation (organic) on the nutrient and anti-nutrient components of seven large-seeded bean (Phaseolus vulgaris L.) populations. All genotypes were cultivated during 2014 and 2015 in randomized complete block (RCB) [...] Read more.
This study aimed to assess the impact of genotype, location, and type of cultivation (organic) on the nutrient and anti-nutrient components of seven large-seeded bean (Phaseolus vulgaris L.) populations. All genotypes were cultivated during 2014 and 2015 in randomized complete block (RCB) experimental designs in three areas of the Prespa region (Pili, Patoulidio, Agios Germanos) in Greece. Particularly, total protein (18.79–23.93%), fiber (7.77–12%), starch (40.14–55.26%), and fat (1.84–2.58%) contents were analyzed and showed significant differences. In order to assess mineral content, firstly, the total ash percentage (4.31% to 5.20%) and secondly, trace elements and heavy metals were determined. The concentrations of identified inorganic metals showed large variations. The total phenolic content of the samples varied from 0.18 to 0.29 mg/g gallic acid equivalent (GAE). A major limitation of increasing the use of grain legumes as feed is the presence of diverse compounds in their grain, commonly referred to as antinutritional factors, and these are mainly trypsin inhibitors. Trypsin inhibitor levels were evaluated, with results varying from 21.8 to 138.5 TIU/g. Pili 2014 and 2015 were differently associated regarding the year of cultivation. Pili 2015 location was also very closely associated with the Patoulidio region, whereas Agios Germanos and Pili 2014 were the most different in terms of nutritional and antinutritional content. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

Back to TopTop