Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 4928 KiB  
Article
A Comprehensive Phytochemical Analysis of Terpenes, Polyphenols and Cannabinoids, and Micromorphological Characterization of 9 Commercial Varieties of Cannabis sativa L.
by Eugenia Mazzara, Jacopo Torresi, Gelsomina Fico, Alessio Papini, Nicola Kulbaka, Stefano Dall’Acqua, Stefania Sut, Stefania Garzoli, Ahmed M. Mustafa, Loredana Cappellacci, Dennis Fiorini, Filippo Maggi, Claudia Giuliani and Riccardo Petrelli
Plants 2022, 11(7), 891; https://doi.org/10.3390/plants11070891 - 27 Mar 2022
Cited by 19 | Viewed by 6725
Abstract
New hemp (Cannabis sativa L.) strains developed by crossbreeding selected varieties represent a novel research topic worthy of attention and investigation. This study focused on the phytochemical characterization of nine hemp commercial cultivars. Hydrodistillation was performed in order to collect the essential [...] Read more.
New hemp (Cannabis sativa L.) strains developed by crossbreeding selected varieties represent a novel research topic worthy of attention and investigation. This study focused on the phytochemical characterization of nine hemp commercial cultivars. Hydrodistillation was performed in order to collect the essential oils (EO), and also the residual water and deterpenated biomass. The volatile fraction was analyzed by GC-FID, GC-MS, and SPME-GC-MS, revealing three main chemotypes. The polyphenolic profile was studied in the residual water and deterpenated biomass by spectrophotometric assays, and HPLC-DAD-MSn and 1H-NMR analyses. The latter were employed for quali–quantitative determination of cannabinoids in the deterpenated material in comparison with the one not subjected to hydrodistillation. In addition, the glandular and non-glandular indumentum of the nine commercial varieties was studied by means of light microscopy and scanning electron microscopy in the attempt to find a possible correlation with the phytochemical and morphological traits. The EO and residual water were found to be rich in monoterpene and sesquiterpene hydrocarbons, and flavonol glycosides, respectively, while the deterpenated material was found to be a source of neutral cannabinoids. The micromorphological survey allowed us to partly associate the phytochemistry of these varieties with the hair morphotypes. This research sheds light on the valorization of different products from the hydrodistillation of hemp varieties, namely, essential oil, residual water, and deterpenated biomass, which proved to be worthy of exploitation in industrial and health applications. Full article
(This article belongs to the Special Issue 10th Anniversary of Plants—Recent Advances and Perspectives)
Show Figures

Figure 1

18 pages, 5375 KiB  
Article
Exogenous Melatonin Activates Antioxidant Systems to Increase the Ability of Rice Seeds to Germinate under High Temperature Conditions
by Yufeng Yu, Liyuan Deng, Lu Zhou, Guanghui Chen and Yue Wang
Plants 2022, 11(7), 886; https://doi.org/10.3390/plants11070886 - 25 Mar 2022
Cited by 26 | Viewed by 2564
Abstract
High temperatures are a major concern that limit rice germination and plant growth. Although previous studies found that melatonin can promote seed germination, the physiological regulation mechanism by which exogenous melatonin mediates high temperature tolerance during rice seed germination is still largely unknown. [...] Read more.
High temperatures are a major concern that limit rice germination and plant growth. Although previous studies found that melatonin can promote seed germination, the physiological regulation mechanism by which exogenous melatonin mediates high temperature tolerance during rice seed germination is still largely unknown. In order to overcome these challenges, the present study investigates the effects of melatonin on the characteristics of rice seed germination as well as on antioxidant properties, under different high temperature conditions. The results show that 100 μM melatonin seed-soaking treatment under high temperature conditions effectively improves the germination potential, the germination index, and the vigor index of rice seeds; increases the length of the shoot and the root; improves the activity of the antioxidant enzymes; and significantly reduces the malondialdehyde content. The gray relational grade of the shoot peroxidase activity and the melatonin soaking treatment was the highest, which was used to evaluate the effect of melatonin on the heat tolerance of rice. The subordinate function method was used to comprehensively evaluate the tolerance, and the results show that the critical concentration of melatonin is 100 μM, and the critical interactive treatment is the germination at 38 °C and followed by the recovery at 26 °C for 1 day + 100 μM. In conclusion, 100 μM of melatonin concentration improved the heat resistance of rice seeds by enhancing the activity of the antioxidant enzymes. Full article
Show Figures

Figure 1

24 pages, 5556 KiB  
Article
Antioxidant Capacity of Potentilla paradoxa Nutt. and Its Beneficial Effects Related to Anti-Aging in HaCaT and B16F10 Cells
by Hwa Pyoung Lee, Dong Seon Kim, Sang Hee Park, Chae Yun Shin, Jin Joo Woo, Ji Won Kim, Ren-Bo An, Changyoung Lee and Jae Youl Cho
Plants 2022, 11(7), 873; https://doi.org/10.3390/plants11070873 - 24 Mar 2022
Cited by 14 | Viewed by 3691
Abstract
Skin aging is a natural process influenced by intrinsic and extrinsic factors, and many skin anti-aging strategies have been developed. Plants from the genus Potentilla has been used in Europe and Asia to treat various diseases. Potentilla paradoxa Nutt. has been used as [...] Read more.
Skin aging is a natural process influenced by intrinsic and extrinsic factors, and many skin anti-aging strategies have been developed. Plants from the genus Potentilla has been used in Europe and Asia to treat various diseases. Potentilla paradoxa Nutt. has been used as a traditional medicinal herb in China and has recently been shown to have anti-inflammatory effects. Despite the biological and pharmacological potential of Potentilla paradoxa Nutt., its skin anti-aging effects remain unclear. Therefore, this study evaluated the free radical scavenging, moisturizing, anti-melanogenic, and wound-healing effects of an ethanol extract of Potentilla paradoxa Nutt. (Pp-EE). Pp-EE was found to contain phenolics and flavonoids and exhibits in vitro antioxidant activities. α-Linolenic acid was found to be a major component of Pp-EE on gas chromatography-mass spectrometry. Pp-EE promoted the expression of hyaluronic acid (HA) synthesis-related enzymes and suppressed the expression of HA degradation-related enzymes in keratinocytes, so it may increase skin hydration. Pp-EE also showed inhibitory effects on the production and secretion of melanin in melanocytes. In a scratch assay, Pp-EE improved skin wound healing. Taken together, Pp-EE has several effects that may delay skin aging, suggesting its potential benefits as a natural ingredient in cosmetic or pharmaceutical products. Full article
(This article belongs to the Special Issue Bioprospecting of Natural Products from Medicinal Plants)
Show Figures

Figure 1

20 pages, 3336 KiB  
Review
Fungal Pathogenesis-Related Cell Wall Biogenesis, with Emphasis on the Maize Anthracnose Fungus Colletotrichum graminicola
by Alan de Oliveira Silva, Lala Aliyeva-Schnorr, Stefan G. R. Wirsel and Holger B. Deising
Plants 2022, 11(7), 849; https://doi.org/10.3390/plants11070849 - 23 Mar 2022
Cited by 18 | Viewed by 3386
Abstract
The genus Colletotrichum harbors many plant pathogenic species, several of which cause significant yield losses in the field and post harvest. Typically, in order to infect their host plants, spores germinate, differentiate a pressurized infection cell, and display a hemibiotrophic lifestyle after plant [...] Read more.
The genus Colletotrichum harbors many plant pathogenic species, several of which cause significant yield losses in the field and post harvest. Typically, in order to infect their host plants, spores germinate, differentiate a pressurized infection cell, and display a hemibiotrophic lifestyle after plant invasion. Several factors required for virulence or pathogenicity have been identified in different Colletotrichum species, and adaptation of cell wall biogenesis to distinct stages of pathogenesis has been identified as a major pre-requisite for the establishment of a compatible parasitic fungus–plant interaction. Here, we highlight aspects of fungal cell wall biogenesis during plant infection, with emphasis on the maize leaf anthracnose and stalk rot fungus, Colletotrichum graminicola. Full article
(This article belongs to the Special Issue Interactions between Colletotrichum Species and Plants Ⅱ)
Show Figures

Figure 1

18 pages, 1016 KiB  
Article
Salt Stress Differentially Affects the Primary and Secondary Metabolism of Peppers (Capsicum annuum L.) According to the Genotype, Fruit Part, and Salinity Level
by Tilen Zamljen, Aljaz Medic, Metka Hudina, Robert Veberic and Ana Slatnar
Plants 2022, 11(7), 853; https://doi.org/10.3390/plants11070853 - 23 Mar 2022
Cited by 23 | Viewed by 2835
Abstract
A total of four Capsicum annuum L. genotypes (‘Caro F1’, ‘Berenyi F1’, ‘Somborka’ and ‘Novosadka’) were exposed to two intensities of salt stress. We observed a significant decrease in the sugar content in all salt stressed treatments, except for the sucrose content of [...] Read more.
A total of four Capsicum annuum L. genotypes (‘Caro F1’, ‘Berenyi F1’, ‘Somborka’ and ‘Novosadka’) were exposed to two intensities of salt stress. We observed a significant decrease in the sugar content in all salt stressed treatments, except for the sucrose content of the pericarp of the ‘Caro F1’ cultivar. Salt stress had a largely negative effect on the total and individual organic acid content, although the effect differed among cultivars. Using high performance liquid chromatography coupled with a mass spectrometer, most phenolics were identified in the pericarp (18), followed by the placenta (7) and seeds (8). Treatment with 40 mM NaCl caused the highest increase in individual phenols, followed by treatment with 20 mM NaCl. The cultivar ‘Berenyi F1’ was less affected by salt stress treatment than the other three cultivars in terms of content of individual and total phenols. Salt stress increased the content of capsaicinoids in all the cultivars. The pericarp of the cultivar ‘Novosadka’ showed 17.5 and 50 times higher total capsaicinoid content than the control in the 20 mM and 40 mM NaCl, respectively. With the results of several metabolite groups, we confirmed that the reaction and metabolic content to salt stress within the genus Capsicum is genotype-, fruit part-, and salinity level-dependent. Full article
(This article belongs to the Special Issue Salinity Stress Tolerance in Plants)
Show Figures

Figure 1

23 pages, 5011 KiB  
Review
The Grapevine Microbiome to the Rescue: Implications for the Biocontrol of Trunk Diseases
by Rebeca Cobos, Ana Ibañez, Alba Diez-Galán, Carla Calvo-Peña, Seyedehtannaz Ghoreshizadeh and Juan José R. Coque
Plants 2022, 11(7), 840; https://doi.org/10.3390/plants11070840 - 22 Mar 2022
Cited by 22 | Viewed by 3905
Abstract
Grapevine trunk diseases (GTDs) are one of the most devastating pathologies that threaten the survival and profitability of vineyards around the world. Progressive banning of chemical pesticides and their withdrawal from the market has increased interest in the development of effective biocontrol agents [...] Read more.
Grapevine trunk diseases (GTDs) are one of the most devastating pathologies that threaten the survival and profitability of vineyards around the world. Progressive banning of chemical pesticides and their withdrawal from the market has increased interest in the development of effective biocontrol agents (BCAs) for GTD treatment. In recent years, considerable progress has been made regarding the characterization of the grapevine microbiome, including the aerial part microbiome (flowers, berries and leaves), the wood microbiome, the root environment and vineyard soil microbiomes. In this work, we review these advances especially in relation to the etiology and the understanding of the composition of microbial populations in plants affected by GTDs. We also discuss how the grapevine microbiome is becoming a source for the isolation and characterization of new, more promising BCAs that, in the near future, could become effective tools for controlling these pathologies. Full article
(This article belongs to the Special Issue Vine Crops Diseases and Their Management)
Show Figures

Figure 1

26 pages, 2761 KiB  
Review
Chemical Diversity of Flavan-3-Ols in Grape Seeds: Modulating Factors and Quality Requirements
by Guillermo F. Padilla-González, Esther Grosskopf, Nicholas J. Sadgrove and Monique S. J. Simmonds
Plants 2022, 11(6), 809; https://doi.org/10.3390/plants11060809 - 18 Mar 2022
Cited by 18 | Viewed by 2960
Abstract
Grape seeds are a rich source of flavan-3-ol monomers, oligomers, and polymers. The diverse profile of compounds includes mainly B-type procyanidins (especially C4→C8 linked molecules) and the key monomers, catechin, and epicatechin that are positively implicated in the ‘French Paradox’. Today grape seed [...] Read more.
Grape seeds are a rich source of flavan-3-ol monomers, oligomers, and polymers. The diverse profile of compounds includes mainly B-type procyanidins (especially C4→C8 linked molecules) and the key monomers, catechin, and epicatechin that are positively implicated in the ‘French Paradox’. Today grape seed nutraceuticals have become a multi-million-dollar industry. This has created incentives to elucidate the variations in chemistry across cultivars, to identify signs of adulteration, and to understand the intrinsic and extrinsic factors controlling the expression of metabolites in the seeds’ metabolome. This review provides a critical overview of the existing literature on grape seed chemistry. Although the biosynthetic pathways for polymeric procyanidins in seeds have not yet been explained, abiotic factors have been shown to modulate associated genes. Research of extrinsic factors has demonstrated that the control of procyanidin expression is strongly influenced, in order of importance, by genotype (species first, then variety) and environment, as claimed anecdotally. Unfortunately, research outcomes on the effects of abiotic factors have low certainty, because effects can be specific to genotype or variety, and there is limited control over physical metrics in the field. Thus, to gain a fuller understanding of the effects of abiotic factors and biosynthetic pathways, and realise potential for optimisation, a more fundamental research approach is needed. Nevertheless, the current synthesis offers insight into the selection of species or varieties according to the profile of polyphenols, as well as for optimisation of horticultural practices, with a view to produce products that contain the compounds that support health claims. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Graphical abstract

24 pages, 2102 KiB  
Review
Tracing the Evolution of the Angiosperm Genome from the Cytogenetic Point of View
by Natalia Borowska-Zuchowska, Magdalena Senderowicz, Dana Trunova and Bozena Kolano
Plants 2022, 11(6), 784; https://doi.org/10.3390/plants11060784 - 16 Mar 2022
Cited by 6 | Viewed by 3239
Abstract
Cytogenetics constitutes a branch of genetics that is focused on the cellular components, especially chromosomes, in relation to heredity and genome structure, function and evolution. The use of modern cytogenetic approaches and the latest microscopes with image acquisition and processing systems enables the [...] Read more.
Cytogenetics constitutes a branch of genetics that is focused on the cellular components, especially chromosomes, in relation to heredity and genome structure, function and evolution. The use of modern cytogenetic approaches and the latest microscopes with image acquisition and processing systems enables the simultaneous two- or three-dimensional, multicolour visualisation of both single-copy and highly-repetitive sequences in the plant genome. The data that is gathered using the cytogenetic methods in the phylogenetic background enable tracing the evolution of the plant genome that involve changes in: (i) genome sizes; (ii) chromosome numbers and morphology; (iii) the content of repetitive sequences and (iv) ploidy level. Modern cytogenetic approaches such as FISH using chromosome- and genome-specific probes have been widely used in studies of the evolution of diploids and the consequences of polyploidy. Nowadays, modern cytogenetics complements analyses in other fields of cell biology and constitutes the linkage between genetics, molecular biology and genomics. Full article
(This article belongs to the Special Issue Plant Evolutionary Cytogenetics)
Show Figures

Figure 1

31 pages, 1230 KiB  
Review
Realizing the Potential of Camelina sativa as a Bioenergy Crop for a Changing Global Climate
by Dhurba Neupane, Richard H. Lohaus, Juan K. Q. Solomon and John C. Cushman
Plants 2022, 11(6), 772; https://doi.org/10.3390/plants11060772 - 14 Mar 2022
Cited by 31 | Viewed by 5465
Abstract
Camelina sativa (L.) Crantz. is an annual oilseed crop within the Brassicaceae family. C. sativa has been grown since as early as 4000 BCE. In recent years, C. sativa received increased attention as a climate-resilient oilseed, seed meal, and biofuel (biodiesel and renewable [...] Read more.
Camelina sativa (L.) Crantz. is an annual oilseed crop within the Brassicaceae family. C. sativa has been grown since as early as 4000 BCE. In recent years, C. sativa received increased attention as a climate-resilient oilseed, seed meal, and biofuel (biodiesel and renewable or green diesel) crop. This renewed interest is reflected in the rapid rise in the number of peer-reviewed publications (>2300) containing “camelina” from 1997 to 2021. An overview of the origins of this ancient crop and its genetic diversity and its yield potential under hot and dry growing conditions is provided. The major biotic barriers that limit C. sativa production are summarized, including weed control, insect pests, and fungal, bacterial, and viral pathogens. Ecosystem services provided by C. sativa are also discussed. The profiles of seed oil and fatty acid composition and the many uses of seed meal and oil are discussed, including food, fodder, fuel, industrial, and medical benefits. Lastly, we outline strategies for improving this important and versatile crop to enhance its production globally in the face of a rapidly changing climate using molecular breeding, rhizosphere microbiota, genetic engineering, and genome editing approaches. Full article
(This article belongs to the Special Issue 10th Anniversary of Plants—Recent Advances and Perspectives)
Show Figures

Figure 1

14 pages, 2619 KiB  
Article
Inflorescence Transcriptome Sequencing and Development of New EST-SSR Markers in Common Buckwheat (Fagopyrum esculentum)
by Yang Liu, Xiaomei Fang, Tian Tang, Yudong Wang, Yinhuan Wu, Jinyu Luo, Haotian Wu, Yingqian Wang, Jian Zhang, Renwu Ruan, Meiliang Zhou, Kaixuan Zhang and Zelin Yi
Plants 2022, 11(6), 742; https://doi.org/10.3390/plants11060742 - 10 Mar 2022
Cited by 8 | Viewed by 2372
Abstract
Common buckwheat (Fagopyrum esculentum M.) is known for its adaptability, good nutrition, and medicinal and health care value. However, genetic studies of buckwheat have been hindered by limited genomic resources and genetic markers. In this study, Illumina HiSeq 4000 high-throughput sequencing technology [...] Read more.
Common buckwheat (Fagopyrum esculentum M.) is known for its adaptability, good nutrition, and medicinal and health care value. However, genetic studies of buckwheat have been hindered by limited genomic resources and genetic markers. In this study, Illumina HiSeq 4000 high-throughput sequencing technology was used to sequence the transcriptome of green-flower common buckwheat (Gr) with coarse pedicels and white-flower Ukrainian daliqiao (UD) with fine pedicels. A total of 118,448 unigenes were obtained, with an average length of 1248 bp and an N50 of 1850 bp. A total of 39,432 differentially expressed genes (DEGs) were identified, and the DEGs of the porphyrins and chlorophyll metabolic pathway had significantly upregulated expression in Gr. Then, a total of 17,579 sequences containing SSR loci were detected, and 20,756 EST-SSR loci were found. The distribution frequency of EST-SSR in the transcriptome was 17.52%, and the average distribution density was 8.21 kb. A total of 224 pairs of primers were randomly selected for synthesis; 35 varieties of common buckwheat and 13 varieties of Tartary buckwheat were verified through these primers. The clustering results well verified the previous conclusion that common buckwheat and Tartary buckwheat had a distant genetic relationship. The EST-SSR markers identified and developed in this study will be helpful to enrich the transcriptome information and marker-assisted selection breeding of buckwheat. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

18 pages, 2780 KiB  
Article
Impact of Deficit Irrigation on Grapevine cv. ‘Touriga Nacional’ during Three Seasons in Douro Region: An Agronomical and Metabolomics Approach
by Inês L. Cabral, António Teixeira, Arnaud Lanoue, Marianne Unlubayir, Thibaut Munsch, Joana Valente, Fernando Alves, Pedro Leal da Costa, Frank S. Rogerson, Susana M. P. Carvalho, Hernâni Gerós and Jorge Queiroz
Plants 2022, 11(6), 732; https://doi.org/10.3390/plants11060732 - 9 Mar 2022
Cited by 8 | Viewed by 2959
Abstract
The introduction of irrigation in vineyards of the Mediterranean basin is a matter of debate, in particular in those of the Douro Demarcated Region (DDR), due to the limited number of available studies. Here, we aimed to perform a robust analysis in three [...] Read more.
The introduction of irrigation in vineyards of the Mediterranean basin is a matter of debate, in particular in those of the Douro Demarcated Region (DDR), due to the limited number of available studies. Here, we aimed to perform a robust analysis in three consecutive vintages (2018, 2019, and 2020) on the impact of deficit irrigation on the yield, berry quality traits, and metabolome of cv. ‘Touriga Nacional’. Results showed that in the peaks of extreme drought, irrigation at 30% crop evapotranspiration (ETc) (R30) was able to prevent a decay of up to 0.4 MPa of leaf predawn water potential (ΨPd), but irrigation at 70% ETc (R70) did not translate into additional protection against drought stress. Following three seasons of irrigation, the yield was significantly improved in vines irrigated at R30, whereas irrigation at R70 positively affected the yield only in the 2020 season. Berry quality traits at harvest were not significantly changed by irrigation, except for Total Soluble Solids (TSS) in 2018. A UPLC–MS-based targeted metabolomic analysis identified eight classes of compounds, amino acids, phenolic acids, stilbenoid DP1, stilbenoid DP2, flavonols, flavan-3-ols, di-OH- and tri-OH anthocyanins, and showed that anthocyanins and phenolic acids did not change significantly with irrigation. The present study showed that deficit irrigation partially mitigated the severe summer water deficit conditions in the DDR but did not significantly change key metabolites. Full article
Show Figures

Figure 1

17 pages, 10916 KiB  
Article
Effects of Drought Stress and Rehydration on Physiological and Biochemical Properties of Four Oak Species in China
by Shifa Xiong, Yangdong Wang, Yicun Chen, Ming Gao, Yunxiao Zhao and Liwen Wu
Plants 2022, 11(5), 679; https://doi.org/10.3390/plants11050679 - 2 Mar 2022
Cited by 28 | Viewed by 3263
Abstract
Quercus fabri Hance, Quercus serrata Thunb, Quercus acutissima Carruth, and Quercus variabilis BL are four Chinese oak species commonly used for forestation. To ensure the survival of seedlings, we first need to understand the differences in drought resistance of the four oak species [...] Read more.
Quercus fabri Hance, Quercus serrata Thunb, Quercus acutissima Carruth, and Quercus variabilis BL are four Chinese oak species commonly used for forestation. To ensure the survival of seedlings, we first need to understand the differences in drought resistance of the four oak species at the seedling stage, and comprehensively evaluate their drought resistance capabilities. The four oak seedlings were divided into drought-rewatering treatment group and well watered samples (control group). For the seedlings of the drought-rewatering treatment group, drought stress lasting 31 days was used, and then re-watering for 5 days. The water parameters, osmotic solutes content, antioxidant enzyme activity and photosynthesis parameters of the seedlings in the two groups were measured every 5 days. Compared with the control group, the relative water content, water potential, net photosynthetic rate, transpiration rate, and stomatal conductance levels of the four oaks all showed a downward trend under continuous drought stress, and showed an upward trend after rehydration. The soluble protein, soluble sugar, proline, peroxidase, superoxide dismutase and catalase content of the four oaks increased first and then decreased under drought stress, and then increased after rehydration. The content of glycine betaine and malondialdehyde continued to increase, and gradually decreased after rehydration. The weight of each index was calculated by principal component analysis, and then the comprehensive evaluation of each index was carried out through the membership function method. The drought resistance levels of the four oak species were as follows: Q. serrata > Q. fabri > Q. variabilis > Q. acutissima. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

21 pages, 7077 KiB  
Article
Uncovering the Gene Regulatory Network of Maize Hybrid ZD309 under Heat Stress by Transcriptomic and Metabolomic Analysis
by Jingbao Liu, Linna Zhang, Lu Huang, Tianxiao Yang, Juan Ma, Ting Yu, Weihong Zhu, Zhanhui Zhang and Jihua Tang
Plants 2022, 11(5), 677; https://doi.org/10.3390/plants11050677 - 1 Mar 2022
Cited by 13 | Viewed by 2717
Abstract
Maize is an important cereal crop but is sensitive to heat stress, which significantly restricts its grain yield. To explore the molecular mechanism of maize heat tolerance, a heat-tolerant hybrid ZD309 and its parental lines (H39_1 and M189) were subjected to heat stress, [...] Read more.
Maize is an important cereal crop but is sensitive to heat stress, which significantly restricts its grain yield. To explore the molecular mechanism of maize heat tolerance, a heat-tolerant hybrid ZD309 and its parental lines (H39_1 and M189) were subjected to heat stress, followed by transcriptomic and metabolomic analyses. After six-day-heat treatment, the growth of ZD309 and its parental lines were suppressed, showing dwarf stature and rolled leaf compared with the control plants. ZD309 exhibited vigorous growth; however, M189 displayed superior heat tolerance. By transcriptomic and metabolomic analysis, hundreds to thousands of differentially expressed genes (DEGs) and metabolites (DEMs) were identified. Notably, the female parent H39 shares more DEGs and DEMs with the hybrid ZD309, indicating more genetic gain derived from the female instead of the male. A total of 299 heat shock genes detected among three genotypes were greatly aggregated in sugar transmembrane transporter activity, plasma membrane, photosynthesis, protein processing in the endoplasmic reticulum, cysteine, and methionine metabolism. A total of 150 heat-responsive metabolites detected among three genotypes were highly accumulated, including jasmonic acid, amino acids, sugar, flavonoids, coumarin, and organic acids. Integrating transcriptomic and metabolomic assays revealed that plant hormone signal transduction, cysteine, and methionine metabolism, and α-linolenic acid metabolism play crucial roles in heat tolerance in maize. Our research will be facilitated to identify essential heat tolerance genes in maize, thereby contributing to breeding heat resistance maize varieties. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

17 pages, 8553 KiB  
Article
Genome-Wide Analysis of the Banana WRKY Transcription Factor Gene Family Closely Related to Fruit Ripening and Stress
by Caihong Jia, Zhuo Wang, Jingyi Wang, Hongxia Miao, Jianbin Zhang, Biyu Xu, Juhua Liu, Zhiqiang Jin and Jihong Liu
Plants 2022, 11(5), 662; https://doi.org/10.3390/plants11050662 - 28 Feb 2022
Cited by 17 | Viewed by 2668
Abstract
WRKY transcription factors (TFs) play an important role in plant responses to biotic and abiotic stress as well as in plant growth and development. In the present study, bioinformatics methods were used to identify members of the WRKY transcription factor family in the [...] Read more.
WRKY transcription factors (TFs) play an important role in plant responses to biotic and abiotic stress as well as in plant growth and development. In the present study, bioinformatics methods were used to identify members of the WRKY transcription factor family in the Musa acuminata (DH-Pahang) genome (version 2). A total of 164 MaWRKYs were identified and phylogenetic analysis showed that MaWRKYs could be categorized into three subfamilies. Overall, the 162 MaWRKYs were distributed on 11 chromosomes, and 2 genes were not located on the chromosome. There were 31 collinear genes from segmental duplication and 7 pairs of genes from tandem duplication. RNA-sequencing was used to analyze the expression profiles of MaWRKYs in different fruit development, ripening stages, under various abiotic and biotic stressors. Most of the MaWRKYs showed a variety of expression patterns in the banana fruit development and ripening stages. Some MaWRKYs responded to abiotic stress, such as low temperature, drought, and salt stress. Most differentially expressed MaWRKYs were downregulated during banana’s response to Foc TR4 infection, which plays an important role in physiological regulation to stress. Our findings indicate that MaWRKY21 directly binds to the W-box of the MaICS promoter to decrease MaICS transcription and then reduce the enzyme activity. These studies have improved our understanding of the molecular basis for the development and stress resistance of an important banana variety. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

13 pages, 1044 KiB  
Article
Assessment of the Fertilization Capacity of the Aquaculture Sediment for Wheat Grass as Sustainable Alternative Use
by Marian Burducea, Andrei Lobiuc, Lenuta Dirvariu, Eugen Oprea, Stefan Mihaita Olaru, Gabriel-Ciprian Teliban, Vasile Stoleru, Vlad Andrei Poghirc, Irina Gabriela Cara, Manuela Filip, Mariana Rusu, Valtcho D. Zheljazkov and Cristian-Alin Barbacariu
Plants 2022, 11(5), 634; https://doi.org/10.3390/plants11050634 - 25 Feb 2022
Cited by 11 | Viewed by 3173
Abstract
Periodic removal of sediment from aquaculture ponds is practiced to maintain their productivity and animal welfare. The recovery of sediment as a plant fertilizer could alleviate the costs of sediment removal. The objective of this study was to test the effects of a [...] Read more.
Periodic removal of sediment from aquaculture ponds is practiced to maintain their productivity and animal welfare. The recovery of sediment as a plant fertilizer could alleviate the costs of sediment removal. The objective of this study was to test the effects of a dried sediment, extracted from an aquaculture pond used for common carp cultivation, on the growth and physiology of potted wheat grass and the quality of the juice obtained from wheat grass. The results showed that sediment application did not produce significant morphological changes, although the values for plant height (16.94–19.22 cm), leaf area (19.67–139.21 mm2), and biomass (3.39–4.26 g/plant) were higher in sediment-grown plants. However, at a physiological level, the effect was negative, decreasing photosynthesis (0.82–1.66 μmol CO2 m2s−1), fluorescence ΦPSII (0.737–0.782), and chlorophyll content (1.40–1.83 CCI). The juice yield was reduced in the sediment treatments (46–58 g/100 g), while the quality was improved by increasing the content of phenols (2.55–3.39 µg/mL gallic acid equivalent), flavonoids (1.41–1.85 µg/mL quercetin equivalent), and antioxidant activity (47.99–62.7% inhibition of; 2,2-diphenyl-1-picrylhydrazyl). The positive results obtained in this study can be attributed to the moderate nutrient content of the sediment and a negligible concentration of heavy metals. Full article
(This article belongs to the Special Issue 10th Anniversary of Plants—Recent Advances and Perspectives)
Show Figures

Graphical abstract

14 pages, 12102 KiB  
Article
Soil Water Capacity, Pore Size Distribution, and CO2 Emission in Different Soil Tillage Systems and Straw Retention
by Vaida Steponavičienė, Vaclovas Bogužas, Aušra Sinkevičienė, Lina Skinulienė, Rimantas Vaisvalavičius and Alfredas Sinkevičius
Plants 2022, 11(5), 614; https://doi.org/10.3390/plants11050614 - 24 Feb 2022
Cited by 15 | Viewed by 2518
Abstract
The long-term implementation of crop rotation and tillage has an impact on the soil environment through inputs and soil disturbance, which in turn has an impact on soil quality. Tillage has a long-term impact on the agroecosystems. Since 1999, a long-term field experiment [...] Read more.
The long-term implementation of crop rotation and tillage has an impact on the soil environment through inputs and soil disturbance, which in turn has an impact on soil quality. Tillage has a long-term impact on the agroecosystems. Since 1999, a long-term field experiment has been carried out at the Experimental Station of Vytautas Magnus University. The aim of this experiment is to investigate the effects of long-term various-intensity tillage and straw retention systems on soil physical properties. The results were obtained in 2013 and 2019 (spring rape was growing). According to the latest edition of the International Soil Classification System, the soil in the experimental field was classified as Endocalcaric Stagnosol (Aric, Drainic, Ruptic, and Amphisiltic). The treatments were arranged using a split-plot design. In a two-factor field experiment, the straw was removed from one part of the experimental field, and the entire straw yield was chopped and spread at harvest in the other part of the field (Factor A). There were three different tillage systems as a subplot (conventional deep ploughing, cover cropping with following shallow termination, and no-tillage) (Factor B). There were four replications. The long-term application of reduced tillage significantly increased soil water retention and improved the pore structure and CO2 emissions. Irrespective of the incorporation of straw, it was found that as the amount of water available to plants increases, CO2 emissions from the soil increase to some extent and then start to decrease. Simplified tillage and no-tillage in uncultivated soil reduce CO2 emissions by increasing the amount of water available to plants from 0.151 to 0.233 m3·m−3. Full article
(This article belongs to the Special Issue Conservation Tillage for Sustainable Agriculture)
Show Figures

Figure 1

18 pages, 2213 KiB  
Article
The Endemic Vascular Flora of Sardinia: A Dynamic Checklist with an Overview of Biogeography and Conservation Status
by Mauro Fois, Emmanuele Farris, Giacomo Calvia, Giuliano Campus, Giuseppe Fenu, Marco Porceddu and Gianluigi Bacchetta
Plants 2022, 11(5), 601; https://doi.org/10.3390/plants11050601 - 23 Feb 2022
Cited by 37 | Viewed by 4817
Abstract
The vascular flora of Sardinia has been investigated for more than 250 years, with particular attention to the endemic component due to their phylogeographic and conservation interest. However, continuous changes in the floristic composition through natural processes, anthropogenic drivers or modified taxonomical attributions [...] Read more.
The vascular flora of Sardinia has been investigated for more than 250 years, with particular attention to the endemic component due to their phylogeographic and conservation interest. However, continuous changes in the floristic composition through natural processes, anthropogenic drivers or modified taxonomical attributions require constant updating. We checked all available literature, web sources, field, and unpublished data from the authors and acknowledged external experts to compile an updated checklist of vascular plants endemic to Sardinia. Life and chorological forms as well as the conservation status of the updated taxa list were reported. Sardinia hosts 341 taxa (15% of the total native flora) endemic to the Tyrrhenian Islands and other limited continental territories; 195 of these (8% of the total native flora) are exclusive to Sardinia. Asteraceae (50 taxa) and Plumbaginaceae (42 taxa) are the most representative families, while the most frequent life forms are hemicryptophytes (118 taxa) and chamaephytes (106 taxa). The global conservation status, available for 201 taxa, indicates that most endemics are under the ‘Critically Endangered’ (25 taxa), ‘Endangered’ (31 taxa), or ‘Least Concern’ (90 taxa) IUCN categories. This research provides an updated basis for future biosystematics, taxonomic, biogeographical, and ecological studies and in supporting more integrated and efficient policy tools. Full article
Show Figures

Figure 1

18 pages, 1359 KiB  
Article
Thermotherapy Followed by Shoot Tip Cryotherapy Eradicates Latent Viruses and Apple Hammerhead Viroid from In Vitro Apple Rootstocks
by Jean Carlos Bettoni, Gennaro Fazio, Larissa Carvalho Costa, Oscar P. Hurtado-Gonzales, Maher Al Rwahnih, Abby Nedrow and Gayle M. Volk
Plants 2022, 11(5), 582; https://doi.org/10.3390/plants11050582 - 22 Feb 2022
Cited by 17 | Viewed by 4073
Abstract
Virus and viroid-free apple rootstocks are necessary for large-scale nursery propagation of apple (Malus domestica) trees. Apple stem grooving virus (ASGV) and Apple chlorotic leaf spot virus (ACLSV) are among the most serious apple viruses that are prevalent in most apple [...] Read more.
Virus and viroid-free apple rootstocks are necessary for large-scale nursery propagation of apple (Malus domestica) trees. Apple stem grooving virus (ASGV) and Apple chlorotic leaf spot virus (ACLSV) are among the most serious apple viruses that are prevalent in most apple growing regions. In addition to these viruses, a new infectious agent named Apple hammerhead viroid (AHVd) has been identified. We investigated whether thermotherapy or cryotherapy alone or a combination of both could effectively eradicate ACLSV, ASGV, and AHVd from in vitro cultures of four apple rootstocks developed in the Cornell-Geneva apple rootstock breeding program (CG 2034, CG 4213, CG 5257, and CG 6006). For thermotherapy treatments, in vitro plants were treated for four weeks at 36 °C (day) and 32 °C (night). Plant vitrification solution 2 (PVS2) and cryotherapy treatments included a shoot tip preculture in 2 M glycerol + 0.8 M sucrose for one day followed by exposure to PVS2 for 60 or 75 min at 22 °C, either without or with liquid nitrogen (LN, cryotherapy) exposure. Combinations of thermotherapy and PVS2/cryotherapy treatments were also performed. Following treatments, shoot tips were warmed, recovered on growth medium, transferred to the greenhouse, grown, placed in dormancy inducing conditions, and then grown again prior to sampling leaves for the presence of viruses and viroids. Overall, thermotherapy combined with cryotherapy treatment resulted in the highest percentage of virus- and viroid-free plants, suggesting great potential for producing virus- and viroid-free planting materials for the apple industry. Furthermore, it could also be a valuable tool to support the global exchange of apple germplasm. Full article
(This article belongs to the Special Issue Plant Cryobiotechnology: Progress and Prospects)
Show Figures

Figure 1

14 pages, 3980 KiB  
Article
Molecular and Physiological Effects of Magnesium–Polyphenolic Compound as Biostimulant in Drought Stress Mitigation in Tomato
by Haytham Hamedeh, Shaula Antoni, Lorenzo Cocciaglia and Valentina Ciccolini
Plants 2022, 11(5), 586; https://doi.org/10.3390/plants11050586 - 22 Feb 2022
Cited by 14 | Viewed by 3371
Abstract
Plant biostimulants are being recognized as innovative tools to improve sustainable agricultural practices to mitigate the drastic effects of climate change, which is leading to a severe reduction in agricultural yields. In this work, a new biostimulant (EnNuVi® ALPAN®) was [...] Read more.
Plant biostimulants are being recognized as innovative tools to improve sustainable agricultural practices to mitigate the drastic effects of climate change, which is leading to a severe reduction in agricultural yields. In this work, a new biostimulant (EnNuVi® ALPAN®) was evaluated for its effectiveness on tomato (Solanum lycopersicum Mill. cv. Rio Grande) plants subjected to water deficit conditions. The molecular effects were elucidated through transcriptomic RNA-seq and gene expression qPCR analysis and the physiological responses were evaluated through qualitative analysis of pigments and proline content, membrane stability, and lipid peroxidation. ALPAN® was shown to adjust the transcriptional response by upregulating genes involved in source to sink carbohydrate metabolism and translocation, stomatal closure, and cell homeostasis. ALPAN® was shown to mitigate the deteriorating effects of water deficit on the physiological status of the plants by stabilizing the levels of the photosynthetic pigments, regulating the accumulation of osmo-protectants, and preserving the cell wall lipid bilayer from oxidation. In conclusion, transcriptomic and physiological analysis provided insightful information on the biostimulant effects, indicating a positive role of ALPAN® foliar application in alleviating the negative costs of water deficit. Full article
Show Figures

Figure 1

35 pages, 2611 KiB  
Review
Sprouts and Microgreens—Novel Food Sources for Healthy Diets
by Andreas W. Ebert
Plants 2022, 11(4), 571; https://doi.org/10.3390/plants11040571 - 21 Feb 2022
Cited by 82 | Viewed by 13908
Abstract
With the growing interest of society in healthy eating, the interest in fresh, ready-to-eat, functional food, such as microscale vegetables (sprouted seeds and microgreens), has been on the rise in recent years globally. This review briefly describes the crops commonly used for microscale [...] Read more.
With the growing interest of society in healthy eating, the interest in fresh, ready-to-eat, functional food, such as microscale vegetables (sprouted seeds and microgreens), has been on the rise in recent years globally. This review briefly describes the crops commonly used for microscale vegetable production, highlights Brassica vegetables because of their health-promoting secondary metabolites (polyphenols, glucosinolates), and looks at consumer acceptance of sprouts and microgreens. Apart from the main crops used for microscale vegetable production, landraces, wild food plants, and crops’ wild relatives often have high phytonutrient density and exciting flavors and tastes, thus providing the scope to widen the range of crops and species used for this purpose. Moreover, the nutritional value and content of phytochemicals often vary with plant growth and development within the same crop. Sprouted seeds and microgreens are often more nutrient-dense than ungerminated seeds or mature vegetables. This review also describes the environmental and priming factors that may impact the nutritional value and content of phytochemicals of microscale vegetables. These factors include the growth environment, growing substrates, imposed environmental stresses, seed priming and biostimulants, biofortification, and the effect of light in controlled environments. This review also touches on microgreen market trends. Due to their short growth cycle, nutrient-dense sprouts and microgreens can be produced with minimal input; without pesticides, they can even be home-grown and harvested as needed, hence having low environmental impacts and a broad acceptance among health-conscious consumers. Full article
Show Figures

Figure 1

17 pages, 4508 KiB  
Article
Chemical and Biological Characterization of Melaleuca alternifolia Essential Oil
by Petra Borotová, Lucia Galovičová, Nenad L. Vukovic, Milena Vukic, Eva Tvrdá and Miroslava Kačániová
Plants 2022, 11(4), 558; https://doi.org/10.3390/plants11040558 - 20 Feb 2022
Cited by 29 | Viewed by 5458
Abstract
The essential oil of Melaleuca alternifolia, commonly known as tea tree oil, has many beneficial properties due to its bioactive compounds. The aim of this research was to characterize the tea tree essential oil (TTEO) from Slovakia and its biological properties, which [...] Read more.
The essential oil of Melaleuca alternifolia, commonly known as tea tree oil, has many beneficial properties due to its bioactive compounds. The aim of this research was to characterize the tea tree essential oil (TTEO) from Slovakia and its biological properties, which are specific to the chemical composition of essential oil. Gas chromatography/mass spectroscopy revealed that terpinen-4-ol was dominant with a content of 40.3%. γ-Terpinene, 1,8-cineole, and p-cymene were identified in contents of 11.7%, 7.0%, and 6.2%, respectively. Antioxidant activity was determined at 41.6% radical inhibition, which was equivalent to 447 μg Trolox to 1 mL sample. Antimicrobial activity was observed by the disk diffusion method against Gram-positive (G+), Gram-negative (G) bacteria and against yeasts, where the best antimicrobial activity was against Enterococcus faecalis and Candida albicans with an inhibition zone of 10.67 mm. The minimum inhibitory concentration showed better susceptibility by G+ and G planktonic cells, while yeast species and biofilm-forming bacteria strains were more resistant. Antibiofilm activity was observed against Pseudomonas fluorescens and Salmonella enterica by MALDI-TOF, where degradation of the protein spectra after the addition of essential oil was obtained. Good biological properties of tea tree essential oil allow its use in the food industry or in medicine as an antioxidant and antimicrobial agent. Full article
Show Figures

Figure 1

32 pages, 3143 KiB  
Review
Suberin Biosynthesis, Assembly, and Regulation
by Kathlyn N. Woolfson, Mina Esfandiari and Mark A. Bernards
Plants 2022, 11(4), 555; https://doi.org/10.3390/plants11040555 - 19 Feb 2022
Cited by 47 | Viewed by 9518
Abstract
Suberin is a specialized cell wall modifying polymer comprising both phenolic-derived and fatty acid-derived monomers, which is deposited in below-ground dermal tissues (epidermis, endodermis, periderm) and above-ground periderm (i.e., bark). Suberized cells are largely impermeable to water and provide a critical protective layer [...] Read more.
Suberin is a specialized cell wall modifying polymer comprising both phenolic-derived and fatty acid-derived monomers, which is deposited in below-ground dermal tissues (epidermis, endodermis, periderm) and above-ground periderm (i.e., bark). Suberized cells are largely impermeable to water and provide a critical protective layer preventing water loss and pathogen infection. The deposition of suberin is part of the skin maturation process of important tuber crops such as potato and can affect storage longevity. Historically, the term “suberin” has been used to describe a polyester of largely aliphatic monomers (fatty acids, ω-hydroxy fatty acids, α,ω-dioic acids, 1-alkanols), hydroxycinnamic acids, and glycerol. However, exhaustive alkaline hydrolysis, which removes esterified aliphatics and phenolics from suberized tissue, reveals a core poly(phenolic) macromolecule, the depolymerization of which yields phenolics not found in the aliphatic polyester. Time course analysis of suberin deposition, at both the transcriptional and metabolite levels, supports a temporal regulation of suberin deposition, with phenolics being polymerized into a poly(phenolic) domain in advance of the bulk of the poly(aliphatics) that characterize suberized cells. In the present review, we summarize the literature describing suberin monomer biosynthesis and speculate on aspects of suberin assembly. In addition, we highlight recent advances in our understanding of how suberization may be regulated, including at the phytohormone, transcription factor, and protein scaffold levels. Full article
(This article belongs to the Special Issue Periderm (Cork) Tissue Development in Plants)
Show Figures

Figure 1

14 pages, 728 KiB  
Article
Dwarf Pomegranate (Punica granatum L. var. nana): Source of 5-HMF and Bioactive Compounds with Applications in the Protection of Woody Crops
by Eva Sánchez-Hernández, Laura Buzón-Durán, José A. Cuchí-Oterino, Jesús Martín-Gil, Belén Lorenzo-Vidal and Pablo Martín-Ramos
Plants 2022, 11(4), 550; https://doi.org/10.3390/plants11040550 - 18 Feb 2022
Cited by 10 | Viewed by 2629
Abstract
While the properties of edible pomegranate varieties have been widely explored, there is little information on ornamental types. In this study, possible alternatives for the valorization of dwarf pomegranate fruits have been explored. The characterization of their hydromethanolic extract by gas chromatography−mass spectrometry [...] Read more.
While the properties of edible pomegranate varieties have been widely explored, there is little information on ornamental types. In this study, possible alternatives for the valorization of dwarf pomegranate fruits have been explored. The characterization of their hydromethanolic extract by gas chromatography−mass spectrometry evidenced the presence of high contents of 5-hydroxymethylfurfural (a carbon-neutral feedstock for the production of fuels and other chemicals) and β- and γ-sitosterol stereoisomers. The microbicidal activity of the crude extract, both alone and in a conjugate complex with chitosan oligomers (COS), was investigated against three plant pathogenic microorganisms that cause significant losses in woody crops: Erwinia amylovora, E. vitivora, and Diplodia seriata. In in vitro assays, a strong synergistic behavior was found after conjugation of the bioactive constituents of the fruit extract with COS, resulting in minimum inhibitory concentration (MIC) values of 750 and 375 μg·mL−1 against E. amylovora and E. vitivora, respectively, and an EC90 value of 993 μg·mL−1 against D. seriata. Hence, extracts from the non-edible fruits of this Punicaceae may hold promise as a source of high value-added phytochemicals or as environmentally friendly agrochemicals. Full article
(This article belongs to the Special Issue Plant Extracts as Biological Protective Agents)
Show Figures

Graphical abstract

15 pages, 3350 KiB  
Article
Combined Effect of Microplastics and Cd Alters the Enzymatic Activity of Soil and the Productivity of Strawberry Plants
by Andrés Pinto-Poblete, Jorge Retamal-Salgado, María Dolores López, Nelson Zapata, Angela Sierra-Almeida and Mauricio Schoebitz
Plants 2022, 11(4), 536; https://doi.org/10.3390/plants11040536 - 17 Feb 2022
Cited by 56 | Viewed by 6388
Abstract
The synergistic effect between heavy metals and microplastics can affect soil properties as well as plant performance and yield. The objective of this study was to evaluate the combined effect of microplastics and cadmium on a soil–plant system. Specifically, we proposed to explore [...] Read more.
The synergistic effect between heavy metals and microplastics can affect soil properties as well as plant performance and yield. The objective of this study was to evaluate the combined effect of microplastics and cadmium on a soil–plant system. Specifically, we proposed to explore changes in soil microbiological activity, the growth and yield parameters of strawberry plants, and to evaluate the accumulation of these pollutants in the soil and root system. Plants were planted in clay pots under greenhouse conditions. The experiment was set up as a completely randomized design, with four treatments (Control; MPs; Cd; and Cd + MPs) and five replicates. The results showed that MPs and/or Cd affected plant growth, plant biomass, the number of fruits, root characteristics, dehydrogenase activity, acid phosphatase, and microbial biomass, and increased the accumulation of Cd in the roots and soil. The increased bioavailability of Cd, due to the presence of microplastics, could explain the observed negative effects on soil properties and the performance of strawberry plants. Full article
(This article belongs to the Section Plant–Soil Interactions)
Show Figures

Figure 1

21 pages, 5060 KiB  
Article
Metabolic Circuits in Sap Extracts Reflect the Effects of a Microbial Biostimulant on Maize Metabolism under Drought Conditions
by Kgalaletso Othibeng, Lerato Nephali, Akhona Myoli, Nombuso Buthelezi, Willem Jonker, Johan Huyser and Fidele Tugizimana
Plants 2022, 11(4), 510; https://doi.org/10.3390/plants11040510 - 14 Feb 2022
Cited by 7 | Viewed by 2777
Abstract
The use of microbial biostimulants in the agricultural sector is increasingly gaining momentum and drawing scientific attention to decode the molecular interactions between the biostimulants and plants. Although these biostimulants have been shown to improve plant health and development, the underlying molecular phenomenology [...] Read more.
The use of microbial biostimulants in the agricultural sector is increasingly gaining momentum and drawing scientific attention to decode the molecular interactions between the biostimulants and plants. Although these biostimulants have been shown to improve plant health and development, the underlying molecular phenomenology remains enigmatic. Thus, this study is a metabolomics work to unravel metabolic circuits in sap extracts from maize plants treated with a microbial biostimulant, under normal and drought conditions. The biostimulant, which was a consortium of different Bacilli strains, was applied at the planting stage, followed by drought stress application. The maize sap extracts were collected at 5 weeks after emergence, and the extracted metabolites were analyzed on liquid chromatography-mass spectrometry platforms. The acquired data were mined using chemometrics and bioinformatics tools. The results showed that under both well-watered and drought stress conditions, the application of the biostimulant led to differential changes in the profiles of amino acids, hormones, TCA intermediates, phenolics, steviol glycosides and oxylipins. These metabolic changes spanned several biological pathways and involved a high correlation of the biochemical as well as structural metabolic relationships that coordinate the maize metabolism. The hypothetical model, postulated from this study, describes metabolic events induced by the microbial biostimulant for growth promotion and enhanced defences. Such understanding of biostimulant-induced changes in maize sap pinpoints to the biochemistry and molecular mechanisms that govern the biostimulant–plant interactions, which contribute to ongoing efforts to generate actionable knowledge of the molecular and physiological mechanisms that define modes of action of biostimulants. Full article
Show Figures

Figure 1

20 pages, 1031 KiB  
Review
In Vitro Technology in Plant Conservation: Relevance to Biocultural Diversity
by Verena Kulak, Sheri Longboat, Nicolas D. Brunet, Mukund Shukla and Praveen Saxena
Plants 2022, 11(4), 503; https://doi.org/10.3390/plants11040503 - 12 Feb 2022
Cited by 19 | Viewed by 5417
Abstract
Plant diversity is critical to the functioning of human societies, and evidence shows that plant conservation success is driven by integrative approaches that include social and biological factors. Plants have a unique capacity to reproduce asexually, and propagation practices can yield large numbers [...] Read more.
Plant diversity is critical to the functioning of human societies, and evidence shows that plant conservation success is driven by integrative approaches that include social and biological factors. Plants have a unique capacity to reproduce asexually, and propagation practices can yield large numbers of plantlets. These plantlets can be used in several ways to fulfil conservation goals including the repopulation of regions with declining densities of threatened species that hold cultural meaning. However, the potential of in vitro technologies in the conservation of plants that hold cultural meaning is understudied. In this paper we focus upon the roles of in vitro technologies in the conservation of plants relevant to biocultural environments and provide an overview of potential knowledge gaps at the interface of in vitro and plants used traditionally, including those meaningful to Indigenous Peoples. We conclude that in vitro technologies can be powerful tools in biocultural conservation if they are deployed in a manner respectful of the socio-cultural context in which plants play a role, but that further research is needed in this regard. We suggest several epistemological points to facilitate future research. Full article
(This article belongs to the Special Issue In Vitro Conservation of Endangered and Value-Added Plant Species)
Show Figures

Figure 1

22 pages, 2250 KiB  
Article
Impact of Single and Combined Salinity and High-Temperature Stresses on Agro-Physiological, Biochemical, and Transcriptional Responses in Rice and Stress-Release
by Lutfun Nahar, Murat Aycan, Shigeru Hanamata, Marouane Baslam and Toshiaki Mitsui
Plants 2022, 11(4), 501; https://doi.org/10.3390/plants11040501 - 12 Feb 2022
Cited by 25 | Viewed by 3171
Abstract
Here, for the first time, we aimed to identify in rice the key mechanisms and processes underlying tolerance to high-temperature (HT) or salt stress (SS) alone, the co-occurrence of both stresses, and recovery using physiological and biochemical measurements and gene expression analysis. We [...] Read more.
Here, for the first time, we aimed to identify in rice the key mechanisms and processes underlying tolerance to high-temperature (HT) or salt stress (SS) alone, the co-occurrence of both stresses, and recovery using physiological and biochemical measurements and gene expression analysis. We also investigated whether recovery from the two stressors depended on the relative intensities/relief of each stressor. Wild type (‘Yukinkomai’) rice plants were found to be more susceptible to salinity or heat applied individually. SS leads to a depletion of cellular water content, higher accumulation of Na+, and alterations in photosynthetic pigments. The stress-tolerant cultivar ‘YNU31-2-4’ (YNU) displayed a lower Na+/K+ ratio, higher water content in cells and improved photosynthetic traits, antioxidant system, and expression of defence genes. Strikingly, the SS + HT combination provided a significant level of protection to rice plants from the effects of SS alone. The expression pattern of a selected set of genes showed a specific response and dedicated pathways in plants subjected to each of the different stresses, while other genes were explicitly activated when the stresses were combined. Aquaporin genes were activated by SS, while stress-related (P5CS, MSD1, HSPs, and ions transporters) genes were shaped by HT. Hierarchical clustering and principal component analyses showed that several traits exhibited a gradually aggravating effect as plants were exposed to the combined stresses and identified heat as a mitigating factor, clearly separating heat + salt-stressed from salt-non-heat-stressed plants. Furthermore, seedling recovery was far more dependent on the relative intensities of stressors and cultivars, demonstrating the influence of one stressor over another upon stress-release. Taken together, our data show the uniqueness and complexity of the physiological and molecular network modules used by rice plants to respond to single and combined stresses and recovery. Full article
(This article belongs to the Special Issue Advances in Biosaline Agriculture)
Show Figures

Figure 1

14 pages, 475 KiB  
Review
Genetic Control of Efficient Nitrogen Use for High Yield and Grain Protein Concentration in Wheat: A Review
by Wan Teng, Xue He and Yiping Tong
Plants 2022, 11(4), 492; https://doi.org/10.3390/plants11040492 - 11 Feb 2022
Cited by 11 | Viewed by 2996
Abstract
The increasing global population and the negative effects of nitrogen (N) fertilizers on the environment challenge wheat breeding to maximize yield potential and grain protein concentration (GPC) in an economically and environmentally friendly manner. Understanding the molecular mechanisms for the response of yield [...] Read more.
The increasing global population and the negative effects of nitrogen (N) fertilizers on the environment challenge wheat breeding to maximize yield potential and grain protein concentration (GPC) in an economically and environmentally friendly manner. Understanding the molecular mechanisms for the response of yield components to N availability and assimilates allocation to grains provides the opportunity to increase wheat yield and GPC simultaneously. This review summarized quantitative trait loci/genes which can increase spikes and grain number by enhancing N uptake and assimilation at relative early growth stage, and 1000-grain weight and GPC by increasing post-anthesis N uptake and N allocation to grains. Full article
Show Figures

Figure 1

15 pages, 1575 KiB  
Article
Aqueous Extracts of Three Herbs Allelopathically Inhibit Lettuce Germination but Promote Seedling Growth at Low Concentrations
by Kaili Wang, Ting Wang, Cheng Ren, Pengpeng Dou, Zhengzhou Miao, Xiqiang Liu, Ding Huang and Kun Wang
Plants 2022, 11(4), 486; https://doi.org/10.3390/plants11040486 - 11 Feb 2022
Cited by 19 | Viewed by 3380
Abstract
Allelopathy is an important process in plant communities. The effects of allelopathy on seed germination and seedling development have been extensively investigated. However, the influences of extract soaking time and concentration on the foregoing parameters are poorly understood. Here, we conducted a seed [...] Read more.
Allelopathy is an important process in plant communities. The effects of allelopathy on seed germination and seedling development have been extensively investigated. However, the influences of extract soaking time and concentration on the foregoing parameters are poorly understood. Here, we conducted a seed germination assay to determine the allelopathic effects of the donor herbs Achnatherum splendens (Trin.) Nevski, Artemisia frigida Willd., and Stellera chamaejasme L., from a degraded grassland ecosystem in northern China, on lettuce (Lactuca sativa L.) seed germination and early seedling growth. Extract soaking times (12 h or 24 h) did not exhibit significantly different effects on lettuce seed germination or seedling development. However, all aqueous herb extracts inhibited lettuce seed germination and root length (RI < 0) and promoted lettuce shoot length, stem length, leaf length, and leaf width (RI > 0) at both low (0.005 g mL−1) and high (0.05 g mL−1) concentrations. Moreover, A. splendens extracts increased seedling biomass (RI > 0) and synthetical allelopathic effect (SE > 0) at both concentrations. In contrast, both A. frigida and S. chamaejasme extracts had hormesis effects, which stimulate at low concentrations (RI > 0) but inhibit at high concentrations (RI < 0) on seedling biomass and synthetical allelopathic effect (SE). The results suggest that allelopathic potential may be an important mechanism driving the dominance of A. frigida and S. chamaejasme in degraded grasslands. Reseeding allelopathy-promoting species such as A. splendens may be beneficial to grassland restoration. The present study also demonstrated that seedling biomass, root and shoot length, and seed germination rate are the optimal bioindicators in allelopathy assays and could be more representative when they are combined with the results of multivariate analyses. Full article
(This article belongs to the Special Issue Plant–Plant Allelopathic Interactions)
Show Figures

Figure 1

20 pages, 3073 KiB  
Article
Characteristics of the Seed Germination and Seedlings of Six Grape Varieties (V. vinifera)
by Zhi-Lei Wang, Miao Hui, Xue-Qing Shi, Dong Wu, Ying Wang, Xing Han, Xiao Cao, Fei Yao, Hua Li and Hua Wang
Plants 2022, 11(4), 479; https://doi.org/10.3390/plants11040479 - 10 Feb 2022
Cited by 10 | Viewed by 2370
Abstract
Intraspecific recurrent selection in V. vinifera is an effective method for breeding of high quality, disease-, cold-, and drought-resistance grapes. Exploring the optimal treatment methods for grape (V. vinifera) seeds can help to accelerate the process of intraspecific recurrent selection and [...] Read more.
Intraspecific recurrent selection in V. vinifera is an effective method for breeding of high quality, disease-, cold-, and drought-resistance grapes. Exploring the optimal treatment methods for grape (V. vinifera) seeds can help to accelerate the process of intraspecific recurrent selection and improve breeding efficiency. In this study, seeds of six V. vinifera varieties were used as experimental materials, and the germination and seedling formation characteristics were studied by single factor treatment and orthogonal compound treatment, respectively. To do this, stratification, chemical substances, beak cutting, and pre-germination treatments were tested, and the optimal treatment combination was determined for each variety. The results indicated that the optimal conditions obtained in the orthogonal experiments were not completely consistent with those in the single-factor experiments. Single factor experiment results demonstrated that two stratification methods (chilling gauze-storage and chilling sand-storage) and two pre-germination methods (pre-germination in petri dishes and pre-germination in a bean sprouter) vary in effectiveness for different varieties. gibberellin acid (GA3) soaking and beak-cutting promote the germination and seedling rate of the tested varieties. Orthogonal test results demonstrate that, for Dunkelfelder and Cabernet Sauvignon, the optimal treatment combination was chilling sand-storage + GA3 soaking seed + beak cutting + pre-germination in petri dishes. For Meili, the optimal treatment combination was chilling sand-storage + acetic acid (HAc) soaking seed + beak cutting + pre-germination in petri dishes. For Ecolly, the optimal treatment combination was chilling sand-storage + GA3 soaking seed + beak cutting + pre-germination in a bean sprouter. For Garanior, the optimal treatment combination was chilling sand-storage + HAc soaking seed + no beak cutting + pre-germination in petri dishes. For Marselan, the optimal treatment combination was chilling gauze-storage + GA3 soaking seed + beak cutting + pre-germination in a bean sprouter. This study identified the optimal conditions for seed germination and seedling formation of six grape varieties, which will facilitate future work to characterize the seed germination and seedling formation of seeds obtained by intraspecific hybridization of these varieties. This work also provides a reference for addressing problems of low seed germination rate and suboptimal seedling formation for better utilization of grape germplasms. Full article
(This article belongs to the Special Issue The Transition from Seed to Seedling)
Show Figures

Figure 1

14 pages, 643 KiB  
Review
Plant GDSL Esterases/Lipases: Evolutionary, Physiological and Molecular Functions in Plant Development
by Gaodian Shen, Wenli Sun, Zican Chen, Lei Shi, Jun Hong and Jianxin Shi
Plants 2022, 11(4), 468; https://doi.org/10.3390/plants11040468 - 9 Feb 2022
Cited by 46 | Viewed by 5371
Abstract
GDSL esterases/lipases (GELPs), present throughout all living organisms, have been a very attractive research subject in plant science due mainly to constantly emerging properties and functions in plant growth and development under both normal and stressful conditions. This review summarizes the advances in [...] Read more.
GDSL esterases/lipases (GELPs), present throughout all living organisms, have been a very attractive research subject in plant science due mainly to constantly emerging properties and functions in plant growth and development under both normal and stressful conditions. This review summarizes the advances in research on plant GELPs in several model plants and crops, including Arabidopsis, rice, maize and tomato, while focusing on the roles of GELPs in regulating plant development and plant–environment interactions. In addition, the possible regulatory network and mechanisms of GELPs have been discussed. Full article
(This article belongs to the Special Issue 10th Anniversary of Plants—Recent Advances and Perspectives)
Show Figures

Figure 1

21 pages, 847 KiB  
Review
Polyploidization in Orchids: From Cellular Changes to Breeding Applications
by Joe Abdul Vilcherrez-Atoche, Carla Midori Iiyama and Jean Carlos Cardoso
Plants 2022, 11(4), 469; https://doi.org/10.3390/plants11040469 - 9 Feb 2022
Cited by 16 | Viewed by 4532
Abstract
Polyploidy occurs naturally in plants through cell division errors or can artificially be induced by antimitotic agents and has ecological effects on species adaptation, evolution, and development. In agriculture, polyploidy provides economically improved cultivars. Furthermore, the artificial induction of polyploids increases the frequency; [...] Read more.
Polyploidy occurs naturally in plants through cell division errors or can artificially be induced by antimitotic agents and has ecological effects on species adaptation, evolution, and development. In agriculture, polyploidy provides economically improved cultivars. Furthermore, the artificial induction of polyploids increases the frequency; thus, it accelerates obtaining polyploid plants used in breeding programs. This is the reason for its use in developing many crops of economic interest, as is the case of orchids in the flower market. Polyploidy in ornamental plants is mainly associated with flowers of larger size, fragrance, and more intense coloring when compared to naturally diploid plants. Currently, orchids represent the largest flower market worldwide; thus, breeding programs aim to obtain flowers with the larger size, durability, intense colors, and resistance to pathogens. Furthermore, orchid hybridization with polyploidy induction has been used to produce improved hybrid cultivars. Thus, the objective of this review was to compile information regarding the natural occurrence, importance, and methods of induction of polyploidy in orchids. The study also summarizes the significance of polyploids and techniques associated with artificially inducing polyploidy in different orchids of commercial relevance. Full article
(This article belongs to the Special Issue Plant Regeneration and Organ Formation)
Show Figures

Graphical abstract

21 pages, 3276 KiB  
Article
In Vitro Technologies for American Chestnut (Castanea dentata (Marshall) Borkh) Conservation
by Zhuoya Liu, Wen-Lu Bi, Mukund R. Shukla and Praveen K. Saxena
Plants 2022, 11(3), 464; https://doi.org/10.3390/plants11030464 - 8 Feb 2022
Cited by 5 | Viewed by 3370
Abstract
American chestnut (Castanea dentata), a native species of eastern North America, is an economically important deciduous hardwood tree that has been designated as endangered in Canada. The population of American chestnut trees has dwindled significantly across Southern Ontario due to chestnut [...] Read more.
American chestnut (Castanea dentata), a native species of eastern North America, is an economically important deciduous hardwood tree that has been designated as endangered in Canada. The population of American chestnut trees has dwindled significantly across Southern Ontario due to chestnut blight and many of the surviving trees continue to show blight disease symptoms. American chestnut requires efficient strategies for propagation and preservation for species recovery. The objective of this study was to develop a long-term plant conservation program using micropropagation and cryopreservation protocols. An in vitro technology using a liquid-based temporary immersion system (TIS) was developed for micropropagation of American chestnut. The highest rate of shoot multiplication was observed in cultures grown in the DKW (Driver and Kuniyuki 1984) basal medium supplemented with 2.2 µM 6-benzylaminopurine and 1.0 µM gibberellic acid. More than 95% of proliferated microshoots, about 40–50 mm in size, developed roots after 30 days of culture within bioreactor vessels containing DKW basal medium supplemented with 15 µM 3-Indolebutyric acid. Rooted plantlets transplanted to the greenhouse had a survival efficiency of 82% after one month of growth. The cryopreservation protocol for germplasm preservation was developed through droplet vitrification of shoots. Optimal regeneration of shoot tips occurred from explants precultured on stepwise concentrations of sucrose and subsequent dehydration in PVS3 for 30 min. Cryopreserved shoot tips were regenerated to whole plants using pre-optimized conditions of micropropagation. This study confirms the potential of TIS for micropropagation in ex situ conservation and reintroduction of endangered American chestnuts and possibly other woody plant species. Full article
(This article belongs to the Special Issue In Vitro Conservation of Endangered and Value-Added Plant Species)
Show Figures

Figure 1

19 pages, 3801 KiB  
Article
Isolation of the Novel Strain Bacillus amyloliquefaciens F9 and Identification of Lipopeptide Extract Components Responsible for Activity against Xanthomonas citri subsp. citri
by Xin Wang, Liqiong Liang, Hang Shao, Xiaoxin Ye, Xiaobei Yang, Xiaoyun Chen, Yu Shi, Lianhui Zhang, Linghui Xu and Junxia Wang
Plants 2022, 11(3), 457; https://doi.org/10.3390/plants11030457 - 7 Feb 2022
Cited by 14 | Viewed by 3693
Abstract
Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is a quarantine disease that seriously affects citrus production worldwide. The use of microorganisms and their products for biological control has been proven to be effective in controlling Xanthomonas disease. In this [...] Read more.
Citrus canker, caused by Xanthomonas citri subsp. citri (Xcc), is a quarantine disease that seriously affects citrus production worldwide. The use of microorganisms and their products for biological control has been proven to be effective in controlling Xanthomonas disease. In this study, a novel Xcc antagonistic strain was isolated and identified as Bacillus amyloliquefaciens F9 by morphological and molecular analysis. The lipopeptide extract of B. amyloliquefaciens F9 (F9LE) effectively inhibited the growth of Xcc in an agar diffusion assay and restrained the occurrence of canker lesions in a pathogenicity test under greenhouse conditions. Consistent with these findings, F9LE treatment significantly inhibited the production of extracellular enzymes in Xcc cells and induced cell wall damage, with leakage of bacterial contents revealed by scanning electron microscopy and transmission electron microscopy analyses. In addition, F9LE also showed strong antagonistic activity against a wide spectrum of plant pathogenic bacteria and fungi. Furthermore, using electrospray ionization mass spectrometry analysis, the main antimicrobial compounds of strain F9 were identified as three kinds of lipopeptides, including homologues of surfactin, fengycin, and iturin. Taken together, our results show that B. amyloliquefaciens F9 and its lipopeptide components have the potential to be used as biocontrol agents against Xcc, and other plant pathogenic bacteria and fungi. Full article
Show Figures

Figure 1

12 pages, 270 KiB  
Review
The Endosphere Microbiome of Ginseng
by Paul H. Goodwin
Plants 2022, 11(3), 415; https://doi.org/10.3390/plants11030415 - 2 Feb 2022
Cited by 15 | Viewed by 2946
Abstract
The endosphere of ginseng contains a variety of fungal, bacterial, archaeal and viral endophytes. Bacterial endophytes are primarily members of the Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes, and fungal endophytes are primarily members of the Ascomycota, Zygomycota and Basidiomycota. Although archaea and viruses have [...] Read more.
The endosphere of ginseng contains a variety of fungal, bacterial, archaeal and viral endophytes. Bacterial endophytes are primarily members of the Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes, and fungal endophytes are primarily members of the Ascomycota, Zygomycota and Basidiomycota. Although archaea and viruses have been detected in symptomless ginseng plants, little is known about them. Many but not all studies have shown roots having the highest abundance and diversity of bacterial and fungal endophytes, with some endophytes showing specificity to above or belowground tissues. Abundance often increases with root age, although diversity can decrease, possibly related to increases in potential latent fungal pathogen infections. The descriptions of many endophytes that can metabolize ginsenosides indicate an adaptation of the microbes to the unique combination of secondary metabolites found in ginseng tissues. Most research on the benefits provided by bacterial and fungal endophytes has concentrated on improved plant nutrition, growth promotion and increased disease resistance, but little on their ability to increase abiotic stress resistance. Some other areas where more research is needed is field trials with endophyte-treated plants grown in various environments, genomic/metagenomic analysis of endophytes, and the effects of endophytes on induced disease resistance and abiotic stress tolerance. Full article
22 pages, 18232 KiB  
Article
The Photosynthetic Efficiency and Carbohydrates Responses of Six Edamame (Glycine max. L. Merrill) Cultivars under Drought Stress
by Jeremiah M. Hlahla, Mpho S. Mafa, Rouxléne van der Merwe, Orbett Alexander, Mart-Mari Duvenhage, Gabre Kemp and Makoena J. Moloi
Plants 2022, 11(3), 394; https://doi.org/10.3390/plants11030394 - 31 Jan 2022
Cited by 19 | Viewed by 4278
Abstract
Vegetable-type soybean, also known as edamame, was recently introduced to South Africa. However, there is lack of information on its responses to drought. The aim of this study was to investigate the photosynthetic efficiency and carbohydrates responses of six edamame cultivars under drought [...] Read more.
Vegetable-type soybean, also known as edamame, was recently introduced to South Africa. However, there is lack of information on its responses to drought. The aim of this study was to investigate the photosynthetic efficiency and carbohydrates responses of six edamame cultivars under drought stress. Photosynthetic efficiency parameters, including chlorophyll fluorescence and stomatal conductance, were determined using non-invasive methods, while pigments were quantified spectrophotometrically. Non-structural carbohydrates were quantified using Megazyme kits. Structural carbohydrates were determined using Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Drought stress significantly increased the Fv/Fm and PIabs of AGS429 and UVE17 at pod filling stage. Chlorophyll-a, which was most sensitive to drought, was significantly reduced in AGS429 and UVE17, but chlorophyll-b was relatively stable in all cultivars, except UVE17, which showed a significant decline at flowering stage. AGS354 and AGS429 also showed reduced chlorophyll-b at pod filling. UVE17 showed a significant reduction in carotenoid content and a substantial reduction in stomatal conductance during pod filling. Drought stress during pod filling resulted in a significant increase in the contents of trehalose, sucrose and starch, but glucose was decreased. Chlorophyll-a positively correlated with starch. The FTIR and XRD results suggest that the cell wall of UVE14, followed by UVE8 and AGS429, was the most intact during drought stress. It was concluded that carotenoids, stomatal conductance, starch and hemicellulose could be used as physiological/biochemical indicators of drought tolerance in edamame. This information expands our knowledge of the drought defense responses in edamame, and it is essential for the physiological and biochemical screening of drought tolerance. Full article
(This article belongs to the Special Issue Responses of Plants to Environmental Stresses Volume II)
Show Figures

Figure 1

18 pages, 1743 KiB  
Review
The Role of Biostimulants as Alleviators of Biotic and Abiotic Stresses in Grapevine: A Review
by Eliana Monteiro, Berta Gonçalves, Isabel Cortez and Isaura Castro
Plants 2022, 11(3), 396; https://doi.org/10.3390/plants11030396 - 31 Jan 2022
Cited by 39 | Viewed by 8217
Abstract
The viticulture and wine industry contribute to the economy and reputation of many countries all over the world. With the predicted climate change, a negative impact on grapevine physiology, growth, production, and quality of berries is expected. On the other hand, the impact [...] Read more.
The viticulture and wine industry contribute to the economy and reputation of many countries all over the world. With the predicted climate change, a negative impact on grapevine physiology, growth, production, and quality of berries is expected. On the other hand, the impact of these changes in phytopathogenic fungi development, survival rates, and host susceptibility is unpredictable. Grapevine fungal diseases control has been a great challenge to winegrowers worldwide. The use of chemicals in viticulture is high, which can result in the development of pathogen resistance, increasingly raising concerns regarding residues in wine and effects on human and environmental health. Promoting sustainable patterns of production is one of the overarching objectives and essential requirements for sustainable development. Alternative holistic approaches, such as those making use of biostimulants, are emerging in order to reduce the consequences of biotic and abiotic stresses in the grapevine, namely preventing grape fungal diseases, improving grapevine resistance to water stress, and increasing yield and berry quality. Full article
(This article belongs to the Special Issue Plant Extracts as Biological Protective Agents)
Show Figures

Figure 1

29 pages, 898 KiB  
Review
Fungal Endophytes and Their Role in Agricultural Plant Protection against Pests and Pathogens
by Rachel Grabka, Tyler W. d’Entremont, Sarah J. Adams, Allison K. Walker, Joey B. Tanney, Pervaiz A. Abbasi and Shawkat Ali
Plants 2022, 11(3), 384; https://doi.org/10.3390/plants11030384 - 30 Jan 2022
Cited by 78 | Viewed by 11700
Abstract
Virtually all examined plant species harbour fungal endophytes which asymptomatically infect or colonize living plant tissues, including leaves, branches, stems and roots. Endophyte-host interactions are complex and span the mutualist–pathogen continuum. Notably, mutualist endophytes can confer increased fitness to their host plants compared [...] Read more.
Virtually all examined plant species harbour fungal endophytes which asymptomatically infect or colonize living plant tissues, including leaves, branches, stems and roots. Endophyte-host interactions are complex and span the mutualist–pathogen continuum. Notably, mutualist endophytes can confer increased fitness to their host plants compared with uncolonized plants, which has attracted interest in their potential application in integrated plant health management strategies. In this review, we report on the many benefits that fungal endophytes provide to agricultural plants against common non-insect pests such as fungi, bacteria, nematodes, viruses, and mites. We report endophytic modes of action against the aforementioned pests and describe why this broad group of fungi is vitally important to current and future agricultural practices. We also list an extensive number of plant-friendly endophytes and detail where they are most commonly found or applied in different studies. This review acts as a general resource for understanding endophytes as they relate to potential large-scale agricultural applications. Full article
(This article belongs to the Special Issue Plant Interaction with Fungal Endophytes)
Show Figures

Figure 1

19 pages, 1051 KiB  
Review
Induced Systemic Resistance for Improving Plant Immunity by Beneficial Microbes
by Yiyang Yu, Ying Gui, Zijie Li, Chunhao Jiang, Jianhua Guo and Dongdong Niu
Plants 2022, 11(3), 386; https://doi.org/10.3390/plants11030386 - 30 Jan 2022
Cited by 135 | Viewed by 17544
Abstract
Plant beneficial microorganisms improve the health and growth of the associated plants. Application of beneficial microbes triggers an enhanced resistance state, also termed as induced systemic resistance (ISR), in the host, against a broad range of pathogens. Upon the activation of ISR, plants [...] Read more.
Plant beneficial microorganisms improve the health and growth of the associated plants. Application of beneficial microbes triggers an enhanced resistance state, also termed as induced systemic resistance (ISR), in the host, against a broad range of pathogens. Upon the activation of ISR, plants employ long-distance systemic signaling to provide protection for distal tissue, inducing rapid and strong immune responses against pathogens invasions. The transmission of ISR signaling was commonly regarded to be a jasmonic acid- and ethylene-dependent, but salicylic acid-independent, transmission. However, in the last decade, the involvement of both salicylic acid and jasmonic acid/ethylene signaling pathways and the regulatory roles of small RNA in ISR has been updated. In this review, the plant early recognition, responsive reactions, and the related signaling transduction during the process of the plant–beneficial microbe interaction was discussed, with reflection on the crucial regulatory role of small RNAs in the beneficial microbe-mediated ISR. Full article
Show Figures

Figure 1

18 pages, 3288 KiB  
Article
QTL Identification for Stem Fiber, Strength and Rot Resistance in a DH Population from an Alien Introgression of Brassica napus
by Yujiao Shao, Yusen Shen, Feifei He and Zaiyun Li
Plants 2022, 11(3), 373; https://doi.org/10.3390/plants11030373 - 29 Jan 2022
Cited by 11 | Viewed by 2257
Abstract
Stem fiber, stem strength and stem-rot resistance are important agronomic traits in Brassica napus. To understand the molecular mechanism that controls the stem-related traits, we investigated the stem lignin (ADL), cellulose (Cel), hemicellulose (Hem) content, S/G monolignol ratio (SG), stem breaking force [...] Read more.
Stem fiber, stem strength and stem-rot resistance are important agronomic traits in Brassica napus. To understand the molecular mechanism that controls the stem-related traits, we investigated the stem lignin (ADL), cellulose (Cel), hemicellulose (Hem) content, S/G monolignol ratio (SG), stem breaking force (BF), breaking strength (F) and Sclerotinia sclerotiorum resistance (SSR). Each trait was significantly positively or negatively correlated with more than three of the other six traits. QTL mapping for ADL, Cel, Hem, SG, BF, F and SSR were performed using a doubled haploid population derived from an intertribal B. napus introgression line ‘Y689′ crossed with B. napus cv. ‘Westar’. A total of 67 additive QTL were identified and integrated into 55 consensus QTL by meta-analysis. Among the 55 consensus QTL, 23 (41.8%) QTL were co-located and were integrated into 11 unique QTL. The QTL by environment (Q × E) interactions were analyzed and 22 combined QTL were identified. In addition, candidate genes within the QTL intervals were proposed based on the known function of Arabidopsis orthologs. These results provided valuable information for improving lodging resistance, S. sclerotiorum resistance and mechanized harvesting of B. napus. Full article
(This article belongs to the Collection Exploration and Application of Useful Agricultural Genes)
Show Figures

Figure 1

13 pages, 1971 KiB  
Article
SNORKEL Genes Relating to Flood Tolerance Were Pseudogenized in Normal Cultivated Rice
by Keisuke Nagai, Yusuke Kurokawa, Yoshinao Mori, Anzu Minami, Stefan Reuscher, Jianzhong Wu, Takashi Matsumoto and Motoyuki Ashikari
Plants 2022, 11(3), 376; https://doi.org/10.3390/plants11030376 - 29 Jan 2022
Cited by 12 | Viewed by 3664
Abstract
SNORKEL1 (SK1) and SNORKEL2 (SK2) are ethylene responsive factors that regulate the internode elongation of deepwater rice in response to submergence. We previously reported that normal cultivated rice lacks SK genes because the Chromosome 12 region containing SK genes [...] Read more.
SNORKEL1 (SK1) and SNORKEL2 (SK2) are ethylene responsive factors that regulate the internode elongation of deepwater rice in response to submergence. We previously reported that normal cultivated rice lacks SK genes because the Chromosome 12 region containing SK genes was deleted from its genome. However, no study has analyzed how the genome defect occurred in that region by comparing normal cultivated rice and deepwater rice. In this study, comparison of the sequence of the end of Chromosome 12, which contains SK genes, between normal and deepwater rice showed that complicated genome changes such as insertions, deletions, inversions, substitutions, and translocation occurred frequently in this region. In addition to SK1 and SK2 of deepwater rice, gene prediction analysis identified four genes containing AP2/ERF domains in normal cultivated rice and six in deepwater rice; we called these genes SK-LIKE (SKL) genes. SKs and SKLs were present in close proximity to each other, and the SKLs in normal cultivated rice were in tandem. These predicted genes belong to the same AP2/ERF subfamily and were separated into four types: SK1, SK2, SKL3, and SKL4. Sequence comparison indicated that normal cultivated rice possesses a gene with high homology to SK2, which we named SKL1. However, none of the predicted SKLs except for SKL3s were expressed during submergence. Although SKL3s were expressed in both normal and deepwater rice, normal rice does not undergo internode elongation, suggesting that its expression does not contribute to internode elongation. Plants overexpressing SKL1, which showed the most homology to SK2, underwent internode elongation similar to plants overexpressing SK1 and SK2 under normal growth conditions. A yeast one-hybrid assay showed that the C-end of SKL1 has transcription activity, as do the C-ends of SK1 and SK2. Our results suggested that SKLs were derived via gene duplication, but were not expressed and pseudogenized in normal cultivated rice during sequence evolution. Full article
(This article belongs to the Special Issue Molecular and Physiological Basis of Abiotic Stress Tolerance)
Show Figures

Figure 1

20 pages, 36605 KiB  
Article
Chemical Composition, Antioxidant, In Vitro and In Situ Antimicrobial, Antibiofilm, and Anti-Insect Activity of Cedar atlantica Essential Oil
by Miroslava Kačániová, Lucia Galovičová, Veronika Valková, Hana Ďuranová, Jana Štefániková, Natália Čmiková, Milena Vukic, Nenad L. Vukovic and Przemysław Łukasz Kowalczewski
Plants 2022, 11(3), 358; https://doi.org/10.3390/plants11030358 - 28 Jan 2022
Cited by 13 | Viewed by 3832
Abstract
The present study was designed to evaluate commercial cedar essential oil (CEO), obtained by hydrodistillation from cedar wood, in relationship to its chemical composition and antioxidant, in vitro and in situ antimicrobial, antibiofilm, and anti-insect activity. For these purposes, gas chromatography–mass spectrometry, DPPH [...] Read more.
The present study was designed to evaluate commercial cedar essential oil (CEO), obtained by hydrodistillation from cedar wood, in relationship to its chemical composition and antioxidant, in vitro and in situ antimicrobial, antibiofilm, and anti-insect activity. For these purposes, gas chromatography–mass spectrometry, DPPH radical-scavenging assay, agar and disc diffusion, and vapor phase methods were used. The results from the volatile profile determination showed that δ-cadinene (36.3%), (Z)-β-farnesene (13.8%), viridiflorol (7.3%), and himachala-2,4-diene (5.4%) were the major components of the EO chemical constitution. Based on the obtained results, a strong antioxidant effect (81.1%) of the CEO was found. CEO is characterized by diversified antimicrobial activity, and the zones of inhibition ranged from 7.33 to 21.36 mm in gram-positive and gram-negative bacteria, and from 5.44 to 13.67 mm in yeasts and fungi. The lowest values of minimal inhibition concentration (MIC) were noted against gram-positive Micrococcus luteus (7.46 µL/mL) and against yeast Candida krusei (9.46 µL/mL). It seems that the vapor phase of CEO can inhibit the growth of the microscopic filamentous fungi of the genus Penicillium according to in situ antifungal analysis on bread, carrots, and celery. This finding confirms the impact of CEO on the change in the protein structure of older biofilms of Pseudomonas fluorescens and Salmonella enterica subsp. enterica. Insecticidal activity of a vapor phase has also been demonstrated against Pyrrhocoris apterus. CEO showed various advantages on antimicrobial activity, and it is an ideal substitute for food safety. Full article
Show Figures

Figure 1

15 pages, 845 KiB  
Review
Coping with Abiotic Stress in Plants—An Endomembrane Trafficking Perspective
by Miguel Sampaio, João Neves, Tatiana Cardoso, José Pissarra, Susana Pereira and Cláudia Pereira
Plants 2022, 11(3), 338; https://doi.org/10.3390/plants11030338 - 27 Jan 2022
Cited by 13 | Viewed by 4396
Abstract
Plant cells face many changes through their life cycle and develop several mechanisms to cope with adversity. Stress caused by environmental factors is turning out to be more and more relevant as the human population grows and plant cultures start to fail. As [...] Read more.
Plant cells face many changes through their life cycle and develop several mechanisms to cope with adversity. Stress caused by environmental factors is turning out to be more and more relevant as the human population grows and plant cultures start to fail. As eukaryotes, plant cells must coordinate several processes occurring between compartments and combine different pathways for protein transport to several cellular locations. Conventionally, these pathways begin at the ER, or endoplasmic reticulum, move through the Golgi and deliver cargo to the vacuole or to the plasma membrane. However, when under stress, protein trafficking in plants is compromised, usually leading to changes in the endomembrane system that may include protein transport through unconventional routes and alteration of morphology, activity and content of key organelles, as the ER and the vacuole. Such events provide the tools for cells to adapt and overcome the challenges brought on by stress. With this review, we gathered fragmented information on the subject, highlighting how such changes are processed within the endomembrane system and how it responds to an ever-changing environment. Even though the available data on this subject are still sparse, novel information is starting to untangle the complexity and dynamics of protein transport routes and their role in maintaining cell homeostasis under harsh conditions. Full article
(This article belongs to the Special Issue Endomembrane Adaptations under Stress)
Show Figures

Graphical abstract

17 pages, 2361 KiB  
Article
Esmeralda Peach (Prunus persica) Fruit Yield and Quality Response to Nitrogen Fertilization
by Gilberto Nava, Carlos Reisser Júnior, Léon-Étienne Parent, Gustavo Brunetto, Jean Michel Moura-Bueno, Renan Navroski, Jorge Atílio Benati and Caroline Farias Barreto
Plants 2022, 11(3), 352; https://doi.org/10.3390/plants11030352 - 27 Jan 2022
Cited by 9 | Viewed by 3402
Abstract
‘Esmeralda’ is an orange fleshed peach cultivar primarily used for juice extraction and secondarily used for the fresh fruit market. Fruit yield and quality depend on several local environmental and managerial factors, mainly on nitrogen, which must be balanced with other nutrients. Similar [...] Read more.
‘Esmeralda’ is an orange fleshed peach cultivar primarily used for juice extraction and secondarily used for the fresh fruit market. Fruit yield and quality depend on several local environmental and managerial factors, mainly on nitrogen, which must be balanced with other nutrients. Similar to other perennial crops, peach trees show carryover effects of carbohydrates and nutrients and of nutrients stored in their tissues. The aims of the present study are (i) to identify the major sources of seasonal variability in fruit yield and qu Fruit Tree Department of Federal University of Pelotas (UFPEL), Pelotas 96010610ality; and (ii) to establish the N dose and the internal nutrient balance to reach high fruit yield and quality. The experiment was conducted from 2014 to 2017 in Southern Brazil and it followed five N treatments (0, 40, 80, 120 and 160 kg N ha−1 year−1). Foliar compositions were centered log-ratio (clr) transformed in order to account for multiple nutrient interactions and allow computing distances between compositions. Based on the feature ranking, chilling hours, degree-days and rainfall were the most influential features. Machine learning models k-nearest neighbors (KNN) and stochastic gradient decent (SGD) performed well on yield and quality indices, and reached accuracy from 0.75 to 1.00. In 2014, fruit production did not respond to added N, and it indicated the carryover effects of previously stored carbohydrates and nutrients. The plant had a quadratic response (p < 0.05) to N addition in 2015 and 2016, which reached maximum yield of 80 kg N ha−1. In 2017, harvest was a failure due to the chilling hours (198 h) and the relatively small number of fruits per tree. Fruit yield and antioxidant content increased abruptly when foliar clrCu was >−5.410. The higher foliar P linearly decreased total titratable acidity and increased pulp firmness when clrP > 0.556. Foliar N concentration range was narrow at high fruit yield and quality. The present results have emphasized the need of accounting for carryover effects, nutrient interactions and local factors in order to predict peach yield and nutrient dosage. Full article
Show Figures

Figure 1

17 pages, 1688 KiB  
Review
Higenamine in Plants as a Source of Unintentional Doping
by Vanya Rangelov Kozhuharov, Kalin Ivanov and Stanislava Ivanova
Plants 2022, 11(3), 354; https://doi.org/10.3390/plants11030354 - 27 Jan 2022
Cited by 14 | Viewed by 4384
Abstract
Background: Higenamine is a β2 agonist of plant origin. The compound has been included in WADA’s prohibited list since 2017. Higenamine may be detected in different plants and many food supplements of natural origin. Methods: Our literature search was conducted through PubMed, [...] Read more.
Background: Higenamine is a β2 agonist of plant origin. The compound has been included in WADA’s prohibited list since 2017. Higenamine may be detected in different plants and many food supplements of natural origin. Methods: Our literature search was conducted through PubMed, Science Direct, Google Scholar, and Web of Science studies investigating the presence of higenamine in plants that are used in traditional folk medicine or included in food supplements. Our study aimed to assess the risk of adverse analytical findings caused by higenamine-containing plants. Results: Based on our literature search, Nelumbo nucifera, Tinospora crispa, Nandina domestica, Gnetum parvifolium, Asarum siebodii,Asarum heterotropoides, Aconitum carmichaelii, and Aristolochia brasiliensis are higenamine-containing plants. Based on data from Eastern folk medicine, these plants can provide numerous health benefits. Professional athletes likely ingest these plants without knowing that they contain higenamine; these herbs are used in treatments for different conditions and various foods/food supplements in addition to folk medicine. Conclusion: Athletes and their teams must be aware of the issues associated with the use of plant-based products. They should avoid consuming higenamine-containing plants during and outside of competition periods. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

19 pages, 2938 KiB  
Article
Branch Numbers and Crop Load Combination Effects on Production and Fruit Quality of Flat Peach Cultivars (Prunus persica (L.) Batsch) Trained as Catalonian Vase
by Luca Mazzoni, Irene Medori, Francesca Balducci, Micol Marcellini, Paolo Acciarri, Bruno Mezzetti and Franco Capocasa
Plants 2022, 11(3), 308; https://doi.org/10.3390/plants11030308 - 24 Jan 2022
Cited by 8 | Viewed by 2663
Abstract
Thinning and pruning are expensive cultural practices in peach cultivation, but essential to obtain adequate production. This study evaluated the effects of combining two pruning (four and six scaffold branches) and three thinning (low, medium, and high crop load) levels on yield and [...] Read more.
Thinning and pruning are expensive cultural practices in peach cultivation, but essential to obtain adequate production. This study evaluated the effects of combining two pruning (four and six scaffold branches) and three thinning (low, medium, and high crop load) levels on yield and fruit quality of four different flat peach cultivars, trained as Catalonian vase in 2017–2018 in Italy. Productive (average fruit weight, plant total production, and fruit circumference), qualitative (fruit firmness and overcolor, Soluble Solids Content, and Titratable Acidity), and nutritional (Total Antioxidant Capacity, and Total Phenol Content) parameters were evaluated. For productive parameters, a high crop load level led to a decrease in fruit weight and circumference, while a high crop load resulted in higher plant yield. Regarding the qualitative parameters, fruit SSC significantly increased with the diminution of the crop load level in both years of study, while TA was not influenced by crop load and number of branches. Both the total antioxidant capacity and the polyphenol content decreased with an increase in branches number. The findings derived from this study will help growers to select the most suitable combination among genotypes and plant management, to obtain the desired productive or qualitative goals. Full article
(This article belongs to the Special Issue Fruit Quality and Ripening in Prunus)
Show Figures

Figure 1

20 pages, 3592 KiB  
Article
Deciphering Molecular Mechanisms Involved in Salinity Tolerance in Guar (Cyamopsis tetragonoloba (L.) Taub.) Using Transcriptome Analyses
by Biswa R. Acharya, Devinder Sandhu, Christian Dueñas, Jorge F. S. Ferreira and Kulbhushan K. Grover
Plants 2022, 11(3), 291; https://doi.org/10.3390/plants11030291 - 22 Jan 2022
Cited by 12 | Viewed by 3345
Abstract
Guar is a commercially important legume crop known for guar gum. Guar is tolerant to various abiotic stresses, but the mechanisms involved in its salinity tolerance are not well established. This study aimed to understand molecular mechanisms of salinity tolerance in guar. RNA [...] Read more.
Guar is a commercially important legume crop known for guar gum. Guar is tolerant to various abiotic stresses, but the mechanisms involved in its salinity tolerance are not well established. This study aimed to understand molecular mechanisms of salinity tolerance in guar. RNA sequencing (RNA-Seq) was employed to study the leaf and root transcriptomes of salt-tolerant (Matador) and salt-sensitive (PI 340261) guar genotypes under control and salinity. Our analyses identified a total of 296,114 unigenes assembled from 527 million clean reads. Transcriptome analysis revealed that the gene expression differences were more pronounced between salinity treatments than between genotypes. Differentially expressed genes associated with stress-signaling pathways, transporters, chromatin remodeling, microRNA biogenesis, and translational machinery play critical roles in guar salinity tolerance. Genes associated with several transporter families that were differentially expressed during salinity included ABC, MFS, GPH, and P-ATPase. Furthermore, genes encoding transcription factors/regulators belonging to several families, including SNF2, C2H2, bHLH, C3H, and MYB were differentially expressed in response to salinity. This study revealed the importance of various biological pathways during salinity stress and identified several candidate genes that may be used to develop salt-tolerant guar genotypes that might be suitable for cultivation in marginal soils with moderate to high salinity or using degraded water. Full article
(This article belongs to the Special Issue 10th Anniversary of Plants—Recent Advances and Perspectives)
Show Figures

Figure 1

29 pages, 4379 KiB  
Article
Early Citizen Science Action in Ethnobotany: The Case of the Folk Medicine Collection of Dr. Mihkel Ostrov in the Territory of Present-Day Estonia, 1891–1893
by Raivo Kalle, Andrea Pieroni, Ingvar Svanberg and Renata Sõukand
Plants 2022, 11(3), 274; https://doi.org/10.3390/plants11030274 - 20 Jan 2022
Cited by 12 | Viewed by 3420
Abstract
Presently, collecting data through citizen science (CS) is increasingly being used in botanical, zoological and other studies. However, until now, ethnobotanical studies have underused CS data collection methods. This study analyses the results of the appeal organized by the physician Dr. Mihkel Ostrov [...] Read more.
Presently, collecting data through citizen science (CS) is increasingly being used in botanical, zoological and other studies. However, until now, ethnobotanical studies have underused CS data collection methods. This study analyses the results of the appeal organized by the physician Dr. Mihkel Ostrov (1863–1940), which can be considered the first-ever internationally known systematic example of ethnopharmacological data collection involving citizens. We aim to understand what factors enhanced or diminished the success of the collaboration between Ostrov and the citizens of that time. The reliability of Ostrov’s collection was enhanced by the herbarium specimens (now missing) used in the identification of vernacular names. The collection describes the use of 65 species from 27 genera. The timing of its collection coincided with not only a national awakening and recently obtained high level of literacy but also the activation of civil society, people’s awareness of the need to collect folklore, the voluntary willingness of newspapers to provide publishing space and later to collect data, and the use of a survey method focusing on a narrow topic. While Ostrov’s only means of communication with the public was through newspapers, today, with electronic options, social media can also be used. Full article
(This article belongs to the Special Issue Historical Ethnobotany: Interpreting the Old Records)
Show Figures

Figure 1

14 pages, 293 KiB  
Review
Seed Treatments with Microorganisms Can Have a Biostimulant Effect by Influencing Germination and Seedling Growth of Crops
by Mariateresa Cardarelli, Sheridan L. Woo, Youssef Rouphael and Giuseppe Colla
Plants 2022, 11(3), 259; https://doi.org/10.3390/plants11030259 - 19 Jan 2022
Cited by 41 | Viewed by 6602
Abstract
Seed quality is an important aspect of the modern cultivation strategies since uniform germination and high seedling vigor contribute to successful establishment and crop performance. To enhance germination, beneficial microbes belonging to arbuscular mycorrhizal fungi, Trichoderma spp., rhizobia and other bacteria can be [...] Read more.
Seed quality is an important aspect of the modern cultivation strategies since uniform germination and high seedling vigor contribute to successful establishment and crop performance. To enhance germination, beneficial microbes belonging to arbuscular mycorrhizal fungi, Trichoderma spp., rhizobia and other bacteria can be applied to seeds before sowing via coating or priming treatments. Their presence establishes early relationships with plants, leading to biostimulant effects such as plant-growth enhancement, increased nutrient uptake, and improved plant resilience to abiotic stress. This review aims to highlight the most significant results obtained for wheat, maize, rice, soybean, canola, sunflower, tomato, and other horticultural species. Beneficial microorganism treatments increased plant germination, seedling vigor, and biomass, as well as overcoming seed-related limitations (such as abiotic stress), both during and after emergence. The results are generally positive, but variable, so more scientific information needs to be acquired for different crops and cultivation techniques, with considerations to different beneficial microbes (species and strains) and under variable climate conditions to understand the effects of seed treatments. Full article
(This article belongs to the Special Issue Biological Seed Treatments for Ecosustainable Agriculture)
13 pages, 905 KiB  
Review
Metal Detoxification in Land Plants: From Bryophytes to Vascular Plants. STATE of the Art and Opportunities
by Elisa Fasani, Mingai Li, Claudio Varotto, Antonella Furini and Giovanni DalCorso
Plants 2022, 11(3), 237; https://doi.org/10.3390/plants11030237 - 18 Jan 2022
Cited by 19 | Viewed by 3171
Abstract
Potentially toxic elements are a widespread concern due to their increasing diffusion into the environment. To counteract this problem, the relationship between plants and metal(loid)s has been investigated in the last 30 years. In this field, research has mainly dealt with angiosperms, whereas [...] Read more.
Potentially toxic elements are a widespread concern due to their increasing diffusion into the environment. To counteract this problem, the relationship between plants and metal(loid)s has been investigated in the last 30 years. In this field, research has mainly dealt with angiosperms, whereas plant clades that are lower in the evolutive scale have been somewhat overlooked. However, recent studies have revealed the potential of bryophytes, pteridophytes and gymnosperms in environmental sciences, either as suitable indicators of habitat health and elemental pollution or as efficient tools for the reclamation of degraded soils and waters. In this review, we summarize recent research on the interaction between plants and potentially toxic elements, considering all land plant clades. The focus is on plant applicability in the identification and restoration of polluted environments, as well as on the characterization of molecular mechanisms with a potential outlet in the engineering of element tolerance and accumulation. Full article
(This article belongs to the Special Issue 10th Anniversary of Plants—Recent Advances and Perspectives)
Show Figures

Figure 1

Back to TopTop