Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1771 KiB  
Article
Contamination of Wheat Cultivated in Various Regions of Poland during 2017 and 2018 Agricultural Seasons with Selected Trichothecenes and Their Modified Forms
by Marcin Bryła, Edyta Ksieniewicz-Woźniak, Tomoya Yoshinari, Agnieszka Waśkiewicz and Krystyna Szymczyk
Toxins 2019, 11(2), 88; https://doi.org/10.3390/toxins11020088 - 1 Feb 2019
Cited by 18 | Viewed by 3626
Abstract
Cross-interaction of antibodies within the immunoaffinity columns used in this study facilitated the simultaneous determination of nivalenol (NIV), deoxynivalenol (DON), their glucoside derivatives (NIV-3G, DON-3G), and 3-acetyl-deoxynivalenol (3-AcDON) in wheat grain harvested in various regions of Poland. In Poland, 2018 was a warm, [...] Read more.
Cross-interaction of antibodies within the immunoaffinity columns used in this study facilitated the simultaneous determination of nivalenol (NIV), deoxynivalenol (DON), their glucoside derivatives (NIV-3G, DON-3G), and 3-acetyl-deoxynivalenol (3-AcDON) in wheat grain harvested in various regions of Poland. In Poland, 2018 was a warm, dry agricultural season, and hence, was relatively less favourable for cereal cultivation than 2017. Data on the natural occurrence of NIV-3G in wheat grain are among the first published in the literature. DON was the most frequently found mycotoxin in the tested samples; the percentage occurrence of DON-positive samples was 92% in 2017 and 61% in 2018. Moreover, DON concentrations were generally higher in 2017 samples (5.2–1670.7 µg/kg) than those in 2018 samples (range 5.0–461.7 µg/kg). A similar pattern was found for DON-3G. However, no statistically significant differences between the samples from the two agricultural seasons were observed for the other three mycotoxins that were analysed, and their concentrations were generally considerably lower. DON was strongly correlated with DON-3G (correlation coefficient r = 0.9558), while NIV was strongly correlated with NIV-3G (r = 0.9442). The percentage occurrence of NIV-3G- and DON-3G-positive samples was 14% in 2017 and 49% in 2018. The NIV-3G/NIV ratio was 5.9–35.7%, while the DON-3G/DON ratio range was 3.2–53.6%. In 2018, wheat samples from Southern Poland exhibited statistically significantly higher levels of DON than those from Northern Poland. The dry and hot summer of 2018 not only reduced wheat yields, but also limited development of Fusarium spp. Therefore, grain harvested that year was generally contaminated with relatively low levels of mycotoxins. Lower levels of DON were also accompanied by lesser amounts of DON-derivatives. Full article
(This article belongs to the Collection Fusarium Toxins – Relevance for Human and Animal Health)
Show Figures

Figure 1

14 pages, 1233 KiB  
Article
Vipera berus berus Venom from Russia: Venomics, Bioactivities and Preclinical Assessment of Microgen Antivenom
by Ruslan I. Al-Shekhadat, Ksenia S. Lopushanskaya, Álvaro Segura, José María Gutiérrez, Juan J. Calvete and Davinia Pla
Toxins 2019, 11(2), 90; https://doi.org/10.3390/toxins11020090 - 1 Feb 2019
Cited by 24 | Viewed by 8015
Abstract
The common European adder, Vipera berus berus, is a medically relevant species, which is widely distributed in Russia and thus, is responsible for most snakebite accidents in Russia. We have investigated the toxic and enzymatic activities and have determined the proteomic composition [...] Read more.
The common European adder, Vipera berus berus, is a medically relevant species, which is widely distributed in Russia and thus, is responsible for most snakebite accidents in Russia. We have investigated the toxic and enzymatic activities and have determined the proteomic composition of its venom. Phospholipases A2 (PLA2, 25.3% of the venom proteome), serine proteinases (SVSP, 16.2%), metalloproteinases (SVMP, 17.2%), vasoactive peptides (bradykinin-potentiating peptides (BPPs), 9.5% and C-type natriuretic peptides (C-NAP, 7.8%), cysteine-rich secretory protein (CRISP, 8%) and L-amino acid oxidase (LAO, 7.3%) represent the major toxin classes found in V. b. berus (Russia) venom. This study was also designed to assess the in vivo and in vitro preclinical efficacy of the Russian Microgen antivenom in neutralizing the main effects of V. b. berus venom. The results show that this antivenom is capable of neutralizing the lethal, hemorrhagic and PLA2 activities. Third-generation antivenomics was applied to quantify the toxin-recognition landscape and the maximal binding capacity of the antivenom for each component of the venom. The antivenomics analysis revealed that 6.24% of the anti-V. b. berus F(ab’)2 molecules fraction are toxin-binding antibodies, 60% of which represent clinically relevant antivenom molecules. Full article
(This article belongs to the Special Issue Discovery of Antibodies and Novel Antivenoms against Envenoming)
Show Figures

Graphical abstract

22 pages, 2880 KiB  
Article
Biological System Responses of Dairy Cows to Aflatoxin B1 Exposure Revealed with Metabolomic Changes in Multiple Biofluids
by Qian Wang, Yangdong Zhang, Nan Zheng, Liya Guo, Xiaoming Song, Shengguo Zhao and Jiaqi Wang
Toxins 2019, 11(2), 77; https://doi.org/10.3390/toxins11020077 - 1 Feb 2019
Cited by 40 | Viewed by 4310
Abstract
Research on mycotoxins now requires a systematic study of post-exposure organisms. In this study, the effects of aflatoxin B1 (AFB1) on biofluids biomarkers were examined with metabolomics and biochemical tests. The results showed that milk concentration of aflatoxin M1 changed with the addition [...] Read more.
Research on mycotoxins now requires a systematic study of post-exposure organisms. In this study, the effects of aflatoxin B1 (AFB1) on biofluids biomarkers were examined with metabolomics and biochemical tests. The results showed that milk concentration of aflatoxin M1 changed with the addition or removal of AFB1. AFB1 significantly affected serum concentrations of superoxide dismutase (SOD) and malon dialdehyde (MDA), SOD/MDA, and the total antioxidant capacity. Significant differences of volatile fatty acids and NH3-N were detected in the rumen fluid. Eighteen rumen fluid metabolites, 11 plasma metabolites, and 9 milk metabolites were significantly affected by the AFB1. These metabolites are mainly involved in the pathway of amino acids metabolism. Our results suggest that not only is the study of macro-indicators (milk composition and production) important, but that more attention should be paid to micro-indicators (biomarkers) when assessing the risks posed by mycotoxins to dairy cows. Full article
(This article belongs to the Collection Aflatoxins)
Show Figures

Graphical abstract

15 pages, 320 KiB  
Article
Occupational Exposure to Mycotoxins in Swine Production: Environmental and Biological Monitoring Approaches
by Susana Viegas, Ricardo Assunção, Carla Martins, Carla Nunes, Bernd Osteresch, Magdalena Twarużek, Robert Kosicki, Jan Grajewski, Edna Ribeiro and Carla Viegas
Toxins 2019, 11(2), 78; https://doi.org/10.3390/toxins11020078 - 1 Feb 2019
Cited by 50 | Viewed by 5115
Abstract
Swine production workers are exposed simultaneously to multiple contaminants. Occupational exposure to aflatoxin B1 (AFB1) in Portuguese swine production farms has already been reported. However, besides AFB1, data regarding fungal contamination showed that exposure to other mycotoxins could [...] Read more.
Swine production workers are exposed simultaneously to multiple contaminants. Occupational exposure to aflatoxin B1 (AFB1) in Portuguese swine production farms has already been reported. However, besides AFB1, data regarding fungal contamination showed that exposure to other mycotoxins could be expected in this setting. The present study aimed to characterize the occupational exposure to multiple mycotoxins of swine production workers. To provide a broad view on the burden of contamination by mycotoxins and the workers’ exposure, biological (urine) samples from workers (n = 25) and 38 environmental samples (air samples, n = 23; litter samples, n = 5; feed samples, n = 10) were collected. The mycotoxins biomarkers detected in the urine samples of the workers group were the deoxynivalenol-glucuronic acid conjugate (60%), aflatoxin M1 (16%), enniatin B (4%), citrinin (8%), dihydrocitrinone (12%) and ochratoxin A (80%). Results of the control group followed the same pattern, but in general with a lower number of quantifiable results (<LOQ). Besides air samples, all the other environmental samples collected presented high and diverse contamination, and deoxynivalenol (DON), like in the biomonitoring results, was the most prominent mycotoxin. The results demonstrate that the occupational environment is adding and contributing to the workers’ total exposure to mycotoxins, particularly in the case of DON. This was confirmed by the biomonitoring data and the high contamination found in feed and litter samples. Furthermore, he followed multi-biomarker approach allowed to conclude that workers and general population are exposed to several mycotoxins simultaneously. Moreover, occupational exposure is probably described as being intermittent and with very high concentrations for short durations. This should be reflected in the risk assessment process. Full article
(This article belongs to the Special Issue Mycotoxin Exposure and Related Diseases)
12 pages, 1442 KiB  
Article
Rapid Determination of Ochratoxin A in Grape and Its Commodities Based on a Label-Free Impedimetric Aptasensor Constructed by Layer-by-Layer Self-Assembly
by Mina Nan, Yang Bi, Huali Xue, Sulin Xue, Haitao Long, Lumei Pu and Guorui Fu
Toxins 2019, 11(2), 71; https://doi.org/10.3390/toxins11020071 - 28 Jan 2019
Cited by 27 | Viewed by 3194
Abstract
A simple and sensitive label-free impedimetric aptasensor for rapid determination of ochratoxin A (OTA) has been developed, which was based on the combination between thiolated aptamer and gold nanoparticles by layer-by-layer self-assembly. Because of the interaction between aptamer and OTA, the relative normalized [...] Read more.
A simple and sensitive label-free impedimetric aptasensor for rapid determination of ochratoxin A (OTA) has been developed, which was based on the combination between thiolated aptamer and gold nanoparticles by layer-by-layer self-assembly. Because of the interaction between aptamer and OTA, the relative normalized electron-transfer resistance (ΔRct) values obtained by electrochemical impedance spectroscopy (EIS) was proportional to the concentration of OTA and showed a good linear relationship from 0.1 to 10.0 ng/mL, with a lower detection limit (0.030 ng/mL) than one-step thiolated DNA aptasensor. The established method was successfully applied to detect and analyze OTA in table wine and grape juice, and the recovery was 90.56%–104.21% when PVP effective removed of phenolic substances. The label-free impedimetric aptasensor was used for rapid detection and quantitation of OTA in the inoculated grapes with the Aspergillus Nigri (H1), and the production of OTA (62.4 μg/kg, 20 μg/kg) far exceeded the maximum levels of 2 μg/kg after inoculation for three days. The developed method exhibited a good specificity, high sensitivity, time-efficient, and it could be applied to detect the OTA concentration in grape and its commodities. Full article
(This article belongs to the Special Issue Advanced Methods for Mycotoxins Detection)
Show Figures

Figure 1

13 pages, 283 KiB  
Article
The Effects of Endophytic Beauveria bassiana Inoculation on Infestation Level of Planococcus ficus, Growth and Volatile Constituents of Potted Greenhouse Grapevine (Vitis vinifera L.)
by Siphokazi Moloinyane and Felix Nchu
Toxins 2019, 11(2), 72; https://doi.org/10.3390/toxins11020072 - 28 Jan 2019
Cited by 36 | Viewed by 4543
Abstract
Endophytic entomopathogenic fungi are being explored for the management of phytophagous insect pests. The effects of Beauveria bassiana (Hypocreales) inoculation of grape plants on the infestation level of P. ficus, tissue nutrient contents, and growth and volatile constituents of potted grape plants [...] Read more.
Endophytic entomopathogenic fungi are being explored for the management of phytophagous insect pests. The effects of Beauveria bassiana (Hypocreales) inoculation of grape plants on the infestation level of P. ficus, tissue nutrient contents, and growth and volatile constituents of potted grape plants were assessed. Grapevine plants were individually inoculated with a suspension of 1 × 108 conidia mL−1 of B. bassiana by drenching before experimentally infesting each of them with thirty adult females of P. ficus. At four weeks post-treatment, the fungus was re-isolated from leaves of 50% of the fungus-exposed plants. However, no significant difference (p > 0.05) was observed in all the plant growth parameters measured in the fungus-treated and control plants. Plant tissue analysis revealed markedly higher contents of calcium (Ca) and magnesium (Mg) in the leaf tissue of plants exposed to the B. bassiana relative to the control. Gas chromatography mass spectrometry (GC-MS) analyses showed that a significantly (X2 = 5.1; p < 0.02) higher number of known anti-insect volatile compounds (nine) were present among fungus treated plants compared to the control plants (five). Naphthalene, which is toxic to insects and humans, was detected only in the volatiles of the fungus-exposed plants. B. bassiana did not have any significant effect on total polyphenol, alkaloid, and flavonoids. Overall, treatment with fungus did not inhibit the infestation by P. ficus. In conclusion, these findings shed light on some of the mechanisms involved in endophytic fungus-plant-insect interactions. Full article
(This article belongs to the Special Issue Fungal Infestations in Humans, Animals, Crops)
20 pages, 1666 KiB  
Review
Mycotoxins and Mycotoxin Producing Fungi in Pollen: Review
by Aleksandar Ž. Kostić, Danijel D. Milinčić, Tanja S. Petrović, Vesna S. Krnjaja, Sladjana P. Stanojević, Miroljub B. Barać, Živoslav Lj. Tešić and Mirjana B. Pešić
Toxins 2019, 11(2), 64; https://doi.org/10.3390/toxins11020064 - 24 Jan 2019
Cited by 38 | Viewed by 6894
Abstract
Due to its divergent chemical composition and good nutritional properties, pollen is not only important as a potential food supplement but also as a good substrate for the development of different microorganisms. Among such microorganisms, toxigenic fungi are extremely dangerous as they can [...] Read more.
Due to its divergent chemical composition and good nutritional properties, pollen is not only important as a potential food supplement but also as a good substrate for the development of different microorganisms. Among such microorganisms, toxigenic fungi are extremely dangerous as they can synthesize mycotoxins as a part of their metabolic pathways. Furthermore, favorable conditions that enable the synthesis of mycotoxins (adequate temperature, relative humidity, pH, and aw values) are found frequently during pollen collection and/or production process. Internationally, several different mycotoxins have been identified in pollen samples, with a noted predominance of aflatoxins, ochratoxins, fumonisins, zearalenone, deoxynivalenol, and T-2 toxin. Mycotoxins are, generally speaking, extremely harmful for humans and other mammals. Current EU legislation contains guidelines on the permissible content of this group of compounds, but without information pertaining to the content of mycotoxins in pollen. Currently only aflatoxins have been researched and discussed in the literature in regard to proposed limits. Therefore, the aim of this review is to give information about the presence of different mycotoxins in pollen samples collected all around the world, to propose possible aflatoxin contamination pathways, and to emphasize the importance of a regular mycotoxicological analysis of pollen. Furthermore, a suggestion is made regarding the legal regulation of pollen as a food supplement and the proposed tolerable limits for other mycotoxins. Full article
(This article belongs to the Special Issue Food Safety and Natural Toxins)
Show Figures

Graphical abstract

10 pages, 1329 KiB  
Article
Aptamer-Based Fluorometric Ochratoxin A Assay Based on Photoinduced Electron Transfer
by Han Zhao, Xinying Xiang, Mingjian Chen and Changbei Ma
Toxins 2019, 11(2), 65; https://doi.org/10.3390/toxins11020065 - 24 Jan 2019
Cited by 25 | Viewed by 3577
Abstract
This study describes a novel quencher-free fluorescent method for ochratoxin A (OTA) detection based on the photoinduced electron transfer (PIET) between guanine and fluorophore. In the absence of OTA, carboxyfluorescein (FAM)-labeled aptamer can partly hybridize with the complementary strand of OTA aptamer (OTA-cAPT), [...] Read more.
This study describes a novel quencher-free fluorescent method for ochratoxin A (OTA) detection based on the photoinduced electron transfer (PIET) between guanine and fluorophore. In the absence of OTA, carboxyfluorescein (FAM)-labeled aptamer can partly hybridize with the complementary strand of OTA aptamer (OTA-cAPT), which contains four guanines at its 3′-end. As a result, the fluorescence of FAM is quenched due to PIET and stacked guanines. In the presence of OTA, FAM-labeled OTA aptamer can bind specifically to OTA, and thereby the high fluorescence intensity of the dye can be maintained. Under the optimal conditions, the method had a detection limit of 1.3 nM. In addition, the method we proposed is highly sensitive and specific for OTA. Furthermore, the method was proven to be reliable based on its successful application in the detection of OTA in red wine samples. Therefore, this promising, facile, and quencher-free method may be applied to detect other toxins by using other appropriate aptamers. Full article
(This article belongs to the Special Issue Advanced Methods for Mycotoxins Detection)
Show Figures

Graphical abstract

23 pages, 4453 KiB  
Review
Serotherapy against Voltage-Gated Sodium Channel-Targeting α-Toxins from Androctonus Scorpion Venom
by Marie-France Martin-Eauclaire, Sonia Adi-Bessalem, Djelila Hammoudi-Triki, Fatima Laraba-Djebari and Pierre E. Bougis
Toxins 2019, 11(2), 63; https://doi.org/10.3390/toxins11020063 - 23 Jan 2019
Cited by 15 | Viewed by 6353
Abstract
Because of their venom lethality towards mammals, scorpions of the Androctonus genus are considered a critical threat to human health in North Africa. Several decades of exploration have led to a comprehensive inventory of their venom components at chemical, pharmacological, and immunological levels. [...] Read more.
Because of their venom lethality towards mammals, scorpions of the Androctonus genus are considered a critical threat to human health in North Africa. Several decades of exploration have led to a comprehensive inventory of their venom components at chemical, pharmacological, and immunological levels. Typically, these venoms contain selective and high affinity ligands for the voltage-gated sodium (Nav) and potassium (Kv) channels that dictate cellular excitability. In the well-studied Androctonus australis and Androctonus mauretanicus venoms, almost all the lethality in mammals is due to the so-called α-toxins. These peptides commonly delay the fast inactivation process of Nav channels, which leads to increased sodium entry and a subsequent cell membrane depolarization. Markedly, their neutralization by specific antisera has been shown to completely inhibit the venom’s lethal activity, because they are not only the most abundant venom peptide but also the most fatal. However, the structural and antigenic polymorphisms in the α-toxin family pose challenges to the design of efficient serotherapies. In this review, we discuss past and present accomplishments to improve serotherapy against Androctonus scorpion stings. Full article
(This article belongs to the Special Issue Toxins and Immunology)
Show Figures

Graphical abstract

21 pages, 2392 KiB  
Review
Evolutionary Ecology of Fish Venom: Adaptations and Consequences of Evolving a Venom System
by Richard J. Harris and Ronald A. Jenner
Toxins 2019, 11(2), 60; https://doi.org/10.3390/toxins11020060 - 22 Jan 2019
Cited by 33 | Viewed by 11111
Abstract
Research on venomous animals has mainly focused on the molecular, biochemical, and pharmacological aspects of venom toxins. However, it is the relatively neglected broader study of evolutionary ecology that is crucial for understanding the biological relevance of venom systems. As fish have convergently [...] Read more.
Research on venomous animals has mainly focused on the molecular, biochemical, and pharmacological aspects of venom toxins. However, it is the relatively neglected broader study of evolutionary ecology that is crucial for understanding the biological relevance of venom systems. As fish have convergently evolved venom systems multiple times, it makes them ideal organisms to investigate the evolutionary ecology of venom on a broader scale. This review outlines what is known about how fish venom systems evolved as a result of natural enemy interactions and about the ecological consequences of evolving a venom system. This review will show how research on the evolutionary ecology of venom in fish can aid in understanding the evolutionary ecology of animal venoms more generally. Further, understanding these broad ecological questions can shed more light on the other areas of toxinology, with applications across multiple disciplinary fields. Full article
(This article belongs to the Special Issue Evolutionary Ecology of Venom)
Show Figures

Figure 1

17 pages, 4265 KiB  
Article
Functional Analysis of FgNahG Clarifies the Contribution of Salicylic Acid to Wheat (Triticum aestivum) Resistance against Fusarium Head Blight
by Peng-Fei Qi, Ya-Zhou Zhang, Cai-Hong Liu, Qing Chen, Zhen-Ru Guo, Yan Wang, Bin-Jie Xu, Yun-Feng Jiang, Ting Zheng, Xi Gong, Cui-Hua Luo, Wang Wu, Li Kong, Mei Deng, Jian Ma, Xiu-Jin Lan, Qian-Tao Jiang, Yu-Ming Wei, Ji-Rui Wang and You-Liang Zheng
Toxins 2019, 11(2), 59; https://doi.org/10.3390/toxins11020059 - 22 Jan 2019
Cited by 27 | Viewed by 4642
Abstract
Salicylic acid (SA) is a key defense hormone associated with wheat resistance against Fusarium head blight, which is a severe disease mainly caused by Fusarium graminearum. Although F. graminearum can metabolize SA, it remains unclear how this metabolic activity affects the wheat– [...] Read more.
Salicylic acid (SA) is a key defense hormone associated with wheat resistance against Fusarium head blight, which is a severe disease mainly caused by Fusarium graminearum. Although F. graminearum can metabolize SA, it remains unclear how this metabolic activity affects the wheat–F. graminearum interaction. In this study, we identified a salicylate hydroxylase gene (FG05_08116; FgNahG) in F. graminearum. This gene encodes a protein that catalyzes the conversion of SA to catechol. Additionally, FgNahG was widely distributed within hyphae. Disrupting the FgNahG gene (ΔFgNahG) led to enhanced sensitivity to SA, increased accumulation of SA in wheat spikes during the early infection stage and inhibited development of head blight symptoms. However, FgNahG did not affect mycotoxin production. Re-introducing a functional FgNahG gene into the ΔFgNahG mutant recovered the wild-type phenotype. Moreover, the expression of FgNahG in transgenic Arabidopsis thaliana decreased the SA concentration and the resistance of leaves to F. graminearum. These results indicate that the endogenous SA in wheat influences the resistance against F. graminearum. Furthermore, the capacity to metabolize SA is an important factor affecting the ability of F. graminearum to infect wheat plants. Full article
(This article belongs to the Special Issue Recent Advances in Fusarium Research)
Show Figures

Figure 1

19 pages, 9709 KiB  
Review
Review of DSP Toxicity in Ireland: Long-Term Trend Impacts, Biodiversity and Toxin Profiles from a Monitoring Perspective
by Rafael Salas and Dave Clarke
Toxins 2019, 11(2), 61; https://doi.org/10.3390/toxins11020061 - 22 Jan 2019
Cited by 12 | Viewed by 5004
Abstract
The purpose of this work is to review all the historical monitoring data gathered by the Marine Institute, the national reference laboratory for marine biotoxins in Ireland, including all the biological and chemical data from 2005 to 2017, in relation to diarrheic shellfish [...] Read more.
The purpose of this work is to review all the historical monitoring data gathered by the Marine Institute, the national reference laboratory for marine biotoxins in Ireland, including all the biological and chemical data from 2005 to 2017, in relation to diarrheic shellfish poisoning (DSP) toxicity in shellfish production. The data reviewed comprises over 25,595 water samples, which were preserved in Lugol’s iodine and analysed for the abundance and composition of marine microalgae by light microscopy, and 18,166 records of shellfish flesh samples, which were analysed using LC-MS/MS for the presence and concentration of the compounds okadaic acid (OA), dinophysistoxins-1 (DTX-1), dinophysistoxins-2 (DTX-2) and their hydrolysed esters, as well as pectenotoxins (PTXs). The results of this review suggest that DSP toxicity events around the coast of Ireland occur annually. According to the data reviewed, there has not been an increase in the periodicity or intensity of such events during the study period. Although the diversity of the Dinophysis species on the coast of Ireland is large, with 10 species recorded, the two main species associated with DSP events in Ireland are D. acuta and D. acuminata. Moreover, the main toxic compounds associated with these species are OA and DTX-2, but concentrations of the hydrolysed esters are generally found in higher amounts than the parent compounds in the shellfish samples. When D. acuta is dominant in the water samples, the DSP toxicity increases in intensity, and DTX-2 becomes the prevalent toxin. Pectenotoxins have only been analysed and reported since 2012, and these compounds had not been associated with toxic events in Ireland; however, in 2014, concentrations of these compounds were quantitated for the first time, and the data suggest that this toxic event was associated with an unusually high number of observations of D. tripos that year. The areas of the country most affected by DSP outbreaks are those engaging in long-line mussel (Mytilus edulis) aquaculture. Full article
(This article belongs to the Special Issue Dinophysis Toxins: Distribution, Fate in Shellfish and Impacts)
Show Figures

Figure 1

50 pages, 6194 KiB  
Review
The Incidence of Marine Toxins and the Associated Seafood Poisoning Episodes in the African Countries of the Indian Ocean and the Red Sea
by Isidro José Tamele, Marisa Silva and Vitor Vasconcelos
Toxins 2019, 11(1), 58; https://doi.org/10.3390/toxins11010058 - 21 Jan 2019
Cited by 31 | Viewed by 9211
Abstract
The occurrence of Harmful Algal Blooms (HABs) and bacteria can be one of the great threats to public health due to their ability to produce marine toxins (MTs). The most reported MTs include paralytic shellfish toxins (PSTs), amnesic shellfish toxins (ASTs), diarrheic shellfish [...] Read more.
The occurrence of Harmful Algal Blooms (HABs) and bacteria can be one of the great threats to public health due to their ability to produce marine toxins (MTs). The most reported MTs include paralytic shellfish toxins (PSTs), amnesic shellfish toxins (ASTs), diarrheic shellfish toxins (DSTs), cyclic imines (CIs), ciguatoxins (CTXs), azaspiracids (AZTs), palytoxin (PlTXs), tetrodotoxins (TTXs) and their analogs, some of them leading to fatal outcomes. MTs have been reported in several marine organisms causing human poisoning incidents since these organisms constitute the food basis of coastal human populations. In African countries of the Indian Ocean and the Red Sea, to date, only South Africa has a specific monitoring program for MTs and some other countries count only with respect to centers of seafood poisoning control. Therefore, the aim of this review is to evaluate the occurrence of MTs and associated poisoning episodes as a contribution to public health and monitoring programs as an MT risk assessment tool for this geographic region. Full article
(This article belongs to the Special Issue Toxins:10th Anniversary)
Show Figures

Figure 1

11 pages, 3361 KiB  
Article
Simultaneous Lateral Flow Immunoassay for Multi-Class Chemical Contaminants in Maize and Peanut with One-Stop Sample Preparation
by Du Wang, Jianguo Zhu, Zhaowei Zhang, Qi Zhang, Wen Zhang, Li Yu, Jun Jiang, Xiaomei Chen, Xuefang Wang and Peiwu Li
Toxins 2019, 11(1), 56; https://doi.org/10.3390/toxins11010056 - 20 Jan 2019
Cited by 40 | Viewed by 3981
Abstract
Multi-class chemical contaminants, such as pesticides and mycotoxins, are recognized as the major risk factors in agro products. It is thus necessary to develop rapid and simple sensing methods to fulfill the on-site monitoring of multi-class chemical contaminants with different physicochemical properties. Herein, [...] Read more.
Multi-class chemical contaminants, such as pesticides and mycotoxins, are recognized as the major risk factors in agro products. It is thus necessary to develop rapid and simple sensing methods to fulfill the on-site monitoring of multi-class chemical contaminants with different physicochemical properties. Herein, a lateral flow immunoassay via time-resolved fluorescence was developed for the rapid, on-site, simultaneous, and quantitative sensing aflatoxin B1 (AFB1), zearalenone (ZEA), and chlorothalonil (CTN) in maize and peanut. The sample preparation was optimized to a single step, combining the grinding and extraction. Under optimal conditions, the sensing method lowered the limits of detection (LOD) to 0.16, 0.52, and 1.21 µg/kg in maize and 0.18, 0.57, and 1.47 µg/kg in peanut with an analytical range of 0.48–20, 1.56–200, and 3.63–300 µg/kg for AFB1, ZEA and CTN, respectively. The protocol could be completed within 15 min, including sample preparation and lateral flow immunoassay. The recovery range was 83.24–110.80%. An excellent correlation was observed between this approach and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for mycotoxins and gas chromatography-tandem mass spectrometry (GC-MS/MS) for pesticide in maize and peanut. This work could be applied in on-site multi-class sensing for food safety. Full article
(This article belongs to the Special Issue Advanced Methods for Mycotoxins Detection)
Show Figures

Figure 1

28 pages, 6180 KiB  
Review
Toxin Neutralization Using Alternative Binding Proteins
by Timothy Patrick Jenkins, Thomas Fryer, Rasmus Ibsen Dehli, Jonas Arnold Jürgensen, Albert Fuglsang-Madsen, Sofie Føns and Andreas Hougaard Laustsen
Toxins 2019, 11(1), 53; https://doi.org/10.3390/toxins11010053 - 17 Jan 2019
Cited by 31 | Viewed by 9106
Abstract
Animal toxins present a major threat to human health worldwide, predominantly through snakebite envenomings, which are responsible for over 100,000 deaths each year. To date, the only available treatment against snakebite envenoming is plasma-derived antivenom. However, despite being key to limiting morbidity and [...] Read more.
Animal toxins present a major threat to human health worldwide, predominantly through snakebite envenomings, which are responsible for over 100,000 deaths each year. To date, the only available treatment against snakebite envenoming is plasma-derived antivenom. However, despite being key to limiting morbidity and mortality among snakebite victims, current antivenoms suffer from several drawbacks, such as immunogenicity and high cost of production. Consequently, avenues for improving envenoming therapy, such as the discovery of toxin-sequestering monoclonal antibodies against medically important target toxins through phage display selection, are being explored. However, alternative binding protein scaffolds that exhibit certain advantages compared to the well-known immunoglobulin G scaffold, including high stability under harsh conditions and low cost of production, may pose as possible low-cost alternatives to antibody-based therapeutics. There is now a plethora of alternative binding protein scaffolds, ranging from antibody derivatives (e.g., nanobodies), through rationally designed derivatives of other human proteins (e.g., DARPins), to derivatives of non-human proteins (e.g., affibodies), all exhibiting different biochemical and pharmacokinetic profiles. Undeniably, the high level of engineerability and potentially low cost of production, associated with many alternative protein scaffolds, present an exciting possibility for the future of snakebite therapeutics and merit thorough investigation. In this review, a comprehensive overview of the different types of binding protein scaffolds is provided together with a discussion on their relevance as potential modalities for use as next-generation antivenoms. Full article
(This article belongs to the Special Issue Snakebite – From Science to Society. Selected papers)
Show Figures

Figure 1

16 pages, 2819 KiB  
Article
Gut Microbiota Profiling of Aflatoxin B1-Induced Rats Treated with Lactobacillus casei Shirota
by Winnie-Pui-Pui Liew, Sabran Mohd-Redzwan and Leslie Thian Lung Than
Toxins 2019, 11(1), 49; https://doi.org/10.3390/toxins11010049 - 17 Jan 2019
Cited by 25 | Viewed by 5165
Abstract
Aflatoxin B1 (AFB1) is a ubiquitous carcinogenic food contaminant. Gut microbiota is of vital importance for the host’s health, regrettably, limited studies have reported the effects of xenobiotic toxins towards gut microbiota. Thus, the present study aims to investigate the interactions between AFB1 [...] Read more.
Aflatoxin B1 (AFB1) is a ubiquitous carcinogenic food contaminant. Gut microbiota is of vital importance for the host’s health, regrettably, limited studies have reported the effects of xenobiotic toxins towards gut microbiota. Thus, the present study aims to investigate the interactions between AFB1 and the gut microbiota. Besides, an AFB1-binding microorganism, Lactobacillus casei Shirota (Lcs) was tested on its ability to ameliorate the changes on gut microbiota induced by AFB1. The fecal contents of three groups of rats included an untreated control group, an AFB1 group, as well as an Lcs + AFB1 group, were analyzed. Using the MiSeq platform, the PCR products of 16S rDNA gene extracted from the feces were subjected to next-generation sequencing. The alpha diversity index (Shannon) showed that the richness of communities increased significantly in the Lcs + AFB1 group compared to the control and AFB1 groups. Meanwhile, beta diversity indices demonstrated that AFB1 group significantly deviated from the control and Lcs + AFB1 groups. AFB1-exposed rats were especially high in Alloprevotella spp. abundance. Such alteration in the bacterial composition might give an insight on the interactions of AFB1 towards gut microbiota and how Lcs plays its role in detoxification of AFB1. Full article
(This article belongs to the Special Issue Mycotoxin Exposure and Related Diseases)
Show Figures

Figure 1

23 pages, 916 KiB  
Article
Regional Sub-Saharan Africa Total Diet Study in Benin, Cameroon, Mali and Nigeria Reveals the Presence of 164 Mycotoxins and Other Secondary Metabolites in Foods
by Luc Ingenbleek, Michael Sulyok, Abimbola Adegboye, Sètondji Epiphane Hossou, Abdoulaye Zié Koné, Awoyinka Dada Oyedele, Chabi Sika K. J. Kisito, Yara Koreissi Dembélé, Sara Eyangoh, Philippe Verger, Jean-Charles Leblanc, Bruno Le Bizec and Rudolf Krska
Toxins 2019, 11(1), 54; https://doi.org/10.3390/toxins11010054 - 17 Jan 2019
Cited by 47 | Viewed by 7623
Abstract
In the framework of the first multi-centre Sub-Saharan Africa Total Diet Study (SSA-TDS), 2328 commonly consumed foods were purchased, prepared as consumed and pooled into 194 composite samples of cereals, tubers, legumes, vegetables, nuts and seeds, dairy, oils, beverages and miscellaneous. Those core [...] Read more.
In the framework of the first multi-centre Sub-Saharan Africa Total Diet Study (SSA-TDS), 2328 commonly consumed foods were purchased, prepared as consumed and pooled into 194 composite samples of cereals, tubers, legumes, vegetables, nuts and seeds, dairy, oils, beverages and miscellaneous. Those core foods were tested for mycotoxins and other fungal, bacterial and plant secondary metabolites by liquid chromatography, coupled with tandem mass spectrometry. The highest aflatoxin concentrations were quantified in peanuts, peanut oil and maize. The mean concentration of the sum of aflatoxins AFB1, AFB2, AFG1 and AFG2 (AFtot) in peanut samples (56.4 µg/kg) exceeded EU (4 µg/kg) and Codex (15 µg/kg) standards. The AFtot concentration (max: 246.0 µg/kg) was associated with seasonal and geographic patterns and comprised, on average, 80% AFB1, the most potent aflatoxin. Although ochratoxin A concentrations rarely exceeded existing Codex standards, it was detected in unregulated foods. One palm oil composite sample contained 98 different metabolites, including 35.4 µg/kg of ochratoxin A. In total, 164 different metabolites were detected, with unspecific metabolites like asperglaucide, cyclo(L-pro-L-val), cyclo (L-pro-L-tyr), flavoglaucin, emodin and tryptophol occurring in more than 50% of composite samples. Aflatoxin B1 (AFB1), fumonisin B1 (FB1), sterigmatocystin (STC), ochratoxin A (OTA), citrinin (CIT) and many other secondary fungal metabolites are frequent co-contaminants in staple foods, such as maize and sorghum. Populations from North Cameroon and from Benin may, therefore, suffer chronic and simultaneous exposure to AFB1, FB1, STC, OTA and CIT, which are prevalent in their diet. Full article
(This article belongs to the Special Issue Application of LC-MS/MS in the Mycotoxins Studies)
Show Figures

Graphical abstract

15 pages, 2534 KiB  
Article
Mass Spectrometry Analysis and Biological Characterization of the Predatory Ant Odontomachus monticola Venom and Venom Sac Components
by Naoki Tani, Kohei Kazuma, Yukio Ohtsuka, Yasushi Shigeri, Keiichi Masuko, Katsuhiro Konno and Hidetoshi Inagaki
Toxins 2019, 11(1), 50; https://doi.org/10.3390/toxins11010050 - 17 Jan 2019
Cited by 14 | Viewed by 4091
Abstract
We previously identified 92 toxin-like peptides and proteins, including pilosulin-like peptides 1–6 from the predatory ant Odontomachus monticola, by transcriptome analysis. Here, to further characterize venom components, we analyzed the venom and venom sac extract by ESI-MS/MS with or without trypsin digestion [...] Read more.
We previously identified 92 toxin-like peptides and proteins, including pilosulin-like peptides 1–6 from the predatory ant Odontomachus monticola, by transcriptome analysis. Here, to further characterize venom components, we analyzed the venom and venom sac extract by ESI-MS/MS with or without trypsin digestion and reducing agent. As the low-molecular-mass components, we found amino acids (leucine/isoleucine, phenylalanine, and tryptophan) and biogenic amines (histamine and tyramine) in the venom and venom sac extract. As the higher molecular mass components, we found peptides and proteins such as pilosulin-like peptides, phospholipase A2s, hyaluronidase, venom dipeptidyl peptidases, conotoxin-like peptide, and icarapin-like peptide. In addition to pilosulin-like peptides 1–6, we found three novel pilosulin-like peptides that were overlooked by transcriptome analysis. Moreover, pilosulin-like peptides 1–6 were chemically synthesized, and some of them displayed antimicrobial, hemolytic, and histamine-releasing activities. Full article
(This article belongs to the Special Issue Arthropod Venom Components and Their Potential Usage)
Show Figures

Figure 1

18 pages, 2322 KiB  
Article
Botulinum Neurotoxin Therapy for Lingual Dystonia Using an Individualized Injection Method Based on Clinical Features
by Kazuya Yoshida
Toxins 2019, 11(1), 51; https://doi.org/10.3390/toxins11010051 - 17 Jan 2019
Cited by 25 | Viewed by 13848
Abstract
Lingual dystonia is a debilitating type of oromandibular dystonia characterized by involuntary, often task-specific, contractions of the tongue muscle activated by speaking or eating. Botulinum neurotoxin (BoNT) has been used to treat lingual dystonia; however, it is known to cause serious complications, such [...] Read more.
Lingual dystonia is a debilitating type of oromandibular dystonia characterized by involuntary, often task-specific, contractions of the tongue muscle activated by speaking or eating. Botulinum neurotoxin (BoNT) has been used to treat lingual dystonia; however, it is known to cause serious complications, such as dysphasia and aspiration. The purpose of this study was to evaluate the efficacy and adverse effects of individualized BoNT therapy for lingual dystonia. One-hundred-and-seventy-two patients (102 females and 70 males, mean age: 46.2 years) with lingual dystonia were classified into four subtypes based on symptoms of involuntary tongue movements: protrusion (68.6%), retraction (16.9%), curling (7.6%), and laterotrusion (7.0%). Patients were treated with BoNT injection into the genioglossus and/or intrinsic muscles via individualized submandibular and/or intraoral routes. Results were compared before and after BoNT therapy. Botulinum neurotoxin was injected in 136 patients (mean: 4.8 injections). Clinical sub-scores (mastication, speech, pain, and discomfort) in a disease-specific rating scale were reduced significantly (p < 0.001) after administration. Comprehensive improvement after BoNT injection, assessed using the rating scale, was 77.6%. The curling type (81.9%) showed the greatest improvement, while the retraction type showed the least improvement (67.9%). Mild and transient dysphasia occurred in 12.5% of patients (3.7% of total injections) but disappeared spontaneously within several days to two weeks. No serious side effects were observed. With careful diagnosis of subtypes and a detailed understanding of lingual muscle anatomy, individualized BoNT injection into dystonic lingual muscles can be effective and safe. Full article
(This article belongs to the Special Issue Botulinum Toxin Treatment of Movement Disorders)
Show Figures

Graphical abstract

11 pages, 1156 KiB  
Article
Differences in Dialysis Efficacy Have Limited Effects on Protein-Bound Uremic Toxins Plasma Levels over Time
by Detlef H. Krieter, Simon Kerwagen, Marieke Rüth, Horst-Dieter Lemke and Christoph Wanner
Toxins 2019, 11(1), 47; https://doi.org/10.3390/toxins11010047 - 16 Jan 2019
Cited by 23 | Viewed by 3461
Abstract
The protein-bound uremic toxins para-cresyl sulfate (pCS) and indoxyl sulfate (IS) are associated with cardiovascular disease in chronic renal failure, but the effect of different dialysis procedures on their plasma levels over time is poorly studied. The present prospective, randomized, cross-over trial tested [...] Read more.
The protein-bound uremic toxins para-cresyl sulfate (pCS) and indoxyl sulfate (IS) are associated with cardiovascular disease in chronic renal failure, but the effect of different dialysis procedures on their plasma levels over time is poorly studied. The present prospective, randomized, cross-over trial tested dialysis efficacy and monitored pre-treatment pCS and IS concentrations in 15 patients on low-flux and high-flux hemodialysis and high-convective volume postdilution hemodiafiltration over six weeks each. Although hemodiafiltration achieved by far the highest toxin removal, only the mean total IS level was decreased at week three (16.6 ± 12.1 mg/L) compared to baseline (18.9 ± 13.0 mg/L, p = 0.027) and to low-flux dialysis (20.0 ± 12.7 mg/L, p = 0.021). At week six, the total IS concentration in hemodiafiltration reached the initial values again. Concentrations of free IS and free and total pCS remained unaltered. Highest beta2-microglobulin elimination in hemodiafiltration (p < 0.001) led to a persistent decrease of the plasma levels at week three and six (each p < 0.001). In contrast, absent removal in low-flux dialysis resulted in rising beta2-microglobulin concentrations (p < 0.001). In conclusion, this trial demonstrated that even large differences in instantaneous protein-bound toxin removal by current extracorporeal dialysis techniques may have only limited impact on IS and pCS plasma levels in the longer term. Full article
(This article belongs to the Section Uremic Toxins)
Show Figures

Figure 1

17 pages, 3362 KiB  
Article
The Individual and Combined Effects of the Cyanotoxins, Anatoxin-a and Microcystin-LR, on the Growth, Toxin Production, and Nitrogen Fixation of Prokaryotic and Eukaryotic Algae
by Mathias Ahii Chia, Benjamin J. Kramer, Jennifer G. Jankowiak, Maria do Carmo Bittencourt-Oliveira and Christopher J. Gobler
Toxins 2019, 11(1), 43; https://doi.org/10.3390/toxins11010043 - 15 Jan 2019
Cited by 32 | Viewed by 4930
Abstract
Globally, eutrophication and warming of aquatic ecosystems has increased the frequency and intensity of cyanobacterial blooms and their associated toxins, with the simultaneous detection of multiple cyanotoxins often occurring. Despite the co-occurrence of cyanotoxins such as microcystins and anatoxin-a (ATX) in water bodies, [...] Read more.
Globally, eutrophication and warming of aquatic ecosystems has increased the frequency and intensity of cyanobacterial blooms and their associated toxins, with the simultaneous detection of multiple cyanotoxins often occurring. Despite the co-occurrence of cyanotoxins such as microcystins and anatoxin-a (ATX) in water bodies, their effects on phytoplankton communities are poorly understood. The individual and combined effects of microcystin-LR (MC-LR) and ATX on the cyanobacteria Microcystis spp., and Anabaena variabilis (a.k.a. Trichormus variabilis), and the chlorophyte, Selenastrum capricornutum were investigated in the present study. Cell density, chlorophyll-a content, and the maximum quantum efficiency of photosystem II (Fv/Fm) of Microcystis cells were generally lowered after exposure to ATX or MC-LR, while the combined treatment with MC-LR and ATX synergistically reduced the chlorophyll-a concentration of Microcystis strain LE-3. Intracellular levels of microcystin in Microcystis LE-3 significantly increased following exposure to MC-LR + ATX. The maximum quantum efficiency of photosystem II of Anabaena strain UTEX B377 declined during exposure to the cyanotoxins. Nitrogen fixation by Anabaena UTEX B377 was significantly inhibited by exposure to ATX, but was unaffected by MC-LR. In contrast, the combination of both cyanotoxins (MC-LR + ATX) caused a synergistic increase in the growth of S. capricornutum. While the toxins caused an increase in the activity of enzymes that scavenge reactive oxygen species in cyanobacteria, enzyme activity was unchanged or decreased in S. capricornutum. Collectively this study demonstrates that MC-LR and ATX can selectively promote and inhibit the growth and performance of green algae and cyanobacteria, respectively, and that the combined effect of these cyanotoxins was often more intense than their individual effects on some strains. This suggests that the release of multiple cyanotoxins in aquatic ecosystems, following the collapse of blooms, may influence the succession of plankton communities. Full article
(This article belongs to the Special Issue Harmful Algal Bloom Dynamics)
Show Figures

Figure 1

18 pages, 2079 KiB  
Article
Spatial and Temporal Variation in Paralytic Shellfish Toxin Production by Benthic Microseira (Lyngbya) wollei in a Freshwater New York Lake
by Zacharias J. Smith, Robbie M. Martin, Bofan Wei, Steven W. Wilhelm and Gregory L. Boyer
Toxins 2019, 11(1), 44; https://doi.org/10.3390/toxins11010044 - 15 Jan 2019
Cited by 25 | Viewed by 5826
Abstract
Butterfield Lake is a mesotrophic lake in New York State where residents and pets have experienced unexplained health issues. Microseira wollei (basionym Lyngbya wollei) was found at two of 15 sites in Butterfield Lake and analyzed for microcystins, anatoxins, cylindrospermopsins, and paralytic [...] Read more.
Butterfield Lake is a mesotrophic lake in New York State where residents and pets have experienced unexplained health issues. Microseira wollei (basionym Lyngbya wollei) was found at two of 15 sites in Butterfield Lake and analyzed for microcystins, anatoxins, cylindrospermopsins, and paralytic shellfish poisoning toxins (PSTs). Only PSTs and trace levels of anatoxin-a were detected in these samples. This is the first published report of PSTs within a New York State lake. To evaluate the environmental and temporal drivers leading to the observed toxicity, PST content at the two sites was examined in detail. There were distinct differences in the total PST content, filament nutrient, filament chlorophyll, and relationship to environmental drivers between the sites, as well as distinct differences in the total PST content measured using different analytical techniques. A multivariate model containing site, temperature, and filament chlorophyll explained 85% of the variation in PSTs observed over the growing season. This work emphasizes the importance of proper site selection and choice of analytical technique in the development of monitoring programs to protect lake users from the occurrence of benthic cyanobacteria toxins. Full article
(This article belongs to the Special Issue Paralytic Shellfish Toxins)
Show Figures

Figure 1

14 pages, 3019 KiB  
Article
Autophagy and Apoptosis Interact to Modulate T-2 Toxin-Induced Toxicity in Liver Cells
by Jing Wu, Yu Zhou, Zhihang Yuan, Jine Yi, Jingshu Chen, Naidong Wang and Yanan Tian
Toxins 2019, 11(1), 45; https://doi.org/10.3390/toxins11010045 - 15 Jan 2019
Cited by 50 | Viewed by 5342
Abstract
T-2 toxin is a mycotoxin generated by Fusarium species which has been shown to be highly toxic to human and animals. T-2 toxin induces apoptosis in various tissues/organs. Apoptosis and autophagy are two closely interconnected processes, which are important for maintaining physiological homeostasis [...] Read more.
T-2 toxin is a mycotoxin generated by Fusarium species which has been shown to be highly toxic to human and animals. T-2 toxin induces apoptosis in various tissues/organs. Apoptosis and autophagy are two closely interconnected processes, which are important for maintaining physiological homeostasis as well as pathogenesis. Here, for the first time, we demonstrated that T-2 toxins induce autophagy in human liver cells (L02). We demonstrated that T-2 toxin induce acidic vesicular organelles formation, concomitant with the alterations in p62/SQSTM1 and LC3-phosphatidylethanolamine conjugate (LC3-II) and the enhancement of the autophagic flux. Using mRFP-GFP-LC3 by lentiviral transduction, we showed T-2 toxin-mediated lysosomal fusion and the formation of autophagosomes in L02 cells. The formation of autophagosomes was further confirmed by transmission electron microcopy. While T-2 toxin induced both autophagy and apoptosis, autophagy appears to be a leading event in the response to T-2 toxin treatment, reflecting its protective role in cells against cellular damage. Activating autophagy by rapamycin (RAPA) inhibited apoptosis, while suppressing autophagy by chloroquine greatly enhanced the T-2 toxin-induced apoptosis, suggesting the crosstalk between autophagy and apoptosis. Taken together, these results indicate that autophagy plays a role in protecting cells from T-2 toxin-induced apoptosis suggesting that autophagy may be manipulated for the alleviation of toxic responses induced by T-2 toxin. Full article
(This article belongs to the Special Issue Dietary Mycotoxin Exposure: Emerging Risks to Human Health)
Show Figures

Figure 1

25 pages, 2366 KiB  
Review
Selection of Fusarium Trichothecene Toxin Genes for Molecular Detection Depends on TRI Gene Cluster Organization and Gene Function
by Ria T. Villafana, Amanda C. Ramdass and Sephra N. Rampersad
Toxins 2019, 11(1), 36; https://doi.org/10.3390/toxins11010036 - 14 Jan 2019
Cited by 33 | Viewed by 6720
Abstract
Food security is a global concern. Fusarium are among the most economically important fungal pathogens because they are ubiquitous, disease management remains a challenge, they produce mycotoxins that affect food and feed safety, and trichothecene mycotoxin production can increase the pathogenicity of some [...] Read more.
Food security is a global concern. Fusarium are among the most economically important fungal pathogens because they are ubiquitous, disease management remains a challenge, they produce mycotoxins that affect food and feed safety, and trichothecene mycotoxin production can increase the pathogenicity of some Fusarium species depending on the host species. Although trichothecenes may differ in structure by their patterns of hydroxylation or acetylation, these small changes have a significant impact on toxicity and the biological activity of these compounds. Therefore, detecting and identifying which chemotype is present in a given population are important to predicting the specific toxins that may be produced and, therefore, to evaluating the risk of exposure. Due to the challenges of inducing trichothecene production by Fusarium isolates in vitro for subsequent chemical analysis, PCR assays using gene-specific primers, either singly or in combination, designed against specific genes of the trichothecene gene cluster of multiple species of Fusarium have been developed. The establishment of TRI genotypes that potentially correspond to a specific chemotype requires examination of an information and knowledge pipeline whose critical aspects in sequential order are: (i) understanding the TRI gene cluster organization which differs according to Fusarium species under study; (ii) knowledge of the re-arrangements to the core TRI gene cluster over evolutionary time, which also differs according to Fusarium species; (iii) the functions of the TRI genes in the biosynthesis of trichothecene analogs; and (iv) based on (i)–(iii), selection of appropriate target TRI gene(s) for primer design in PCR amplification for the Fusarium species under study. This review, therefore, explains this pipeline and its connection to utilizing TRI genotypes as a possible proxy to chemotype designation. Full article
(This article belongs to the Special Issue Recent Advances in Fusarium Research)
Show Figures

Figure 1

21 pages, 5601 KiB  
Article
Mesoscale Dynamics and Niche Segregation of Two Dinophysis Species in Galician-Portuguese Coastal Waters
by Patricio A. Díaz, Beatriz Reguera, Teresa Moita, Isabel Bravo, Manuel Ruiz-Villarreal and Santiago Fraga
Toxins 2019, 11(1), 37; https://doi.org/10.3390/toxins11010037 - 14 Jan 2019
Cited by 18 | Viewed by 3445
Abstract
Blooms of Dinophysis acuminata occur every year in Galicia (northwest Spain), between spring and autumn. These blooms contaminate shellfish with lipophilic toxins and cause lengthy harvesting bans. They are often followed by short-lived blooms of Dinophysis acuta, associated with northward longshore transport, [...] Read more.
Blooms of Dinophysis acuminata occur every year in Galicia (northwest Spain), between spring and autumn. These blooms contaminate shellfish with lipophilic toxins and cause lengthy harvesting bans. They are often followed by short-lived blooms of Dinophysis acuta, associated with northward longshore transport, at the end of the upwelling season. During the summers of 1989 and 1990, dense blooms of D. acuta developed in situ, initially co-occurring with D. acuminata and later with the paralytic shellfish toxin-producer Gymnodinium catenatum. Unexplored data from three cruises carried out before, during, and following autumn blooms (13–14, 27–28 September and 11–12 October) in 1990 showed D. acuta distribution in shelf waters within the 50 m and 130 m isobaths, delimited by the upwelling front. A joint review of monitoring data from Galicia and Portugal provided a mesoscale view of anomalies in SST and other hydroclimatic factors associated with a northward displacement of the center of gravity of D. acuta populations. At the microscale, re-examination of the vertical segregation of cell maxima in the light of current knowledge, improved our understanding of niche differentiation between the two species of Dinophysis. Results here improve local transport models and forecast of Dinophysis events, the main cause of shellfish harvesting bans in the most important mussel production area in Europe. Full article
(This article belongs to the Special Issue Dinophysis Toxins: Distribution, Fate in Shellfish and Impacts)
Show Figures

Graphical abstract

15 pages, 1261 KiB  
Article
Combined Effect of Light and Temperature on the Production of Saxitoxins in Cylindrospermopsis raciborskii Strains
by Marcella C. B. Mesquita, Miquel Lürling, Fabiane Dorr, Ernani Pinto and Marcelo M. Marinho
Toxins 2019, 11(1), 38; https://doi.org/10.3390/toxins11010038 - 14 Jan 2019
Cited by 21 | Viewed by 4785
Abstract
Cylindrospermopsis raciborskii is a potentially toxic freshwater cyanobacterium that can tolerate a wide range of light and temperature. Due to climatic changes, the interaction between light and temperature is studied in aquatic systems, but no study has addressed the effect of both variables [...] Read more.
Cylindrospermopsis raciborskii is a potentially toxic freshwater cyanobacterium that can tolerate a wide range of light and temperature. Due to climatic changes, the interaction between light and temperature is studied in aquatic systems, but no study has addressed the effect of both variables on the saxitoxins production. This study evaluated the combined effect of light and temperature on saxitoxins production and cellular quota in C. raciborskii. Experiments were performed with three C. raciborskii strains in batch cultures under six light intensities (10, 40, 60, 100, 150, and 500 μmol of photons m−2 s−1) and four temperatures (15, 20, 25, and 30 °C). The growth of C. raciborskii strains was limited at lower temperatures and the maximum growth rates were obtained under higher light combined with temperatures equal or above 20 °C, depending on the strain. In general, growth was highest at 30 °C at the lower light intensities and equally high at 25 °C and 30 °C under higher light. Highest saxitoxins concentration and cell-quota occurred at 25 °C under high light intensities, but were much lower at 30 °C. Hence, increased temperatures combined with sufficient light will lead to higher C. raciborskii biomass, but blooms could become less toxic in tropical regions. Full article
(This article belongs to the Special Issue Paralytic Shellfish Toxins)
Show Figures

Figure 1

20 pages, 6252 KiB  
Article
Osmotic-Adaptation Response of sakA/hogA Gene to Aflatoxin Biosynthesis, Morphology Development and Pathogenicity in Aspergillus flavus
by Elisabeth Tumukunde, Ding Li, Ling Qin, Yu Li, Jiaojiao Shen, Shihua Wang and Jun Yuan
Toxins 2019, 11(1), 41; https://doi.org/10.3390/toxins11010041 - 14 Jan 2019
Cited by 23 | Viewed by 3594
Abstract
Aspergillus flavus is one of the fungi from the big family of Aspergillus genus and it is capable of colonizing a large number of seed/crops and living organisms such as animals and human beings. SakA (also called hogA/hog1) is an integral [...] Read more.
Aspergillus flavus is one of the fungi from the big family of Aspergillus genus and it is capable of colonizing a large number of seed/crops and living organisms such as animals and human beings. SakA (also called hogA/hog1) is an integral part of the mitogen activated protein kinase signal of the high osmolarity glycerol pathway. In this study, the AfsakA gene was deleted (∆AfsakA) then complemented (∆AfsakA::AfsakA) using homologous recombination and the osmotic stress was induced by 1.2 mol/L D-sorbital and 1.2 mol/L sodium chloride. The result showed that ∆AfsakA mutant caused a significant influence on conidial formation compared to wild-type and ∆AfsakA::AfsakA strains. It was also found that AfsakA responds to both the osmotic stress and the cell wall stress. In the absence of osmotic stress, ∆AfsakA mutant produced more sclerotia in contrast to other strains, whereas all strains failed to generate sclerotia under osmotic stress. Furthermore, the deletion of AfsakA resulted in the increase of Aflatoxin B1 production compared to other strains. The virulence assay on both maize kernel and peanut seeds showed that ∆AfsakA strain drastically produced more conidia and Aflatoxin B1 than wild-type and complementary strains. AfSakA-mCherry was located to the cytoplasm in the absence of osmotic stress, while it translocated to the nucleus upon exposure to the osmotic stimuli. This study provides new insights on the development and evaluation of aflatoxin biosynthesis and also provides better understanding on how to prevent Aspergillus infections which would be considered the first step towards the prevention of the seeds damages caused by A. flavus. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

18 pages, 687 KiB  
Review
Why Are Botulinum Neurotoxin-Producing Bacteria So Diverse and Botulinum Neurotoxins So Toxic?
by Bernard Poulain and Michel R. Popoff
Toxins 2019, 11(1), 34; https://doi.org/10.3390/toxins11010034 - 11 Jan 2019
Cited by 44 | Viewed by 8727
Abstract
Botulinum neurotoxins (BoNTs) are the most lethal toxins among all bacterial, animal, plant and chemical poisonous compounds. Although a great effort has been made to understand their mode of action, some questions are still open. Why, and for what benefit, have environmental bacteria [...] Read more.
Botulinum neurotoxins (BoNTs) are the most lethal toxins among all bacterial, animal, plant and chemical poisonous compounds. Although a great effort has been made to understand their mode of action, some questions are still open. Why, and for what benefit, have environmental bacteria that accidentally interact with their host engineered so diverse and so specific toxins targeting one of the most specialized physiological processes, the neuroexocytosis of higher organisms? The extreme potency of BoNT does not result from only one hyperactive step, but in contrast to other potent lethal toxins, from multi-step activity. The cumulative effects of the different steps, each having a limited effect, make BoNTs the most potent lethal toxins. This is a unique mode of evolution of a toxic compound, the high potency of which results from multiple steps driven by unknown selection pressure, targeting one of the most critical physiological process of higher organisms. Full article
(This article belongs to the Special Issue Toxins:10th Anniversary)
Show Figures

Figure 1

14 pages, 893 KiB  
Article
Assessment of Toxigenic Fusarium Species and Their Mycotoxins in Brewing Barley Grains
by Karim C. Piacentini, Liliana O. Rocha, Geovana D. Savi, Lorena Carnielli-Queiroz, Livia De Carvalho Fontes and Benedito Correa
Toxins 2019, 11(1), 31; https://doi.org/10.3390/toxins11010031 - 10 Jan 2019
Cited by 32 | Viewed by 4120
Abstract
Fusarium species threaten yield and quality of cereals worldwide due to their ability to produce mycotoxins and cause plant diseases. Trichothecenes and zearalenone are the most economically significant mycotoxins and are of particular concern in barley, maize and wheat. For this reason, the [...] Read more.
Fusarium species threaten yield and quality of cereals worldwide due to their ability to produce mycotoxins and cause plant diseases. Trichothecenes and zearalenone are the most economically significant mycotoxins and are of particular concern in barley, maize and wheat. For this reason, the aim of this study was to characterize the Fusarium isolates from brewing barley and to assess deoxynivalenol and zearalenone contamination in grains. Characterization of the Fusarium strains was carried out by the phylogeny based on two loci (EF-1α and RPB2). Mycotoxin detection and quantification were performed by LC-MS. The results show that Fusarium was the predominant genus. Phylogenetic study demonstrated that the majority of the strains clustered within the Fusarium sambucinum species complex followed by the Fusarium tricinctum species complex. The results revealed high incidence of deoxynivalenol (DON) and zearalenone (ZEA) contamination (90.6% and 87.5%, respectively). It was observed that 86% of the samples contaminated with ZEA were above the limits set by the EU and Brazilian regulations. These results may highlight the importance of controlling Fusarium toxins in barley, mainly because of its use in the brewing industry and the resistance of various mycotoxins to food processing treatments. Full article
(This article belongs to the Special Issue Application of LC-MS/MS in the Mycotoxins Studies)
Show Figures

Figure 1

17 pages, 2425 KiB  
Article
Generation of a Broadly Cross-Neutralizing Antibody Fragment against Several Mexican Scorpion Venoms
by Lidia Riaño-Umbarila, Ilse V. Gómez-Ramírez, Luis M. Ledezma-Candanoza, Timoteo Olamendi-Portugal, Everardo Remi Rodríguez-Rodríguez, Guillermo Fernández-Taboada, Lourival D. Possani and Baltazar Becerril
Toxins 2019, 11(1), 32; https://doi.org/10.3390/toxins11010032 - 10 Jan 2019
Cited by 22 | Viewed by 3849
Abstract
The recombinant antibody fragments generated against the toxic components of scorpion venoms are considered a promising alternative for obtaining new antivenoms for therapy. Using directed evolution and site-directed mutagenesis, it was possible to generate a human single-chain antibody fragment with a broad cross-reactivity [...] Read more.
The recombinant antibody fragments generated against the toxic components of scorpion venoms are considered a promising alternative for obtaining new antivenoms for therapy. Using directed evolution and site-directed mutagenesis, it was possible to generate a human single-chain antibody fragment with a broad cross-reactivity that retained recognition for its original antigen. This variant is the first antibody fragment that neutralizes the effect of an estimated 13 neurotoxins present in the venom of nine species of Mexican scorpions. This single antibody fragment showed the properties of a polyvalent antivenom. These results represent a significant advance in the development of new antivenoms against scorpion stings, since the number of components would be minimized due to their broad cross-neutralization capacity, while at the same time bypassing animal immunization. Full article
(This article belongs to the Special Issue Discovery of Antibodies and Novel Antivenoms against Envenoming)
Show Figures

Graphical abstract

13 pages, 1067 KiB  
Article
Effect of Compound Probiotics and Mycotoxin Degradation Enzymes on Alleviating Cytotoxicity of Swine Jejunal Epithelial Cells Induced by Aflatoxin B1 and Zearalenone
by Weiwei Huang, Juan Chang, Ping Wang, Chaoqi Liu, Qingqiang Yin, Andong Song, Tianzeng Gao, Xiaowei Dang and Fushan Lu
Toxins 2019, 11(1), 12; https://doi.org/10.3390/toxins11010012 - 10 Jan 2019
Cited by 26 | Viewed by 4419
Abstract
Zearalenone (ZEA) and aflatoxin B1 (AFB1) are two main kinds of mycotoxins widely existing in grain and animal feed that cause a lot of economic loss and health problems for animals and humans. In order to alleviate the cytotoxic effects [...] Read more.
Zearalenone (ZEA) and aflatoxin B1 (AFB1) are two main kinds of mycotoxins widely existing in grain and animal feed that cause a lot of economic loss and health problems for animals and humans. In order to alleviate the cytotoxic effects of AFB1 and ZEA on swine jejunal epithelial cells (IPEC-J2), the combination of a cell-free supernatant of compound probiotics (CFSCP) with mycotoxin degradation enzymes (MDEs) from Aspergillus oryzae was tested. The results demonstrated that coexistence of AFB1 and ZEA had synergetic toxic effects on cell viability. The cell viability was decreased with mycotoxin concentrations increasing, but increased with incubation time extension. The necrotic cell rates were increased when 40 µg/L AFB1 and/or 500 µg/L ZEA were added, but the addition of CFSCP + MDE suppressed the necrotic effects of AFB1 + ZEA. The viable cell rates were decreased when AFB1 and/or ZEA were added: However, the addition of CFSCP + MDE recovered them. The relative mRNA abundances of Bcl-2, occludin, and ZO-1 genes were significantly upregulated, while Bax, caspase-3, GLUT2, ASCT2, PepT1, and IL6 genes were significantly downregulated by CFSCP + MDE addition, compared to the groups containing 40 µg/L AFB1 and 500 µg/L ZEA. This research provided an effective strategy in alleviating mycotoxin cytotoxicity and keeping normal intestinal cell structure and animal health. Full article
Show Figures

Figure 1

15 pages, 1585 KiB  
Review
Multi-(myco)toxins in Malting and Brewing By-Products
by Kristina Mastanjević, Jasmina Lukinac, Marko Jukić, Bojan Šarkanj, Vinko Krstanović and Krešimir Mastanjević
Toxins 2019, 11(1), 30; https://doi.org/10.3390/toxins11010030 - 9 Jan 2019
Cited by 32 | Viewed by 6420
Abstract
Fungi, yeasts, and bacteria are common microorganisms on cereals used in malting and brewing industries. These microorganisms are mostly associated with the safety and quality of malt and beer, but also with the health safety of by-products used in animal nutrition. The real [...] Read more.
Fungi, yeasts, and bacteria are common microorganisms on cereals used in malting and brewing industries. These microorganisms are mostly associated with the safety and quality of malt and beer, but also with the health safety of by-products used in animal nutrition. The real problem is their harmful metabolites—toxins that, due to their thermostable properties, can easily be transferred to malting and brewing by-products. Besides fungal metabolites, other toxins originating from plants can be harmful to animal health. Precise and accurate analytical techniques broadened the spectrum of known toxins originating from microorganisms and plants that can pose a threat to animal health. Multi-(myco)toxin analyses are advanced and useful tools for the assessment of product safety, and legislation should follow up and make some important changes to regulate yet unregulated, but highly occurring, microbial and plant toxins in malting and brewing by-products used for animal feed. Full article
(This article belongs to the Special Issue Food Safety and Natural Toxins)
Show Figures

Graphical abstract

16 pages, 826 KiB  
Review
Overview of Fungi and Mycotoxin Contamination in Capsicum Pepper and in Its Derivatives
by Jéssica Costa, Rodrigo Rodríguez, Esther Garcia-Cela, Angel Medina, Naresh Magan, Nelson Lima, Paola Battilani and Cledir Santos
Toxins 2019, 11(1), 27; https://doi.org/10.3390/toxins11010027 - 8 Jan 2019
Cited by 66 | Viewed by 10737
Abstract
Capsicum products are widely commercialised and consumed worldwide. These substrates present unusual nutritional characteristics for microbial growth. Despite this, the presence of spoilage fungi and the co-occurrence of mycotoxins in the pepper production chain have been commonly detected. The main aim of this [...] Read more.
Capsicum products are widely commercialised and consumed worldwide. These substrates present unusual nutritional characteristics for microbial growth. Despite this, the presence of spoilage fungi and the co-occurrence of mycotoxins in the pepper production chain have been commonly detected. The main aim of this work was to review the critical control points, with a focus on mycotoxin contamination, during the production, storage and distribution of Capsicum products from a safety perspective; outlining the important role of ecophysiological factors in stimulating or inhibiting mycotoxin biosynthesis in these food commodities. Moreover, the human health risks caused by the ingestion of peppers contaminated with mycotoxins were also reviewed. Overall, Capsicum and its derivative-products are highly susceptible to contamination by mycotoxins. Pepper crop production and further transportation, processing and storage are crucial for production of safe food. Full article
(This article belongs to the Collection Understanding Mycotoxin Occurrence in Food and Feed Chains)
Show Figures

Figure 1

12 pages, 885 KiB  
Review
Heat-Stable Enterotoxins of Enterotoxigenic Escherichia coli and Their Impact on Host Immunity
by Haixiu Wang, Zifu Zhong, Yu Luo, Eric Cox and Bert Devriendt
Toxins 2019, 11(1), 24; https://doi.org/10.3390/toxins11010024 - 8 Jan 2019
Cited by 71 | Viewed by 10540
Abstract
Enterotoxigenic Escherichia coli (ETEC) are an important diarrhea-causing pathogen and are regarded as a global threat for humans and farm animals. ETEC possess several virulence factors to infect its host, including colonization factors and enterotoxins. Production of heat-stable enterotoxins (STs) by most ETEC [...] Read more.
Enterotoxigenic Escherichia coli (ETEC) are an important diarrhea-causing pathogen and are regarded as a global threat for humans and farm animals. ETEC possess several virulence factors to infect its host, including colonization factors and enterotoxins. Production of heat-stable enterotoxins (STs) by most ETEC plays an essential role in triggering diarrhea and ETEC pathogenesis. In this review, we summarize the heat-stable enterotoxins of ETEC strains from different species as well as the molecular mechanisms used by these heat-stable enterotoxins to trigger diarrhea. As recently described, intestinal epithelial cells are important modulators of the intestinal immune system. Thus, we also discuss the impact of the heat-stable enterotoxins on this role of the intestinal epithelium and how these enterotoxins might affect intestinal immune cells. Finally, the latest developments in vaccination strategies to protect against infections with ST secreting ETEC strains are discussed. This review might inform and guide future research on heat-stable enterotoxins to further unravel their molecular pathogenesis, as well as to accelerate vaccine design. Full article
(This article belongs to the Special Issue Heat-Resistant Toxins of Animal, Plant and Microbial Origins)
Show Figures

Figure 1

16 pages, 3093 KiB  
Article
The Impact of Dietary Grape Seed Meal on Healthy and Aflatoxin B1 Afflicted Microbiota of Pigs after Weaning
by Iulian A. Grosu, Gina C. Pistol, Ionelia Taranu and Daniela E. Marin
Toxins 2019, 11(1), 25; https://doi.org/10.3390/toxins11010025 - 8 Jan 2019
Cited by 23 | Viewed by 3384
Abstract
The study investigated the effect of grape seed (GS) meal, aflatoxin (AFB1), or their combination on the large intestine microbiota of weanling piglets. Twenty-four piglets were allocated into four groups based on diet composition: (1) Control group; (2) AFB1 (320 g/kg feed) group; [...] Read more.
The study investigated the effect of grape seed (GS) meal, aflatoxin (AFB1), or their combination on the large intestine microbiota of weanling piglets. Twenty-four piglets were allocated into four groups based on diet composition: (1) Control group; (2) AFB1 (320 g/kg feed) group; (3) GS group (8% inclusion in the diet); (4) AFB1 + GS group. After 30 days of experiment, the colon content was used for microbiota analyses; after isolation of total bacterial genomic DNA, V3/V4 regions of the 16S rRNA amplicons were sequenced using the Illumina MiSeq platform. The raw sequences were analyzed using the v.1.9.1 QIIME pipeline software. 157 numbers of OTUs were identified among all four dietary groups with 26 of them being prevalent above 0.05% in the total relative abundance. GS and AFB1 increase the relative abundance of phylum Bacteroidetes and Proteobacteria, while decreasing the Firmicutes abundance in a synergic manner as compared with the individual treatments. An additive or synergistic action of the two treatments was identified for Lactobacillus, Prevotella and Campylobacter, while rather an antagonistic effect was observed on Lachnospira. The action mechanisms of aflatoxin B1 and grape seed meal that drive the large intestine microbiota to these changes are not known and need further investigations. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

15 pages, 1979 KiB  
Article
Grape Seed Proanthocyanidin Extract Alleviates AflatoxinB1-Induced Immunotoxicity and Oxidative Stress via Modulation of NF-κB and Nrf2 Signaling Pathways in Broilers
by Shahid Ali Rajput, Lvhui Sun, Ni-Ya Zhang, Mahmoud Mohamed Khalil, Zhao Ling, Li Chong, Shuai Wang, Imran Rashid Rajput, Dost Muhammad Bloch, Farhan Anwar Khan, Aftab Shaukat and Desheng Qi
Toxins 2019, 11(1), 23; https://doi.org/10.3390/toxins11010023 - 7 Jan 2019
Cited by 50 | Viewed by 5343
Abstract
Aflatoxin B1 (AFB1) is a widely spread mycotoxin contaminates food and feed, causing severe oxidative stress damages and immunotoxicity. Grape seed proanthocyanidin (GSPE), a natural antioxidant with wide range of pharmacological and medicinal properties. The goal of the present study [...] Read more.
Aflatoxin B1 (AFB1) is a widely spread mycotoxin contaminates food and feed, causing severe oxidative stress damages and immunotoxicity. Grape seed proanthocyanidin (GSPE), a natural antioxidant with wide range of pharmacological and medicinal properties. The goal of the present study was to investigate the protective effects of GSPE against AFB1-induced immunotoxicity and oxidative stress via NF-κB and Nrf2 signaling pathways in broiler chickens. For the experiment, 240 one-day old Cobb chicks were allocated into four dietary treatment groups of six replicates (10 birds per replicate): 1. Basal diet (control); 2. Basal diet + AFB1 1mg/kg contaminated corn (AFB1); 3. Basal diet + GSPE 250 mg/kg (GSPE); 4. Basal diet + AFB1 1 mg/kg + GSPE 250 mg/kg (AFB1 + GSPE). The results showed that GSPE significantly decreased serum inflammatory cytokines TNF-α, IFN-γ, IL-1β, IL-10, and IL-6 induced by AFB1. Similarly, GSPE + AFB1 treated group revealed a significant decrease in mRNA expressions of pro-inflammatory cytokines (TNF-α, IFN-γ, IL-1β, and IL-6) in the splenic tissue compared to the AFB1 treatment group. In addition, western blotting results manifested that GSPE treatment normalized the phosphorylation of nuclear factor kappa B (p65) and the degradation of IκBα protein induced by AFB1. Furthermore, GSPE enhanced the antioxidant defense system through activating the nuclear factor-erythroid-2-related factor (Nrf2) signaling pathway. The mRNA and protein expression level of Nrf2 and its down streaming associated genes were noted up-regulated by the addition of GSPE, and down-regulated in the AFB1 group. Taken together, GSPE alleviates AFB1-induced immunotoxicity and oxidative damage by inhibiting the NF-κB and activating the Nrf2 signaling pathways in broiler chickens. Conclusively, our results suggest that GSPE could be considered as a potential natural agent for the prevention of AFB1-induced immunotoxicity and oxidative damage. Full article
Show Figures

Figure 1

16 pages, 2245 KiB  
Article
Factors Associated with Systemic Bleeding in Bothrops Envenomation in a Tertiary Hospital in the Brazilian Amazon
by Sâmella S. Oliveira, Eliane C. Alves, Alessandra S. Santos, João Pedro T. Pereira, Lybia Kássia S. Sarraff, Elizandra F. Nascimento, José Diego De-Brito-Sousa, Vanderson S. Sampaio, Marcus V.G. Lacerda, Jacqueline A.G. Sachett, Ida S. Sano-Martins and Wuelton M. Monteiro
Toxins 2019, 11(1), 22; https://doi.org/10.3390/toxins11010022 - 7 Jan 2019
Cited by 36 | Viewed by 3887
Abstract
Bothrops snakebites usually present systemic bleeding, and the clinical–epidemiological and laboratorial factors associated with the development of this manifestation are not well established. In this study, we assessed the prevalence of Bothrops snakebites with systemic bleeding reported at the Fundação de Medicina Tropical [...] Read more.
Bothrops snakebites usually present systemic bleeding, and the clinical–epidemiological and laboratorial factors associated with the development of this manifestation are not well established. In this study, we assessed the prevalence of Bothrops snakebites with systemic bleeding reported at the Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, in Manaus, Amazonas State, Brazil, and the clinical–epidemiological and laboratorial factors associated with systemic bleeding. This is an observational, cross-sectional study carried out between August, 2013 and July, 2016. Patients who developed systemic bleeding on admission or during hospitalization were considered cases, and those with non-systemic bleeding were included in the control group. Systemic bleeding was observed in 63 (15.3%) of the 442 Bothrops snakebites evaluated. Bothrops snakebites mostly occurred in males (78.2%), in rural areas (89.0%) and in the age group of 11 to 30 years old (40.4%). It took most of the patients (59.8%) less than 3 h to receive medical assistance. Unclottable blood (AOR = 3.11 (95% CI = 1.53 to 6.31; p = 0.002)) and thrombocytopenia (AOR = 4.52 (95% CI = 2.03 to 10.09; p < 0.001)) on admission were independently associated with systemic bleeding during hospitalization. These hemostatic disorders on admission increase the chances of systemic bleeding during hospitalization. Prospective studies are needed to clarify the pathophysiology of systemic bleeding in Bothrops snakebites in the Amazon region. Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Figure 1

11 pages, 758 KiB  
Review
Central Effects of Botulinum Neurotoxin—Evidence from Human Studies
by David Weise, Christopher M. Weise and Markus Naumann
Toxins 2019, 11(1), 21; https://doi.org/10.3390/toxins11010021 - 6 Jan 2019
Cited by 55 | Viewed by 6260
Abstract
For more than three decades, Botulinum neurotoxin (BoNT) has been used to treat a variety of clinical conditions such as spastic or dystonic disorders by inducing a temporary paralysis of the injected muscle as the desired clinical effect. BoNT is known to primarily [...] Read more.
For more than three decades, Botulinum neurotoxin (BoNT) has been used to treat a variety of clinical conditions such as spastic or dystonic disorders by inducing a temporary paralysis of the injected muscle as the desired clinical effect. BoNT is known to primarily act at the neuromuscular junction resulting in a biochemical denervation of the treated muscle. However, recent evidence suggests that BoNT’s pharmacological properties may not only be limited to local muscular denervation at the injection site but may also include additional central effects. In this review, we report and discuss the current evidence for BoNT’s central effects based on clinical observations, neurophysiological investigations and neuroimaging studies in humans. Collectively, these data strongly point to indirect mechanisms via changes to sensory afferents that may be primarily responsible for the marked plastic effects of BoNT on the central nervous system. Importantly, BoNT-related central effects and consecutive modulation and/or reorganization of the brain may not solely be considered “side-effects” but rather an additional therapeutic impact responsible for a number of clinical observations that cannot be explained by merely peripheral actions. Full article
(This article belongs to the Special Issue Botulinum Toxin Treatment of Movement Disorders)
Show Figures

Figure 1

23 pages, 2325 KiB  
Article
Interannual Variability of Dinophysis acuminata and Protoceratium reticulatum in a Chilean Fjord: Insights from the Realized Niche Analysis
by Catharina Alves-de-Souza, José Luis Iriarte and Jorge I. Mardones
Toxins 2019, 11(1), 19; https://doi.org/10.3390/toxins11010019 - 5 Jan 2019
Cited by 26 | Viewed by 4089
Abstract
Here, we present the interannual distribution of Dinophysis acuminata and Protoceratium reticulatum over a 10-year period in the Reloncaví Fjord, a highly stratified fjord in southern Chile. A realized subniche approach based on the Within Outlying Mean Index (WitOMI) was used to decompose [...] Read more.
Here, we present the interannual distribution of Dinophysis acuminata and Protoceratium reticulatum over a 10-year period in the Reloncaví Fjord, a highly stratified fjord in southern Chile. A realized subniche approach based on the Within Outlying Mean Index (WitOMI) was used to decompose the species’ realized niche into realized subniches (found within subsets of environmental conditions). The interannual distribution of both D. acuminata and P. reticulatum summer blooms was strongly influenced by climatological regional events, i.e., El Niño Southern Oscillation (ENSO) and the Southern Annual Mode (SAM). The two species showed distinct niche preferences, with blooms of D. acuminata occurring under La Niña conditions (cold years) and low river streamflow whereas P. reticulatum blooms were observed in years of El Niño conditions and positive SAM phase. The biological constraint exerted on the species was further estimated based on the difference between the existing fundamental subniche and the realized subniche. The observed patterns suggested that D. acuminata was subject to strong biological constraint during the studied period, probably as a result of low cell densities of its putative prey (the mixotrophic ciliate Mesodinium cf. rubrum) usually observed in the studied area. Full article
(This article belongs to the Special Issue Dinophysis Toxins: Distribution, Fate in Shellfish and Impacts)
Show Figures

Figure 1

11 pages, 573 KiB  
Review
Pseudomonas Exotoxin Immunotoxins and Anti-Tumor Immunity: From Observations at the Patient’s Bedside to Evaluation in Preclinical Models
by Yasmin Leshem and Ira Pastan
Toxins 2019, 11(1), 20; https://doi.org/10.3390/toxins11010020 - 5 Jan 2019
Cited by 34 | Viewed by 4604
Abstract
Immunotoxins are protein drugs composed of a targeting domain genetically fused to a protein toxin. One killing domain being explored is a truncated Pseudomonas exotoxin A (PE). PE based immunotoxins are designed to kill cells directly by inhibiting their ability to synthesize proteins. [...] Read more.
Immunotoxins are protein drugs composed of a targeting domain genetically fused to a protein toxin. One killing domain being explored is a truncated Pseudomonas exotoxin A (PE). PE based immunotoxins are designed to kill cells directly by inhibiting their ability to synthesize proteins. However, observations from clinical trials suggest that this alone cannot explain their anti-tumor activity. Here we discuss patterns of clinical responses suggesting that PE immunotoxins can provoke anti-tumor immunity, and review murine models that further support this ability. In addition, we describe our preclinical effort to develop a combination therapy of local PE immunotoxins with a systemic anti-CTLA-4 immune check point blocking antibody. The combination eradicated murine tumors and prolonged the survival of mice. Clinical trials that test the ability of immunotoxins to augment immunotherapy have been recently opened. Full article
(This article belongs to the Special Issue Toxins and Immunology)
Show Figures

Figure 1

14 pages, 13578 KiB  
Article
Phytic Acid Decreases Oxidative Stress and Intestinal Lesions Induced by Fumonisin B1 and Deoxynivalenol in Intestinal Explants of Pigs
by Elisângela O. Da Silva, Juliana R. Gerez, Miriam S. N. Hohmann, Waldiceu A. Verri, Jr. and Ana Paula F. R. L. Bracarense
Toxins 2019, 11(1), 18; https://doi.org/10.3390/toxins11010018 - 4 Jan 2019
Cited by 44 | Viewed by 4188
Abstract
The purpose of the present study was to investigate the effects of phytic acid (IP6) on morphological and immunohistochemical parameters and oxidative stress response in intestinal explants of pigs exposed to fumonisin B1 (FB1) and/or deoxynivalenol (DON). The jejunal explants [...] Read more.
The purpose of the present study was to investigate the effects of phytic acid (IP6) on morphological and immunohistochemical parameters and oxidative stress response in intestinal explants of pigs exposed to fumonisin B1 (FB1) and/or deoxynivalenol (DON). The jejunal explants were exposed to the following treatments: vehicle, IP6 5 mM, DON 10 µM, FB1 70 µM, DON 10 µM + FB1 70 µM, DON 10 µM + IP6 5 mM, FB1 70 µM + IP6 5 mM, and DON 10 µM + FB1 70 µM + IP6 5 mM. The decrease in villus height and goblet cell density was more evident in DON and DON + FB1 treatments. In addition, a significant increase in cell apoptosis and cell proliferation and a decrease in E-cadherin expression were observed in the same groups. DON and FB1 exposure increased cyclooxygenase-2 expression and decreased the cellular antioxidant capacity. An increase in lipid peroxidation was observed in DON- and FB1-treated groups. IP6 showed beneficial effects, such as a reduction in intestinal morphological changes, cell apoptosis, cell proliferation, and cyclooxygenase-2 expression, and an increase in E-cadherin expression when compared with DON, FB1 alone, or DON and FB1 in association. IP6 inhibited oxidative stress and increased the antioxidant capacity in the explants exposed to mycotoxins. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

15 pages, 3785 KiB  
Article
Lactobacillus bulgaricus or Lactobacillus rhamnosus Suppresses NF-κB Signaling Pathway and Protects against AFB1-Induced Hepatitis: A Novel Potential Preventive Strategy for Aflatoxicosis?
by Yuanyuan Chen, Ruirui Li, Qiaocheng Chang, Zhihao Dong, Huanmin Yang and Chuang Xu
Toxins 2019, 11(1), 17; https://doi.org/10.3390/toxins11010017 - 4 Jan 2019
Cited by 33 | Viewed by 4275
Abstract
Aflatoxin B1 (AFB1), a mycotoxin found in food and feed, is immunotoxic to animals and poses significant threat to the food industry and animal production. The primary target of AFB1 is the liver. To overcome aflatoxin toxicity, probiotic-mediated detoxification [...] Read more.
Aflatoxin B1 (AFB1), a mycotoxin found in food and feed, is immunotoxic to animals and poses significant threat to the food industry and animal production. The primary target of AFB1 is the liver. To overcome aflatoxin toxicity, probiotic-mediated detoxification has been proposed. In the present study, to investigate the protective effects and molecular mechanisms of Lactobacillus bulgaricus or Lactobacillus rhamnosus against liver inflammatory responses to AFB1, mice were administered with AFB1 (300 μg/kg) and/or Lactobacillus intragastrically for 8 weeks. AML12 cells were cultured and treated with AFB1, BAY 11-7082 (an NF-κB inhibitor), and different concentrations of L. bulgaricus or L. rhamnosus. The body weight, liver index, histopathological changes, biochemical indices, cytokines, cytotoxicity, and activation of the NF-κB signaling pathway were measured. AFB1 exposure caused changes in liver histopathology and biochemical functions, altered inflammatory response, and activated the NF-κB pathway. Supplementation of L. bulgaricus or L. rhamnosus significantly prevented AFB1-induced liver injury and alleviated histopathological changes and inflammatory response by decreasing NF-κB p65 expression. The results of in vitro experiments revealed that L. rhamnosus evidently protected against AFB1-induced inflammatory response and decreased NF-κB p65 expression when compared with L. bulgaricus. These findings indicated that AFB1 exposure can cause inflammatory response by inducing hepatic injury, and supplementation of L. bulgaricus or L. rhamnosus can produce significant protective effect against AFB1-induced liver damage and inflammatory response by regulating the activation of the NF-κB signaling pathway. Full article
(This article belongs to the Collection Aflatoxins)
Show Figures

Figure 1

11 pages, 1133 KiB  
Article
Toxic Indole Diterpenes from Endophyte-Infected Perennial Ryegrass Lolium perenne L.: Isolation and Stability
by Priyanka Reddy, Myrna A. Deseo, Vilnis Ezernieks, Kathryn Guthridge, German Spangenberg and Simone Rochfort
Toxins 2019, 11(1), 16; https://doi.org/10.3390/toxins11010016 - 3 Jan 2019
Cited by 15 | Viewed by 4263
Abstract
The most potent of the indole diterpenes, lolitrem B, is found in perennial ryegrass (Lolium perenne L.) infected with the endophyte Epichloë festucae var. lolii (also termed LpTG-1). Ingestion causes a neurological syndrome in grazing livestock called ryegrass staggers disease. To [...] Read more.
The most potent of the indole diterpenes, lolitrem B, is found in perennial ryegrass (Lolium perenne L.) infected with the endophyte Epichloë festucae var. lolii (also termed LpTG-1). Ingestion causes a neurological syndrome in grazing livestock called ryegrass staggers disease. To enable the rapid development of new forage varieties, the toxicity of lolitrem B and its biosynthetic intermediates needs to be established. However, most of these indole diterpenes are not commercially available; thus, isolation of these compounds is paramount. A concentrated endophyte-infected perennial ryegrass seed extract was subjected to silica flash chromatography followed by preparative HPLC and purification by crystallization resulting in lolitrem B and the intermediate compounds lolitrem E, paspaline and terpendole B. The four-step isolation and purification method resulted in a 25% yield of lolitrem B. After isolation, lolitrem B readily degraded to its biosynthetic intermediate, lolitriol. We also found that lolitrem B can readily degrade depending on the solvent and storage conditions. The facile method which takes into consideration the associated instability of lolitrem B, led to the purification of indole diterpenes in quantities sufficient for use as analytical standards for identification in pastures, and/or for toxicity testing in pasture development programs. Full article
(This article belongs to the Special Issue Fungal Infestations in Humans, Animals, Crops)
Show Figures

Graphical abstract

12 pages, 9389 KiB  
Article
In Vitro Cytotoxicity Induced by the Bufadienolides 1α,2α-Epoxyscillirosidine and Lanceotoxin B on Rat Myocardial and Mouse Neuroblastoma Cell Lines
by Danielle Henn, Annette Venter and Christo Botha
Toxins 2019, 11(1), 14; https://doi.org/10.3390/toxins11010014 - 2 Jan 2019
Cited by 7 | Viewed by 2600
Abstract
Consumption of bufadienolide-containing plants are responsible for many livestock mortalities annually. Bufadienolides are divided into two groups; non-cumulative bufadienolides and cumulative bufadienolides. Cumulative bufadienolides are referred to as neurotoxic, as the chronic intoxication with this type of bufadienolide results in a paretic/paralytic syndrome [...] Read more.
Consumption of bufadienolide-containing plants are responsible for many livestock mortalities annually. Bufadienolides are divided into two groups; non-cumulative bufadienolides and cumulative bufadienolides. Cumulative bufadienolides are referred to as neurotoxic, as the chronic intoxication with this type of bufadienolide results in a paretic/paralytic syndrome known as ‘krimpsiekte’. The in vitro cytotoxicity of a non-cumulative bufadienolide, 1α,2α-epoxyscillirosidine, and a cumulative bufadienolide, lanceotoxin B, were compared using the MTT ((3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction) assay after exposing rat myocardial (H9c2) and mouse neuroblastoma (Neuro-2a) cell lines. The effect of these two bufadienolides on cell ultrastructure was also investigated using transmission electron microscopy (TEM). H9c2 cells exhibited greater cytotoxicity when exposed to 1α,2α-epoxyscillirosidine, compared to lanceotoxin B. In contrast, Neuro-2a cells were more susceptible to lanceotoxin B. The EC50 (half maximal effective concentration) of lanceotoxin B exposure of Neuro-2a cells for 24–72 h ranged from 4.4–5.5 µM compared to EC50s of 35.7–37.6 µM for 1α,2α-epoxyscillirosidine exposure of Neuro-2a cells over the same period. 1α,2α-Epoxyscillirosidine induced extensive vacuolization in both cell types, with swollen RER (rough endoplasmic reticulum) and perinuclear spaces. Lanceotoxin B caused swelling of the mitochondria and sequestration of cytoplasmic material within autophagic vesicles. These results corroborate the notion that cumulative bufadienolides are neurotoxic. Full article
(This article belongs to the Collection Toxic and Pharmacological Effect of Plant Toxins)
Show Figures

Graphical abstract

18 pages, 1522 KiB  
Article
In Vitro and in Field Response of Different Fungicides against Aspergillus flavus and Fusarium Species Causing Ear Rot Disease of Maize
by Mario Masiello, Stefania Somma, Veronica Ghionna, Antonio Francesco Logrieco and Antonio Moretti
Toxins 2019, 11(1), 11; https://doi.org/10.3390/toxins11010011 - 1 Jan 2019
Cited by 53 | Viewed by 5671
Abstract
Aspergillus flavus, the main aflatoxin B1 producing fungal species, Fusarium graminearum, a deoxynivalenol producer, and the fumonisin-producing species F. proliferatum and F. verticillioides are the main toxigenic fungi (TF) that colonize maize. Several strategies are available to control TF and [...] Read more.
Aspergillus flavus, the main aflatoxin B1 producing fungal species, Fusarium graminearum, a deoxynivalenol producer, and the fumonisin-producing species F. proliferatum and F. verticillioides are the main toxigenic fungi (TF) that colonize maize. Several strategies are available to control TF and related mycotoxins, such as chemical control. However, there is poor knowledge on the efficacy of fungicides on maize plants since few molecules are registered. The sensitivity of F. graminearum, F. proliferatum, F. verticillioides, and A. flavus to eleven fungicides, selected based on their different modes of action, was evaluated in both in vitro assays and, after selection, in the field. In vitro, demethylation inhibitors (DMI) showed excellent performances, followed by thiophanate-methyl and folpet. Among the succinate dehydrogenase inhibitors (SDHI), isopyrazam showed a higher effectiveness against Fusarium species than boscalid, which was ineffective against Fusarium, like the phenyl-pyrrole fludioxonil. Furthermore, both SDHIs and fludioxonil were more active against A. flavus than Fusarium species. In field trials, prothioconazole and thiophanate-methyl were confirmed to be effective to reduce F. graminearum (52% and 48%) and F. proliferatum contamination (44% and 27%). On the other hand, prothioconazole and boscalid could reduce A. flavus contamination at values of 75% and 56%, respectively. Full article
Show Figures

Figure 1

16 pages, 1903 KiB  
Article
Comparative Analysis of Microcystin Prevalence in Michigan Lakes by Online Concentration LC/MS/MS and ELISA
by Johnna A. Birbeck, Judy A. Westrick, Grace M. O’Neill, Brian Spies and David C. Szlag
Toxins 2019, 11(1), 13; https://doi.org/10.3390/toxins11010013 - 1 Jan 2019
Cited by 47 | Viewed by 5471
Abstract
Fast and reliable workflows are needed to quantitate microcystins (MCs), a ubiquitous class of hepatotoxic cyanotoxins, so that the impact of human and environmental exposure is assessed quickly and minimized. Our goal was to develop a high-throughput online concentration liquid chromatography tandem mass [...] Read more.
Fast and reliable workflows are needed to quantitate microcystins (MCs), a ubiquitous class of hepatotoxic cyanotoxins, so that the impact of human and environmental exposure is assessed quickly and minimized. Our goal was to develop a high-throughput online concentration liquid chromatography tandem mass spectrometry (LC/MS/MS) workflow to quantitate the 12 commercially available MCs and nodularin in surface and drinking waters. The method run time was 8.5 min with detection limits in the low ng/L range and minimum reporting levels between 5 and 10 ng/L. This workflow was benchmarked by determining the prevalence of MCs and comparing the Adda-ELISA quantitation to our new workflow from 122 samples representing 31 waterbodies throughout Michigan. The frequency of MC occurrence was MC-LA > LR > RR > D-Asp3-LR > YR > HilR > WR > D-Asp3-RR > HtyR > LY = LW = LF, while MC-RR had the highest concentrations. MCs were detected in 33 samples and 13 of these samples had more than 20% of their total MC concentration from MCs not present in US Environmental Protection Agency (US EPA) Method 544. Furthermore, seasonal deviations between the LC/MS/MS and Adda-ELISA data suggest Adda-ELISA cross-reacts with MC degradation products. This workflow provides less than 24-h turnaround for quantification and also identified key differences between LC/MS/MS and ELISA quantitation that should be investigated further. Full article
(This article belongs to the Collection Freshwater HABs and Health in a Changing World)
Show Figures

Figure 1

Back to TopTop