Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,829)

Search Parameters:
Keywords = Cu/Ni

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4782 KB  
Article
Characterization, Source Analysis, and Ecological Risk Assessment of Heavy Metal Pollution in Surface Soils from the Central–Western Ali Region on the Tibetan Plateau
by Yanping Huang, Tieguang He, Jun Luo, Xueyang Ma and Tuo Zhang
Toxics 2025, 13(11), 972; https://doi.org/10.3390/toxics13110972 (registering DOI) - 12 Nov 2025
Abstract
Most risk assessment and source apportionment studies of the heavy metals in the surface soils in China have focused primarily on East China, whereas studies focused on Northwest China, particularly regarding heavy metals in surface soils in the central and western areas, remain [...] Read more.
Most risk assessment and source apportionment studies of the heavy metals in the surface soils in China have focused primarily on East China, whereas studies focused on Northwest China, particularly regarding heavy metals in surface soils in the central and western areas, remain limited. In this study, surface soils in the central–western Ali region were investigated, and the concentrations of nine heavy metals were determined. Moreover, the distribution patterns and ecological risks of these heavy metals were elucidated via a combination of the geoaccumulation index, pollution load index (PLI), comprehensive potential ecological risk index (RI), and integrated X-ray diffraction (XRD)–multivariate statistical techniques. Additionally, the pollution characteristics and sources were analyzed. The results indicated the following: (1) The spatial distribution of heavy metal pollution is closely linked to the geological background, and high–pollution zones (e.g., Cr, Ni, Co, Cu, As, and Cd) conform well with the distributions of ultramafic rocks and iron/chromite ore beds. The geoaccumulation index revealed that Cd caused slight and moderate contamination at 29.1% and 5.5% of the sites, respectively, whereas As affected 14.6% of the sites. The pollution load index indicated moderate pollution in 20% of the sites, and the potential ecological risk index indicated that 41.8% of the sites posed moderate risks, which was largely driven by Cd (mean Eri = 43.1). The comprehensive ecological risk index (RI = 115) confirmed a moderate risk level overall. Principal component analysis revealed three primary sources: natural weathering (Cr–Ni–Co–Cu, 39.1%); a mixed source influenced by nonagricultural anthropogenic activities such as transport and regional deposition, combined with natural processes such as arid climate and alkaline soil conditions that influence Cd mobility (Cd–Mo–Pb, 20.8%); and industrial/mining activities (As–Sb, 14.2%). Mineralogical analyses further indicated that heavy metals are present via lattice substitution, adsorption, and precipitation. This study systematically clarifies the composite pollution pattern and sources of heavy metals in the alpine Ali region, supporting targeted contamination control. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Graphical abstract

18 pages, 4280 KB  
Article
A Damage Model for Predicting Fatigue Life of 0Cr17Ni4Cu4Nb Stainless Steel Under Near-Yield Stress-Controlled Cyclic Loading
by Xiang Cheng, Ruomin Wang, Yong Li, Zhongkang Zhou, Yingfeng Pan, He Wu and Xiaolei Chen
Coatings 2025, 15(11), 1318; https://doi.org/10.3390/coatings15111318 - 11 Nov 2025
Abstract
Fatigue damage is critical for 0Cr17Ni4Cu4Nb stainless-steel components that may operate near yield under stress-controlled cycles and occasional peak holds. This work investigates the cyclic response of 0Cr17Ni4Cu4Nb stainless-steel under near-yield-stress-controlled (NYSC) loading and proposes a unified damage framework that bridges monotonic ductile [...] Read more.
Fatigue damage is critical for 0Cr17Ni4Cu4Nb stainless-steel components that may operate near yield under stress-controlled cycles and occasional peak holds. This work investigates the cyclic response of 0Cr17Ni4Cu4Nb stainless-steel under near-yield-stress-controlled (NYSC) loading and proposes a unified damage framework that bridges monotonic ductile fracture, near-yield stress-controlled fatigue. Building on the Enhanced Lou-Yoon model, an elastic-damage term is introduced and embedded within a continuum damage mechanics framework, allowing elastic (sub-yield) and plastic (post-yield, Ultra-Low-Cycle-Fatigue/Low-Cycle-Fatigue (ULCF/LCF)) damage to be treated in a unified, path-averaged stress-state description defined by stress triaxiality and the Lode parameter. Five stress-controlled test groups are examined, with applied load amplitudes from 20.6 to 25.1 kN (equivalent stress amplitudes 858~1044 MPa) yielding fatigue lives ranging from 32 to 13,570 cycles. The extended model captures the evolution of damage origin mechanisms from elasticity-dominated to plasticity-dominated as loading severity increases, demonstrating a unified elastic-plastic damage modeling approach. As a result, it accurately predicts fatigue lives spanning two orders of magnitude with an average absolute percentage error of approximately 14.5% across all conditions. Full article
Show Figures

Figure 1

19 pages, 3974 KB  
Article
First-Principles Investigation of Structural, Electronic, Thermoelectric, and Hydrogen Storage Properties of MgXH3 (X = Cr, Mn, Fe, Co, Ni, Cu) Perovskite Hydrides
by Ayoub Koufi, Younes Ziat and Hamza Belkhanchi
Hydrogen 2025, 6(4), 106; https://doi.org/10.3390/hydrogen6040106 - 11 Nov 2025
Abstract
This paper is based on the BoltzTrap package implemented in the Wien2k code to theoretically analyze and predict the structural, electronic, thermoelectric, and hydrogen storage properties of MgXH3 hydride perovskites (X = Cr, Mn, Fe, Co, Ni, and Cu). The [...] Read more.
This paper is based on the BoltzTrap package implemented in the Wien2k code to theoretically analyze and predict the structural, electronic, thermoelectric, and hydrogen storage properties of MgXH3 hydride perovskites (X = Cr, Mn, Fe, Co, Ni, and Cu). The study explores the dual functional potential of these compounds, highlighting how their hydrogen storage capability relates to their temperature-dependent thermoelectric performance. Analysis of band structures and densities of electronic states (DOS) reveals that all the compounds studied exhibit metallic behavior, characterized by an overlap between the valence band and the conduction band, indicating a zero electronic gap. Thermal properties show great variability depending on the transition metal involved. In particular, electrical conductivity and thermal conductivity evolve differently with temperature, directly influencing the figure of merit (Zt) of thermoelectric materials. The results suggest that although most MgXH3 compounds are not promising candidates for thermoelectric applications due to their high thermal conductivity and low density of states near the EF, MgNiH3 and MgCuH3 stand out with attractive thermoelectric potential. These properties make them attractive for energy conversion, waste heat recovery and solid-state cooling applications. This theoretical study highlights the potential of magnesium-based perovskite hydrides in energy conversion technologies, including thermoelectricity and hydrogen storage. Full article
(This article belongs to the Special Issue Advances in Solid-State Hydrogen and Energy Storage)
Show Figures

Figure 1

20 pages, 2673 KB  
Article
Shear-Thickening Superplastic Transitions in High-Entropy Oxides
by Salma El-Azab, Sichao Chen, Julie M. Schoenung and Alexander D. Dupuy
Ceramics 2025, 8(4), 136; https://doi.org/10.3390/ceramics8040136 - 10 Nov 2025
Abstract
Despite significant interest in their functional properties, the mechanical behavior of high-entropy oxides (HEOs) is not well studied, particularly at elevated temperatures. Bulk (Co,Cu,Mg,Ni,Zn)O (transition metal (TM)-HEO) samples were deformed under compression at applied stresses and temperatures ranging from 5 to 31 MPa [...] Read more.
Despite significant interest in their functional properties, the mechanical behavior of high-entropy oxides (HEOs) is not well studied, particularly at elevated temperatures. Bulk (Co,Cu,Mg,Ni,Zn)O (transition metal (TM)-HEO) samples were deformed under compression at applied stresses and temperatures ranging from 5 to 31 MPa and 600 to 850 °C, respectively. All of the deformation conditions result in creep stress exponents of n < 3, indicating that TM-HEO exhibits superplastic deformation. A transition from structural to solution-precipitation-based superplasticity is observed during deformation above 650 °C. Additionally, TM-HEO exhibits shear-thickening behavior when deformed at stresses above 9 MPa. The formation and behavior of a Cu-rich tenorite secondary phase during deformation is identified as a key factor underpinning the deformation mechanisms. The microstructure and phase state of TM-HEO before deformation also influenced the behavior, with finer grain sizes and increasing concentrations of Cu-rich tenorite, resulting in the increased prevalence of solution-precipitation deformation. While complex, the results of this study indicate that TM-HEO deforms through known superplastic deformation mechanisms. Superplasticity is a highly efficient manufacturing method and could prove to be a valuable strategy for forming HEO ceramics into complex geometries. Full article
(This article belongs to the Special Issue Mechanical Behavior and Reliability of Engineering Ceramics)
Show Figures

Figure 1

22 pages, 6697 KB  
Article
Assessment of Potentially Toxic Elements Pollution Pattern and Environmental Risk in Soils from Carpathian Areas Using a GIS-Based Approach and Pollution Indices
by Ana Moldovan, Ionuț-Cornel Mirea, Anamaria Iulia Torok, Maria Laura Tîrlă, Erika Andrea Levei and Oana Teodora Moldovan
Land 2025, 14(11), 2221; https://doi.org/10.3390/land14112221 - 10 Nov 2025
Abstract
Understanding the occurrence and spatial variability of potentially toxic elements in soils is essential for tracing pollution origins, assessing ecological risks, and supporting sustainable land use management. This study investigates the soil pollution with Cd, Pb, Ni, Cu, Zn, Cr, As, Mn, Sr, [...] Read more.
Understanding the occurrence and spatial variability of potentially toxic elements in soils is essential for tracing pollution origins, assessing ecological risks, and supporting sustainable land use management. This study investigates the soil pollution with Cd, Pb, Ni, Cu, Zn, Cr, As, Mn, Sr, and Fe, their spatial distribution, and environmental risks in two areas in southwestern Romania—Isverna and Tismana—using a combination of pollution indices and Geographic Information System (GIS)-based analyses. Results indicated predominantly low to moderate pollution across both areas, with localized hotspots of high to extreme pollution, particularly with Ni and Pb, near human settlements. In contrast, Tismana showed more uniform, generally lower pollution levels, suggesting the influence of natural (lithogenic) sources. Spatial distribution maps highlighted these differences, showing more heterogeneous localized hotspots in Isverna, likely linked to anthropogenic activities such as agricultural runoff and improper domestic waste disposal. The integrated use of pollution indices and GIS mapping proved effective in identifying contamination patterns and risk zones, providing valuable insights for environmental monitoring and sustainable management of rural land. Full article
(This article belongs to the Special Issue Conservation of Bio- and Geo-Diversity and Landscape Changes II)
Show Figures

Figure 1

20 pages, 2586 KB  
Article
Estimating Soil Arsenic Contamination by Integrating Hyperspectral and Geochemical Data with PCA and Optimizing Inversion Models
by Fei Guo, Zhen Xu, Honghong Ma and Xiujin Liu
Sensors 2025, 25(22), 6857; https://doi.org/10.3390/s25226857 - 10 Nov 2025
Abstract
Soil arsenic (As) contamination presents serious threats to ecosystems and human health, necessitating the development of accurate and efficient monitoring techniques. This study introduces a novel multi-source data fusion approach to enhance the hyperspectral inversion of soil arsenic concentrations by integrating dimensionality-reduced spectral [...] Read more.
Soil arsenic (As) contamination presents serious threats to ecosystems and human health, necessitating the development of accurate and efficient monitoring techniques. This study introduces a novel multi-source data fusion approach to enhance the hyperspectral inversion of soil arsenic concentrations by integrating dimensionality-reduced spectral data with soil components significantly correlated with arsenic (e.g., Cd, Cr, Cu, Ni, Pb, Zn, S, and total Fe2O3(T-Fe2O3)). Principal Component Analysis (PCA) was utilized to reduce the dimensionality of hyperspectral data, effectively addressing issues of collinearity and redundancy while preserving critical spectral information. The performances of three models, namely Partial Least Squares Regression (PLSR), Artificial Neural Networks (ANN), and Random Forest (RF), were assessed under four input variable combinations: (1) original spectral data, (2) original spectral data with soil components, (3) PCA dimensionality-reduced spectral data, and (4) PCA dimensionality-reduced spectral data combined with soil components. The results demonstrated that the RF model, when applied to the multi-source data of PCA-reduced spectra and soil components, achieved the highest inversion accuracy with an R2 value of 0.86, significantly outperforming the PLSR model (R2 = 0.75). This study underscores the effectiveness of enhancing model performance and highlights the superior capability of the RF model in handling complex, high-dimensional datasets. The findings of soil arsenic estimation provide theoretical foundation for optimizing hyperspectral remote sensing technology in monitoring soil heavy metal contamination and establishing a robust framework for future research and practical applications in environmental science. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

14 pages, 1148 KB  
Article
Determination of Multiple Metal Elements in Cyanobacteria Culture Media by Metal Capture/Enrichment Hyphenated with Inductively Coupled Plasma Mass Spectrometry
by Jun Men, Siyu Wang, Lingling Zheng, Fang Zhou, Zhixian Qiao, Xiaocui Chai, Feng Ge and Yanxia Zuo
Separations 2025, 12(11), 310; https://doi.org/10.3390/separations12110310 - 7 Nov 2025
Viewed by 130
Abstract
To address the challenges posed by extensive sample pretreatment and significant matrix interference in conventional metal quantification methods for cyanobacterial culture media, an automated online metal capture and enrichment system was developed and integrated with inductively coupled plasma mass spectrometry (ICP-MS). This system [...] Read more.
To address the challenges posed by extensive sample pretreatment and significant matrix interference in conventional metal quantification methods for cyanobacterial culture media, an automated online metal capture and enrichment system was developed and integrated with inductively coupled plasma mass spectrometry (ICP-MS). This system enabled the simultaneous determination of nine metal elements—Cd, Pb, V, Mn, Fe, Co, Ni, Cu, and Zn—within the culture medium. Through systematic optimization and validation, the method demonstrated exceptional analytical performance: calibration curves for all analytes exhibited correlation coefficients (r) exceeding 0.999; repeatability tests yielded relative standard deviations (RSD) below 3% (n = 6); and recoveries at low, medium, and high spike levels ranged from 93.98% to 108.70%. The procedure is characterized by simplicity, high automation, low detection limits, and robust accuracy, making it an effective platform for multi-element contamination monitoring and metal metabolic studies in cyanobacterial cultivation. This approach holds significant potential for applications in algal resource utilization and environmental restoration. Full article
Show Figures

Figure 1

18 pages, 12078 KB  
Article
Geostatistical and Food Risk Assessment of Soils Contaminated by Trace Elements in the City of Dschang (Cameroon)
by Denis Lekemo, Thierry Lebeau, Innocent Amani, Emmanuel Rodrigue Kenne, Honorine Ntangmo Tsafack, Pierre Gaudin and Émile Temgoua
Urban Sci. 2025, 9(11), 467; https://doi.org/10.3390/urbansci9110467 - 7 Nov 2025
Viewed by 238
Abstract
Spatial distribution of trace elements (TEs) in soils of the city of Dschang (Cameroon) was studied to identify their origin (geogenic vs. anthropogenic). The topsoil (at different depths) of 71 sites was analyzed using the rapid portable X-ray fluorescence analysis method. Soils from [...] Read more.
Spatial distribution of trace elements (TEs) in soils of the city of Dschang (Cameroon) was studied to identify their origin (geogenic vs. anthropogenic). The topsoil (at different depths) of 71 sites was analyzed using the rapid portable X-ray fluorescence analysis method. Soils from locations associated with metal-related activities exhibited the highest levels of contamination (average concentrations in mg kg−1: As, 8.2; Cr, 213.7; Cu, 201.8; Pb, 97.4; Zn, 838.0), followed by household waste dumps and agricultural plots (levels close to those of cultivated low-lying areas). The observed decrease in TE concentrations with depth (notably for Zn) supports the hypothesis of a human origin (compared with soil-geochemical background of control sites). Geostatistical approach indicated an underestimation of health risks associated with the consumption of crops from several sites. Specifically, 87.32%, 49.30%, and 47.89% of the sites exceeded the Food Crops Reference Value (FCRV) for Cr, Zn, and Cu, respectively. Additionally, the number of contaminated sites for each TE varies depending on the method: Cu > Zn > Pb > Cr > As = Ni > Cd and Cr > Zn > Cu > Ni > Pb > As > Cd with the geostatistical and FCRV approach respectively. From the first step of the soil chemical quality investigation, our study highlights the need to use methods based on health risks, especially for sensitive uses of soils such as food production. Full article
Show Figures

Figure 1

22 pages, 497 KB  
Article
Essential and Toxic Elements in Cereal-Based Complementary Foods for Children: Concentrations, Intake Estimates, and Health Risk Assessment
by Ana Claudia Rocha Gerônimo, Elaine Silva de Pádua Melo, Regiane Santana da Conceição Ferreira Cabanha, Marta Aratuza Pereira Ancel and Valter Aragão do Nascimento
Sci 2025, 7(4), 164; https://doi.org/10.3390/sci7040164 - 6 Nov 2025
Viewed by 229
Abstract
Cereal-based complementary foods are widely consumed by children, yet limited data exist on their elemental composition and potential health risks. This study quantified As, Cd, Co, Cr, Cu, Fe, K, Mn, Mg, Mo, Ni, P, Pb, Se, Si, V, and Zn in eight [...] Read more.
Cereal-based complementary foods are widely consumed by children, yet limited data exist on their elemental composition and potential health risks. This study quantified As, Cd, Co, Cr, Cu, Fe, K, Mn, Mg, Mo, Ni, P, Pb, Se, Si, V, and Zn in eight commercial cereal-based products collected in Campo Grande, Brazil, using inductively coupled plasma optical emission spectrometry (ICP OES). Arsenic, cadmium, cobalt, and chromium were consistently below the detection limit. Phosphorus and potassium were the predominant elements across brands, followed by Fe, Mg, and Zn, with significant inter-brand variability (Kruskal–Wallis, p < 0.05). Lead was detected in Brands 1–5 (0.11–0.41 mg/kg), but it was below the limit of detection (LOD = 0.003 mg/L) in the other samples. Estimated daily intake (ID) values at 30 g/day and 90 g/day showed that Fe, Zn, Mn, and Se frequently met or exceeded dietary reference intakes for children aged 1–3 years, while Cu, Ni, and P remained below tolerable levels. Comparison with tolerable upper intake levels and ATSDR minimal risk levels indicated that higher consumption (90 g/day) could result in excess intake of Mn, Zn, and Se, with Pb contributing to cumulative hazard indices above the safety threshold (HI > 1). These findings emphasize the dual role of cereal-based foods as important nutrient sources and potential contributors to excessive trace element exposure in young children. Full article
34 pages, 25503 KB  
Article
Assessment of Heavy Metal Pollution in Mangrove Sediments of Liusha Bay, Leizhou Peninsula, China
by Xianhui Yang, Huamei Huang, Ping Hu, Hong Luan, Bei Song, Zhaoyong Zheng, Cuiping Zhang, Ran Yan and Kang Li
Toxics 2025, 13(11), 961; https://doi.org/10.3390/toxics13110961 - 6 Nov 2025
Viewed by 302
Abstract
Heavy metal pollution threatens coastal ecosystems. Mangrove sediments, as transitional zones, are prone to contaminant accumulation. This study investigated eight heavy metals (Cu, Pb, Ni, As, Cr, Zn, Cd, Co) in Liusha Bay (Leizhou Peninsula, China). Field sampling, lab analysis, and multivariate statistics [...] Read more.
Heavy metal pollution threatens coastal ecosystems. Mangrove sediments, as transitional zones, are prone to contaminant accumulation. This study investigated eight heavy metals (Cu, Pb, Ni, As, Cr, Zn, Cd, Co) in Liusha Bay (Leizhou Peninsula, China). Field sampling, lab analysis, and multivariate statistics were used to assess pollution sources and ecological risks. The results show Al and Fe dominate sediment composition, with elevated P, Mn, and Sr. Arsenic (As) exhibiting the highest pollution severity (50% sites moderately contaminated by Igeo). Enrichment factors (EF) indicate anthropogenic contributions to As, Cu, Ni, and Co, while Cd and Pb originate mainly from natural sources. Ecological risk assessments highlight moderate risks for As and Cd at some sites. Source analysis identifies three dominant pathways: (1) lithogenic inputs (volcanic rock weathering) contributing Fe, Zn, Cr, and Ni; (2) biogenic materials (calcium carbonate-secreting organisms) influencing Cu, Mn, and Cd; and (3) anthropogenic activities (aquaculture, maritime traffic) linked to Cu and Pb. This study emphasizes localized monitoring of As and Cd in mangroves and calls for the integrated management of natural and anthropogenic drivers to mitigate pollution risks. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Figure 1

20 pages, 2126 KB  
Article
Evaluation of Silkworm Cocoon-Derived Biochar as an Adsorbent for the Removal of Organic and Inorganic Contaminants from Rainwater
by Anna Marszałek, Ewa Puszczało, Mariusz Dudziak, Anna Pajdak and Jakub Frankowski
Materials 2025, 18(21), 5053; https://doi.org/10.3390/ma18215053 - 6 Nov 2025
Viewed by 225
Abstract
This study presents evaluation of biochar derived from silkworm cocoons for the adsorption of organic and inorganic contaminants from rainwater. The material was characterised using BET surface area analysis, scanning electron microscopy (SEM), and the point of zero charge (pHPZC). The [...] Read more.
This study presents evaluation of biochar derived from silkworm cocoons for the adsorption of organic and inorganic contaminants from rainwater. The material was characterised using BET surface area analysis, scanning electron microscopy (SEM), and the point of zero charge (pHPZC). The prepared biochar exhibited a well-developed surface area and demonstrated adsorption capacity toward both heavy metals and benzotriazole. The model rainwater was prepared by spiking real rainwater samples with Cu(II), Ni(II), Zn(II) ions, and benzotriazole (BT). Adsorption experiments were carried out under laboratory conditions to evaluate the effects of contact time, pH, and sorbent dosage. The experimental data were fitted to pseudo-first-order and pseudo-second-order kinetic models, as well as Langmuir/and Freundlich isotherms. The results showed that the adsorption of Cu(II) followed the Langmuir/Freundlich model, while the adsorption of Ni(II) benzotriazole was more consistent with the Freundlich model. Adsorption kinetics were best described by the pseudo-second-order model. The highest removal efficiencies were observed for Cu(II) (96%) and Ni(II) (88.8%), while Zn(II) removal was limited. Benzotriazole was also effectively adsorbed (97%), rapid adsorption occurred mainly within the first minute. Overall, the study highlights the selective adsorption behaviour of silkworm cocoon biochar and provides a comparative insight into the removal of organic and inorganic pollutants using a waste-derived adsorbent with surface properties comparable to those of activated carbon. Full article
Show Figures

Figure 1

26 pages, 4255 KB  
Article
Distribution of Presumably Contaminating Elements (PCEs) in Roadside Agricultural Soils and Associated Health Risks Across Industrial, Peri-Urban, and Research Areas of Bangladesh
by Md. Sohel Rana, Qingyue Wang, Miho Suzuki, Weiqian Wang, Yugo Isobe, Afia Sultana and Tochukwu Oluwatosin Maduka
Sustainability 2025, 17(21), 9885; https://doi.org/10.3390/su17219885 - 5 Nov 2025
Viewed by 533
Abstract
Agricultural soils near roadways are increasingly contaminated with presumably contaminating elements (PCEs), raising concerns for food safety and health risks in Bangladesh. This study quantified Mn, As, Co, Cr, Zn, Ni, Cu, Cd and Pb in roadside agricultural farm soils at three depths [...] Read more.
Agricultural soils near roadways are increasingly contaminated with presumably contaminating elements (PCEs), raising concerns for food safety and health risks in Bangladesh. This study quantified Mn, As, Co, Cr, Zn, Ni, Cu, Cd and Pb in roadside agricultural farm soils at three depths (0–5, 5–10, 10–15 cm) across industrial, peri-urban, and research areas using ICP-MS. The average mass fractions ranked as Mn > Zn > Cr > Ni > Cu > Pb > Co > As > Cd with peri-urban soils exhibiting the elevated levels of Cr (80.48 mg.kg−1 and Ni (65.81 mg.kg−1). Contamination indices indicated Cd (Contamination Factor: 2.01–2.53) and Ni (Contamination Factor: up to 2.27) as the most enriched elements, with all sites showing a Pollution Load Index (PLI) >1 (1.07–1.66), reflecting cumulative soil deterioration. Cd posed moderate ecological risk (Er: 60.3–75.9), whereas other PCEs were low risk. Health risk assessment showed elevated non-carcinogenic hazard indices (HI: 7.87–10.5 for children; 3.72–4.78 for adults), with Mn, Cr, and Co as major contributors. Cumulative carcinogenic risk (CCR) values were dominated by Cr, reaching 7.22 × 10−4 in industrial areas and 3.98 × 10−4 in peri-urban areas, exceeding the acceptable range (10−6–10−4). Metal mass fractions were consistently higher in surface soils (0–5 cm) than at deeper layers, indicating anthropogenic deposition from traffic and industry. Multivariate analysis distinguished geogenic (Cr-Ni-Cu; Mn-Co-As) from anthropogenic (Cd-Pb-Zn) sources. These findings identify Cd and Cr as priority pollutants, highlighting the need for soil management and pollution control near roadways in Bangladesh. Full article
Show Figures

Figure 1

20 pages, 2867 KB  
Article
Assessing Urban Soils in the Norilsk Industrial Region Based on Heavy Metal and Petroleum Product Pollution Indices
by Vladimir Myazin, Vyacheslav Vasenev, Maria Korneykova, Natalia Karmanovskaya and Yulia Sotnikova
Land 2025, 14(11), 2199; https://doi.org/10.3390/land14112199 - 5 Nov 2025
Viewed by 302
Abstract
The soil condition of Norilsk, a large industrial city located in the Arctic zone of Russia, was assessed for the first time using pollution indices calculated based on the gross content of Pb, Zn, Co, Cd, Cu, Ni, Cr, Mn, As, and petroleum [...] Read more.
The soil condition of Norilsk, a large industrial city located in the Arctic zone of Russia, was assessed for the first time using pollution indices calculated based on the gross content of Pb, Zn, Co, Cd, Cu, Ni, Cr, Mn, As, and petroleum products. The Nemerov Pollution Index (NPI) classifies all Norilsk soil samples as polluted. According to the PLI index, 86% of the soil samples were characterized as polluted, and according to the total pollution index (Zc), 56% of the soil samples were classified as moderately hazardous and hazardous polluted. All soil samples had a medium, high, or very high environmental risk. The high level of soil pollution in Norilsk and the crucial role of nonferrous metallurgy as the primary source of these metals are confirmed. Pollutant content in the soil varied in different districts of Norilsk, with Mn and petroleum products being significant. The maximum heavy metal pollution occurred in the soils of the enterprise protection zones and in the soil of the industrial zones. Airborne pollutants from industrial enterprises are the main cause of heavy metal soil pollution in the Norilsk agglomeration. The contribution of other sources of pollution, typical for various functional areas of the city (e.g., motor transport and waste), is not expressed. Simultaneously, the hydrocarbon content is determined by the location of areas near roads, which is typical for districts with a high population and intensive traffic. Using the example of the Central District of Norilsk, the landscaping of the territory was shown to play a role in reducing the total content of heavy metals. Based on the physicochemical properties of Norilsk’s urban soils, the following key measures are proposed to improve soil quality: increasing organic matter content; ensuring a neutral pH and a high cation exchange capacity; and reducing soil density, which will reduce the toxic load on plants and negative impact on human health. Full article
Show Figures

Figure 1

26 pages, 731 KB  
Article
Investigation and Health Risk Assessment of Potentially Toxic Elements in Hair-Dye Products Sold in Brazil and Paraguay
by Gelson Martins da Silva, Marta Aratuza Pereira Ancel, Regiane Santana da Conceição Ferreira Cabanha, Amanda Lucy Farias de Oliveira, Ana Carla Pinheiro Lima, Andréia Cristina Lopes Corrêa, Marcelo Luiz Brandão Vilela, Diego Azevedo Zoccal Garcia, Omar Dias Lacerda, Elaine Silva de Padua Melo, Ademir da Silva Alves Junior and Valter Aragão do Nascimento
Sci 2025, 7(4), 160; https://doi.org/10.3390/sci7040160 - 5 Nov 2025
Viewed by 648
Abstract
Hair dyes are widely used cosmetic products that can contain trace metals and metalloids, posing potential health risks through dermal exposure. This study aimed to assess and compare the concentrations of selected metals and metalloids in six brands of commercial hair dyes sold [...] Read more.
Hair dyes are widely used cosmetic products that can contain trace metals and metalloids, posing potential health risks through dermal exposure. This study aimed to assess and compare the concentrations of selected metals and metalloids in six brands of commercial hair dyes sold in Brazil and Paraguay and to evaluate their average daily dermal exposure doses, hazard quotients, hazard indices, and carcinogenic risk. Concentrations of Cr, Cd, Co, Cu, Fe, Mn, Mo, Ni, As, Al, Pb, Ba, Ag, and Zn in hair dye were quantified by standardized analytical methods. The Paraguayan brand showed the highest levels for several elements, including As (4.17 mg/kg), Al (130.276 mg/kg), and Fe (30.033 mg/kg). Estimated dermal exposure doses reached up to 3.35 × 10−6 mg/kg/day for arsenic, 1.68 × 10−3 mg/kg/day for aluminum, and 8.59 × 10−8 mg/kg/day for chromium. Although all hazard indices remained below 1, suggesting low non-carcinogenic risk, the calculated carcinogenic risk for arsenic in the Paraguayan product was 1.23 × 10−5, entering the medium-risk range. These findings highlight relevant differences in raw material control and potential cumulative health risks, especially for frequent users. Continuous quality control, harmonized regulatory standards, clear labeling, and further biomonitoring studies are strongly recommended to minimize long-term exposure to toxic elements in hair dye formulations and to ensure safer consumer products. Full article
Show Figures

Figure 1

22 pages, 9513 KB  
Article
Hindering Effect of Solid-Solutioning on Intermetallic Growth in Aluminum–Matrix Composite Reinforced with Mechanically Alloyed Ni-Cu Particles
by Masih Bolhasani Hesari, Reza Beygi, Ali Bayrami, Mohammad Mehdi Kasaei, Majid Zarezade Mehrizi, Eduardo A. S. Marques and Lucas F. M. da Silva
J. Manuf. Mater. Process. 2025, 9(11), 364; https://doi.org/10.3390/jmmp9110364 - 4 Nov 2025
Viewed by 249
Abstract
In the present study, aluminum matrix composites (AMCs) were fabricated by friction stir processing (FSP) using Ni-Cu particles. Ni-Cu particles were added to the Al matrix in two ways. First, without any treatment and in the form of a mixture of as-received powders. [...] Read more.
In the present study, aluminum matrix composites (AMCs) were fabricated by friction stir processing (FSP) using Ni-Cu particles. Ni-Cu particles were added to the Al matrix in two ways. First, without any treatment and in the form of a mixture of as-received powders. Second, treated through mechanical alloying to form Monel solid-solution particles. The particles were added to a groove to be processed by the FSP tool to produce a local AMC. To investigate the kinetics of intermetallic compounds (IMCs) growth in reinforcement particles, the produced AMCs were annealed at 500 °C for 2 h. To characterize the reinforcing particles, several analyses were performed on the samples. Field-emission scanning electron microscopy (FE-SEM) was used to study the size, morphology, and IMC thickness. TEM was performed to characterize the IMCs through high-resolution chemical analyses. Tensile testing was used to understand the mechanical properties and fracture behavior of AMCs. Tensile testing revealed a noticeable improvement in strength for the as-mixed sample, with a UTS of 90.3 MPa, approximately 22% higher than that of the base aluminum. In contrast, the mechanical alloying sample with annealing heat treatment exhibited a severe drop in ductility, with elongation decreasing from 17.98% in the as-mixed sample to 1.52%. The results showed that heat treatment thickened the IMC layer around the reinforcing particles formed during the FSP process with as-mixed particles. In the AMC reinforced with mechanically alloyed Ni-Cu powders, IMC formation during FSP was significantly suppressed compared to that of as-mixed particles, despite the finer size resulting from milling. Additionally, the heat treatment resulted in only a slight increase in IMC thickness. The IMC layer thickness after heat treatment in both the mechanically alloyed sample and the as-mixed sample was approximately 2 µm and 20–40 µm, respectively. The reason behind this difference and its effect on the fracture behavior of the composite were elaborated in this study, giving insights into metal-matrix production with controlled reaction. Full article
(This article belongs to the Special Issue Innovative Approaches in Metal Forming and Joining Technologies)
Show Figures

Figure 1

Back to TopTop