Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (212)

Search Parameters:
Keywords = DNA-binding small molecules

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 5591 KB  
Article
Expanding the Knowledge of the Molecular Effects and Therapeutic Potential of Incomptine A for the Treatment of Non-Hodgkin Lymphoma: In Vivo and Bioinformatics Studies, Part III
by Normand García-Hernández, Fernando Calzada, Elihú Bautista, José Manuel Sánchez-López, Miguel Valdes, Claudia Velázquez and Elizabeth Barbosa
Pharmaceuticals 2025, 18(9), 1263; https://doi.org/10.3390/ph18091263 - 25 Aug 2025
Viewed by 459
Abstract
Background/Objectives: Non-Hodgkin lymphoma (NHL) is a group of blood cancers that arise in the lymphatic nodes and other tissues after an injury to the DNA of B/T lineage and NK lymphocytes. Recently, we reported that incomptine A (IA) has in [...] Read more.
Background/Objectives: Non-Hodgkin lymphoma (NHL) is a group of blood cancers that arise in the lymphatic nodes and other tissues after an injury to the DNA of B/T lineage and NK lymphocytes. Recently, we reported that incomptine A (IA) has in vivo antilymphoma properties. This research aimed to evaluate the effects of IA in the treatment of NHL using antilymphoma activity, Tandem Mass Tag (TMT), and bioinformatics approaches. Methods: The antilymphoma activity of IA was tested on male Balb/c mice inoculated with U-937 cells. Also, TMT, gene ontology enrichment, Reactome pathway, Kyoto Encyclopedia of Gene and Genomes pathway, molecular docking, toxicoinformatic, and pharmaceutical analyses were performed. Results: By TMT analysis of the altered levels of proteins present in the lymph nodes of Balb/c mice with NHL and treated with IA, we identified 106 significantly differentially expressed proteins (DEPs), including Il1rap, Ifi44, Timd4, Apoa4, and Fabp3 as well as Myh3, Eno 2, and H4c11. Among these, the Fhl1 result was the most important cluster altered and a potential core target of IA for the treatment of NHL. Network pharmacology studies have revealed that DEPs are associated with processes such as muscle contraction, glycolysis, hemostasis, epigenetic regulation of gene expression, transport of small molecules, neutrophil extracellular trap formation, adrenergic signaling in cardiomyocytes, systemic lupus erythematosus, alcoholism, and platelet activation, signaling, and aggregation. Computational studies revealed strong binding affinities with six proteins associated with cancer, positive pharmacokinetic properties, and no toxicity. Conclusions: Our contribution suggests that IA may be a compound with potential therapeutic effects against NHL. Full article
Show Figures

Figure 1

21 pages, 3149 KB  
Article
Network Theory Analysis of Allosteric Drug-Rescue Mechanisms in the Tumor Suppressor Protein p53 Y220C Mutant
by Benjamin S. Cowan and Kelly M. Thayer
Int. J. Mol. Sci. 2025, 26(14), 6884; https://doi.org/10.3390/ijms26146884 - 17 Jul 2025
Cited by 1 | Viewed by 1473
Abstract
Network theory analysis has emerged as a powerful approach for investigating the complex behavior of dynamic and interactive systems, including proteomic systems. One key application of these methods is the study of long-range signaling dynamics in proteins, a phenomenon known as allostery. In [...] Read more.
Network theory analysis has emerged as a powerful approach for investigating the complex behavior of dynamic and interactive systems, including proteomic systems. One key application of these methods is the study of long-range signaling dynamics in proteins, a phenomenon known as allostery. In this study, we applied computational models using network theory analysis to explore long-range electrostatic interactions and allosteric drug rescue mechanisms in the DNA-binding domain (DBD) of the p53 protein, a critical tumor suppressor whose dysfunction, often caused by missense mutations, is implicated in over 50% of human cancers. Using heat kernel and Wasserstein distance-based analyses, we explored the allosteric behavior of p53-DBD constructs with the Y220C mutation in the presence or absence of allosteric effector drugs. Our results demonstrated that these network theory-based protocols effectively detected the differential efficacies of small molecule allosteric effector drug compounds in restoring long-range electrostatic dynamics in the Y220C mutant. Furthermore, our approach identified key long-range electrostatic interactions critical to both the nominal and drug-rescued functionality of the p53-DBD, providing valuable insights into allosteric modulation and its therapeutic potential. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

26 pages, 1698 KB  
Review
Research Progress on the Functional Regulation Mechanisms of ZKSCAN3
by Jianxiong Xu, Xinzhe Li, Jingjing Xia, Wenfang Li and Zhengding Su
Biomolecules 2025, 15(7), 1016; https://doi.org/10.3390/biom15071016 - 14 Jul 2025
Viewed by 752
Abstract
The zinc finger protein with KRAB and SCAN domains 3 (ZKSCAN3) has emerged as a critical regulator of diverse cellular processes, including autophagy, cell cycle progression, and tumorigenesis. Structurally, ZKSCAN3 is characterized by its conserved DNA-binding zinc finger motifs, a SCAN domain mediating [...] Read more.
The zinc finger protein with KRAB and SCAN domains 3 (ZKSCAN3) has emerged as a critical regulator of diverse cellular processes, including autophagy, cell cycle progression, and tumorigenesis. Structurally, ZKSCAN3 is characterized by its conserved DNA-binding zinc finger motifs, a SCAN domain mediating protein–protein interaction, and a KRAB repression domain implicated in transcriptional regulation. Post-translational modifications, such as phosphorylation and ubiquitination, dynamically modulate its subcellular localization and activity, enabling context-dependent functional plasticity. Functionally, ZKSCAN3 acts as a master switch in autophagy by repressing the transcription of autophagy-related genes under nutrient-replete conditions, while its nuclear-cytoplasmic shuttling under stress conditions links metabolic reprogramming to cellular survival. Emerging evidence also underscores its paradoxical roles in cancer: it suppresses tumor initiation by maintaining genomic stability yet promotes metastasis through epithelial–mesenchymal transition induction. Furthermore, epigenetic mechanisms, including promoter methylation and non-coding RNA regulation, fine-tune ZKSCAN3 expression, contributing to tissue-specific outcomes. Despite these insights, gaps remain in understanding the structural determinants governing its interaction with chromatin-remodeling complexes and the therapeutic potential of targeting ZKSCAN3 in diseases. Future investigations should prioritize integrating multi-omics approaches to unravel context-specific regulatory networks and explore small-molecule modulators for translational applications. This comprehensive analysis provides a framework for advancing our mechanistic understanding of ZKSCAN3 and its implications in human health and disease. This review synthesizes recent advances in elucidating the regulatory networks and functional complexity of ZKSCAN3, highlighting its dual roles in physiological and pathological contexts. Full article
(This article belongs to the Special Issue Spotlight on Hot Cancer Biological Biomarkers)
Show Figures

Figure 1

15 pages, 6783 KB  
Article
Disruptive DNA Intercalation Is the Mode of Interaction Behind Niacinamide Antimicrobial Activity
by Michal Rasis, Noa Ziklo and Paul Salama
Microorganisms 2025, 13(7), 1636; https://doi.org/10.3390/microorganisms13071636 - 10 Jul 2025
Viewed by 458
Abstract
Niacinamide was recently shown to directly interact with bacterial DNA and interfere with cell replication; niacinamide mode of interaction and efficacy as a natural anti-microbial molecule were also described. The aim of this study is to elucidate the exact binding mechanism of niacinamide [...] Read more.
Niacinamide was recently shown to directly interact with bacterial DNA and interfere with cell replication; niacinamide mode of interaction and efficacy as a natural anti-microbial molecule were also described. The aim of this study is to elucidate the exact binding mechanism of niacinamide to microbial DNA. Intercalation is a binding mode where a small planar molecule, such as niacinamide, is inserted between base pairs, causing structural changes in the DNA. Melting curve analysis with various intercalating dyes demonstrated that niacinamide interaction with bacterial DNA reduces its melting temperature in a linear dose-dependent manner. Niacinamide’s effect on the melting temperature was found to be % GC-dependent, while purine stretches were also found to influence the binding kinetics. Finally, fluorescent intercalator displacement (FID) assays demonstrated that niacinamide strongly reduces SYBR Safe signal in a dose-dependent manner. Interestingly, competition assays with a minor groove binder also reduced Hoechst signal but in a non-linear manner, which can be attributed to strand lengthening and unwinding following niacinamide intercalation. Taken altogether; our results suggest a “disruptive intercalation” as the mode of interaction of niacinamide with bacterial DNA. Formation of locally destabilized DNA portions by niacinamide might interfere with protein–DNA interaction and potentially affect several crucial bacterial cellular processes, e.g., DNA repair and replication, subsequently leading to cell death. Full article
Show Figures

Figure 1

44 pages, 4214 KB  
Review
LncRNAOmics: A Comprehensive Review of Long Non-Coding RNAs in Plants
by Chinmay Saha, Saibal Saha and Nitai P. Bhattacharyya
Genes 2025, 16(7), 765; https://doi.org/10.3390/genes16070765 - 29 Jun 2025
Viewed by 2156
Abstract
The large portion of the eukaryotic genomes was considered non-functional and called the “dark matter” of the genome, now appearing as regulatory hubs coding for RNAs without the potential for making proteins, known as non-coding RNA. Long non-coding RNA (lncRNA) is defined as [...] Read more.
The large portion of the eukaryotic genomes was considered non-functional and called the “dark matter” of the genome, now appearing as regulatory hubs coding for RNAs without the potential for making proteins, known as non-coding RNA. Long non-coding RNA (lncRNA) is defined as functional RNA molecules having lengths larger than 200 nucleotides without the potential for coding for proteins. Thousands of lncRNAs are identified in different plants and animals. LncRNAs are characterized by a low abundance, fewer exons than mRNA, tissue-specific expression, and low sequence conservation compared to protein-coding genes (PCGs). LncRNAs, like PCGs, are regulated by promoters and enhancers with characteristic chromatin signatures, DNA methylation, multiple exons, introns, and alternate splicing. LncRNAs interact with DNA, mRNA, microRNA, and proteins, including chromatin/histone modifiers, transcription factors/repressors, epigenetic regulators, spliceosomal, and RNA-binding proteins. Recent observations indicate that lncRNAs code for small peptides, also called micropeptides (<100 amino acids), and are involved in the development and growth of plants, suggesting the bi-functional activities of lncRNAs. LncRNAs have emerged as the major regulators of diverse functions, principally by altering the transcription of target genes. LncRNAs are involved in plant growth, development, immune responses, and various physiological processes. Abiotic, biotic, nutrient, and other environmental stresses alter the expressions of numerous lncRNAs. Understanding the mechanisms of actions of lncRNAs opens up the possibility of improving agronomic traits by manipulating lncRNAs. However, further studies are required in order to find the interactions among the deregulated lncRNAs and validate the findings from high-throughput studies to harness their potential in crop improvement. Full article
(This article belongs to the Section RNA)
Show Figures

Figure 1

29 pages, 4906 KB  
Article
Ex Vivo Molecular Studies and In Silico Small Molecule Inhibition of Plasmodium falciparum Bromodomain Protein 1
by David O. Oladejo, Titilope M. Dokunmu, Gbolahan O. Oduselu, Daniel O. Oladejo, Olubanke O. Ogunlana and Emeka E. J. Iweala
Drugs Drug Candidates 2025, 4(3), 29; https://doi.org/10.3390/ddc4030029 - 21 Jun 2025
Viewed by 588
Abstract
Background: Malaria remains a significant global health burden, particularly in sub-Saharan Africa, accounting for high rates of illness and death. The growing resistance to frontline antimalarial therapies underscores the urgent need for novel drug targets and therapeutics. Bromodomain-containing proteins, which regulate gene expression [...] Read more.
Background: Malaria remains a significant global health burden, particularly in sub-Saharan Africa, accounting for high rates of illness and death. The growing resistance to frontline antimalarial therapies underscores the urgent need for novel drug targets and therapeutics. Bromodomain-containing proteins, which regulate gene expression through chromatin remodeling, have gained attention as potential targets. Plasmodium falciparum bromodomain protein 1 (PfBDP1), a 55 kDa nuclear protein, plays a key role in recognizing acetylated lysine residues and facilitating transcription during parasite development. Methods: This study investigated ex vivo PfBDP1 gene mutations and identified potential small molecule inhibitors using computational approaches. Malaria-positive blood samples were collected. Genomic DNA was extracted, assessed for quality, and amplified using PfBDP1-specific primers. DNA sequencing and alignment were performed to determine single-nucleotide polymorphism (SNP). Structural modeling used the PfBDP1 crystal structure (PDB ID: 7M97), and active site identification was conducted using CASTp 3.0. Virtual screening and pharmacophore modeling were performed using Pharmit and AutoDock Vina, followed by ADME/toxicity evaluations with SwissADME, OSIRIS, and Discovery Studio. GROMACS was used for 100 ns molecular dynamics simulations. Results: The malaria prevalence rate stood at 12.24%, and the sample size was 165. Sequencing results revealed conserved PfBDP1 gene sequences compared to the 3D7 reference strain. Virtual screening identified nine lead compounds with binding affinities ranging from −9.8 to −10.7 kcal/mol. Of these, CHEMBL2216838 had a binding affinity of −9.9 kcal/mol, with post-screening predictions of favorable drug-likeness (8.60), a high drug score (0.78), superior pharmacokinetics, and a low toxicity profile compared to chloroquine. Molecular dynamics simulations confirmed its stable interaction within the PfBDP1 active site. Conclusions: Overall, this study makes a significant contribution to the ongoing search for novel antimalarial drug targets by providing both molecular and computational evidence for PfBDP1 as a promising therapeutic target. The prediction of CHEMBL2216838 as a lead compound with favorable binding affinity, drug-likeness, and safety profile, surpassing those of existing drugs like chloroquine, sets the stage for preclinical validation and further structure-based drug design efforts. These findings are supported by prior experimental evidence showing significant parasite inhibition and gene suppression capability of predicted hits. Full article
(This article belongs to the Section In Silico Approaches in Drug Discovery)
Show Figures

Figure 1

18 pages, 4899 KB  
Review
Targeting the Undruggable: Recent Progress in PROTAC-Induced Transcription Factor Degradation
by Hyein Jung and Yeongju Lee
Cancers 2025, 17(11), 1871; https://doi.org/10.3390/cancers17111871 - 3 Jun 2025
Viewed by 2697
Abstract
Transcription factors (TFs) play central roles in gene regulation and disease progression but have long been considered undruggable due to the absence of well-defined binding pockets and their reliance on protein–protein or protein–DNA interactions. Proteolysis-targeting chimeras (PROTACs) offer a novel strategy to overcome [...] Read more.
Transcription factors (TFs) play central roles in gene regulation and disease progression but have long been considered undruggable due to the absence of well-defined binding pockets and their reliance on protein–protein or protein–DNA interactions. Proteolysis-targeting chimeras (PROTACs) offer a novel strategy to overcome these limitations by inducing selective degradation of TFs via the ubiquitin–proteasome system. This review highlights recent advances in TF-targeting PROTACs, focusing on key oncogenic TFs such as androgen receptor (AR), estrogen receptor alpha (ERα), BRD4, c-Myc, and STAT family members. Strategies for ligand design—including small molecules, peptides, and nucleic acid-based elements—are discussed alongside the use of various E3 ligases such as VHL, CRBN, and IAP. Several clinically advanced PROTACs, including ARV-110 and ARV-471, demonstrate the therapeutic potential of this technology. Despite challenges in pharmacokinetics and E3 ligase selection, emerging data suggest that PROTACs can successfully target TFs, paving the way for new treatment strategies across oncology and other disease areas. Full article
(This article belongs to the Special Issue Recent Advances in PROteolysis TArgeting Chimeras (PROTACs))
Show Figures

Figure 1

23 pages, 4235 KB  
Review
Recent Advances in the Development of Functional Nucleic Acid Biosensors Based on Aptamer-Rolling Circle Amplification
by Ce Liu and Wanchong He
Molecules 2025, 30(11), 2375; https://doi.org/10.3390/molecules30112375 - 29 May 2025
Cited by 1 | Viewed by 1307
Abstract
Aptamers are synthetic nucleic acids or peptides that exhibit high specificity and affinity for target molecules such as small molecules, proteins, or cells. Due to their ability to bind precisely to these targets, aptamers have found widespread use in bioanalytical and diagnostic applications. [...] Read more.
Aptamers are synthetic nucleic acids or peptides that exhibit high specificity and affinity for target molecules such as small molecules, proteins, or cells. Due to their ability to bind precisely to these targets, aptamers have found widespread use in bioanalytical and diagnostic applications. Rolling circle amplification (RCA) is an amplification technique that utilizes DNA or RNA templates, where circular primers are extended by polymerases to generate multiple repeated sequences, enabling highly sensitive detection of target molecules. The integration of aptamers with RCA offers significant advantages, enhancing both the specificity and sensitivity of detection while ensuring a fast and straightforward process. This synergy has already been widely applied across various fields, including fluorescence, microfluidics, visualization, and electrochemical technologies. Examples include molecular probe development, rapid detection of disease biomarkers, and environmental monitoring. Looking ahead, the aptamer-RCA platform holds great promise for advancing early disease diagnosis, precision medicine, and the development of nanosensors, driving innovation and new applications in these fields. Full article
(This article belongs to the Special Issue Functional Nanomaterials for Biosensors and Biomedicine Application)
Show Figures

Figure 1

15 pages, 3804 KB  
Review
Current Trends in In Vitro Diagnostics Using Surface-Enhanced Raman Scattering in Translational Biomedical Research
by Sitansu Sekhar Nanda, Dae-Gyeom Park and Dong Kee Yi
Biosensors 2025, 15(5), 265; https://doi.org/10.3390/bios15050265 - 22 Apr 2025
Cited by 1 | Viewed by 1320
Abstract
Immunoassays using surface-enhanced Raman scattering (SERS) are prosperous in disease diagnosis due to their excellent multiplexing ability, high sensitivity, and large dynamic range. Given the recent advancements in SERS immunoassays, this work provides a comprehensive overview, from fundamental principles to practical applications. An [...] Read more.
Immunoassays using surface-enhanced Raman scattering (SERS) are prosperous in disease diagnosis due to their excellent multiplexing ability, high sensitivity, and large dynamic range. Given the recent advancements in SERS immunoassays, this work provides a comprehensive overview, from fundamental principles to practical applications. An mRNA sensor utilizing Raman spectroscopy is a detection method that leverages the unique vibrational characteristics of mRNA molecules to identify and quantify their presence in a sample, often achieved through a technique called SERS, where specially designed nanoparticles amplify the Raman signal, allowing for the highly sensitive detection of even small amounts of mRNA. This review analyzes SERS assays used to detect RNA biomarkers, which show promise in cancer diagnostics and are being actively studied clinically. To selectively detect a specific mRNA sequence, a probe molecule (e.g., a DNA oligonucleotide complementary to the target mRNA) is attached to the SERS substrate, allowing the target mRNA to hybridize and generate a detectable Raman signal upon binding. Thus, the discussion includes proposals to enhance SERS immunoassay performance, along with future challenges and perspectives, offering concise, valid guidelines for platform selection based on application. Full article
(This article belongs to the Special Issue Surface-Enhanced Raman Scattering in Biosensing Applications)
Show Figures

Figure 1

35 pages, 5069 KB  
Review
Small-Molecule Mitotic Inhibitors as Anticancer Agents: Discovery, Classification, Mechanisms of Action, and Clinical Trials
by Yazmin Salinas, Subhash C. Chauhan and Debasish Bandyopadhyay
Int. J. Mol. Sci. 2025, 26(7), 3279; https://doi.org/10.3390/ijms26073279 - 1 Apr 2025
Cited by 1 | Viewed by 2302
Abstract
Despite decades of research, cancer continues to be a disease of great concern to millions of people around the world. It has been responsible for a total of 609,820 deaths in the U.S. alone in 2023. Over the years, many drugs have been [...] Read more.
Despite decades of research, cancer continues to be a disease of great concern to millions of people around the world. It has been responsible for a total of 609,820 deaths in the U.S. alone in 2023. Over the years, many drugs have been developed to remove or reduce the disease’s impact, all with varying mechanisms of action and side effects. One class of these drugs is small-molecule mitotic inhibitors. These drugs inhibit cancer cell mitosis or self-replication, impeding cell proliferation and eventually leading to cell death. In this paper, small-molecule mitotic inhibitors are discussed and classified through their discovery, underlying chemistry, and mechanism(s) of action. The binding/inhibition of microtubule-related proteins, DNA damage through the inhibition of Checkpoint Kinase 1 protein, and the inhibition of mitotic kinase proteins are discussed in terms of their anticancer activity to provide an overview of a variety of mitotic inhibitors currently commercially available or under investigation, including those in ongoing clinical trial. Clinical trials for anti-mitotic agents are discussed to track research progress, gauge current understanding, and identify possible future prospects. Additionally, antibody–drug conjugates that use mitotic inhibitors as cytotoxic payloads are discussed as possible ways of administering effective anticancer treatments with minimal toxicity. Full article
(This article belongs to the Collection Feature Papers in Molecular Oncology)
Show Figures

Figure 1

30 pages, 6713 KB  
Review
The Progress and Evolving Trends in Nucleic-Acid-Based Therapies
by Yunlong Liu, Chunmiao Wang, Xiuping Fu and Mengtian Ren
Biomolecules 2025, 15(3), 376; https://doi.org/10.3390/biom15030376 - 5 Mar 2025
Cited by 3 | Viewed by 2253
Abstract
Nucleic-acid-based therapies have emerged as a pivotal domain within contemporary biomedical science, marked by significant advancements in recent years. These innovative treatments primarily operate through the precise binding of DNA or RNA molecules to discrete target genes, subsequently suppressing the expression of the [...] Read more.
Nucleic-acid-based therapies have emerged as a pivotal domain within contemporary biomedical science, marked by significant advancements in recent years. These innovative treatments primarily operate through the precise binding of DNA or RNA molecules to discrete target genes, subsequently suppressing the expression of the target proteins. The spectrum of nucleic-acid-based therapies encompasses antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), microRNAs (miRNAs), and messenger RNAs (mRNAs), etc. Compared to more traditional medicinal approaches, nucleic-acid-based therapies stand out for their highly targeted action on specific genes, as well as their potential for chemical modification to improve resistance to nucleases, ensuring sustained therapeutic activity and mitigating immunogenicity concerns. Nevertheless, these molecules’ limited cellular permeability necessitates the deployment of delivery vectors to enhance their intracellular uptake and stability. As nucleic-acid-based therapies progressively display promising pharmacodynamic profiles, there has been a burgeoning interest in these treatments for applications in clinical research. This review aims to summarize the variety of nucleic acid drugs and their mechanisms, evaluate the present status in research and application, discourse on prospective trends, and potential challenges ahead. These innovative therapeutics are anticipated to assume a pivotal role in the management of a wide array of diseases. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

20 pages, 5209 KB  
Article
Core-Extended Naphthalene Diimide Dyads as Light-Up Probes with Targeted Cytotoxicity Toward Tumor Cells
by Valentina Pirota, Erica Salvati, Carla Risoldi, Francesco Manoli, Angela Rizzo, Pasquale Zizza, Annamaria Biroccio, Mauro Freccero, Ilse Manet and Filippo Doria
Biomolecules 2025, 15(2), 311; https://doi.org/10.3390/biom15020311 - 19 Feb 2025
Cited by 1 | Viewed by 885
Abstract
Within the framework of rational drug design, this study introduces a novel approach to enhance the specificity of small molecules in targeting cancer cells. This approach starts from the use of dyads merging into a single entity, a naphthalene diimide (NDI) and core-extended [...] Read more.
Within the framework of rational drug design, this study introduces a novel approach to enhance the specificity of small molecules in targeting cancer cells. This approach starts from the use of dyads merging into a single entity, a naphthalene diimide (NDI) and core-extended NDI (ceNDI), both known as G-quadruplex (G4) ligands and fluorescent probes. The strategy aims to leverage the unique diagnostic strengths of the ceNDI moiety featuring red emission by improving its binding affinity and target selectivity through inclusion in dyads built with different linkers. The newly developed NDI-ceNDI dyads are promising probes, as they exhibit fluorescence turn-on upon DNA recognition and induced circular dichroism signals dependent on DNA conformation. Both dyads have an excellent affinity for hybrid G4, with two orders of magnitude higher binding constants than those for ds DNA. Their high cytotoxicity on cancer cell lines further demonstrates their potential as therapeutic agents, highlighting the role of the linker in target selectivity. Specifically, only the dyad with the rigid triazole linker exhibits selectively induced DNA damage in transformed cells, compared to normal cells primarily targeting telomeric regions. Our findings shed light on DIPAC’s potential as a promising theranostic agent, offering insights into future developments in precision medicine. Full article
(This article belongs to the Section Biomacromolecules: Nucleic Acids)
Show Figures

Figure 1

25 pages, 4334 KB  
Article
Selective Up-Regulation of Tumor Suppressor Gene Retinoblastoma by Bisacridine Derivative Through Gene Promoter Quadruplex Structures for Cancer Treatment
by Xiaomin Lin, Jiahui Zhang, Jihai Liang, Dongsheng Ji, Zhi-Shu Huang and Ding Li
Int. J. Mol. Sci. 2025, 26(4), 1417; https://doi.org/10.3390/ijms26041417 - 7 Feb 2025
Cited by 1 | Viewed by 1011
Abstract
The retinoblastoma (RB) gene is an important tumor suppressor gene with a higher mutation frequency than other tumor suppressor genes. The mutation or inactivation of RB has been found in various cancers. The discovery of small molecules to promote RB expression is an [...] Read more.
The retinoblastoma (RB) gene is an important tumor suppressor gene with a higher mutation frequency than other tumor suppressor genes. The mutation or inactivation of RB has been found in various cancers. The discovery of small molecules to promote RB expression is an effective anti-cancer strategy. Special DNA secondary structures with G-quadruplex and i-motif on the RB promoter could act as “molecular switches” for gene transcriptional regulation and are potentially important targets for the development of new anti-cancer drugs. After extensive screening, we found that the bisacridine derivative A06 had selective binding and destabilization for both the G-quadruplex and i-motif on the RB promoter, which significantly up-regulated RB gene transcription and translation, resulting in the inhibition of tumor cell proliferation and metastasis. A06 exhibited potent anti-tumor activity on Hela cells and strongly suppressed tumor growth on the Hela xenograft mice model without significant toxicity. In comparison, A02 exhibited strong binding and destabilization to the RB promoter G-quadruplex only, which showed a much weaker effect than A06 on regulating RB expression and producing anti-tumor activity. As we know, this is the first study for up-regulating a tumor suppressor gene through destabilization of both the G-quadruplex and i-motif on the gene promoter, which provides a new strategy for innovative anti-cancer drug discovery and development. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

28 pages, 2851 KB  
Review
Targeting c-MYC G-Quadruplexes for Cancer Treatment with Small Molecules
by Prasanth Thumpati, Sachchida Nand Rai, Chandrabhan Prajapati, Kakarla Ramakrishna and Santosh Kumar Singh
Sci. Pharm. 2025, 93(1), 6; https://doi.org/10.3390/scipharm93010006 - 22 Jan 2025
Cited by 23 | Viewed by 2944
Abstract
Novel therapies are required due to the rising cancer burden. Conventional chemotherapeutics tend to be particularly toxic, but there is a promising alternative for oncogenes, such as c-MYC. Often overexpressed in many cancer types, the potential c-MYC oncogene seems essential to the development [...] Read more.
Novel therapies are required due to the rising cancer burden. Conventional chemotherapeutics tend to be particularly toxic, but there is a promising alternative for oncogenes, such as c-MYC. Often overexpressed in many cancer types, the potential c-MYC oncogene seems essential to the development of cancer. Targeting c-MYC protein directly was limited, but these DNA structures composed of guanine-rich sequences suppress c-MYC transcription. This review discusses recent advances in developing small compounds that selectively bind to and stabilize c-MYC G-quadruplexes (G4). These molecules have also shown promise for the inhibition of c-MYC signaling and inhibition of tumor growth, suggesting that G-quadruplex targeting could be a promising therapeutic for cancer. Full article
(This article belongs to the Topic Recent Advances in Anticancer Strategies, 2nd Edition)
Show Figures

Figure 1

26 pages, 9767 KB  
Review
Research Progress in Small-Molecule Detection Using Aptamer-Based SERS Techniques
by Li Zheng, Qingdan Ye, Mengmeng Wang, Fan Sun, Qiang Chen, Xiaoping Yu, Yufeng Wang and Pei Liang
Biosensors 2025, 15(1), 29; https://doi.org/10.3390/bios15010029 - 8 Jan 2025
Cited by 5 | Viewed by 2658
Abstract
Nucleic acid aptamers are single-stranded oligonucleotides that are selected through exponential enrichment (SELEX) technology from synthetic DNA/RNA libraries. These aptamers can specifically recognize and bind to target molecules, serving as specific recognition elements. Surface-enhanced Raman scattering (SERS) spectroscopy is an ultra-sensitive, non-destructive analytical [...] Read more.
Nucleic acid aptamers are single-stranded oligonucleotides that are selected through exponential enrichment (SELEX) technology from synthetic DNA/RNA libraries. These aptamers can specifically recognize and bind to target molecules, serving as specific recognition elements. Surface-enhanced Raman scattering (SERS) spectroscopy is an ultra-sensitive, non-destructive analytical technique that can rapidly acquire the “fingerprint information” of the measured molecules. It has been widely applied in qualitative and trace analysis across various fields, including food safety, environmental monitoring, and biomedical applications. Small molecules, such as toxins, antibiotics, and pesticides, have significant biological effects and are harmful to both human health and the environment. In this paper, we mainly introduced the application and the research progress of SERS detection with aptamers (aptamer-based SERS techniques) in the field of small-molecule detection, particularly in the analysis of pesticide (animal) residues, antibiotics, and toxins. And the progress and prospect of combining the two methods in detection were reviewed. Full article
(This article belongs to the Special Issue State-of-the-Art Biosensors in China (2nd Edition))
Show Figures

Figure 1

Back to TopTop