Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (936)

Search Parameters:
Keywords = MMP3 inhibitors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1010 KiB  
Review
Molecular Mechanisms of Lymph Node Metastasis in Gallbladder Cancer: Insights into the Tumor Microenvironment
by Qingyu Tang, Yichen Guan, Yubo Ma, Qi Li and Zhimin Geng
Biomedicines 2025, 13(6), 1372; https://doi.org/10.3390/biomedicines13061372 - 4 Jun 2025
Abstract
Gallbladder cancer (GBC) is a highly aggressive malignancy with a propensity for lymph node metastasis (LNM), which significantly worsens prognosis. This review explores the molecular mechanisms underlying LNM in GBC, focusing on the roles of vascular endothelial growth factors (VEGFs), chemokines, cancer-associated fibroblasts [...] Read more.
Gallbladder cancer (GBC) is a highly aggressive malignancy with a propensity for lymph node metastasis (LNM), which significantly worsens prognosis. This review explores the molecular mechanisms underlying LNM in GBC, focusing on the roles of vascular endothelial growth factors (VEGFs), chemokines, cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), hypoxia-inducible factors (HIFs), and non-coding RNAs (ncRNAs) in shaping the tumor microenvironment (TME). Unique features of GBC, such as its bile-rich microenvironment and hypoxia-driven lymphangiogenesis, are highlighted. We discuss how these factors promote lymphangiogenesis, immune evasion, and extracellular matrix (ECM) remodeling, collectively facilitating LNM. Potential therapeutic targets, including VEGF-C/D pathways, matrix metalloproteinase (MMP) inhibitors, and immune-modulating therapies, are also reviewed. Future research integrating single-cell omics and patient-derived organoid models is essential for advancing precision medicine in GBC. Full article
(This article belongs to the Section Cancer Biology and Oncology)
Show Figures

Figure 1

18 pages, 2994 KiB  
Article
Altered Expression of Cell Cycle Regulators and Factors Released by Aged Cells in Skeletal Muscle of Patients with Bone Fragility: A Pilot Study on the Potential Role of SIRT1 in Muscle Atrophy
by Angela Falvino, Roberto Bonanni, Beatrice Gasperini, Ida Cariati, Angela Chiavoghilefu, Amarildo Smakaj, Virginia Veronica Visconti, Annalisa Botta, Riccardo Iundusi, Elena Gasbarra, Virginia Tancredi and Umberto Tarantino
Biomedicines 2025, 13(6), 1350; https://doi.org/10.3390/biomedicines13061350 - 31 May 2025
Viewed by 336
Abstract
Background/Objectives: Cellular aging represents a crucial element in the progression of musculoskeletal diseases, contributing to muscle atrophy, functional decline, and alterations in bone turnover, which promote fragility fractures. However, knowledge about expression patterns of factors potentially involved in aging and senescence at [...] Read more.
Background/Objectives: Cellular aging represents a crucial element in the progression of musculoskeletal diseases, contributing to muscle atrophy, functional decline, and alterations in bone turnover, which promote fragility fractures. However, knowledge about expression patterns of factors potentially involved in aging and senescence at the tissue level remains limited. Our pilot study aimed to characterize the expression profile of cell cycle regulators, factors released by aged cells, and sirtuin 1 (SIRT1) in the muscle tissue of 26 elderly patients undergoing hip arthroplasty, including 13 with low-energy fracture and 13 with osteoarthritis (OA). Methods: The mRNA expression levels of cyclin-dependent kinase inhibitor 1A (CDKN1A), cyclin-dependent kinase inhibitor 1B (CDKN1B), cyclin-dependent kinase inhibitor 2A (CDKN2A), p53, tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interleukin-15 (IL-15), chemokine (C-C motif) ligand 2 (CCL2), chemokine (C-C motif) ligand 3 (CCL3), growth differentiation factor 15 (GDF15), and SIRT1 were evaluated in muscle tissue by qRT-PCR. In addition, immunohistochemistry and Western blotting analysis were conducted to measure the protein levels of SIRT1. Results: A marked muscle atrophy was observed in fractured patients compared to the OA group, in association with an up-regulation of cell cycle regulators and factors released by the aged cells. The expression of matrix metallopeptidase 3 (MMP3), plasminogen activator inhibitor 1 (PAI-1), and fas cell surface death receptor (FAS) was also investigated, although no significant differences were observed between the two experimental groups. Notably, SIRT1 expression was significantly higher in OA patients, confirming its role in maintaining muscle health during aging. Conclusions: Further studies will be needed to clarify the role of SIRT1 in the senescence characteristic of age-related musculoskeletal disorders, counteracting the muscle atrophy that predisposes to fragility fractures. Full article
Show Figures

Figure 1

14 pages, 2907 KiB  
Article
Lactate Is a Major Promotor of Breast Cancer Cell Aggressiveness
by Maitham A. Khajah, Sarah Khushaish and Yunus Luqmani
Cancers 2025, 17(11), 1793; https://doi.org/10.3390/cancers17111793 - 27 May 2025
Viewed by 118
Abstract
Background: Lactate dehydrogenase (LDH) activity, producing high levels of lactate from pyruvate in cancer cells, is often associated with poor patient prognosis. We previously showed enhanced LDH/lactate levels in estrogen receptor (ER) compared to ER + breast cancer cells; lactate or pyruvate [...] Read more.
Background: Lactate dehydrogenase (LDH) activity, producing high levels of lactate from pyruvate in cancer cells, is often associated with poor patient prognosis. We previously showed enhanced LDH/lactate levels in estrogen receptor (ER) compared to ER + breast cancer cells; lactate or pyruvate supplementation to ER + cells significantly enhanced their motile ability, while LDHB gene knockout (KO) or treatment with LDH inhibitors reduced the motility of the highly aggressive ER breast cancer cells. Aims: To investigate the molecular mechanisms by which lactate, LDHB KO, or treatment with LDH inhibitors can modulate the motile capabilities of breast cancer cell lines. Methods: KO experiments were performed using siRNA, and global expression was determined by proteomic profiling with Proteome Profiler Human XL Oncology arrays, Western blot, and immunofluorescence. Results: Lactate supplementation to ER + breast cancer cells enhanced expression of vimentin, N-cadherin, and snail, while reducing the expression of JAM-A, E-cadherin, and nectin-4. This expression profile was reversed with LDHB KO in ER cells. LDHB KO, or treatment with LDH inhibitors in ER cells, also reduced the expression of IL-6, IL-8, and MMP-2. The expressions of other markers such as PECAM-1, CCL20, and ENPP-2 were differentially modulated with LDH B KO in de novo ER cells (MDA-MB-231) vs. those that had ER knockout (pII). Conclusions: Our data show a novel role for lactate in modulating the EMT status in breast cancer cells and highlight the important role of lactate in breast cancer motility in part through modulating EMT status and the expression profile of cytokines, adhesion molecules, MMP-2, and nectin-4. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

12 pages, 2753 KiB  
Article
Plasma Matrix Metalloproteinases Signature as Biomarkers for Pediatric Tuberculosis Diagnosis: A Prospective Case–Control Study
by Nathella Pavan Kumar, Syed Hissar, Arul Nancy, Kannan Thiruvengadam, Velayuthum V. Banurekha, Sarath Balaji, S. Elilarasi, N. S. Gomathi, J. Ganesh, M. A. Aravind, Dhanaraj Baskaran, Soumya Swaminathan and Subash Babu
Diseases 2025, 13(6), 171; https://doi.org/10.3390/diseases13060171 - 27 May 2025
Viewed by 132
Abstract
Diagnosing tuberculosis (TB) in children presents significant challenges, necessitating the identification of reliable biomarkers for accurate diagnosis. In this study, we investigated plasma matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) as potential diagnostic markers. A prospective case–control study involved 167 children [...] Read more.
Diagnosing tuberculosis (TB) in children presents significant challenges, necessitating the identification of reliable biomarkers for accurate diagnosis. In this study, we investigated plasma matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) as potential diagnostic markers. A prospective case–control study involved 167 children classified into confirmed TB, unconfirmed TB, and unlikely TB control groups. Plasma levels of MMPs (MMP 1, 2, 3, 7, 8, 9, 12, and 13) and TIMPs (TIMP 1, 2, 3, and 4) were measured using multiplex assays. Elevated baseline levels of MMP-1, MMP-2, MMP-7, MMP-9, TIMP-1, TIMP-2, TIMP-3, and TIMP-4 were observed in active TB cases compared to unlikely TB controls. Receiver operating characteristics (ROC) analysis identified MMP-1, MMP-2, MMP-9, and TIMP-1 as potential biomarkers with over 80% sensitivity and specificity. A three-MMP signature (MMP-1, MMP-2, and MMP-9) demonstrated 100% sensitivity and specificity. The findings suggest that a baseline MMP signature could serve as an accurate biomarker for diagnosing pediatric TB, enabling early intervention and effective management. Full article
Show Figures

Figure 1

24 pages, 1036 KiB  
Review
ADAM Proteases in Cancer: Biological Roles, Therapeutic Challenges, and Emerging Opportunities
by Sakshi Arora, Andrew M. Scott and Peter W. Janes
Cancers 2025, 17(10), 1703; https://doi.org/10.3390/cancers17101703 - 19 May 2025
Viewed by 594
Abstract
ADAM (A Disintegrin and Metalloproteinase) family members are multifunctional transmembrane proteases that govern tumorigenesis and metastasis by cleaving membrane-bound substrates such as growth factors, cytokines, and cell adhesion molecules. Several ADAMs, including ADAM8, ADAM9, ADAM10, ADAM12, and ADAM17, are overexpressed in malignancies and [...] Read more.
ADAM (A Disintegrin and Metalloproteinase) family members are multifunctional transmembrane proteases that govern tumorigenesis and metastasis by cleaving membrane-bound substrates such as growth factors, cytokines, and cell adhesion molecules. Several ADAMs, including ADAM8, ADAM9, ADAM10, ADAM12, and ADAM17, are overexpressed in malignancies and are linked with a poor prognosis. These proteases contribute to tumour growth by regulating cell proliferation, cell fate, invasion, angiogenesis, and immune evasion. ADAM10 and ADAM17, especially, facilitate the shedding of critical developmental and growth factors and their receptors, as well as immuno-regulatory molecules, hence promoting tumour progression, immune escape, and resistance to therapy. Recent work has unveiled multiple regulatory pathways that modulate ADAM functions, which include trafficking, dimerization, and conformational modifications that affect substrate accessibility. These observations have rekindled efforts to produce selective ADAM inhibitors, avoiding the off-target consequences reported with early small molecule inhibitors targeting the enzyme active site, which is conserved also in matrix metalloproteinases (MMPs). Promising approaches tested in preclinical models and, in some cases, clinical settings include more selective small-molecule inhibitors, monoclonal antibodies, and antibody–drug conjugates designed to specifically target ADAMs. In this review, we will discuss the emerging roles of ADAMs in cancer biology, as well as the molecular processes that control their function. We further discuss the therapeutic potential of targeting ADAMs, with a focus on recent advances and future directions in the development of ADAM-specific cancer therapies. Full article
Show Figures

Figure 1

14 pages, 2204 KiB  
Article
Ergothioneine Improves the Quality of Boar Sperm During In Vitro Liquid Preservation by Regulating Mitochondrial Respiratory Chain
by Qing Guo, Xue Liu, Yang Li, Ye Cheng and Jingchun Li
Animals 2025, 15(10), 1450; https://doi.org/10.3390/ani15101450 - 17 May 2025
Viewed by 306
Abstract
Porcine artificial insemination primarily utilizes liquid-preserved (17 °C) semen; however, the quality of sperm diminishes progressively with extended preservation time. Ergothioneine (EGT) is a mitochondria-targeting antioxidant. Therefore, this study aimed to analyze the effect of various concentrations of EGT (0, 0.15, 0.3, and [...] Read more.
Porcine artificial insemination primarily utilizes liquid-preserved (17 °C) semen; however, the quality of sperm diminishes progressively with extended preservation time. Ergothioneine (EGT) is a mitochondria-targeting antioxidant. Therefore, this study aimed to analyze the effect of various concentrations of EGT (0, 0.15, 0.3, and 0.6 mM) on the quality of boar sperm during in vitro liquid preservation and elucidate the underlying mechanisms of the mitochondrial electron respiratory chain inhibitor ROT. The results demonstrated that the addition of 0.3 mM EGT to the modified Modena extender significantly improved sperm motility and kinetic parameters, as well as mitochondrial membrane potential (MMP), adenosine triphosphate (ATP), antioxidant capacity, and the integrity of both the sperm plasma membrane and acrosome. Additionally, ROT significantly inhibited sperm motility, kinetic parameters, MMP, ATP levels, antioxidant capacity, and sperm integrity of the plasma membrane and acrosome. However, these adverse effects could be partially mitigated by the addition of 0.3 mM EGT. In conclusion, the novel findings of this study indicated that EGT plays a crucial role in protecting sperm from oxidative damage by regulating the mitochondrial electron respiratory chain, suggesting that the use of EGT is a promising approach for enhancing the in vitro liquid preservation efficiency of boar semen at 17 °C. Full article
(This article belongs to the Section Animal Reproduction)
Show Figures

Figure 1

14 pages, 1934 KiB  
Article
Discovery and Characterisation of Novel Poly-Histidine-Poly-Glycine Peptides as Matrix Metalloproteinase Inhibitors
by He Wang, Wenchao Cai, Zhiyu Tang, Juanli Fu, Enrico König, Nanwen Zhang, Xiaole Chen, Tianbao Chen and Chris Shaw
Biomolecules 2025, 15(5), 706; https://doi.org/10.3390/biom15050706 - 12 May 2025
Viewed by 276
Abstract
For the first time, two poly-histidine-poly-glycine peptides (pHpG-H5 and pHpG-H7) were identified as promising candidates for matrix metalloproteinase inhibitors. cDNAs encoding pHpG-H5 and pHpG-H7 peptides were isolated from the Atheris squamigera cDNA library constructed using oligo(dT)-primed reverse transcription. Deduced sequences of pHpG peptides [...] Read more.
For the first time, two poly-histidine-poly-glycine peptides (pHpG-H5 and pHpG-H7) were identified as promising candidates for matrix metalloproteinase inhibitors. cDNAs encoding pHpG-H5 and pHpG-H7 peptides were isolated from the Atheris squamigera cDNA library constructed using oligo(dT)-primed reverse transcription. Deduced sequences of pHpG peptides were systematically organised and utilised as templates for synthesising chemical replicates. All synthetic pHpG peptides exhibited inhibitory effects on human matrix metalloproteinase-1 (MMP-1). Spectroscopic analyses and molecular modelling demonstrated that pHpG peptides disrupt zinc ion coordination within the central catalytic domain of MMP-1, thereby inhibiting its enzymatic activity. As a novel peptide inhibitor of matrix metalloproteinase, pHpG-H7 modulates multiple biological processes, such as cell migration and angiogenesis, suggesting significant therapeutic potential. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

15 pages, 2656 KiB  
Article
Endothelial–Mesenchymal Transition and Possible Role of Cytokines in Streptozotocin-Induced Diabetic Heart
by Hsu Lin Kang, Ákos Várkonyi, Ákos Csonka, András Szász, Tamás Várkonyi, Anikó Pósa and Krisztina Kupai
Biomedicines 2025, 13(5), 1148; https://doi.org/10.3390/biomedicines13051148 - 9 May 2025
Viewed by 379
Abstract
Background: Although endothelial mesenchymal transition (EndMT) has been characterized as a basic process in embryogenesis, EndMT is the mechanism that accelerates the development of cardiovascular diseases, including heart failure, aging, and complications of diabetes or hypertension as well. Endothelial cells lose their distinct [...] Read more.
Background: Although endothelial mesenchymal transition (EndMT) has been characterized as a basic process in embryogenesis, EndMT is the mechanism that accelerates the development of cardiovascular diseases, including heart failure, aging, and complications of diabetes or hypertension as well. Endothelial cells lose their distinct markers and take on a mesenchymal phenotype during EndMT, expressing distinct products. Methods: In this study, type 1 Diabetes mellitus (T1DM) was induced in rats with streptozotocin (STZ) by intraperitoneal injection at a 60 mg/kg dose. Diabetic rats were randomly divided into two groups, namely, control and diabetic rats, for 4 weeks. Heart, aorta, and plasma samples were collected at the end of 4 weeks. Sequentially, biochemical parameters, cytokines, reactive oxygen species (ROS), protein expression of EndMT markers (Chemokine C-X-C motif ligand-1 (CXCL-1), vimentin, citrullinated histone H3 (H3Cit), α-smooth muscle actin (α-SMA), and transforming growth factor beta (TGF-β) and versican), components of the extracellular matrix (matrix metalloproteinase 2 (MMP-2), tissue inhibitor of metalloproteinase-1(TIMP-1), and discoidin domain tyrosine kinase receptor 2 (DDR-2)) were detected by ELISA or Western blot, respectively. Results: Cytokines and ROS were increased in diabetic hearts, which induced partial EndMT. Among EndMT markers, histone citrullination, α-SMA, and CXCL-1 were increased; vimentin was decreased in DM. The endothelial marker endothelin-1 was significantly higher in the aortas of DM rats. Interestingly, TGF-β showed a significant decrease in the diabetic heart, plasma, and aorta. Additionally, MMP-2/TIMP-1 levels also decreased in DM. Conclusions: To sum up, the identification of molecules and regulatory pathways involved in EndMT provided novel therapeutic approaches for cardiac pathophysiological conditions. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

20 pages, 1436 KiB  
Article
Gene Expression of Extracellular Matrix Proteins, MMPs, and TIMPs in Post-Operative Tissues of Chronic Rhinosinusitis Patients
by Zygimantas Vaitkus, Astra Vitkauskiene, Liutauras Labanauskas, Justinas Vaitkus, Povilas Lozovskis, Saulius Vaitkus and Ieva Janulaityte
Cells 2025, 14(9), 654; https://doi.org/10.3390/cells14090654 - 29 Apr 2025
Viewed by 413
Abstract
Chronic rhinosinusitis (CRS) is a persistent inflammatory condition of the sinus mucosa characterized by significant tissue remodeling. This study aimed to evaluate the gene expression of extracellular matrix (ECM) proteins, matrix metalloproteinases (MMPs), and tissue inhibitors of metalloproteinases (TIMPs) in post-operative tissues of [...] Read more.
Chronic rhinosinusitis (CRS) is a persistent inflammatory condition of the sinus mucosa characterized by significant tissue remodeling. This study aimed to evaluate the gene expression of extracellular matrix (ECM) proteins, matrix metalloproteinases (MMPs), and tissue inhibitors of metalloproteinases (TIMPs) in post-operative tissues of CRS patients. A total of 30 patients diagnosed with CRS, divided into CRSwNP (with nasal polyps) and CRSsNP (without nasal polyps) groups, were compared with a control group of 10 individuals undergoing nasal surgeries for non-CRS conditions. Gene expression analysis was conducted using quantitative real-time PCR, and plasma cytokine levels were measured via ELISA. Results indicated significantly higher expression of collagen I, collagen III, fibronectin, vimentin, periostin, and tenascin C in CRS tissues, especially in CRSsNP patients. Conversely, elastin expression was markedly lower. MMP-2, MMP-9, TIMP-1, and TIMP-2 expression was significantly altered, with CRSsNP showing lower levels compared to CRSwNP and controls. TGF-β1 expression was elevated in both CRS groups, particularly in CRSsNP, highlighting its role in fibrosis and ECM remodeling. Additionally, increased plasma concentrations of TSLP and TGF-β1 suggest epithelial activation and immune dysregulation in CRS. These findings underscore distinct remodeling profiles in CRS endotypes, emphasizing the need for targeted therapeutic strategies based on molecular phenotyping. Understanding ECM dysregulation and inflammatory pathways in CRS may lead to improved, individualized treatment approaches. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Treating Fibrosis)
Show Figures

Figure 1

23 pages, 27683 KiB  
Article
Anticancer Potential of Cymbopogon citratus L. Essential Oil: In Vitro and In Silico Insights into Mitochondrial Dysfunction and Cytotoxicity in Cancer Cells
by Tamara Maksimović, Daliana Minda, Codruța Șoica, Alexandra Mioc, Marius Mioc, Daiana Colibășanu, Alexandra Teodora Lukinich-Gruia, Maria-Alexandra Pricop, Calin Jianu and Armand Gogulescu
Plants 2025, 14(9), 1341; https://doi.org/10.3390/plants14091341 - 29 Apr 2025
Viewed by 555
Abstract
This study aims to assess the potential anticancer activity of lemongrass essential oil (LEO) using in vitro and in silico methods. The steam hydrodistillation of the aerial parts yielded 3.2% (wt) LEO. The GC-MS analysis of the LEO revealed the presence of α-citral [...] Read more.
This study aims to assess the potential anticancer activity of lemongrass essential oil (LEO) using in vitro and in silico methods. The steam hydrodistillation of the aerial parts yielded 3.2% (wt) LEO. The GC-MS analysis of the LEO revealed the presence of α-citral (37.44%), β-citral (36.06%), linalool acetate (9.82%), and d-limonene (7.05%) as major components, accompanied by several other minor compounds. The antioxidant activity, assessed using the DPPH assay, revealed that LEO exhibits an IC50 value of 92.30 μg/mL. The cytotoxic effect of LEO, as well as LEO solubilized with Tween-20 (LEO-Tw) and PEG-400 (LEO-PEG), against a series of cancer cell lines (A375, RPMI-7951, MCF-7, and HT-29) was assessed using the Alamar Blue assay; the results revealed a high cytotoxic effect against all cell lines used in this study. Moreover, neither one of the tested concentrations of LEO, LEO-PG, or LEO-TW significantly affected the viability of healthy HaCaT cells, thus showing promising selectivity characteristics. Furthermore, LEO, LEO-PG, and LEO-TW increased ROS production and decreased the mitochondrial membrane potential (MMP) in all cancer cell lines. Moreover, LEO treatment decreased all mitochondrial respiratory rates, thus suggesting its ability to induce impairment of mitochondrial function. Molecular docking studies revealed that LEO anticancer activity, among other mechanisms, could be attributed to PDK1 and PI3Kα, where the major contributors are among the minor components of the essential oil. The highest active theoretical inhibitor against both proteins was β-caryophyllene oxide. Full article
Show Figures

Graphical abstract

16 pages, 2117 KiB  
Article
Local and Systemic Endothelial Damage in Patients with CEAP C2 Chronic Venous Insufficiency: Role of Mesoglycan
by Angelo Santoliquido, Claudia Carnuccio, Luca Santoro, Angela Di Giorgio, Alessia D'Alessandro, Francesca Romana Ponziani, Flavia Angelini, Marcello Izzo and Antonio Nesci
Int. J. Mol. Sci. 2025, 26(9), 4046; https://doi.org/10.3390/ijms26094046 - 24 Apr 2025
Viewed by 435
Abstract
Chronic venous disease (CVD) involves complex pathophysiological mechanisms, particularly an imbalance between matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), contributing to venous remodeling and varicosities. Elevated MMP-2 and MMP-9 levels are commonly found in tissues affected by venous ulcers. Inflammation plays a [...] Read more.
Chronic venous disease (CVD) involves complex pathophysiological mechanisms, particularly an imbalance between matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), contributing to venous remodeling and varicosities. Elevated MMP-2 and MMP-9 levels are commonly found in tissues affected by venous ulcers. Inflammation plays a central role in CVD, with higher levels of pro-inflammatory markers present in varicose veins compared to healthy ones. Syndecans, key components of the endothelial glycocalyx, are involved in inflammatory responses. Alterations in the glycocalyx structure are associated with vascular damage in both venous and arterial diseases. This study aimed to investigate inflammatory changes in CVD patients, focusing on glycocalyx damage and the therapeutic role of mesoglycan, a glycosaminoglycan-based drug. A prospective, monocentric study included 23 patients with C2 clinical–etiological–anatomical–pathological (CEAP) CVD. Serum samples were collected before and after mesoglycan treatment. Results showed significantly elevated levels of VCAM-1, MMP-2, MMP-9, SDC-1, IL-6, and IL-8 in blood from varicose veins versus the systemic circulation. Patients received 50 mg of mesoglycan orally every 12 h for 90 days. After treatment, a notable reduction in inflammatory markers was observed. These results support the hypothesis that mesoglycan may alleviate both local and systemic inflammation, providing insights into new therapeutic strategies for CVD management. Full article
(This article belongs to the Special Issue Cellular and Molecular Progression of Cardiovascular Diseases)
Show Figures

Figure 1

29 pages, 4804 KiB  
Article
Upregulation of MMP3 Promotes Cisplatin Resistance in Ovarian Cancer
by Mariela Rivera-Serrano, Marienid Flores-Colón, Fatima Valiyeva, Loyda M. Meléndez and Pablo E. Vivas-Mejía
Int. J. Mol. Sci. 2025, 26(9), 4012; https://doi.org/10.3390/ijms26094012 - 24 Apr 2025
Viewed by 497
Abstract
Most women with ovarian cancer (OC) develop resistance to platinum chemotherapy, posing a significant challenge to treatment. Matrix metalloproteinase 3 (MMP3) is overexpressed in High-Grade Serous Ovarian Cancer (HGSOC) and is associated with poor survival outcomes; however, its role in platinum resistance remains [...] Read more.
Most women with ovarian cancer (OC) develop resistance to platinum chemotherapy, posing a significant challenge to treatment. Matrix metalloproteinase 3 (MMP3) is overexpressed in High-Grade Serous Ovarian Cancer (HGSOC) and is associated with poor survival outcomes; however, its role in platinum resistance remains underexplored. We evaluated the baseline and cisplatin-induced MMP3 transcript and protein levels in cisplatin-resistant OC cells, revealing significantly higher MMP3 levels in cisplatin-resistant cells than in cisplatin-sensitive cells. siRNA-mediated MMP3 knockdown in cisplatin-resistant OC cells significantly reduced viability, proliferation, and invasion, and these effects were further enhanced when combined with cisplatin treatment, indicating a possible synergistic impact on reducing cancer cell aggressiveness; however, chemical MMP3 inhibition did not replicate these effects. RNA sequencing of MMP3-siRNA-treated cisplatin-resistant HGSOC cells revealed 415 differentially expressed genes (DEGs) compared to the negative control, with an additional 440 DEGs identified in MMP3-siRNA HGSOC cells treated in combination with cisplatin. These DEGs were enriched in pathways related to cell cycle regulation, apoptosis, metabolism, stress response, and extracellular matrix organization. Co-immunoprecipitation-coupled mass spectroscopy (IP-MS) identified MMP3-interacting proteins that may contribute to cell survival and chemoresistance in cisplatin-resistant OC. While MMP3-siRNA monotherapy did not reduce tumor growth in vivo, its combination with cisplatin significantly inhibited tumor growth in a cisplatin-resistant HGSOC xenograft model. These findings underscore the multifaceted role of MMP3 in cisplatin resistance, suggesting its involvement in critical cellular processes driving chemoresistance and highlighting the challenges associated with direct MMP3 targeting in therapeutic strategies. Full article
(This article belongs to the Special Issue Resistance to Therapy in Ovarian Cancers)
Show Figures

Figure 1

18 pages, 3138 KiB  
Article
Aspergillusidone G Exerts Anti-Neuroinflammatory Effects via Inhibiting MMP9 Through Integrated Bioinformatics and Experimental Analysis: Implications for Parkinson’s Disease Intervention
by Fangfang Ban, Longjian Zhou, Zhiyou Yang, Yayue Liu and Yi Zhang
Mar. Drugs 2025, 23(5), 181; https://doi.org/10.3390/md23050181 - 23 Apr 2025
Viewed by 479
Abstract
Natural products have extensive attractiveness as therapeutic agents due to their low toxicity and high efficiency. Our previous study has identified a depside-type Aspergillusidone G (Asp G) derived from Aspergillus unguis DLEP2008001, which shows excellent neuroprotective activity for 1-methyl-4-phenylpyridinium (MPP+)-induced primary [...] Read more.
Natural products have extensive attractiveness as therapeutic agents due to their low toxicity and high efficiency. Our previous study has identified a depside-type Aspergillusidone G (Asp G) derived from Aspergillus unguis DLEP2008001, which shows excellent neuroprotective activity for 1-methyl-4-phenylpyridinium (MPP+)-induced primary cortical neurons and anti-neuroinflammatory property, promising to be a potential therapeutic agent for Parkinson’s disease (PD). To further explore the anti-PD potential and mechanisms of Asp G, we employed network pharmacology, cellular experiments, and various biological techniques for analysis and validation. The analysis of network pharmacology suggested that Asp G’s anti-PD potential might be attributed to its modulation of inflammation. The data from nitric oxide (NO) detection, qRT-PCR, and Western blot confirmed that Asp G dose-dependently inhibited lipopolysaccharide (LPS)-stimulated NO production, with 40 μM Asp G suppressing 90.54% of the NO burst compared to the LPS group, and suppressed the overproduction of inflammatory-related factors in LPS-induced BV2 cells. Further protein–protein interaction analysis indicated that matrix metalloproteinase 9 (MMP9), a promising target for PD intervention, was the most likely anti-PD target of Asp G, and the results of gelatin zymography, qRT-PCR, and Western blot validated that Asp G could inhibit the active and inactive forms of MMP9 directly and indirectly, respectively. Notably, the inhibition of 67 kDa-MMP9 by Asp G is expected to compensate for the inability of TIMP-1 to inhibit this form. Furthermore, a selective inhibitor of MMP9 (20 μM SB-3CT) further potentiated the anti-inflammatory effects of Asp G (20 μM), with inhibition rate on NO increasing from 27.57% to 63.50% compared to LPS group. In summary, our study revealed that Asp G exerts anti-neuroinflammatory effects by inhibiting MMP9, which provides a valuable lead compound for the development of anti-neuroinflammatory drugs and offers insights into the intervention of PD-associated neuroinflammation. Future studies will further investigate the upstream regulatory mechanisms of Asp G-mediated MMP9 inhibition and its effects in in vivo PD models. Full article
(This article belongs to the Special Issue Chemoinformatics for Marine Drug Discovery)
Show Figures

Graphical abstract

11 pages, 235 KiB  
Article
Clinical Trial: Effects of Autologous Dendritic Cell Administration on Renal Hemodynamics and Inflammatory Biomarkers in Diabetic Kidney Disease
by Endang Drajat, Aziza Ghanie Icksan, Jonny Jonny, Aditya Pratama Lokeswara, Bhimo Aji Hernowo, Elvita Rahmi Daulay and Terawan Agus Putranto
Diseases 2025, 13(4), 122; https://doi.org/10.3390/diseases13040122 - 21 Apr 2025
Viewed by 385
Abstract
Background: Diabetic kidney disease (DKD) is a significant risk factor for End-Stage Renal Disease, with a high global incidence and mortality rate. Hyperglycemia in DKD induces inflammation, contributing to glomerular hyperfiltration, fibrosis, and impaired renal function. Current therapies, including SGLT2 inhibitors, ACE inhibitors, [...] Read more.
Background: Diabetic kidney disease (DKD) is a significant risk factor for End-Stage Renal Disease, with a high global incidence and mortality rate. Hyperglycemia in DKD induces inflammation, contributing to glomerular hyperfiltration, fibrosis, and impaired renal function. Current therapies, including SGLT2 inhibitors, ACE inhibitors, and ARBs, show limited efficacy. Autologous dendritic cells (DCs) offer potential anti-inflammatory effects by reducing cytokine activity and fibrosis biomarkers. Methods: A quasi-experimental pretest–post-test design was conducted involving 29 DKD patients. Baseline blood and urine samples were collected for MMP-9, TGF-β, and Doppler ultrasound (PSV, EDV) measurements. The subjects received subcutaneous injections of autologous DCs, and follow-up measurements were conducted four weeks after treatment. The statistical analyses included paired t-tests, Wilcoxon signed-rank tests, and linear regression. Results: After treatment, there were a significant decrease in PSV (from 47.1 ± 23.87 cm/s to 27.85 ± 20.53 cm/s, p = 0.044) and a significant increase in EDV (from 13 ± 5.32 cm/s to 15.7 ± 12.55 cm/s, p = 0.039). A strong correlation was observed between the TGF-β and MMP-9 levels (p = 0.001). Linear regression analysis showed reduced MMP-9 influence on the TGF-β after treatment, suggesting potential fibrosis reduction. Gender and UACR subgroup analyses revealed significant PSV and EDV improvements in females and the microalbuminuria group. Conclusion: Autologous dendritic cell therapy significantly improved renal hemodynamics and showed potential to reduce fibrosis by modulating TGF-β and MMP-9 levels in DKD patients, warranting further investigation. Full article
17 pages, 5787 KiB  
Article
Impact of Escherichia coli and Lipopolysaccharide on the MAPK Signaling Pathway, MMPs, TIMPs, and the uPA System in Bovine Mammary Epithelial Cells
by Yuanyuan Zhang, Yulin Ding, Junxi Liang, Kai Zhang, Hong Su, Daqing Wang, Min Zhang, Feifei Zhao, Zhiwei Sun, Zhimin Wu, Fenglong Wang, Guifang Cao and Yong Zhang
Int. J. Mol. Sci. 2025, 26(8), 3893; https://doi.org/10.3390/ijms26083893 - 20 Apr 2025
Viewed by 411
Abstract
Bovine mastitis is a condition typically induced by various pathogens, with Escherichia coli (E. coli) being a common causative agent known for its propensity to cause persistent infections. In experimental models of bovine mastitis, lipopolysaccharide (LPS), a key component of the [...] Read more.
Bovine mastitis is a condition typically induced by various pathogens, with Escherichia coli (E. coli) being a common causative agent known for its propensity to cause persistent infections. In experimental models of bovine mastitis, lipopolysaccharide (LPS), a key component of the E. coli cell wall, is frequently employed as an inducer. The extracellular matrix (ECM) is regulated by MMPs, TIMPs, and the uPA system. They collectively participate in ECM degradation and remodeling and have been identified as promising targets for mastitis treatment. However, investigations into the precise mechanisms underlying E. coli and LPS-induced mastitis, as well as the relationship between bovine mastitis and the MAPK signaling pathway, remain limited. In this study, bovine mammary epithelial cells (BMECs) were treated in vitro with 106 CFU/mL heat-inactivated E. coli, 7.5 µg/mL LPS, or a combination of both. The treatments resulted in varying degrees of activation of the MAPK signaling pathway, specifically ERK1/2, JNK, and P38. BMECs were exposed to MAPK inhibitors (the JNK inhibitor SP600125, the ERK inhibitor PD98059, and the P38 inhibitor SB203580) after treatments with heat-inactivated E. coli (106 CFU/mL), LPS (7.5 µg/mL), or a combination of the two for 6, 12, 24, and 48 h. The mRNA and protein levels of MMP-1, MMP-2, MMP-3, MMP-9, MMP-13, TIMP-1, TIMP-2, uPA, uPAR, and PAI-1 were assessed using RT-qPCR and Western blot analysis. The findings indicated that heat-inactivated E. coli and LPS stimulated the expression of MAPK mRNAs (ERK1/2, P38, and JNK) in BMECs, along with corresponding increases in the phosphorylated proteins. Furthermore, MAPK inhibitors substantially upregulated the expression of TIMP-1, TIMP-2, and PAI-1. However, no significant changes were observed in the mRNA and protein levels of MMP-1, MMP-2, MMP-3, MMP-9, MMP-13, uPA, or uPAR. In conclusion, heat-inactivated E. coli and LPS can activate the MAPK signaling pathway in BMECs. Inhibiting this signaling pathway can modulate the expression of TIMP-1, TIMP -2, and PAI-1 at both mRNA and protein levels. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

Back to TopTop