Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (101)

Search Parameters:
Keywords = delta-sigma modulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2363 KB  
Article
Low-Power CT-DS ADC for High-Sensitivity Automotive-Grade Sub-1 GHz Receiver
by Ying Li, Wenyuan Li and Qingsheng Hu
Electronics 2025, 14(18), 3606; https://doi.org/10.3390/electronics14183606 - 11 Sep 2025
Viewed by 347
Abstract
This paper presents a low-power continuous-time delta-sigma (CT-DS) analog-to-digital converter (ADC) for use in high-sensitivity automotive-grade sub-1 GHz receivers in emerging wireless sensors network applications. The proposed ADC employs a third-order Cascade of Integrators FeedForward and Feedback (CIFF-B) loop filter operating at a [...] Read more.
This paper presents a low-power continuous-time delta-sigma (CT-DS) analog-to-digital converter (ADC) for use in high-sensitivity automotive-grade sub-1 GHz receivers in emerging wireless sensors network applications. The proposed ADC employs a third-order Cascade of Integrators FeedForward and Feedback (CIFF-B) loop filter operating at a sampling frequency of 150 MHz to achieve high energy efficiency and robust noise shaping. A low-noise phase-locked loop (PLL) is integrated to provide high-precision clock signals. The loop filter combines active-RC and GmC integrators with the source degeneration technique to optimize power consumption and linearity. To minimize complexity and enhance stability, a 1-bit quantizer with isolation switches and return-to-zero (RZ) digital-to-analog converters (DACs) are used in the modulator. With a 500 kHz bandwidth, the sensitivity of the receiver is −105.5 dBm. Fabricated in a 180 nm standard CMOS process, the prototype achieves a peak signal-to-noise ratio (SNR) of 76.1 dB and a signal-to-noise and distortion ratio (SNDR) of 75.3 dB, resulting in a Schreier figure of merit (FoM) of 160.7 dB based on SNDR, while consuming only 0.8 mA from a 1.8 V supply. Full article
Show Figures

Figure 1

16 pages, 2030 KB  
Article
Study on Comb-Drive MEMS Acceleration Sensor Used for Medical Purposes: Monitoring of Balance Disorders
by Michał Szermer and Jacek Nazdrowicz
Electronics 2025, 14(15), 3033; https://doi.org/10.3390/electronics14153033 - 30 Jul 2025
Viewed by 835
Abstract
This article presents a comprehensive modeling and simulation framework for a capacitive MEMS accelerometer integrated with a sigma-delta analog-to-digital converter (ADC), with a focus on applications in wearable health and motion monitoring devices. The accelerometer used in the system is connected to a [...] Read more.
This article presents a comprehensive modeling and simulation framework for a capacitive MEMS accelerometer integrated with a sigma-delta analog-to-digital converter (ADC), with a focus on applications in wearable health and motion monitoring devices. The accelerometer used in the system is connected to a smartphone equipped with dedicated software and will be used to assess the risk of falling, which is crucial for patients with balance disorders. The authors designed the accelerometer with special attention paid to the specification required in a system, where the acceleration is ±2 g and the frequency is 100 Hz. They investigated the sensor’s behavior in the DC, AC, and time domains, capturing both the mechanical response of the proof mass and the resulting changes in output capacitance due to external acceleration. A key component of the simulation is the implementation of a second-order sigma-delta modulator designed to digitize the small capacitance variations generated by the sensor. The Simulink model includes the complete signal path from analog input to quantization, filtering, decimation, and digital-to-analog reconstruction. By combining MEMS+ modeling with MATLAB-based system-level simulations, the workflow offers a fast and flexible alternative to traditional finite element methods and facilitates early-stage design optimization for MEMS sensor systems intended for real-world deployment. Full article
(This article belongs to the Special Issue Wearable Sensors for Human Position, Attitude and Motion Tracking)
Show Figures

Figure 1

23 pages, 2098 KB  
Article
Innovative Control Techniques for Enhancing Signal Quality in Power Applications: Mitigating Electromagnetic Interference
by N. Manoj Kumar, Yousef Farhaoui, R. Vimala, M. Anandan, M. Aiswarya and A. Radhika
Algorithms 2025, 18(5), 288; https://doi.org/10.3390/a18050288 - 18 May 2025
Viewed by 604
Abstract
Electromagnetic interference (EMI) remains a difficult task in the design and operation of contemporary power electronic systems, especially in those applications where signal quality has a direct impact on the overall performance and efficiency. Conventional control schemes that have evolved to counteract the [...] Read more.
Electromagnetic interference (EMI) remains a difficult task in the design and operation of contemporary power electronic systems, especially in those applications where signal quality has a direct impact on the overall performance and efficiency. Conventional control schemes that have evolved to counteract the effects of EMI generally tend to have greater design complexity, greater error rates, poor control accuracy, and large amounts of harmonic distortion. In order to overcome these constraints, this paper introduces an intelligent and advanced control approach founded on the signal randomization principle. The suggested approach controls the switching activity of a DC–DC converter by dynamically tuned parameters like duty cycle, switching frequency, and signal modulation. A boost interleaved topology is utilized to maximize the current distribution and minimize ripple, and an innovative space vector-dithered sigma delta modulation (SV-DiSDM) scheme is proposed for cancelling harmonics via a digitalized control action. The used modulation scheme can effectively distribute the harmonic energy across a larger range of frequencies to largely eliminate EMI and boost the stability of the system. High-performance analysis is conducted by employing significant measures like total harmonic distortion (THD), switching frequency deviation, switching loss, and distortion product. Verification against conventional control models confirms the increased efficiency, less EMI, and greater signal integrity of the proposed method, and hence, it can be a viable alternative for EMI-aware power electronics applications. Full article
(This article belongs to the Special Issue Emerging Trends in Distributed AI for Smart Environments)
Show Figures

Figure 1

22 pages, 38738 KB  
Article
A 0.6 V 68.2 dB 0.42 µW SAR-ΣΔ ADC for ASIC Chip in 0.18 µm CMOS
by Xinyu Li, Kentaro Yoshioka, Zhongfeng Wang, Jun Lin and Congyi Zhu
Electronics 2025, 14(10), 2030; https://doi.org/10.3390/electronics14102030 - 16 May 2025
Viewed by 645
Abstract
This paper presents a successive approximation register (SAR) and incremental sigma-delta modulator (ISDM) hybrid analog-to-digital converter (ADC) that operated at a minimum voltage supply of 0.575 V. A thorough analysis of the non-linearities caused by PVT variations and common-mode voltage (VCM) shifts in [...] Read more.
This paper presents a successive approximation register (SAR) and incremental sigma-delta modulator (ISDM) hybrid analog-to-digital converter (ADC) that operated at a minimum voltage supply of 0.575 V. A thorough analysis of the non-linearities caused by PVT variations and common-mode voltage (VCM) shifts in the ISDM stage is presented. The ADC employs an improved high-precision double-bootstrapped switch, and the synchronous clock is also double-bootstrapped to work under the low supply voltage. A modified merged capacitor switching (MCS) approach is presented to maintain a stable VCM at the differential input. The chip was fabricated using a 0.18 µm CMOS process, with a core area of 0.21 mm2. It consumed only 0.42 µW at a 0.6 V supply and a sampling rate of 10 kS/s, which achieved an effective number of bits (ENOB) of 11.03. The resulting figure of merit (FOMW) was 20.05 fJ/conversion-step, which is the lowest reported for ADCs of this architecture in a 0.18 µm process. Full article
(This article belongs to the Special Issue Analog/Mixed Signal Integrated Circuit Design)
Show Figures

Figure 1

22 pages, 5677 KB  
Review
A Review on Micro-Watts All-Digital Frequency Synthesizers
by Venkadasamy Navaneethan, Boon Chiat Terence Teo, Annamalai Arasu Muthukumaraswamy, Xian Yang Lim and Liter Siek
Micromachines 2025, 16(3), 333; https://doi.org/10.3390/mi16030333 - 13 Mar 2025
Viewed by 3001
Abstract
This paper reviews recent developments in highly integrated all-digital frequency synthesizers suitable to deploy in low-power internet-of-things (IoT) applications. This review sets low power consumption as a key criterion for exploring the all-digital frequency synthesizer implemented in CMOS fabrication technology. The alignment with [...] Read more.
This paper reviews recent developments in highly integrated all-digital frequency synthesizers suitable to deploy in low-power internet-of-things (IoT) applications. This review sets low power consumption as a key criterion for exploring the all-digital frequency synthesizer implemented in CMOS fabrication technology. The alignment with mainstream CMOS technology offers high-density, comprehensive, robust signal processing capability, making it very suitable for all-digital phase-locked loops to harvest that capacity, and it becomes inevitable. This review includes various divider-less low-power frequency synthesizers, including all-digital phase-locked loops (ADPLL), all-digital frequency-locked loops (ADFLL), and hybrid PLLs. This paper also discusses the latest architectural developments for ADPLLs to lead to low-power implementation, such as DTC-assisted TDC, embedded TDC, and various levels of hybridization in ADPLLs. Full article
(This article belongs to the Special Issue RF and Power Electronic Devices and Applications)
Show Figures

Figure 1

35 pages, 13847 KB  
Article
Sigma Delta Modulation Controller and Associated Cybersecurity Issues with Battery Energy Storage Integrated with PV-Based Microgrid
by Syeda Afra Saiara and Mohd. Hasan Ali
Energies 2024, 17(24), 6463; https://doi.org/10.3390/en17246463 - 22 Dec 2024
Viewed by 1183
Abstract
Battery energy storage systems (BESSs) play a crucial role in integrating renewable energy sources into microgrids. However, robust BESS controllers are needed to carry out this function properly. Existing controllers suffer from overshoots and slow convergence issues. Moreover, as electrical grid networks become [...] Read more.
Battery energy storage systems (BESSs) play a crucial role in integrating renewable energy sources into microgrids. However, robust BESS controllers are needed to carry out this function properly. Existing controllers suffer from overshoots and slow convergence issues. Moreover, as electrical grid networks become increasingly connected, the risk of cyberattacks grows, and traditional physics-based anomaly detection methods face challenges such as reliance on predefined models, high computational demands, and limited scalability for complex, large-scale data. To address the limitations of the existing approaches, this paper first proposes a novel sigma-delta modulation (SDM) controller for BESSs in solar photovoltaic (PV)-connected microgrids. The performance of SDM has been compared with those of the proportional–integral (PI) controller and fuzzy logic controller (FLC). Also, this paper proposes an improved ensemble-based method to detect the false data injection (FDI) and denial-of-service (DoS) attacks on the BESS controller. The performance of the proposed detection method has been compared with that of the traditional ensemble-based method. Four PV-connected microgrid systems, namely the solar DC microgrid, grid-connected solar AC microgrid, hybrid AC microgrid with two BESSs, and hybrid AC microgrid with a single BESS, have been considered to show the effectiveness of the proposed control and detection methods. The MATLAB/Simulink-based results show the effectiveness and better performance of the proposed controller and detection methods. Numerical results demonstrate the improved performance of the proposed SDM controller, with a 35% reduction in AC bus voltage error compared to the conventional PI controller and FLC. Similarly, the proposed SAMME AdaBoost detection method achieves superior accuracy with an F1 score of 95%, outperforming the existing ensemble approaches. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Graphical abstract

9 pages, 2397 KB  
Communication
A Second-Order True-VCO ADC Employing a Digital Pseudo-DCO Suitable for Sensor Arrays
by Dante Loi, Victor Medina and Luis Hernandez Corporales
Sensors 2024, 24(24), 8029; https://doi.org/10.3390/s24248029 - 16 Dec 2024
Viewed by 4685
Abstract
This paper explores the implementation of a VCO-based ADC, achieving an ENOB of 12 bits with 1 MHz of a sampling rate in the audio bandwidth. The solution exploits the scalability and PVT invariance of a novel digital-to-frequency converter to reduce the size [...] Read more.
This paper explores the implementation of a VCO-based ADC, achieving an ENOB of 12 bits with 1 MHz of a sampling rate in the audio bandwidth. The solution exploits the scalability and PVT invariance of a novel digital-to-frequency converter to reduce the size and consumed power. The architecture has been validated in a 130 nm CMOS technology node displaying a power consumption of 105.57 μW and a silicon footprint of 0.034 mm2 in a pseudo-differential configuration. Performance can be dynamically adjusted to trade off power consumption by resolution without changing the sampling rate. In addition, the proposed architecture benefits from multiple instantiations in the same SoC, making it particularly suitable for sensor array applications, such as biomedical sensors and spatial audio arrays. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

13 pages, 4990 KB  
Article
A Sinusoidal Current Generator IC with 0.04% THD for Bio-Impedance Spectroscopy Using a Digital ΔΣ Modulator and FIR Filter
by Soohyun Yun and Joonsung Bae
Electronics 2024, 13(22), 4450; https://doi.org/10.3390/electronics13224450 - 13 Nov 2024
Viewed by 1516
Abstract
This paper presents a highly efficient, low-power, compact mixed-signal sinusoidal current generator (CG) integrated circuit (IC) designed for bioelectrical impedance spectroscopy (BIS) with low total harmonic distortion (THD). The proposed system employs a 9-bit sine wave lookup table (LUT) which is simplified to [...] Read more.
This paper presents a highly efficient, low-power, compact mixed-signal sinusoidal current generator (CG) integrated circuit (IC) designed for bioelectrical impedance spectroscopy (BIS) with low total harmonic distortion (THD). The proposed system employs a 9-bit sine wave lookup table (LUT) which is simplified to a 4-bit data stream through a third-order digital delta–sigma modulator (ΔΣM). Unlike conventional analog low-pass filters (LPF), which statically limit bandwidth, the finite impulse response (FIR) filter attenuates high-frequency noise according to the operating frequency, allowing the frequency range of the sinusoidal signal to vary. Additionally, the output of the FIR filter is applied to a 6-bit capacitive digital-to-analog converter (CDAC) with data-weighted averaging (DWA), enabling dynamic capacitor matching and seamless interfacing. The sinusoidal CG IC, fabricated using a 65 nm CMOS process, produces a 5 μA amplitude and operates over a wide frequency range of 0.6 to 20 kHz. This highly synthesizable CG achieves a THD of 0.04%, consumes 19.2 μW of power, and occupies an area of 0.0798 mm2. These attributes make the CG IC highly suitable for compact, low-power bio-impedance applications. Full article
(This article belongs to the Special Issue CMOS Integrated Circuits Design)
Show Figures

Figure 1

12 pages, 2049 KB  
Article
An 88 dB SNDR 100 kHz BW Sturdy MASH Delta-Sigma Modulator Using Self-Cascoded Floating Inverter Amplifiers
by Xirui Hao, Yidong Yuan, Jie Pan, Zhaonan Lu, Shuang Song, Xiaopeng Yu and Menglian Zhao
Electronics 2024, 13(19), 3865; https://doi.org/10.3390/electronics13193865 - 29 Sep 2024
Cited by 1 | Viewed by 1720
Abstract
Battery-powered Internet-of-Things applications require high-resolution, energy-efficient analog-to-digital converters (ADCs). There are still limited works on sub-MHz-bandwidth ADC designs. This paper presents a sturdy multi-stage shaping (SMASH) discrete-time (DT) delta-sigma modulator (DSM) structure using a self-cascoded floating-inverter-based dynamic amplifier (FIA). The proposed structure removes [...] Read more.
Battery-powered Internet-of-Things applications require high-resolution, energy-efficient analog-to-digital converters (ADCs). There are still limited works on sub-MHz-bandwidth ADC designs. This paper presents a sturdy multi-stage shaping (SMASH) discrete-time (DT) delta-sigma modulator (DSM) structure using a self-cascoded floating-inverter-based dynamic amplifier (FIA). The proposed structure removes the explicit quantization error extraction of the first loop and all the feedback DACs in the cascaded loop, decreasing the design complexity of the circuit. This enables the proposed DT DSM to operate at a higher speed, which is suitable for achieving high-order noise at a low oversampling ratio (OSR). The proposed self-cascoded FIA is more power-efficient and can acquire more than 45 dB DC gain under a 1.2 V supply. The DT DSM implemented in a piece of 55 nm CMOS technology measures an 88.0 dB peak signal-to-noise-and-distortion ratio (SNDR) in a 100 kHz bandwidth (BW) and an 85.3 dB dynamic range (DR), consuming 249.1 μW from a 1.2 V supply at 10 MS/s. The obtained 174.0 dB SNDR-based Schreier figure-of-merit (FoMs) is competitive within state-of-art high-resolution (SNDR > 85 dB) and general-purpose (sub-MHz-bandwidth) ΔΣ ADCs. Full article
(This article belongs to the Special Issue Analog and Mixed Circuit: Design and Applications)
Show Figures

Figure 1

12 pages, 5383 KB  
Article
A Fully Synthesizable Fractional-N Digital Phase-Locked Loop with a Calibrated Dual-Referenced Interpolating Time-to-Digital Converter to Compensate for Process–Voltage–Temperature Variations
by Seojin Kim, Youngsik Kim, Hyunwoo Son and Shinwoong Kim
Electronics 2024, 13(18), 3598; https://doi.org/10.3390/electronics13183598 - 10 Sep 2024
Viewed by 2404
Abstract
This paper presents advancements in the performance of digital phase-locked loop (DPLL)s, with a special focus on addressing the issue of required gain calibration in the time-to-digital converter (TDC) within phase-domain DPLL structures. Phase-domain DPLLs are preferred for their simplicity in implementation and [...] Read more.
This paper presents advancements in the performance of digital phase-locked loop (DPLL)s, with a special focus on addressing the issue of required gain calibration in the time-to-digital converter (TDC) within phase-domain DPLL structures. Phase-domain DPLLs are preferred for their simplicity in implementation and for eliminating the delta–sigma modulator (DSM) noise inherent in conventional fractional-N designs. However, this advantage is countered by the critical need to calibrate the gain of the TDC. The previously proposed dual-interpolated TDC(DI-TDC) was proposed as a solution to this problem, but strong spurs were still generated due to the TDC resolution, which easily became non-uniform due to PVT variation, degrading performance. To overcome these problems, this work proposes a DPLL with a new calibration system that ensures consistent TDC resolution matching the period of the digitally controlled oscillator (DCO) and operating in both the foreground and background, thereby maintaining consistent performance despite PVT variations. This study proposes a DPLL using a calibrated dual-interpolated TDC that effectively compensates for PVT variations and improves the stability and performance of the DPLL. The PLL was fabricated in a 28-nm CMOS process with an active area of only 0.019 mm2, achieving an integrated phase noise (IPN) performance of −17.5 dBc, integrated from 10 kHz to 10 MHz at a PLL output of 570 MHz and −20.5 dBc at 1.1 GHz. This PLL operates within an output frequency range of 475 MHz to 1.1 GHz. Under typical operating conditions, it consumes only 930 µW with a 1.0 V supply. Full article
(This article belongs to the Special Issue Advances in Low Powered Circuits Design and Their Application)
Show Figures

Figure 1

16 pages, 15653 KB  
Article
A Low-Power Continuous-Time Delta-Sigma Analogue-to-Digital Converter for the Neural Network Architecture of Battery State Estimation
by Muh-Tian Shiue, Yang-Chieh Ou and Guan-Shum Li
Electronics 2024, 13(17), 3459; https://doi.org/10.3390/electronics13173459 - 30 Aug 2024
Viewed by 1541
Abstract
Electric vehicle systems and smart grid systems are setting stringent development targets to respond to global trends in energy saving, carbon reduction, and sustainable environmental development. In the field of batteries, there has been extensive discussion on the estimation of battery charge. In [...] Read more.
Electric vehicle systems and smart grid systems are setting stringent development targets to respond to global trends in energy saving, carbon reduction, and sustainable environmental development. In the field of batteries, there has been extensive discussion on the estimation of battery charge. In battery management systems (BMSs) and charging/discharging systems, the accuracy of the measurement of battery physical parameters is critical, as it directly affects the system, alongside the algorithm’s estimation and error correction. Therefore, this paper proposes incorporating a low-power continuous-time delta-sigma analogue-to-digital converter into a battery measurement system to support deep learning algorithms for battery state estimation. This approach aims to maintain the accuracy of battery state estimation while reducing latency and overall system power consumption. Implemented using the UMC 0.18 μm CMOS 1P6M process, the proposed design achieves a measured signal-to-noise distortion ratio (SNDR) of 78.42 dB, an effective number of bits (ENOB) of 12.73 bits, and a power consumption of approximately 15.97 μW. The chip layout area is 0.67 mm × 0.56 mm. By applying delta-sigma modulators to energy management systems, this solution aims to increase the total number of battery monitoring units while reducing overall power consumption and construction costs. Full article
(This article belongs to the Special Issue Analog and Mixed-Signal Circuit Designs and Their Applications)
Show Figures

Figure 1

16 pages, 7747 KB  
Article
A ±0.15 °C (3σ) Inaccuracy CMOS Smart Temperature Sensor from −40 °C to 125 °C with a 10 ms Conversion Time-Leveraging an Adaptative Decimation Filter in 65 nm CMOS Technology
by Fábio Passos, Gabriel Santos and Marcelino Bicho dos Santos
Electronics 2024, 13(14), 2823; https://doi.org/10.3390/electronics13142823 - 18 Jul 2024
Viewed by 1888
Abstract
This paper presents the design and implementation of a highly accurate smart temperature sensor designed in 65 nm CMOS technology. The sensor exhibits a ±0.15 °C (3σ) error across a wide temperature range from −40 °C to 125 °C, catering to diverse application [...] Read more.
This paper presents the design and implementation of a highly accurate smart temperature sensor designed in 65 nm CMOS technology. The sensor exhibits a ±0.15 °C (3σ) error across a wide temperature range from −40 °C to 125 °C, catering to diverse application needs. Leveraging advanced CMOS technology, the sensor employs an adaptive decimation filter that allows us to control the conversion time, ensuring that the accuracy of the conversion is maintained even in challenging conditions. The proposed sensor architecture integrates advanced techniques for temperature sensing for improved accuracy and reliability. Through meticulous circuit design and the usage of dynamic element matching, chopping, and calibration/trimming, the sensor demonstrates exceptional performance characteristics, making it suitable for various industrial, automotive, and consumer electronics applications demanding high precision temperature monitoring. Full article
(This article belongs to the Section Circuit and Signal Processing)
Show Figures

Figure 1

14 pages, 6262 KB  
Article
A 0.055 mm2 Total Area Triple-Loop Wideband Fractional-N All-Digital Phase-Locked Loop Architecture for 1.9–6.1 GHz Frequency Tuning
by Byeongseok Kang, Youngsik Kim, Hyunwoo Son and Shinwoong Kim
Electronics 2024, 13(13), 2638; https://doi.org/10.3390/electronics13132638 - 5 Jul 2024
Cited by 1 | Viewed by 1546
Abstract
This paper presents a wideband fractional-N all-digital phase-locked loop (WBPLL) architecture featuring a triple-loop configuration capable of tuning frequencies from 1.9 to 6.1 GHz. The first and second loops, automatic frequency control (AFC) and counter-assisted phase-locked loop (CAPLL), respectively, perform coarse locking, while [...] Read more.
This paper presents a wideband fractional-N all-digital phase-locked loop (WBPLL) architecture featuring a triple-loop configuration capable of tuning frequencies from 1.9 to 6.1 GHz. The first and second loops, automatic frequency control (AFC) and counter-assisted phase-locked loop (CAPLL), respectively, perform coarse locking, while the third loop employs a digital sub-sampling architecture without a frequency divider for fine locking. In this third loop, fractional-N frequency synthesis is achieved using a delta-sigma modulator (DSM) and digital-to-time converter (DTC). To minimize area, digital modules such as counters, comparators, and differentiators used in the AFC and CAPLL loops are reused. Furthermore, a moving average filter (MAF) is employed to reduce the frequency overlap ratio of the digitally controlled oscillator (DCO) between the second and third loops, ensuring stable loop switching. The total power consumption of the WBPLL varies with the frequency range, consuming between 8.8 mW at the WBPLL minimum output frequency of 1.9 GHz and 12.8 mW at the WBPLL maximum output frequency of 6.1 GHz, all at a 1.0 V supply. Implemented in a 28 nm CMOS process, the WBPLL occupies an area of 0.055 mm2. Full article
(This article belongs to the Special Issue CMOS Integrated Circuits Design)
Show Figures

Figure 1

17 pages, 17487 KB  
Article
Design of a Sigma-Delta Analog-to-Digital Converter Cascade Decimation Filter
by Mao Ye, Zitong Liu and Yiqiang Zhao
Electronics 2024, 13(11), 2090; https://doi.org/10.3390/electronics13112090 - 27 May 2024
Cited by 3 | Viewed by 3386
Abstract
As the current mainstream high-precision ADC architecture, sigma-delta ADC is extensively employed in a wide range of domains and applications. This paper presents the design of a highly efficient cascaded digital decimation filter for sigma-delta ADCs, emphasizing the suppression of high folding band [...] Read more.
As the current mainstream high-precision ADC architecture, sigma-delta ADC is extensively employed in a wide range of domains and applications. This paper presents the design of a highly efficient cascaded digital decimation filter for sigma-delta ADCs, emphasizing the suppression of high folding band noise and the achievement of a flat passband. Additionally, this study addresses the critical balance between filter performance and power consumption. An inserting zero (IZ) filter is incorporated into a cascaded integrator comb (CIC) filter to enhance aliasing suppression. The IZ filter and compensation filter are optimized using the particle swarm optimization (PSO) algorithm to achieve greater noise attenuation and smaller passband ripple. The designed filter achieves a noise attenuation of 93.4 dB in the folding band and exhibits an overall passband ripple of 0.0477 dB within a bandwidth of 20 KHz. To decrease the power consumption in the filter design, polyphase decomposition has been applied. The filter structure is implemented on an FPGA, processing a 5-bit stream from a 64-times oversampling rate and third-order sigma-delta modulator. The signal-to-noise ratio (SNR) of the output signal reaches 91.7 dB. For ASIC design, the filter utilizes 180 nm CMOS technology with a power consumption of 0.217 mW and occupies a layout area of 0.72 mm2. The post-layout simulation result indicates that the SNR remains at 91.7 dB. Full article
Show Figures

Figure 1

14 pages, 7286 KB  
Article
An Energy-Efficient 12-Bit VCO-Based Incremental Zoom ADC with Fast Phase-Alignment Scheme for Multi-Channel Biomedical Applications
by Joongyu Kim and Sung-Yun Park
Electronics 2024, 13(9), 1754; https://doi.org/10.3390/electronics13091754 - 2 May 2024
Cited by 2 | Viewed by 4597
Abstract
This paper presents a low-power, energy-efficient, 12-bit incremental zoom analog-to-digital converter (ADC) for multi-channel bio-signal acquisitions. The ADC consists of a 7-stage ring voltage-controlled oscillator (VCO)-based incremental ΔΣ modulator (I-ΔΣM) and an 8-bit successive approximation register (SAR) ADC. The proposed VCO-based I-ΔΣM can [...] Read more.
This paper presents a low-power, energy-efficient, 12-bit incremental zoom analog-to-digital converter (ADC) for multi-channel bio-signal acquisitions. The ADC consists of a 7-stage ring voltage-controlled oscillator (VCO)-based incremental ΔΣ modulator (I-ΔΣM) and an 8-bit successive approximation register (SAR) ADC. The proposed VCO-based I-ΔΣM can provide fast phase-alignment of the ring-VCO to reduce the interval settling time; thereby, the I-ΔΣM can accommodate time-division-multiplexed input signals without phase leakage between consecutive measurements. The SAR ADC also adopts splitting unit capacitors that can support VCM-free tri-level switching and prevent invalid states from the phase frequency detector with minimal logic gates and switches. The proposed ADC has been fabricated in a standard 180 nm standard 1P6M CMOS process, exhibiting a 67-dB peak signal-to-noise ratio, a 74-dB dynamic range, and a Walden figure of merit of 19.12 fJ/c-s, while consuming a power of 3.51 μW with a sampling rate of 100 kS/s. Full article
Show Figures

Figure 1

Back to TopTop