Topic Editors

Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Beijing 100044, China
Dr. Xiaoling Ma
Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Beijing 100044, China
Prof. Dr. Qiaoshi An
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
Beijing Key Laboratory for Sensors, Beijing Information Science & Technology University, Beijing, China
Prof. Dr. Jian Wang
College of Physics and Electronic Engineering, Taishan University, Taian, China
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hum Kowloon, Hong Kong, China
School of Physics and Electronics, Shandong Normal University, Jinan, China
Dr. Jinhua Gao
College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China

Organic and Perovskite Optoelectronic Materials and Devices

Abstract submission deadline
closed (31 March 2024)
Manuscript submission deadline
closed (30 June 2024)
Viewed by
24026

Topic Information

Dear Colleagues,

Organic and perovskite optoelectronics is an interdisciplinary research field that involves chemistry, physics and materials science. As a new-generation photoelectronic technology, organic and perovskite optoelectronic devices, such as organic photovoltaics (OPVs), perovskite solar cells (PSCs), organic photodetector (OPDs), perovskite photodetectors (PPDs), etc., possess the merits of low cost, environmental friendliness, flexibility and large-area preparation. Due to the benefits associated with material synthesis and device engineering, great progress has been achieved for organic and perovskite optoelectronic devices. It should be noted that there are still many scientific issues that must be investigated and solved in the field of organic and perovskite electronics, such as exciton/charge carrier dynamic processes in solar cells, trapped charge distribution in photodetectors, etc. At present, more in-depth investigation of organic and perovskite optoelectronic devices to improve their performance is still a major goal in this field.

This topic focuses on the latest advancements in the field of organic and perovskite electronic devices, including fundamental investigations into working mechanisms and exciton/charge carrier dynamic processes, as well as industrialization-oriented research, etc.

We invite papers on recent developments of organic and perovskite electronic devices regarding material innovation and device engineering, as well as reviews that are relevant to the future development direction and application prospects of organic and perovskite electronic devices.

Prof. Dr. Fujun Zhang
Dr. Xiaoling Ma
Prof. Dr. Qiaoshi An
Prof. Dr. Junming Li
Prof. Dr. Jian Wang
Dr. Miao Zhang
Dr. Qianqian Sun
Dr. Jinhua Gao
Topic Editors

Keywords

  • organic photovoltaics
  • perovskite photovoltaics
  • organic–inorganic hybrids perovskite solar cells
  • organic photodetectors
  • perovskite photodetectors
  • organic–inorganic hybrid photodetectors

Participating Journals

Journal Name Impact Factor CiteScore Launched Year First Decision (median) APC
Batteries
batteries
4.6 4.0 2015 22 Days CHF 2700
Energies
energies
3.0 6.2 2008 17.5 Days CHF 2600
Materials
materials
3.1 5.8 2008 15.5 Days CHF 2600
Nanomaterials
nanomaterials
4.4 8.5 2010 13.8 Days CHF 2900
Polymers
polymers
4.7 8.0 2009 14.5 Days CHF 2700

Preprints.org is a multidiscipline platform providing preprint service that is dedicated to sharing your research from the start and empowering your research journey.

MDPI Topics is cooperating with Preprints.org and has built a direct connection between MDPI journals and Preprints.org. Authors are encouraged to enjoy the benefits by posting a preprint at Preprints.org prior to publication:

  1. Immediately share your ideas ahead of publication and establish your research priority;
  2. Protect your idea from being stolen with this time-stamped preprint article;
  3. Enhance the exposure and impact of your research;
  4. Receive feedback from your peers in advance;
  5. Have it indexed in Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.

Published Papers (11 papers)

Order results
Result details
Journals
Select all
Export citation of selected articles as:
12 pages, 3259 KiB  
Article
Highly Efficient Layer-by-Layer Organic Photovoltaics Enabled by Additive Strategy
by Yuheng Ni, Hongyue Tian, Ruifeng Gong, Hang Zhou, Wenjing Xu, Jian Wang, Xiaoling Ma and Fujun Zhang
Energies 2024, 17(16), 4022; https://doi.org/10.3390/en17164022 - 14 Aug 2024
Viewed by 878
Abstract
In this work, layer-by-layer organic photovoltaics (LbL OPVs) were prepared by sequentially spin-coating PM1 and L8-BO solutions. The solvent additive 1,8-diiodooctane (DIO), which has a high boiling point, and solid additive l,3,5-trichlorobenzene (TCB), which has a high volatile, were deliberately selected to incorporate [...] Read more.
In this work, layer-by-layer organic photovoltaics (LbL OPVs) were prepared by sequentially spin-coating PM1 and L8-BO solutions. The solvent additive 1,8-diiodooctane (DIO), which has a high boiling point, and solid additive l,3,5-trichlorobenzene (TCB), which has a high volatile, were deliberately selected to incorporate with the L8-BO solutions. The power conversion efficiency (PCE) of LbL OPVs was considerably enhanced from 17.43% to 18.50% by employing TCB as the additive, profiting by the concurrently increased short-circuit current density (JSC) of 26.74 mA cm−2 and a fill factor (FF) of 76.88%. The increased JSCs of LbL OPVs with TCB as additive were ascribed to the tilted-up absorption edge in the long wavelength range and the external quantum-efficiency spectral difference between LbL OPVs with and without TCB as an additive. The molecular arrangement of L8-BO and the PM1 domain was enhanced with TCB as an additive, which was most likely responsible for the increased charge mobilities in the layered films processed with additives. It was indicated that the dynamic film-forming process of the acceptor layers plays a vital role in achieving efficient LbL OPVs by employing additive strategy. Over 6% PCE improvement of the LbL OPVs with PM1/L8-BO as the active layers can be achieved by employing TCB as additive. Full article
Show Figures

Figure 1

11 pages, 2757 KiB  
Article
Evaluating Fluorinated-Aniline Units with Functionalized Spiro[Fluorene-9,9′-Xanthene] as Hole-Transporting Materials in Perovskite Solar Cells and Light-Emitting Diodes
by Kuo Liu, Liang Sun, Qing-Lin Liu, Bao-Yi Ren, Run-Da Guo, Lei Wang, Ya-Guang Sun and You-Sheng Wang
Nanomaterials 2024, 14(12), 1044; https://doi.org/10.3390/nano14121044 - 18 Jun 2024
Viewed by 1013
Abstract
In the field of perovskite optoelectronics, developing hole-transporting materials (HTMs) on the spiro[fluorene-9,9′-xanthene] (SFX) platform is one of the current research focuses. The SFX inherits the merits of spirobifluorene in terms of the configuration and property, but it is more easily derivatized and [...] Read more.
In the field of perovskite optoelectronics, developing hole-transporting materials (HTMs) on the spiro[fluorene-9,9′-xanthene] (SFX) platform is one of the current research focuses. The SFX inherits the merits of spirobifluorene in terms of the configuration and property, but it is more easily derivatized and regulated by virtue of its binary structure. In this work, we design and synthesize four isomeric SFX-based HTMs, namely m-SFX-mF, p-SFX-mF, m-SFX-oF, and p-SFX-oF, through varying the positions of fluorination on the peripheral aniline units and their substitutions on the SFX core, and the optoelectronic performance of the resulting HTMs is evaluated in both perovskite solar cells (PSCs) and light-emitting diodes (PeLEDs) by the vacuum thermal evaporating hole-transporting layers (HTLs). The HTM p-SFX-oF exhibits an improved power conversion efficiency of 15.21% in an inverted PSC using CH3NH3PbI3 as an absorber, benefiting from the deep HOMO level and good HTL/perovskite interface contact. Meanwhile, the HTM m-SFX-mF provides a maximum external quantum efficiency of 3.15% in CsPb(Br/Cl)3-based PeLEDs, which is attributed to its perched HOMO level and shrunken band-gap for facilitating charge carrier injection and then exciton combination. Through elucidating the synergistic position effect of fluorination on aniline units and their substitutions on the SFX core, this work lays the foundation for developing low-cost and efficient HTMs in the future. Full article
Show Figures

Figure 1

15 pages, 3962 KiB  
Article
Preparation of Nb5+ Doped Na3V2(PO4)3 Cathode Material for Sodium Ion Batteries
by Jingming Wan, Xu Yang and Tian Xia
Materials 2024, 17(11), 2697; https://doi.org/10.3390/ma17112697 - 3 Jun 2024
Viewed by 1332
Abstract
Sodium-ion batteries (SIBs) have emerged as a promising alternative to lithium-ion batteries (LIBs) due to the abundance and low cost of sodium resources. Cathode material plays a crucial role in the performance of sodium ion batteries determining the capacity, cycling stability, and rate [...] Read more.
Sodium-ion batteries (SIBs) have emerged as a promising alternative to lithium-ion batteries (LIBs) due to the abundance and low cost of sodium resources. Cathode material plays a crucial role in the performance of sodium ion batteries determining the capacity, cycling stability, and rate capability. Na3V2(PO4)3 (NVP) is a promising cathode material due to its stable three-dimensional NASICON structure, but its discharge capacity is low and its decay is serious with the increase of cycle period. We focused on modifying NVP cathode material by coating carbon and doping Nb5+ ions for synergistic electrochemical properties of carbon-coated NVP@C as a cathode material. X-ray diffraction analysis was performed to confirm the phase purity and crystal structure of the Nb5+ doped NVP material, which exhibited characteristic diffraction peaks that matched well with the NASICON structure. Nb5+-doped NVP@C@Nbx materials were prepared using the sol–gel method and characterized by X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Raman and Brunauer -Emmett-Teller (BET) analysis. First-principles calculations were performed based on density functional theory. VASP and PAW methods were chosen for these calculations. GGA in the PBE framework served as the exchange-correlation functional. The results showed the NVP unit cell consisted of six NVP structural motifs, each containing octahedral VO6 and tetrahedral PO4 groups to form a polyanionomer [V2(PO4)3] along with the c-axis direction by PO4 groups, which had Na1(6b) and Na2(18e) sites. And PDOS revealed that after Nb doping, the d orbitals of the Nb atoms also contributed electrons that were concentrated near the Fermi surface. Additionally, the decrease in the effective mass after Nb doping indicated that the electrons could move more freely through the material, implying an enhancement of the electron mobility. The electrochemical properties of the Nb5+ doped NVP@C@Nb cathode material were evaluated through cyclic voltammetry (CV), galvanostatic charge-discharge tests, electrochemical impedance spectroscopy (EIS), and X-ray photoelectric spectroscopy (XPS). The results showed that NVP@C@Nb0.15 achieved an initial discharge capacity as high as 114.27 mAhg−1, with a discharge capacity of 106.38 mAhg−1 maintained after 500 cycles at 0.5C, and the retention rate of the NVP@C@Nb0.15 composite reached an impressive 90.22%. NVP@C@Nb0.15 exhibited low resistance and high capacity, enabling it to create more vacancies and modulate crystal structure, ultimately enhancing the electrochemical properties of NVP. The outstanding performance can be attributed to the Nb5+-doped carbon layer, which not only improves electronic conductivity but also shortens the diffusion length of Na+ ions and electrons, as well as reduces volume changes in electrode materials. These preliminary results suggested that the as-obtained NVP@C@Nb0.15 composite was a promising novel cathode electrode material for efficient sodium energy storage. Full article
Show Figures

Figure 1

15 pages, 3920 KiB  
Article
Employing the Interpretable Ensemble Learning Approach to Predict the Bandgaps of the Halide Perovskites
by Chao Ren, Yiyuan Wu, Jijun Zou and Bowen Cai
Materials 2024, 17(11), 2686; https://doi.org/10.3390/ma17112686 - 2 Jun 2024
Cited by 1 | Viewed by 888
Abstract
Halide perovskite materials have broad prospects for applications in various fields such as solar cells, LED devices, photodetectors, fluorescence labeling, bioimaging, and photocatalysis due to their bandgap characteristics. This study compiled experimental data from the published literature and utilized the excellent predictive capabilities, [...] Read more.
Halide perovskite materials have broad prospects for applications in various fields such as solar cells, LED devices, photodetectors, fluorescence labeling, bioimaging, and photocatalysis due to their bandgap characteristics. This study compiled experimental data from the published literature and utilized the excellent predictive capabilities, low overfitting risk, and strong robustness of ensemble learning models to analyze the bandgaps of halide perovskite compounds. The results demonstrate the effectiveness of ensemble learning decision tree models, especially the gradient boosting decision tree model, with a root mean square error of 0.090 eV, a mean absolute error of 0.053 eV, and a determination coefficient of 93.11%. Research on data related to ratios calculated through element molar quantity normalization indicates significant influences of ions at the X and B positions on the bandgap. Additionally, doping with iodine atoms can effectively reduce the intrinsic bandgap, while hybridization of the s and p orbitals of tin atoms can also decrease the bandgap. The accuracy of the model is validated by predicting the bandgap of the photovoltaic material MASn1−xPbxI3. In conclusion, this study emphasizes the positive impact of machine learning on material development, especially in predicting the bandgaps of halide perovskite compounds, where ensemble learning methods demonstrate significant advantages. Full article
Show Figures

Figure 1

12 pages, 2676 KiB  
Article
Nonfullerene Small Molecular Acceptor Acting as a Solid Additive Enables Highly Efficient Pseudo-Bilayer All-Polymer Solar Cells
by Jiayin Liu, Yuheng Ni, Jiaqi Zhang, Yijun Zhao, Wenjing Xu, Xiaoling Ma and Fujun Zhang
Energies 2024, 17(11), 2623; https://doi.org/10.3390/en17112623 - 29 May 2024
Viewed by 947
Abstract
In this work, pseudo-bilayer planar heterojunction (PPHJ) all-polymer solar cells (APSCs) were constructed on the basis of the commonly used PY-IT and PM6 as the acceptor and donor, respectively. A nonfullerene small molecular acceptor (NF-SMA) BTP-eC9 was incorporated into the PY-IT layer as [...] Read more.
In this work, pseudo-bilayer planar heterojunction (PPHJ) all-polymer solar cells (APSCs) were constructed on the basis of the commonly used PY-IT and PM6 as the acceptor and donor, respectively. A nonfullerene small molecular acceptor (NF-SMA) BTP-eC9 was incorporated into the PY-IT layer as the solid additive in consideration of its similar building block to PY-IT. BTP-eC9 can serve as a photon capture reinforcer and morphology-regulating agent to realize more adequate photon capture, as well as a more orderly molecular arrangement for effective carrier transport. By incorporating 2 wt% BTP-eC9, the efficiency of PM6/PY-IT-based PPHJ-APSCs was boosted from 15.11% to 16.47%, accompanied by a synergistically enhanced short circuit current density (JSC, 23.36 vs. 24.08 mA cm−2) and fill factor (FF, 68.83% vs. 72.76%). In another all-polymer system, based on PBQx-TCl/PY-DT as the active layers, the efficiency could be boosted from 17.51% to 18.07%, enabled by the addition of 2 wt% L8-BO, which further verified the effectiveness of using an NF-SMA as a solid additive. This work demonstrates that incorporating an NF-SMA as a solid additive holds great potential for driving the development of PPHJ-APSCs. Full article
Show Figures

Figure 1

12 pages, 5167 KiB  
Article
Enhanced Photoluminescence and Random Lasing Emission in TiO2-Decorated FAPbBr3 Thin Films
by Xiaohong Liu, Caixia Xu and Hongquan Zhao
Nanomaterials 2023, 13(11), 1761; https://doi.org/10.3390/nano13111761 - 30 May 2023
Cited by 1 | Viewed by 1922
Abstract
Herein, titanium-dioxide-decorated organic formamidinium lead bromide perovskite thin films grown by the one-step spin-coating method are studied. TiO2 nanoparticles are widespread in FAPbBr3 thin films, which changes the optical properties of the perovskite thin films effectively. Obvious reductions in the absorption [...] Read more.
Herein, titanium-dioxide-decorated organic formamidinium lead bromide perovskite thin films grown by the one-step spin-coating method are studied. TiO2 nanoparticles are widespread in FAPbBr3 thin films, which changes the optical properties of the perovskite thin films effectively. Obvious reductions in the absorption and enhancements in the intensity of the photoluminescence spectra are observed. Over 6 nm, a blueshift of the photoluminescence emission peaks is observed due to 5.0 mg/mL TiO2 nanoparticle decoration in the thin films, which originates from the variation in the grain sizes of the perovskite thin films. Light intensity redistributions in perovskite thin films are measured by using a home-built confocal microscope, and the multiple scattering and weak localization of light are analyzed based on the scattering center of TiO2 nanoparticle clusters. Furthermore, random lasing emission with sharp emission peaks is achieved in the scattering perovskite thin films with a full width at the half maximum of 2.1 nm. The multiple scattering of light, the random reflection and reabsorption of light, and the coherent interaction of light within the TiO2 nanoparticle clusters play important roles in random lasing. This work could be used to improve the efficiency of photoluminescence and random lasing emissions, and it is promising in high-performance optoelectrical devices. Full article
Show Figures

Figure 1

14 pages, 5428 KiB  
Article
Graded-Index Active Layer for Efficiency Enhancement in Polymer Solar Cell
by M. A. Morsy and Khalid Saleh
Energies 2023, 16(9), 3933; https://doi.org/10.3390/en16093933 - 6 May 2023
Cited by 3 | Viewed by 1421
Abstract
In this paper, narrow-bandgap polymer acceptors combining a benzotriazole (BTz)-core fused-ring segment, named the PZT series, were used with a high-absorption-efficiency polymer (PBDB) compound with branched 2-butyl octyl, linear n-octyl, and methyl to be utilized as a graded-index (GI) active layer of the [...] Read more.
In this paper, narrow-bandgap polymer acceptors combining a benzotriazole (BTz)-core fused-ring segment, named the PZT series, were used with a high-absorption-efficiency polymer (PBDB) compound with branched 2-butyl octyl, linear n-octyl, and methyl to be utilized as a graded-index (GI) active layer of the polymer solar cells (PSCs) to increase the photocurrent and enhance solar efficiency compared to the existing PBDB-T:PZT and PBDB-T:PZT-γ. In addition, a two-dimensional photonic crystal (2D-PhC) structure was utilized as a light-trapping anti-reflection coating (ARC) thin film based on indium tin oxide (ITO) to reduce incident light reflection and enhance its absorption. The dimensions of the cell layers were optimized to achieve the maximum power-conversion efficiency (PCE). Furthermore, the design and simulations were conducted from a 300 nm to 1200 nm wavelength range using a finite difference time-domain (FDTD) analysis. One of the most important results expected from the study was the design of a nano solar cell at (64 µm)2 with a PCE of 25.1%, a short-circuit current density (JSC) of 27.74 mA/cm2, and an open-circuit voltage (VOC) of 0.986 V. Full article
Show Figures

Figure 1

15 pages, 3416 KiB  
Article
Improving the Efficiency of Organic Solar Cells via the Molecular Engineering of Simple Fused Non-Fullerene Acceptors
by Elizaveta D. Papkovskaya, Ji Wan, Dmitry O. Balakirev, Ivan V. Dyadishchev, Artem V. Bakirov, Yuriy N. Luponosov, Jie Min and Sergey A. Ponomarenko
Energies 2023, 16(8), 3443; https://doi.org/10.3390/en16083443 - 14 Apr 2023
Cited by 1 | Viewed by 2137
Abstract
The development of novel non-fullerene small-molecule acceptors (NFAs) with a simple chemical structure for high-performance organic solar cells (OSCs) remains an urgent research challenge to enable their upscaling and commercialization. In this work, we report on the synthesis and comprehensive investigation of two [...] Read more.
The development of novel non-fullerene small-molecule acceptors (NFAs) with a simple chemical structure for high-performance organic solar cells (OSCs) remains an urgent research challenge to enable their upscaling and commercialization. In this work, we report on the synthesis and comprehensive investigation of two new acceptor molecules (BTPT-OD and BTPT-4F-OD), which have one of the simplest fused structures among the Y series of NFAs, along with the medium energy bandgap (1.85 eV–1.94 eV) and strong absorption in the visible and near-IR spectral range (700–950 nm). The novel NFAs have high thermal stability, good solubility combined with a high degree of crystallinity, and deep-lying levels of the lowest unoccupied molecular orbital (up to −3.94 eV). The BTPT-OD with indan-1-one-3-dicyanvinyl terminal acceptor group is superior to its counterpart BTPT-4F-OD with 5,6-difluorindan-1-one-3-dicyanvinyl group both in the number of synthetic steps and in the photovoltaic performance in OSCs. PM6:BTPT-OD systems exhibit superior photovoltaic performance due to the higher charge mobility and degree of photoresponsiveness, faster carrier extraction, and longer carrier lifetime. As a result, BTPT-OD has almost two times higher photovoltaic performance with PM6 as a donor material due to the higher JSC and FF than BTPT-4F-OD systems. The results obtained indicate that further development of OSCs can be well achieved through a rational molecular design. Full article
Show Figures

Figure 1

28 pages, 4539 KiB  
Review
Innovative Approaches to Semi-Transparent Perovskite Solar Cells
by Pramila Patil, Sushil S. Sangale, Sung-Nam Kwon and Seok-In Na
Nanomaterials 2023, 13(6), 1084; https://doi.org/10.3390/nano13061084 - 16 Mar 2023
Cited by 15 | Viewed by 7034
Abstract
Perovskite solar cells (PSCs) are advancing rapidly and have reached a performance comparable to that of silicon solar cells. Recently, they have been expanding into a variety of applications based on the excellent photoelectric properties of perovskite. Semi-transparent PSCs (ST-PSCs) are one promising [...] Read more.
Perovskite solar cells (PSCs) are advancing rapidly and have reached a performance comparable to that of silicon solar cells. Recently, they have been expanding into a variety of applications based on the excellent photoelectric properties of perovskite. Semi-transparent PSCs (ST-PSCs) are one promising application that utilizes the tunable transmittance of perovskite photoactive layers, which can be used in tandem solar cells (TSC) and building-integrated photovoltaics (BIPV). However, the inverse relationship between light transmittance and efficiency is a challenge in the development of ST-PSCs. To overcome these challenges, numerous studies are underway, including those on band-gap tuning, high-performance charge transport layers and electrodes, and creating island-shaped microstructures. This review provides a general and concise summary of the innovative approaches in ST-PSCs, including advances in the perovskite photoactive layer, transparent electrodes, device structures and their applications in TSC and BIPV. Furthermore, the essential requirements and challenges to be addressed to realize ST-PSCs are discussed, and the prospects of ST-PSCs are presented. Full article
Show Figures

Figure 1

14 pages, 15273 KiB  
Article
Hybrid Organic–Inorganic Perovskite Superstructures for Ultrapure Green Emissions
by Wen Kiat Chan, Jiawei Chen, Donglei Zhou, Junzhi Ye, Ricardo Javier Vázquez, Cheng Zhou, Guillermo Carlos Bazan, Akshay Rao, Zhongzheng Yu and Timothy Thatt Yang Tan
Nanomaterials 2023, 13(5), 815; https://doi.org/10.3390/nano13050815 - 22 Feb 2023
Cited by 7 | Viewed by 2433
Abstract
All inorganic CsPbBr3 superstructures (SSs) have attracted much research interest due to their unique photophysical properties, such as their large emission red-shifts and super-radiant burst emissions. These properties are of particular interest in displays, lasers and photodetectors. Currently, the best-performing perovskite optoelectronic [...] Read more.
All inorganic CsPbBr3 superstructures (SSs) have attracted much research interest due to their unique photophysical properties, such as their large emission red-shifts and super-radiant burst emissions. These properties are of particular interest in displays, lasers and photodetectors. Currently, the best-performing perovskite optoelectronic devices incorporate organic cations (methylammonium (MA), formamidinium (FA)), however, hybrid organic–inorganic perovskite SSs have not yet been investigated. This work is the first to report on the synthesis and photophysical characterization of APbBr3 (A = MA, FA, Cs) perovskite SSs using a facile ligand-assisted reprecipitation method. At higher concentrations, the hybrid organic–inorganic MA/FAPbBr3 nanocrystals self-assemble into SSs and produce red-shifted ultrapure green emissions, meeting the requirement of Rec. 2020 displays. We hope that this work will be seminal in advancing the exploration of perovskite SSs using mixed cation groups to further improve their optoelectronic applications. Full article
Show Figures

Figure 1

12 pages, 1979 KiB  
Article
Temperature-Dependent Amplified Spontaneous Emission in CsPbBr3 Thin Films Deposited by Single-Step RF-Magnetron Sputtering
by Giovanni Morello, Stefania Milanese, Maria Luisa De Giorgi, Nicola Calisi, Stefano Caporali, Francesco Biccari, Naomi Falsini, Anna Vinattieri and Marco Anni
Nanomaterials 2023, 13(2), 306; https://doi.org/10.3390/nano13020306 - 11 Jan 2023
Cited by 3 | Viewed by 2111
Abstract
Due to their high optical efficiency, low-cost fabrication and wide variety in composition and bandgap, halide perovskites are recognized nowadays as real contenders for the development of the next generation of optoelectronic devices, which, among others, often require high quality over large areas [...] Read more.
Due to their high optical efficiency, low-cost fabrication and wide variety in composition and bandgap, halide perovskites are recognized nowadays as real contenders for the development of the next generation of optoelectronic devices, which, among others, often require high quality over large areas which is readily attainable by vacuum deposition. Here, we report the amplified spontaneous emission (ASE) properties of two CsPbBr3 films obtained by single-step RF-magnetron sputtering from a target containing precursors with variable compositions. Both the samples show ASE over a broad range of temperatures from 10 K up to 270 K. The ASE threshold results strongly temperature dependent, with the best performance occurring at about 50 K (down to 100 µJ/cm2), whereas at higher temperatures, there is evidence of thermally induced optical quenching. The observed temperature dependence is consistent with exciton detrapping up to about 50 K. At higher temperatures, progressive free exciton dissociation favors higher carrier mobility and increases trapping at defect states with consequent emission reduction and increased thresholds. The reported results open the way for effective large-area, high quality, organic solution-free deposited perovskite thin films for optoelectronic applications, with a remarkable capability to finely tune their physical properties. Full article
Show Figures

Figure 1

Back to TopTop