Topic Menu
► Topic MenuTopic Editors



Data Science and Knowledge Discovery

Topic Information
Dear Colleagues,
Data Science and Knowledge Discovery, often using Artificial Intelligence (AI), Machine Learning (ML) including Deep Learning (DL), and Data Mining (DM), are among the most exciting and rapidly growing research fields today. In recent years, they have been successfully used to solve practical problems in virtually every domain, such as engineering, healthcare, manufacturing, energy, transportation, education, and finance.
In this era of Big Data, considerable research is being focused on designing efficient Data Science methods. Nonetheless, practical applications of Knowledge Discovery face several challenges, with examples such as dealing with either too small or too big data, missing and uncertain data, highly multidimensional data, and the need for interpretable models that can provide trustable evidence and explanations of the predictions they make. Therefore, there is a need to develop methods that sift through large amounts of streaming data and extract useful high-level knowledge from there, without human supervision or with very little of it. In addition, learning and obtaining good generalization from fewer training examples, efficient data/knowledge representation schemes, knowledge transfer between tasks and domains, and learning to adapt to varying contexts are also examples of important research problems.
We invite authors from academia, industry, public sector and more to contribute high-quality papers to the Topic, including but not limited to, novel methodological developments, experimental and comparative studies, surveys, application-relevant results, and advances of Data Science, Knowledge Discovery, Artificial Intelligence and Machine Learning fields. Submitted papers can focus on any applications related the participating journals. This Topic welcomes the submission of technical, experimental and methodological papers, both theoretical and solving real-world problems, or proposing practically-relevant systems, as well as on general applications.
Prof. Dr. Sławomir Nowaczyk
Dr. Rita P. Ribeiro
Prof. Dr. Grzegorz Nalepa
Topic Editors
Keywords
- data science
- knowledge discovery
- artificial intelligence
- machine learning
- deep learning
- data mining
- big data
- active learning
- explainable AI
- neural networks
- AI in healthcare
- information retrieval
- natural language processing
- recommender systems
- signal processing
Participating Journals
Journal Name | Impact Factor | CiteScore | Launched Year | First Decision (median) | APC |
---|---|---|---|---|---|
![]()
Applied Sciences
|
2.5 | 5.3 | 2011 | 18.4 Days | CHF 2400 |
![]()
Electronics
|
2.6 | 5.3 | 2012 | 16.4 Days | CHF 2400 |
![]()
Information
|
2.4 | 6.9 | 2010 | 16.4 Days | CHF 1600 |
![]()
Mathematics
|
2.3 | 4.0 | 2013 | 18.3 Days | CHF 2600 |
![]()
Sensors
|
3.4 | 7.3 | 2001 | 18.6 Days | CHF 2600 |
Preprints.org is a multidisciplinary platform offering a preprint service designed to facilitate the early sharing of your research. It supports and empowers your research journey from the very beginning.
MDPI Topics is collaborating with Preprints.org and has established a direct connection between MDPI journals and the platform. Authors are encouraged to take advantage of this opportunity by posting their preprints at Preprints.org prior to publication:
- Share your research immediately: disseminate your ideas prior to publication and establish priority for your work.
- Safeguard your intellectual contribution: Protect your ideas with a time-stamped preprint that serves as proof of your research timeline.
- Boost visibility and impact: Increase the reach and influence of your research by making it accessible to a global audience.
- Gain early feedback: Receive valuable input and insights from peers before submitting to a journal.
- Ensure broad indexing: Web of Science (Preprint Citation Index), Google Scholar, Crossref, SHARE, PrePubMed, Scilit and Europe PMC.