Next Issue
Previous Issue

E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Table of Contents

Remote Sens., Volume 10, Issue 2 (February 2018)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story (view full-size image) Estuarine water quality is not static, but rather fluctuates on daily to interannual time scales [...] Read more.
View options order results:
result details:
Displaying articles 1-201
Export citation of selected articles as:
Open AccessArticle Matching of Remote Sensing Images with Complex Background Variations via Siamese Convolutional Neural Network
Remote Sens. 2018, 10(2), 355; https://doi.org/10.3390/rs10020355
Received: 22 January 2018 / Revised: 21 February 2018 / Accepted: 22 February 2018 / Published: 24 February 2018
PDF Full-text (20794 KB) | HTML Full-text | XML Full-text
Abstract
Feature-based matching methods have been widely used in remote sensing image matching given their capability to achieve excellent performance despite image geometric and radiometric distortions. However, most of the feature-based methods are unreliable for complex background variations, because the gradient or other image
[...] Read more.
Feature-based matching methods have been widely used in remote sensing image matching given their capability to achieve excellent performance despite image geometric and radiometric distortions. However, most of the feature-based methods are unreliable for complex background variations, because the gradient or other image grayscale information used to construct the feature descriptor is sensitive to image background variations. Recently, deep learning-based methods have been proven suitable for high-level feature representation and comparison in image matching. Inspired by the progresses made in deep learning, a new technical framework for remote sensing image matching based on the Siamese convolutional neural network is presented in this paper. First, a Siamese-type network architecture is designed to simultaneously learn the features and the corresponding similarity metric from labeled training examples of matching and non-matching true-color patch pairs. In the proposed network, two streams of convolutional and pooling layers sharing identical weights are arranged without the manually designed features. The number of convolutional layers is determined based on the factors that affect image matching. The sigmoid function is employed to compute the matching and non-matching probabilities in the output layer. Second, a gridding sub-pixel Harris algorithm is used to obtain the accurate localization of candidate matches. Third, a Gaussian pyramid coupling quadtree is adopted to gradually narrow down the searching space of the candidate matches, and multiscale patches are compared synchronously. Subsequently, a similarity measure based on the output of the sigmoid is adopted to find the initial matches. Finally, the random sample consensus algorithm and the whole-to-local quadratic polynomial constraints are used to remove false matches. In the experiments, different types of satellite datasets, such as ZY3, GF1, IKONOS, and Google Earth images, with complex background variations are used to evaluate the performance of the proposed method. The experimental results demonstrate that the proposed method, which can significantly improve the matching performance of multi-temporal remote sensing images with complex background variations, is better than the state-of-the-art matching methods. In our experiments, the proposed method obtained a large number of evenly distributed matches (at least 10 times more than other methods) and achieved a high accuracy (less than 1 pixel in terms of root mean square error). Full article
(This article belongs to the Special Issue Multisensor Data Fusion in Remote Sensing)
Figures

Graphical abstract

Open AccessArticle Snow Density and Ground Permittivity Retrieved from L-Band Radiometry: Melting Effects
Remote Sens. 2018, 10(2), 354; https://doi.org/10.3390/rs10020354
Received: 13 December 2017 / Revised: 15 February 2018 / Accepted: 21 February 2018 / Published: 24 February 2018
Cited by 1 | PDF Full-text (5527 KB) | HTML Full-text | XML Full-text
Abstract
Ground permittivity and snow density retrievals for the “snow-free period”, “cold winter period”, and “early spring period” are performed using the experimental L-band radiometry data from the winter 2016/2017 campaign at the Davos-Laret Remote Sensing Field Laboratory. The performance of the single-angle and
[...] Read more.
Ground permittivity and snow density retrievals for the “snow-free period”, “cold winter period”, and “early spring period” are performed using the experimental L-band radiometry data from the winter 2016/2017 campaign at the Davos-Laret Remote Sensing Field Laboratory. The performance of the single-angle and multi-angle two-parameter retrieval algorithms employed during each of the aforementioned three periods is assessed using in-situ measured ground permittivity and snow density. Additionally, a synthetic sensitivity analysis is conducted that studies melting effects on the retrievals in the form of two types of “geophysical noise” (snow liquid water and footprint-dependent ground permittivity). Experimental and synthetic analyses show that both types of investigated “geophysical noise” noticeably disturb the retrievals and result in an increased correlation between them. The strength of this correlation is successfully used as a quality-indicator flag for the purpose of filtering out highly correlated ground permittivity and snow density retrievals. It is demonstrated that this filtering significantly improves the accuracy of both ground permittivity and snow density retrievals compared to corresponding reference in-situ data. Experimental and synthetic retrievals are performed in retrieval modes RM = “H”, “V”, and “HV”, where brightness temperatures from polarizations p = H, p = V, or both p = H and V are used, respectively, in the retrieval procedure. Our analysis shows that retrievals for RM = “V” are predominantly least prone to the investigated “geophysical noise”. The presented experimental results indicate that retrievals match in-situ observations best for the “snow-free period” and the “cold winter period” when “geophysical noise” is at minimum. Full article
(This article belongs to the Special Issue Snow Remote Sensing)
Figures

Graphical abstract

Open AccessArticle Triple-Frequency Code-Phase Combination Determination: A Comparison with the Hatch-Melbourne-Wübbena Combination Using BDS Signals
Remote Sens. 2018, 10(2), 353; https://doi.org/10.3390/rs10020353
Received: 11 January 2018 / Revised: 20 February 2018 / Accepted: 22 February 2018 / Published: 24 February 2018
PDF Full-text (6089 KB) | HTML Full-text | XML Full-text
Abstract
Considering the influence of the ionosphere, troposphere, and other systematic errors on double-differenced ambiguity resolution (AR), we present an optimal triple-frequency code-phase combination determination method driven by both the model and the real data. The new method makes full use of triple-frequency code
[...] Read more.
Considering the influence of the ionosphere, troposphere, and other systematic errors on double-differenced ambiguity resolution (AR), we present an optimal triple-frequency code-phase combination determination method driven by both the model and the real data. The new method makes full use of triple-frequency code measurements (especially the low-noise of the code on the B3 signal) to minimize the total noise level and achieve the largest AR success rate (model-driven) under different ionosphere residual situations (data-driven), thus speeding up the AR by directly rounding. With the triple-frequency Beidou Navigation Satellite System (BDS) data collected at five stations from a continuously-operating reference station network in Guangdong Province of China, different testing scenarios are defined (a medium baseline, whose distance is between 20 km and 50 km; a medium-long baseline, whose distance is between 50 km and 100 km; and a long baseline, whose distance is larger than 100 km). The efficiency of the optimal code-phase combination on the AR success rate was compared with that of the geometry-free and ionosphere-free (GIF) combination and the Hatch-Melbourne-Wübbena (HMW) combination. Results show that the optimal combinations can always achieve better results than the HMW combination with B2 and B3 signals, especially when the satellite elevation angle is larger than 45°. For the wide-lane AR which aims to obtain decimeter-level kinematic positioning service, the standard deviation (STD) of ambiguity residuals for the suboptimal combination are only about 0.2 cycles, and the AR success rate by directly rounding can be up to 99%. Compared with the HMW combinations using B1 and B2 signals and using B1 and B3 signals, the suboptimal combination achieves the best results in all baselines, with an overall improvement of about 40% and 20%, respectively. Additionally, the STD difference between the optimal and the GIF code-phase combinations decreases as the baseline length increases. This indicates that the GIF combination is more suitable for long baselines. The proposed optimal code-phase combination determination method can be applied to other multi-frequency global navigation satellite systems, such as new-generation BDS, Galileo, and modernized GPS. Full article
Figures

Graphical abstract

Open AccessArticle Atmospheric Correction Inter-Comparison Exercise
Remote Sens. 2018, 10(2), 352; https://doi.org/10.3390/rs10020352
Received: 24 January 2018 / Revised: 16 February 2018 / Accepted: 20 February 2018 / Published: 24 February 2018
Cited by 4 | PDF Full-text (4578 KB) | HTML Full-text | XML Full-text
Abstract
The Atmospheric Correction Inter-comparison eXercise (ACIX) is an international initiative with the aim to analyse the Surface Reflectance (SR) products of various state-of-the-art atmospheric correction (AC) processors. The Aerosol Optical Thickness (AOT) and Water Vapour (WV) are also examined in ACIX as additional
[...] Read more.
The Atmospheric Correction Inter-comparison eXercise (ACIX) is an international initiative with the aim to analyse the Surface Reflectance (SR) products of various state-of-the-art atmospheric correction (AC) processors. The Aerosol Optical Thickness (AOT) and Water Vapour (WV) are also examined in ACIX as additional outputs of AC processing. In this paper, the general ACIX framework is discussed; special mention is made of the motivation to initiate the experiment, the inter-comparison protocol, and the principal results. ACIX is free and open and every developer was welcome to participate. Eventually, 12 participants applied their approaches to various Landsat-8 and Sentinel-2 image datasets acquired over sites around the world. The current results diverge depending on the sensors, products, and sites, indicating their strengths and weaknesses. Indeed, this first implementation of processor inter-comparison was proven to be a good lesson for the developers to learn the advantages and limitations of their approaches. Various algorithm improvements are expected, if not already implemented, and the enhanced performances are yet to be assessed in future ACIX experiments. Full article
(This article belongs to the Special Issue Atmospheric Correction of Remote Sensing Data)
Figures

Graphical abstract

Open AccessArticle Siamese-GAN: Learning Invariant Representations for Aerial Vehicle Image Categorization
Remote Sens. 2018, 10(2), 351; https://doi.org/10.3390/rs10020351
Received: 17 January 2018 / Revised: 13 February 2018 / Accepted: 22 February 2018 / Published: 24 February 2018
PDF Full-text (7990 KB) | HTML Full-text | XML Full-text
Abstract
In this paper, we present a new algorithm for cross-domain classification in aerial vehicle images based on generative adversarial networks (GANs). The proposed method, called Siamese-GAN, learns invariant feature representations for both labeled and unlabeled images coming from two different domains. To this
[...] Read more.
In this paper, we present a new algorithm for cross-domain classification in aerial vehicle images based on generative adversarial networks (GANs). The proposed method, called Siamese-GAN, learns invariant feature representations for both labeled and unlabeled images coming from two different domains. To this end, we train in an adversarial manner a Siamese encoder–decoder architecture coupled with a discriminator network. The encoder–decoder network has the task of matching the distributions of both domains in a shared space regularized by the reconstruction ability, while the discriminator seeks to distinguish between them. After this phase, we feed the resulting encoded labeled and unlabeled features to another network composed of two fully-connected layers for training and classification, respectively. Experiments on several cross-domain datasets composed of extremely high resolution (EHR) images acquired by manned/unmanned aerial vehicles (MAV/UAV) over the cities of Vaihingen, Toronto, Potsdam, and Trento are reported and discussed. Full article
(This article belongs to the Special Issue Deep Learning for Remote Sensing)
Figures

Graphical abstract

Open AccessArticle Monitoring Water Levels and Discharges Using Radar Altimetry in an Ungauged River Basin: The Case of the Ogooué
Remote Sens. 2018, 10(2), 350; https://doi.org/10.3390/rs10020350
Received: 30 January 2018 / Revised: 15 February 2018 / Accepted: 22 February 2018 / Published: 24 February 2018
Cited by 1 | PDF Full-text (13447 KB) | HTML Full-text | XML Full-text
Abstract
Radar altimetry is now commonly used for the monitoring of water levels in large river basins. In this study, an altimetry-based network of virtual stations was defined in the quasi ungauged Ogooué river basin, located in Gabon, Central Africa, using data from seven
[...] Read more.
Radar altimetry is now commonly used for the monitoring of water levels in large river basins. In this study, an altimetry-based network of virtual stations was defined in the quasi ungauged Ogooué river basin, located in Gabon, Central Africa, using data from seven altimetry missions (Jason-2 and 3, ERS-2, ENVISAT, Cryosat-2, SARAL, Sentinel-3A) from 1995 to 2017. The performance of the five latter altimetry missions to retrieve water stages and discharges was assessed through comparisons against gauge station records. All missions exhibited a good agreement with gauge records, but the most recent missions showed an increase of data availability (only 6 virtual stations (VS) with ERS-2 compared to 16 VS for ENVISAT and SARAL) and accuracy (RMSE lower than 1.05, 0.48 and 0.33 and R² higher than 0.55, 0.83 and 0.91 for ERS-2, ENVISAT and SARAL respectively). The concept of VS is extended to the case of drifting orbits using the data from Cryosat-2 in several close locations. Good agreement was also found with the gauge station in Lambaréné (RMSE = 0.25 m and R2 = 0.96). Very good results were obtained using only one year and a half of Sentinel-3 data (RMSE < 0.41 m and R2 > 0.89). The combination of data from all the radar altimetry missions near Lamabréné resulted in a long-term (May 1995 to August 2017) and significantly improved water-level time series (R² = 0.96 and RMSE = 0.38 m). The increase in data sampling in the river basin leads to a better water level peak to peak characterization and hence to a more accurate annual discharge over the common observation period with only a 1.4 m3·s−1 difference (i.e., 0.03%) between the altimetry-based and the in situ mean annual discharge. Full article
(This article belongs to the Special Issue Satellite Altimetry for Earth Sciences)
Figures

Figure 1

Open AccessArticle Phenotyping Conservation Agriculture Management Effects on Ground and Aerial Remote Sensing Assessments of Maize Hybrids Performance in Zimbabwe
Remote Sens. 2018, 10(2), 349; https://doi.org/10.3390/rs10020349
Received: 27 December 2017 / Revised: 8 February 2018 / Accepted: 14 February 2018 / Published: 24 February 2018
PDF Full-text (6496 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In the coming decades, Sub-Saharan Africa (SSA) faces challenges to sustainably increase food production while keeping pace with continued population growth. Conservation agriculture (CA) has been proposed to enhance soil health and productivity to respond to this situation. Maize is the main staple
[...] Read more.
In the coming decades, Sub-Saharan Africa (SSA) faces challenges to sustainably increase food production while keeping pace with continued population growth. Conservation agriculture (CA) has been proposed to enhance soil health and productivity to respond to this situation. Maize is the main staple food in SSA. To increase maize yields, the selection of suitable genotypes and management practices for CA conditions has been explored using remote sensing tools. They may play a fundamental role towards overcoming the traditional limitations of data collection and processing in large scale phenotyping studies. We present the result of a study in which Red-Green-Blue (RGB) and multispectral indexes were evaluated for assessing maize performance under conventional ploughing (CP) and CA practices. Eight hybrids under different planting densities and tillage practices were tested. The measurements were conducted on seedlings at ground level (0.8 m) and from an unmanned aerial vehicle (UAV) platform (30 m), causing a platform proximity effect on the images resolution that did not have any negative impact on the performance of the indexes. Most of the calculated indexes (Green Area (GA) and Normalized Difference Vegetation Index (NDVI)) were significantly affected by tillage conditions increasing their values from CP to CA. Indexes derived from the RGB-images related to canopy greenness performed better at assessing yield differences, potentially due to the greater resolution of the RGB compared with the multispectral data, although this performance was more precise for CP than CA. The correlations of the multispectral indexes with yield were improved by applying a soil-mask derived from a NDVI threshold with the aim of corresponding pixels with vegetation. The results of this study highlight the applicability of remote sensing approaches based on RGB images to the assessment of crop performance and hybrid choice. Full article
Figures

Graphical abstract

Open AccessArticle Upper Ocean Response to Typhoon Kalmaegi and Sarika in the South China Sea from Multiple-Satellite Observations and Numerical Simulations
Remote Sens. 2018, 10(2), 348; https://doi.org/10.3390/rs10020348
Received: 12 December 2017 / Revised: 19 February 2018 / Accepted: 22 February 2018 / Published: 24 February 2018
PDF Full-text (11391 KB) | HTML Full-text | XML Full-text
Abstract
We investigated ocean surface and subsurface physical responses to Typhoons Kalmaegi and Sarika in the South China Sea, utilizing synergistic multiple-satellite observations, in situ measurements, and numerical simulations. We found significant typhoon-induced sea surface cooling using satellite sea surface temperature (SST) observations and
[...] Read more.
We investigated ocean surface and subsurface physical responses to Typhoons Kalmaegi and Sarika in the South China Sea, utilizing synergistic multiple-satellite observations, in situ measurements, and numerical simulations. We found significant typhoon-induced sea surface cooling using satellite sea surface temperature (SST) observations and numerical model simulations. This cooling was mainly caused by vertical mixing and upwelling. The maximum amplitudes were 6 °C and 4.2 °C for Typhoons Kalmaegi and Sarika, respectively. For Typhoon Sarika, Argo temperature profile measurements showed that temperature response beneath the surface showed a three-layer vertical structure (decreasing-increasing-decreasing). Satellite salinity observations showed that the maximum increase of sea surface salinity (SSS) was 2.2 psu on the right side of Typhoon Sarika’s track, and the maximum decrease of SSS was 1.4 psu on the left. This SSS seesaw response phenomenon is related to the asymmetrical rainfall on both sides of the typhoon track. Acoustic Doppler Current Profilers measurements and numerical simulations both showed that subsurface current velocities rapidly increased as the typhoon passed, with peak increases of up to 1.19 m/s and 1.49 m/s. Typhoon-generated SST cooling and current velocity increases both exhibited a rightward bias associated with a coupling between typhoon wind-stress and mixed layer velocity. Full article
(This article belongs to the Section Ocean Remote Sensing)
Figures

Graphical abstract

Open AccessFeature PaperArticle Combining Multi-Date Airborne Laser Scanning and Digital Aerial Photogrammetric Data for Forest Growth and Yield Modelling
Remote Sens. 2018, 10(2), 347; https://doi.org/10.3390/rs10020347
Received: 4 December 2017 / Revised: 15 February 2018 / Accepted: 20 February 2018 / Published: 24 February 2018
Cited by 1 | PDF Full-text (11686 KB) | HTML Full-text | XML Full-text
Abstract
The increasing availability of highly detailed three-dimensional remotely-sensed data depicting forests, including airborne laser scanning (ALS) and digital aerial photogrammetric (DAP) approaches, provides a means for improving stand dynamics information. The availability of data from ALS and DAP has stimulated attempts to link
[...] Read more.
The increasing availability of highly detailed three-dimensional remotely-sensed data depicting forests, including airborne laser scanning (ALS) and digital aerial photogrammetric (DAP) approaches, provides a means for improving stand dynamics information. The availability of data from ALS and DAP has stimulated attempts to link these datasets with conventional forestry growth and yield models. In this study, we demonstrated an approach whereby two three-dimensional point cloud datasets (one from ALS and one from DAP), acquired over the same forest stands, at two points in time (circa 2008 and 2015), were used to derive forest inventory information. The area-based approach (ABA) was used to predict top height (H), basal area (BA), total volume (V), and stem density (N) for Time 1 and Time 2 (T1, T2). We assigned individual yield curves to 20 × 20 m grid cells for two scenarios. The first scenario used T1 estimates only (approach 1, single date), while the second scenario combined T1 and T2 estimates (approach 2, multi-date). Yield curves were matched by comparing the predicted cell-level attributes with a yield curve template database generated using an existing growth simulator. Results indicated that the yield curves using the multi-date data of approach 2 were matched with slightly higher accuracy; however, projections derived using approach 1 and 2 were not significantly different. The accuracy of curve matching was dependent on the ABA prediction error. The relative root mean squared error of curve matching in approach 2 for H, BA, V, and N, was 18.4, 11.5, 25.6, and 27.53% for observed (plot) data, and 13.2, 44.6, 50.4 and 112.3% for predicted data, respectively. The approach presented in this study provides additional detail on sub-stand level growth projections that enhances the information available to inform long-term, sustainable forest planning and management. Full article
(This article belongs to the Special Issue Multitemporal Remote Sensing for Forestry)
Figures

Graphical abstract

Open AccessArticle Impact of Vertical Canopy Position on Leaf Spectral Properties and Traits across Multiple Species
Remote Sens. 2018, 10(2), 346; https://doi.org/10.3390/rs10020346
Received: 31 January 2018 / Revised: 17 February 2018 / Accepted: 20 February 2018 / Published: 23 February 2018
Cited by 1 | PDF Full-text (2501 KB) | HTML Full-text | XML Full-text
Abstract
Understanding the vertical pattern of leaf traits across plant canopies provide critical information on plant physiology, ecosystem functioning and structure and vegetation response to climate change. However, the impact of vertical canopy position on leaf spectral properties and subsequently leaf traits across the
[...] Read more.
Understanding the vertical pattern of leaf traits across plant canopies provide critical information on plant physiology, ecosystem functioning and structure and vegetation response to climate change. However, the impact of vertical canopy position on leaf spectral properties and subsequently leaf traits across the entire spectrum for multiple species is poorly understood. In this study, we examined the ability of leaf optical properties to track variability in leaf traits across the vertical canopy profile using Partial Least Square Discriminatory Analysis (PLS-DA). Leaf spectral measurements together with leaf traits (nitrogen, carbon, chlorophyll, equivalent water thickness and specific leaf area) were studied at three vertical canopy positions along the plant stem: lower, middle and upper. We observed that foliar nitrogen (N), chlorophyll (Cab), carbon (C), and equivalent water thickness (EWT) were higher in the upper canopy leaves compared with lower shaded leaves, while specific leaf area (SLA) increased from upper to lower canopy leaves. We found that leaf spectral reflectance significantly (P ≤ 0.05) shifted to longer wavelengths in the ‘red edge’ spectrum (685–701 nm) in the order of lower > middle > upper for the pooled dataset. We report that spectral bands that are influential in the discrimination of leaf samples into the three groups of canopy position, based on the PLS-DA variable importance projection (VIP) score, match with wavelength regions of foliar traits observed to vary across the canopy vertical profile. This observation demonstrated that both leaf traits and leaf reflectance co-vary across the vertical canopy profile in multiple species. We conclude that canopy vertical position has a significant impact on leaf spectral properties of an individual plant’s traits, and this finding holds for multiple species. These findings have important implications on field sampling protocols, upscaling leaf traits to canopy level, canopy reflectance modelling, and subsequent leaf trait retrieval, especially for studies that aimed to integrate hyperspectral measurements and LiDAR data. Full article
Figures

Graphical abstract

Open AccessArticle Impacts of Insufficient Observations on the Monitoring of Short- and Long-Term Suspended Solids Variations in Highly Dynamic Waters, and Implications for an Optimal Observation Strategy
Remote Sens. 2018, 10(2), 345; https://doi.org/10.3390/rs10020345
Received: 7 December 2017 / Revised: 10 February 2018 / Accepted: 16 February 2018 / Published: 23 February 2018
Cited by 1 | PDF Full-text (5477 KB) | HTML Full-text | XML Full-text
Abstract
Coastal water regions represent some of the most fragile ecosystems, exposed to both climate change and human activities. While remote sensing provides unprecedented amounts of data for water quality monitoring on regional to global scales, the performance of satellite observations is frequently impeded
[...] Read more.
Coastal water regions represent some of the most fragile ecosystems, exposed to both climate change and human activities. While remote sensing provides unprecedented amounts of data for water quality monitoring on regional to global scales, the performance of satellite observations is frequently impeded by revisiting intervals and unfavorable conditions, such as cloud coverage and sun glint. Therefore, it is crucial to evaluate the impacts of varied sampling strategies (time and frequency) and insufficient observations on the monitoring of short-term and long-term tendencies of water quality parameters, such as suspended solids (SS), in highly dynamic coastal waters. Taking advantage of the first high-frequency in situ SS dataset (at 30 min sampling intervals from 2007 to 2008), collected in Deep Bay, China, this paper presents a quantitative analysis of the influences of sampling strategies on the monitoring of SS, in terms of sampling frequency and time of day. Dramatic variations of SS were observed, with standard deviation coefficients of 48.9% and 54.1%, at two fixed stations; in addition, significant uncertainties were revealed, with the average absolute percent difference of approximately 13%, related to sampling frequency and time, using nonlinear optimization and random simulation methods. For a sampling frequency of less than two observations per day, the relative error of SS was higher than 50%, and stabilized at approximately 10%, when at least four or five samplings were conducted per day. The optimal recommended sampling times for SS were at around 9:00, 12:00, 14:00, and 16:00 in Deep Bay. The “pseudo” MODIS SS dataset was obtained from high-frequency in situ SS measurements at 10:30 and 14:00, masked by the temporal gap distribution of MODIS coverage to avoid uncertainties propagated from atmospheric correction and SS models. Noteworthy uncertainties of daily observations from the Terra/Aqua MODIS were found, with mean relative errors of 19.2% and 17.8%, respectively, whereas at the monthly level, the mean relative error of Terra/Aqua MODIS observations was approximately 10.7% (standard deviation of 8.4%). Sensitivity analysis between MODIS coverage and SS relative errors indicated that temporal coverage (the percentage of valid MODIS observations for a month) of more than 70% is required to obtain high-precision SS measurements at a 5% error level. Furthermore, approximately 20% of relative errors were found with the coverage of 30%, which was the average coverage of satellite observations over global coastal waters. These results highlight the need for high-frequency measurements of geostationary satellites like GOCI and multi-source ocean color sensors to capture the dynamic process of coastal waters in both the short and long term. Full article
Figures

Graphical abstract

Open AccessArticle Estimation of Forest Canopy Height and Aboveground Biomass from Spaceborne LiDAR and Landsat Imageries in Maryland
Remote Sens. 2018, 10(2), 344; https://doi.org/10.3390/rs10020344
Received: 24 November 2017 / Revised: 15 February 2018 / Accepted: 18 February 2018 / Published: 23 February 2018
PDF Full-text (23300 KB) | HTML Full-text | XML Full-text
Abstract
Mapping the regional distribution of forest canopy height and aboveground biomass is worthwhile and necessary for estimating the carbon stocks on Earth and assessing the terrestrial carbon flux. In this study, we produced maps of forest canopy height and the aboveground biomass at
[...] Read more.
Mapping the regional distribution of forest canopy height and aboveground biomass is worthwhile and necessary for estimating the carbon stocks on Earth and assessing the terrestrial carbon flux. In this study, we produced maps of forest canopy height and the aboveground biomass at a 30 m spatial resolution in Maryland by combining Geoscience Laser Altimeter System (GLAS) data and Landsat spectral imageries. The processes for calculating the forest biomass included the following: (i) processing the GLAS waveform and calculating spatially discrete forest canopy heights; (ii) developing canopy height models from Landsat imagery and extrapolating them to spatially contiguous canopy heights in Maryland; and, (iii) estimating forest aboveground biomass according to the relationship between canopy height and biomass. In our study, we explore the ability to use the GLAS waveform to calculate canopy height without ground-measured forest metrics (R2 = 0.669, RMSE = 4.82 m, MRE = 15.4%). The machine learning models performed better than the principal component model when mapping the regional forest canopy height and aboveground biomass. The total forest aboveground biomass in Maryland reached approximately 160 Tg. When compared with the existing Biomass_CMS map, our biomass estimates presented a similar distribution where higher values were in the Western Shore Uplands region and Folded Application Mountain section, while lower values were located in the Delmarva Peninsula and Allegheny Mountain regions. Full article
Figures

Graphical abstract

Open AccessArticle Early-Season Stand Count Determination in Corn via Integration of Imagery from Unmanned Aerial Systems (UAS) and Supervised Learning Techniques
Remote Sens. 2018, 10(2), 343; https://doi.org/10.3390/rs10020343
Received: 20 January 2018 / Revised: 19 February 2018 / Accepted: 20 February 2018 / Published: 23 February 2018
PDF Full-text (3178 KB) | HTML Full-text | XML Full-text
Abstract
Corn (Zea mays L.) is one of the most sensitive crops to planting pattern and early-season uniformity. The most common method to determine number of plants is by visual inspection on the ground but this field activity becomes time-consuming, labor-intensive, biased, and
[...] Read more.
Corn (Zea mays L.) is one of the most sensitive crops to planting pattern and early-season uniformity. The most common method to determine number of plants is by visual inspection on the ground but this field activity becomes time-consuming, labor-intensive, biased, and may lead to less profitable decisions by farmers. The objective of this study was to develop a reliable, timely, and unbiased method for counting corn plants based on ultra-high-resolution imagery acquired from unmanned aerial systems (UAS) to automatically scout fields and applied to real field conditions. A ground sampling distance of 2.4 mm was targeted to extract information at a plant-level basis. First, an excess greenness (ExG) index was used to individualized green pixels from the background, then rows and inter-row contours were identified and extracted. A scalable training procedure was implemented using geometric descriptors as inputs of the classifier. Second, a decision tree was implemented and tested using two training modes in each site to expose the workflow to different ground conditions at the time of the aerial data acquisition. Differences in performance were due to training modes and spatial resolutions in the two sites. For an object classification task, an overall accuracy of 0.96, based on the proportion of corrected assessment of corn and non-corn objects, was obtained for local (per-site) classification, and an accuracy of 0.93 was obtained for the combined training modes. For successful model implementation, plants should have between two to three leaves when images are collected (avoiding overlapping between plants). Best workflow performance was reached at 2.4 mm resolution corresponding to 10 m of altitude (lower altitude); higher altitudes were gradually penalized. The latter was coincident with the larger number of detected green objects in the images and the effectiveness of geometry as descriptor for corn plant detection. Full article
(This article belongs to the Special Issue Remote Sensing from Unmanned Aerial Vehicles (UAVs))
Figures

Graphical abstract

Open AccessArticle A Hierarchical Fully Convolutional Network Integrated with Sparse and Low-Rank Subspace Representations for PolSAR Imagery Classification
Remote Sens. 2018, 10(2), 342; https://doi.org/10.3390/rs10020342
Received: 14 January 2018 / Revised: 10 February 2018 / Accepted: 13 February 2018 / Published: 23 February 2018
PDF Full-text (13762 KB) | HTML Full-text | XML Full-text
Abstract
Inspired by enormous success of fully convolutional network (FCN) in semantic segmentation, as well as the similarity between semantic segmentation and pixel-by-pixel polarimetric synthetic aperture radar (PolSAR) image classification, exploring how to effectively combine the unique polarimetric properties with FCN is a promising
[...] Read more.
Inspired by enormous success of fully convolutional network (FCN) in semantic segmentation, as well as the similarity between semantic segmentation and pixel-by-pixel polarimetric synthetic aperture radar (PolSAR) image classification, exploring how to effectively combine the unique polarimetric properties with FCN is a promising attempt at PolSAR image classification. Moreover, recent research shows that sparse and low-rank representations can convey valuable information for classification purposes. Therefore, this paper presents an effective PolSAR image classification scheme, which integrates deep spatial patterns learned automatically by FCN with sparse and low-rank subspace features: (1) a shallow subspace learning based on sparse and low-rank graph embedding is firstly introduced to capture the local and global structures of high-dimensional polarimetric data; (2) a pre-trained deep FCN-8s model is transferred to extract the nonlinear deep multi-scale spatial information of PolSAR image; and (3) the shallow sparse and low-rank subspace features are integrated to boost the discrimination of deep spatial features. Then, the integrated hierarchical subspace features are used for subsequent classification combined with a discriminative model. Extensive experiments on three pieces of real PolSAR data indicate that the proposed method can achieve competitive performance, particularly in the case where the available training samples are limited. Full article
(This article belongs to the Special Issue Deep Learning for Remote Sensing)
Figures

Graphical abstract

Open AccessArticle A Fully Automatic Burnt Area Mapping Processor Based on AVHRR Imagery—A TIMELINE Thematic Processor
Remote Sens. 2018, 10(2), 341; https://doi.org/10.3390/rs10020341
Received: 9 January 2018 / Revised: 20 February 2018 / Accepted: 21 February 2018 / Published: 23 February 2018
PDF Full-text (19642 KB) | HTML Full-text | XML Full-text
Abstract
The German Aerospace Center’s (DLR) TIMELINE project (“Time Series Processing of Medium Resolution Earth Observation Data Assessing Long-Term Dynamics in our Natural Environment”) aims to develop an operational processing and data management environment to process 30 years of National Oceanic and Atmospheric Administration
[...] Read more.
The German Aerospace Center’s (DLR) TIMELINE project (“Time Series Processing of Medium Resolution Earth Observation Data Assessing Long-Term Dynamics in our Natural Environment”) aims to develop an operational processing and data management environment to process 30 years of National Oceanic and Atmospheric Administration (NOAA)—Advanced Very High-Resolution Radiometer (AVHRR) raw data into Level (L) 1b, L2, and L3 products. This article presents the current status of the fully automated L3 burnt area mapping processor, which is based on multi-temporal datasets. The advantages of the proposed approach are (I) the combined use of different indices to improve the classification result, (II) the provision of a fully automated processor, (III) the generation and usage of an up-to-date cloud-free pre-fire dataset, (IV) classification with adaptive thresholding, and (V) the assignment of five different probability levels to the burnt areas detected. The results of the AVHRR data-based burn scar mapping processor were validated with the Moderate Resolution Imaging Spectroradiometer (MODIS) burnt area product MCD64 at four different European study sites. In addition, the accuracy of the AVHRR-based classification and that of the MCD64 itself were assessed by means of Landsat imagery. Full article
Figures

Graphical abstract

Back to Top