Next Issue
Previous Issue

Table of Contents

Polymers, Volume 10, Issue 2 (February 2018)

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Cover Story (view full-size image) Well-dispersed tungsten disulfide inorganic nanotubes (INT-WS2) are used as a novel [...] Read more.
View options order results:
result details:
Displaying articles 1-121
Export citation of selected articles as:
Open AccessArticle Woven Fabrics Made of Auxetic Plied Yarns
Polymers 2018, 10(2), 226; https://doi.org/10.3390/polym10020226
Received: 24 January 2018 / Revised: 19 February 2018 / Accepted: 22 February 2018 / Published: 24 February 2018
Cited by 1 | PDF Full-text (9678 KB) | HTML Full-text | XML Full-text
Abstract
Auxetic plied yarns are specially constructed with two types of single yarns of different sizes and moduli. This paper investigates how to use these types of yarns to produce woven fabrics with auxetic effects. Four-ply auxetic yarns were first incorporated into a series
[...] Read more.
Auxetic plied yarns are specially constructed with two types of single yarns of different sizes and moduli. This paper investigates how to use these types of yarns to produce woven fabrics with auxetic effects. Four-ply auxetic yarns were first incorporated into a series of woven fabrics with different design parameters to study their auxetic behavior and percent open area during extension. Effects of auxetic plied yarn arrangement, single component yarn properties, weft yarn type, and weave structure were then evaluated. Additional double helical yarn (DHY) and 6-ply auxetic yarn woven fabrics were also made for comparison. The results show that the alternative arrangement of S- and Z-twisted 4-ply auxetic yarns in a woven fabric can generate a higher negative Poisson’s ratio (NPR) of the fabric. While the higher single stiff yarn modulus of auxetic yarn can result in greater NPR behavior, finer soft auxetic yarn does not necessarily generate such an effect. Weft yarns with low modulus and short float over the 4-ply auxetic yarns in fabric structure are favorable for producing high NPR behavior. The weft cover factor greatly affects the variation of the percent open area of the 4-ply auxetic yarn fabrics during extension. When different kinds of helical auxetic yarns (HAYs) are made into fabrics, the fabric made of DHY does not have the highest NPR effect but it has the highest percent open area, which increases with increasing tensile strain. Full article
(This article belongs to the Special Issue Textile and Textile-Based Materials)
Figures

Graphical abstract

Open AccessArticle Preparation and Characterization of Poly(ether-block-amide)/Polyethylene Glycol Composite Films with Temperature-Dependent Permeation
Polymers 2018, 10(2), 225; https://doi.org/10.3390/polym10020225
Received: 29 January 2018 / Revised: 21 February 2018 / Accepted: 22 February 2018 / Published: 24 February 2018
PDF Full-text (2136 KB) | HTML Full-text | XML Full-text
Abstract
A series of poly(ether-block-amide) (PEBAX)/polyethylene glycol (PEG) composite films (PBXPG) were prepared by solution casting technique. This study demonstrates how the incorporation of different molecular weight PEG into PEBAX can improve the as-prepared composite film performance in gas permeability as a function of
[...] Read more.
A series of poly(ether-block-amide) (PEBAX)/polyethylene glycol (PEG) composite films (PBXPG) were prepared by solution casting technique. This study demonstrates how the incorporation of different molecular weight PEG into PEBAX can improve the as-prepared composite film performance in gas permeability as a function of temperature. Additionally, we investigated the effect of PEG with different molecular weights on gas transport properties, morphologies, thermal properties, and water sorption. The thermal stability of the composite films increased with increasing molecular weight of PEG, whereas the water sorption and total surface energy decreased. As the temperature increased from 10 to 80 °C, the low (L)-PBXPG and medium (M)-PBXPG films showed a trend similar to the pure PEBAX film. However, the high (H)-PBXPG film with relatively high molecular weight exhibited a distinct permeation jump in the phase change region of H-PEG, which is related to the temperature dependent changes in the morphology structure such as crystallinity and the chemical affinity between the polymer film and gas molecule. Based on these results, it can be expected that H-PBXPG composite films can be used as self-ventilating materials in microwave cooking. Full article
(This article belongs to the Special Issue Polymers for Packaging Applications)
Figures

Figure 1

Open AccessArticle RAFT Polymerization of Tert-Butyldimethylsilyl Methacrylate: Kinetic Study and Determination of Rate Coefficients
Polymers 2018, 10(2), 224; https://doi.org/10.3390/polym10020224
Received: 28 January 2018 / Revised: 21 February 2018 / Accepted: 22 February 2018 / Published: 24 February 2018
PDF Full-text (2409 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Well-defined poly(tert-butyldimethylsilyl methacrylate)s (TBDMSMA) were prepared by the reversible addition-fragmentation chain transfer (RAFT) process using cyanoisopropyl dithiobenzoate (CPDB) as chain-transfer agents (CTA). The experimentally obtained molecular weight distributions are narrow and shift linearly with monomer conversion. Propagation rate coefficients (k
[...] Read more.
Well-defined poly(tert-butyldimethylsilyl methacrylate)s (TBDMSMA) were prepared by the reversible addition-fragmentation chain transfer (RAFT) process using cyanoisopropyl dithiobenzoate (CPDB) as chain-transfer agents (CTA). The experimentally obtained molecular weight distributions are narrow and shift linearly with monomer conversion. Propagation rate coefficients (kp) and termination rate coefficients (kt) for free radical polymerization of TBDMSMA have been determined for a range of temperature between 50 and 80 °C using the pulsed laser polymerization-size-exclusion chromatography (PLP-SEC) method and the kinetic method via steady-state rate measurement, respectively. The CPDB-mediated RAFT polymerization of TBDMSMA has been subjected to a combined experimental and PREDICI modeling study at 70 °C. The rate coefficient for the addition reaction to RAFT agent (kβ1, kβ2) and to polymeric RAFT agent (kβ) is estimated to be approximately 1.8 × 104 L·mol−1·s−1 and for the fragmentation reaction of intermediate RAFT radicals in the pre-equilibrium (k-β1, k-β2) and main equilibrium (k) is close to 2.0 × 10−2 s−1. The transfer rate coefficient (ktr) to cyanoisopropyl dithiobenzoate is found to be close to 9.0 × 103 L·mol−1·s−1 and the chain-transfer constant (Ctr) for CPDB-mediated RAFT polymerization of TBDMSMA is about 9.3. Full article
(This article belongs to the Special Issue RAFT Living Radical Polymerization and Self-Assembly)
Figures

Graphical abstract

Open AccessArticle Multi-Alkenylsilsesquioxanes as Comonomers and Active Species Modifiers of Metallocene Catalyst in Copolymerization with Ethylene
Polymers 2018, 10(2), 223; https://doi.org/10.3390/polym10020223
Received: 24 January 2018 / Revised: 16 February 2018 / Accepted: 22 February 2018 / Published: 24 February 2018
PDF Full-text (4860 KB) | HTML Full-text | XML Full-text
Abstract
The copolymers of ethylene (E) with open-caged iso-butyl-substituted tri-alkenyl-silsesquioxanes (POSS-6-3 and POSS-10-3) and phenyl-substituted tetra-alkenyl-silsesquioxane (POSS-10-4) were synthesized by copolymerization over the ansa-metallocene catalyst. The influence of the kind of silsesquioxane and of the copolymerization conditions on the reaction performance and on
[...] Read more.
The copolymers of ethylene (E) with open-caged iso-butyl-substituted tri-alkenyl-silsesquioxanes (POSS-6-3 and POSS-10-3) and phenyl-substituted tetra-alkenyl-silsesquioxane (POSS-10-4) were synthesized by copolymerization over the ansa-metallocene catalyst. The influence of the kind of silsesquioxane and of the copolymerization conditions on the reaction performance and on the properties of the copolymers was studied. In the case of copolymerization of E/POSS-6-3, the positive comonomer effect was observed, which was associated with the influence of POSS-6-3 on transformation of the bimetallic ion pair to the active catalytic species. Functionality of silsesquioxanes and polymerization parameters affected the polyhedral oligomeric silsesquioxanes (POSS) contents in the copolymers which varied in the range of 1.33–7.43 wt %. Tri-alkenyl-silsesquioxanes were incorporated into the polymer chain as pendant groups while the tetra-alkenyl-silsesquioxane derivative could act as a cross-linking agent which was proved by the changes in the contents of unsaturated end groups, by the glass transition temperature values, and by the gel contents (up to 81.3% for E/POSS-10-4). Incorporation of multi-alkenyl-POSS into the polymer chain affected also the melting and crystallization behaviors. Full article
(This article belongs to the Special Issue Olefin Polymerization and Polyolefin)
Figures

Graphical abstract

Open AccessArticle Effects of Particle Size and Surface Chemistry on the Dispersion of Graphite Nanoplates in Polypropylene Composites
Polymers 2018, 10(2), 222; https://doi.org/10.3390/polym10020222
Received: 8 December 2017 / Revised: 14 February 2018 / Accepted: 21 February 2018 / Published: 24 February 2018
PDF Full-text (3809 KB) | HTML Full-text | XML Full-text
Abstract
Carbon nanoparticles tend to form agglomerates with considerable cohesive strength, depending on particle morphology and chemistry, thus presenting different dispersion challenges. The present work studies the dispersion of three types of graphite nanoplates (GnP) with different flake sizes and bulk densities in a
[...] Read more.
Carbon nanoparticles tend to form agglomerates with considerable cohesive strength, depending on particle morphology and chemistry, thus presenting different dispersion challenges. The present work studies the dispersion of three types of graphite nanoplates (GnP) with different flake sizes and bulk densities in a polypropylene melt, using a prototype extensional mixer under comparable hydrodynamic stresses. The nanoparticles were also chemically functionalized by covalent bonding polymer molecules to their surface, and the dispersion of the functionalized GnP was studied. The effects of stress relaxation on dispersion were also analyzed. Samples were removed along the mixer length, and characterized by microscopy and dielectric spectroscopy. A lower dispersion rate was observed for GnP with larger surface area and higher bulk density. Significant re-agglomeration was observed for all materials when the deformation rate was reduced. The polypropylene-functionalized GnP, characterized by increased compatibility with the polymer matrix, showed similar dispersion effects, albeit presenting slightly higher dispersion levels. All the composites exhibit dielectric behavior, however, the alternate current (AC) conductivity is systematically higher for the composites with larger flake GnP. Full article
(This article belongs to the Special Issue Polymer Nanocomposites)
Figures

Graphical abstract

Open AccessArticle Synthesis and Crosslinking of Polyether-Based Main Chain Benzoxazine Polymers and Their Gas Separation Performance
Polymers 2018, 10(2), 221; https://doi.org/10.3390/polym10020221
Received: 28 December 2017 / Revised: 7 February 2018 / Accepted: 22 February 2018 / Published: 23 February 2018
PDF Full-text (2927 KB) | HTML Full-text | XML Full-text
Abstract
The poly(ethylene glycol)-based benzoxazine polymers were synthesized via a polycondensation reaction between Bisphenol-A, paraformaldehyde, and poly(ether diamine)/(Jeffamine®). The structures of the polymers were confirmed by proton nuclear magnetic resonance spectroscopy (1H-NMR), indicating the presence of a cyclic benzoxazine ring.
[...] Read more.
The poly(ethylene glycol)-based benzoxazine polymers were synthesized via a polycondensation reaction between Bisphenol-A, paraformaldehyde, and poly(ether diamine)/(Jeffamine®). The structures of the polymers were confirmed by proton nuclear magnetic resonance spectroscopy (1H-NMR), indicating the presence of a cyclic benzoxazine ring. The polymer solutions were casted on the glass plate and cross-linked via thermal treatment to produce tough and flexible films without using any external additives. Thermal properties and the crosslinking behaviour of these polymers were studied by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Single gas (H2, O2, N2, CO2, and CH4) transport properties of the crosslinked polymeric membranes were measured by the time-lag method. The crosslinked PEG-based polybenzoxazine membranes show improved selectivities for CO2/N2 and CO2/CH4 gas pairs. The good separation selectivities of these PEG-based polybenzoxazine materials suggest their utility as efficient thin film composite membranes for gas and liquid membrane separation technology. Full article
(This article belongs to the Special Issue Polymeric Membranes)
Figures

Graphical abstract

Open AccessArticle Adsorption of Polyelectrolyte onto Nanosilica Synthesized from Rice Husk: Characteristics, Mechanisms, and Application for Antibiotic Removal
Polymers 2018, 10(2), 220; https://doi.org/10.3390/polym10020220
Received: 22 December 2017 / Revised: 12 February 2018 / Accepted: 22 February 2018 / Published: 23 February 2018
Cited by 1 | PDF Full-text (4107 KB) | HTML Full-text | XML Full-text
Abstract
Adsorption of the polyelectrolyte polydiallyldimethylammonium chloride (PDADMAC) onto nanosilica (SiO2) fabricated from rice husk was studied in this work. Nanosilica was characterized by X-ray diffraction, Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Adsorption of PDADMAC onto SiO2 increased
[...] Read more.
Adsorption of the polyelectrolyte polydiallyldimethylammonium chloride (PDADMAC) onto nanosilica (SiO2) fabricated from rice husk was studied in this work. Nanosilica was characterized by X-ray diffraction, Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Adsorption of PDADMAC onto SiO2 increased with increasing pH because the negative charge of SiO2 is higher at high pH. Adsorption isotherms of PDADMAC onto silica at different KCl concentrations were fitted well by a two-step adsorption model. Adsorption mechanisms of PDADMAC onto SiO2 are discussed on the basis of surface charge change, evaluation by ζ potential, surface modification by FTIR measurements, and the adsorption isotherm. The application of PDADMAC adsorption onto SiO2 to remove amoxicillin antibiotic (AMX) was also studied. Experimental conditions such as contact time, pH, and adsorbent dosage for removal of AMX using SiO2 modified with PDADMAC were systematically optimized and found to be 180 min, pH 10, and 10 mg/mL, respectively. The removal efficiency of AMX using PDADMAC-modified SiO2 increased significantly from 19.1% to 92.3% under optimum adsorptive conditions. We indicate that PDADMAC-modified SiO2 rice husk is a novel adsorbent for removal of antibiotics from aqueous solution. Full article
(This article belongs to the Special Issue Polymer-Based Nano-Sorbent Materials)
Figures

Graphical abstract

Open AccessArticle Synthesis of Waterborne Polyurethane by the Telechelic α,ω-Di(hydroxy)poly(n-butyl acrylate)
Polymers 2018, 10(2), 219; https://doi.org/10.3390/polym10020219
Received: 26 January 2018 / Revised: 16 February 2018 / Accepted: 21 February 2018 / Published: 23 February 2018
PDF Full-text (2421 KB) | HTML Full-text | XML Full-text
Abstract
A key for the preparation of polyacrylate-based polyurethane is the synthesis of hydroxyl-terminated polyacrylate. To our knowledge, exactly one hydroxyl group of every polyacrylate chain has not been reported. The hydroxyl-terminated poly(butyl acrylate) (PBA) has been successfully synthesized by degenerative iodine transfer polymerization
[...] Read more.
A key for the preparation of polyacrylate-based polyurethane is the synthesis of hydroxyl-terminated polyacrylate. To our knowledge, exactly one hydroxyl group of every polyacrylate chain has not been reported. The hydroxyl-terminated poly(butyl acrylate) (PBA) has been successfully synthesized by degenerative iodine transfer polymerization (DITP) of the n-butyl acrylate (n-BA) using 4,4′-azobis(4-cyano-1-pentanol) (ACPO) and diiodoxylene (DIX) as initiator and chain transfer agent, respectively, and subsequently substituted reaction of the iodine-terminated PBA with β-mercaptoethanol in alkaline condition. The latter reaction was highly efficient, and the terminal iodine at the end of polymer chains were almost quantitatively transformed to a hydroxyl group. 2,2′-Azobis(isobutyronitrile) (AIBN) and ACPO were used as initiators in the DITPs of n-BA. The results demonstrated that they had a significant influence on the terminal groups of the formed polymer chains. The structure, molecular weight, and molecular weight distribution of the hydroxyl-terminated PBA have been studied by 1H, 13C NMR, and GPC results. The components of hydroxyl-terminated PBA were determined by MALDI-TOF MS spectra, and their formation is discussed. The broad molecular weight distribution of the PBA and the difference in the polymerization behaviors from typical living radical polymerization are explained based on the results of 1H NMR and MALDI-TOF MS spectra. The hydroxyl-terminated PBA has been successfully used in the preparation of PBA-based polyurethane dispersions (PUDs). The aqueous PUDs were stable, and based on the DSC results it can be said that the miscibility of hard segments with PBA chains was improved. Full article
(This article belongs to the Special Issue Tailored Polymer Synthesis by Advanced Polymerization Techniques)
Figures

Graphical abstract

Open AccessCommunication Nanosphere Lithography of Chitin and Chitosan with Colloidal and Self-Masking Patterning
Polymers 2018, 10(2), 218; https://doi.org/10.3390/polym10020218
Received: 15 January 2018 / Revised: 31 January 2018 / Accepted: 15 February 2018 / Published: 23 February 2018
Cited by 1 | PDF Full-text (3864 KB) | HTML Full-text | XML Full-text
Abstract
Complex surface topographies control, define, and determine the properties of insect cuticles. In some cases, these nanostructured materials are a direct extension of chitin-based cuticles. The cellular mechanisms that generate these elaborate chitin-based structures are unknown, and involve complicated cellular and biochemical “bottom-up”
[...] Read more.
Complex surface topographies control, define, and determine the properties of insect cuticles. In some cases, these nanostructured materials are a direct extension of chitin-based cuticles. The cellular mechanisms that generate these elaborate chitin-based structures are unknown, and involve complicated cellular and biochemical “bottom-up” processes. We demonstrated that a synthetic “top-down” fabrication technique—nanosphere lithography—generates surfaces of chitin or chitosan that mimic the arrangement of nanostructures found on the surface of certain insect wings and eyes. Chitin and chitosan are flexible and biocompatible abundant natural polymers, and are a sustainable resource. The fabrication of nanostructured chitin and chitosan materials enables the development of new biopolymer materials. Finally, we demonstrated that another property of chitin and chitosan—the ability to self-assemble nanosilver particles—enables a novel and powerful new tool for the nanosphere lithographic method: the ability to generate a self-masking thin film. The scalability of the nanosphere lithographic technique is a major limitation; however, the silver nanoparticle self-masking enables a one-step thin-film cast or masking process, which can be used to generate nanostructured surfaces over a wide range of surfaces and areas. Full article
(This article belongs to the Special Issue Advances in Chitin/Chitosan Characterization and Applications)
Figures

Graphical abstract

Open AccessReview Recent Developments in Graphene/Polymer Nanocomposites for Application in Polymer Solar Cells
Polymers 2018, 10(2), 217; https://doi.org/10.3390/polym10020217
Received: 9 January 2018 / Revised: 12 February 2018 / Accepted: 21 February 2018 / Published: 22 February 2018
Cited by 3 | PDF Full-text (2783 KB) | HTML Full-text | XML Full-text
Abstract
Graphene (G) and its derivatives, graphene oxide (GO) and reduced graphene oxide (rGO) have enormous potential for energy applications owing to their 2D structure, large specific surface area, high electrical and thermal conductivity, optical transparency, and huge mechanical strength combined with inherent flexibility.
[...] Read more.
Graphene (G) and its derivatives, graphene oxide (GO) and reduced graphene oxide (rGO) have enormous potential for energy applications owing to their 2D structure, large specific surface area, high electrical and thermal conductivity, optical transparency, and huge mechanical strength combined with inherent flexibility. The combination of G-based materials with polymers leads to new nanocomposites with enhanced structural and functional properties due to synergistic effects. This review briefly summarizes recent progress in the development of G/polymer nanocomposites for use in polymer solar cells (PSCs). These nanocomposites have been explored as transparent conducting electrodes (TCEs), active layers (ALs) and interfacial layers (IFLs) of PSCs. Photovoltaic parameters, such as the open-circuit voltage (Voc), short-circuit current density (Jsc), fill factor (FF) and power-conversion efficiency (PCE) are compared for different device structures. Finally, future perspectives are discussed. Full article
(This article belongs to the Special Issue Nanoparticle-Reinforced Polymers)
Figures

Figure 1

Open AccessArticle Mechanism Analysis of Selective Adsorption and Specific Recognition by Molecularly Imprinted Polymers of Ginsenoside Re
Polymers 2018, 10(2), 216; https://doi.org/10.3390/polym10020216
Received: 22 January 2018 / Revised: 18 February 2018 / Accepted: 20 February 2018 / Published: 22 February 2018
PDF Full-text (4148 KB) | HTML Full-text | XML Full-text
Abstract
In this article, the molecularly imprinted polymers (MIPs) of ginsenoside Re (Re) were synthesized by suspension polymerization with Re as the template molecule, methacrylic acid (MAA) as the functional monomers, and ethyl glycol dimethacrylate (EGDMA) as the crosslinker. The MIPs were characterized by
[...] Read more.
In this article, the molecularly imprinted polymers (MIPs) of ginsenoside Re (Re) were synthesized by suspension polymerization with Re as the template molecule, methacrylic acid (MAA) as the functional monomers, and ethyl glycol dimethacrylate (EGDMA) as the crosslinker. The MIPs were characterized by Fourier transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FESEM), and surface porosity detector, and the selective adsorption and specific recognition of MIPs were analyzed using the theory of kinetics and thermodynamics. The experimental results showed that compared with non-imprinted polymers (NIPs), MIPs had a larger specific surface area and special pore structure and that different from the Langmuir model of NIPs, the static adsorption isotherm of MIPs for Re was in good agreement with the Freundlich model based on the two adsorption properties of MIPs. The curves of the adsorption dynamics and the lines of kinetic correlation indicate that there was a fast and selective adsorption equilibrium for Re because of the affinity of MIPs to the template rather than its analogue of ginsenoside Rg1 (Rg1). The study of thermodynamics indicate that the adsorption was controlled by enthalpy and that MIPs had higher enthalpy and entropy than NIPs, which contributed to the specific recognition of MIPs. Full article
(This article belongs to the Special Issue Mechanics of Emerging Polymers with Unprecedented Networks)
Figures

Graphical abstract

Open AccessArticle Advantageous Microwave-Assisted Suzuki Polycondensation for the Synthesis of Aniline-Fluorene Alternate Copolymers as Molecular Model with Solvent Sensing Properties
Polymers 2018, 10(2), 215; https://doi.org/10.3390/polym10020215
Received: 18 December 2017 / Revised: 18 February 2018 / Accepted: 20 February 2018 / Published: 22 February 2018
Cited by 1 | PDF Full-text (1708 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Polymerization via Suzuki coupling under microwave (µW) irradiation has been studied for the synthesis of poly{1,4-(2/3-aminobenzene)-alt-2,7-(9,9-dihexylfluorene)} (PAF), chosen as molecular model. Briefly, µW-assisted procedures accelerated by two orders of magnitude the time required when using classical polymerization processes, and
[...] Read more.
Polymerization via Suzuki coupling under microwave (µW) irradiation has been studied for the synthesis of poly{1,4-(2/3-aminobenzene)-alt-2,7-(9,9-dihexylfluorene)} (PAF), chosen as molecular model. Briefly, µW-assisted procedures accelerated by two orders of magnitude the time required when using classical polymerization processes, and the production yield was increased (>95%). In contrast, although the sizes of the polymers that were obtained by non-conventional heating reactions were reproducible and adequate for most applications, with this methodology the molecular weight of final polymers were not increased with respect to conventional heating. Asymmetric orientation of the amine group within the monomer and the assignments of each dyad or regioregularity, whose values ranged from 38% to 95% with this molecule, were analysed using common NMR spectroscopic data. Additionally, the synthesis of a new cationic polyelectrolyte, poly{1,4-(2/3-aminobenzene)-co-alt-2,7-[9,9´-bis(6’’-N,N,N-trimethylammonium-hexyl)fluorene]} dibromide (PAFAm), from poly{1,4-(2/3-aminobenzene)-co-alt-2,7-[9,9´-bis(6’’-bromohexyl)fluorene]} (PAFBr) by using previously optimized conditions for µW-assisted heating procedures was reported. Finally, the characterization of the final products from these batches showed unkown interesting solvatochromic properties of the PAF molecule. The study of the solvatochromism phenomena, which was investigated as a function of the polarity of the solvents, showed a well-defined Lippert correlation, indicating that the emission shift observed in PAF might be due to its interaction with surrounding environment. Proven high sensitivity to changes of its environment makes PAF a promising candidate of sensing applications. Full article
(This article belongs to the Special Issue Tailored Polymer Synthesis by Advanced Polymerization Techniques)
Figures

Graphical abstract

Open AccessArticle Novel Amphiphilic, Biodegradable, Biocompatible, Thermo-Responsive ABA Triblock Copolymers Based on PCL and PEG Analogues via a Combination of ROP and RAFT: Synthesis, Characterization, and Sustained Drug Release from Self-Assembled Micelles
Polymers 2018, 10(2), 214; https://doi.org/10.3390/polym10020214
Received: 14 January 2018 / Revised: 13 February 2018 / Accepted: 14 February 2018 / Published: 22 February 2018
Cited by 1 | PDF Full-text (6940 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
Well-defined novel, linear, biodegradable, amphiphilic thermo-responsive ABA-type triblock copolymers, poly[2-(2-methoxyethoxy) ethyl methacrylate-co-oligo(ethylene glycol) methacrylate]-b-poly(ε-caprolactone)-b-poly[2-(2-methoxyethoxy) ethyl methacrylate-co-oligo(ethylene glycol) methacrylate] [P(MEO2MA-co-OEGMA)-b-PCL-b-P(MEO2MA-co-OEGMA)] (tBPs), were
[...] Read more.
Well-defined novel, linear, biodegradable, amphiphilic thermo-responsive ABA-type triblock copolymers, poly[2-(2-methoxyethoxy) ethyl methacrylate-co-oligo(ethylene glycol) methacrylate]-b-poly(ε-caprolactone)-b-poly[2-(2-methoxyethoxy) ethyl methacrylate-co-oligo(ethylene glycol) methacrylate] [P(MEO2MA-co-OEGMA)-b-PCL-b-P(MEO2MA-co-OEGMA)] (tBPs), were synthesized via a combination of ring-opening polymerization (ROP) of ε-caprolactone (εCL) and reversible addition-fragmentation chain transfer polymerization (RAFT) of MEO2MA and OEGMA comonomers. The chemical structures and compositions of these copolymers were characterized using Fourier transform infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance (1H NMR). The molecular weights of the copolymers were obtained using gel permeation chromatography (GPC) measurements. Thermo-responsive micelles were obtained by self-assembly of copolymers in aqueous medium. The temperature sensitivity and micelllization behavior of amphiphilic triblock copolymers solutions were studied by transmittance, fluorescence probe, surface tension, dynamic light scattering (DLS) and transmission electron microscopy (TEM). A hydrophobic drug, anethole, was encapsulated in micelles by using the dialysis method. The average particle sizes of drug-loaded micelles were determined by dynamic light scattering measurement. In vitro, the sustained release of the anethole was performed in pH 7.4 phosphate-buffered saline (PBS) at different temperatures. Results showed that the triblock copolymer’s micelles were quite effective in the encapsulation and controlled release of anethole. The vial inversion test demonstrated that the triblock copolymers could trigger the sol-gel transition which also depended on the temperature, and its sol-gel transition temperature gradually decreased with increasing concentration. The hydrogel system could also be used as a carrier of hydrophobic drugs in medicine. Full article
(This article belongs to the Special Issue Stimuli Responsive Polymers)
Figures

Graphical abstract

Open AccessReview Cosmetics and Cosmeceutical Applications of Chitin, Chitosan and Their Derivatives
Polymers 2018, 10(2), 213; https://doi.org/10.3390/polym10020213
Received: 4 February 2018 / Revised: 20 February 2018 / Accepted: 20 February 2018 / Published: 22 February 2018
PDF Full-text (995 KB) | HTML Full-text | XML Full-text
Abstract
Marine resources are well recognized for their biologically active substances with great potential applications in the cosmeceutical industry. Among the different compounds with a marine origin, chitin and its deacetylated derivative—chitosan—are of great interest to the cosmeceutical industry due to their unique biological
[...] Read more.
Marine resources are well recognized for their biologically active substances with great potential applications in the cosmeceutical industry. Among the different compounds with a marine origin, chitin and its deacetylated derivative—chitosan—are of great interest to the cosmeceutical industry due to their unique biological and technological properties. In this review, we explore the different functional roles of chitosan as a skin care and hair care ingredient, as an oral hygiene agent and as a carrier for active compounds, among others. The importance of the physico-chemical properties of the polymer in its use in cosmetics are particularly highlighted. Moreover, we analyse the market perspectives of this polymer and the presence in the market of chitosan-based products. Full article
(This article belongs to the Special Issue Advances in Chitin/Chitosan Characterization and Applications)
Figures

Graphical abstract

Open AccessArticle Special Resins for Stereolithography: In Situ Generation of Silver Nanoparticles
Polymers 2018, 10(2), 212; https://doi.org/10.3390/polym10020212
Received: 19 January 2018 / Revised: 18 February 2018 / Accepted: 19 February 2018 / Published: 22 February 2018
Cited by 1 | PDF Full-text (3305 KB) | HTML Full-text | XML Full-text
Abstract
The limited availability of materials with special properties represents one of the main limitations to a wider application of polymer-based additive manufacturing technologies. Filled resins are usually not suitable for vat photo-polymerization techniques such as stereolithography (SLA) or digital light processing (DLP) due
[...] Read more.
The limited availability of materials with special properties represents one of the main limitations to a wider application of polymer-based additive manufacturing technologies. Filled resins are usually not suitable for vat photo-polymerization techniques such as stereolithography (SLA) or digital light processing (DLP) due to a strong increment of viscosity derived from the presence of rigid particles within the reactive suspension. In the present paper, the possibility to in situ generate silver nanoparticles (AgNPs) starting from a homogeneous liquid system containing a well dispersed silver salt, which is subsequently reduced to metallic silver during stereolithographic process, is reported. The simultaneous photo-induced cross-linking of the acrylic resin produces a filled thermoset resin with thermal-mechanical properties significantly enhanced with respect to the unfilled resin, even at very low AgNPs concentrations. With this approach, the use of silver salts having carbon-carbon double bonds, such as silver acrylate and silver methacrylate, allows the formation of a nanocomposite structure in which the release of by-products is minimized due to the active role of all the reactive components in the three dimensional (3D)-printing processes. The synergy, between this nano-technology and the geometrical freedom offered by SLA, could open up a wide spectrum of potential applications for such a material, for example in the field of food packaging and medical and healthcare sectors, considering the well-known antimicrobial effects of silver nanoparticles. Full article
(This article belongs to the Special Issue Thermosets)
Figures

Graphical abstract

Back to Top