Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1190 KiB  
Review
ADP-Ribosylation Post-Translational Modification: An Overview with a Focus on RNA Biology and New Pharmacological Perspectives
by Giuseppe Manco, Giuseppina Lacerra, Elena Porzio and Giuliana Catara
Biomolecules 2022, 12(3), 443; https://doi.org/10.3390/biom12030443 - 13 Mar 2022
Cited by 10 | Viewed by 3974
Abstract
Cellular functions are regulated through the gene expression program by the transcription of new messenger RNAs (mRNAs), alternative RNA splicing, and protein synthesis. To this end, the post-translational modifications (PTMs) of proteins add another layer of complexity, creating a continuously fine-tuned regulatory network. [...] Read more.
Cellular functions are regulated through the gene expression program by the transcription of new messenger RNAs (mRNAs), alternative RNA splicing, and protein synthesis. To this end, the post-translational modifications (PTMs) of proteins add another layer of complexity, creating a continuously fine-tuned regulatory network. ADP-ribosylation (ADPr) is an ancient reversible modification of cellular macromolecules, regulating a multitude of key functional processes as diverse as DNA damage repair (DDR), transcriptional regulation, intracellular transport, immune and stress responses, and cell survival. Additionally, due to the emerging role of ADP-ribosylation in pathological processes, ADP-ribosyltransferases (ARTs), the enzymes involved in ADPr, are attracting growing interest as new drug targets. In this review, an overview of human ARTs and their related biological functions is provided, mainly focusing on the regulation of ADP-ribosyltransferase Diphtheria toxin-like enzymes (ARTD)-dependent RNA functions. Finally, in order to unravel novel gene functional relationships, we propose the analysis of an inventory of human gene clusters, including ARTDs, which share conserved sequences at 3′ untranslated regions (UTRs). Full article
Show Figures

Graphical abstract

16 pages, 5471 KiB  
Article
Antagonistic L1 Adhesion Molecule Mimetic Compounds Inhibit Glioblastoma Cell Migration In Vitro
by Vini Nagaraj, Mirai Mikhail, Micol Baronio, Alessia Gatto, Ashana Nayak, Thomas Theis, Ugo Cavallaro and Melitta Schachner
Biomolecules 2022, 12(3), 439; https://doi.org/10.3390/biom12030439 - 12 Mar 2022
Cited by 5 | Viewed by 2716
Abstract
Cell adhesion molecule L1 is a cell surface glycoprotein that promotes neuronal cell migration, fosters regeneration after spinal cord injury and ameliorates the consequences of neuronal degeneration in mouse and zebrafish models. Counter-indicative features of L1 were found in tumor progression: the more [...] Read more.
Cell adhesion molecule L1 is a cell surface glycoprotein that promotes neuronal cell migration, fosters regeneration after spinal cord injury and ameliorates the consequences of neuronal degeneration in mouse and zebrafish models. Counter-indicative features of L1 were found in tumor progression: the more L1 is expressed, the more tumor cells migrate and increase their metastatic potential. L1′s metastatic potential is further evidenced by its promotion of epithelial–mesenchymal transition, endothelial cell transcytosis and resistance to chemo- and radiotherapy. These unfortunate features are indicated by observations that cells that normally do not express L1 are induced to express it when becoming malignant. With the aim to ameliorate the devastating functions of L1 in tumors, we designed an alternative approach to counteract tumor cell migration. Libraries of small organic compounds were screened using the ELISA competition approach similar to the one that we used for identifying L1 agonistic mimetics. Whereas in the former approach, a function-triggering monoclonal antibody was used for screening libraries, we here used the function-inhibiting monoclonal antibody 324 that reduces the migration of neurons. We now show that the L1 antagonistic mimetics anagrelide, 2-hydroxy-5-fluoropyrimidine and mestranol inhibit the migration of cultured tumor cells in an L1-dependent manner, raising hopes for therapy. Full article
Show Figures

Figure 1

26 pages, 4898 KiB  
Review
The Mechanisms of Restenosis and Relevance to Next Generation Stent Design
by Jessie Clare, Justin Ganly, Christina A. Bursill, Huseyin Sumer, Peter Kingshott and Judy B. de Haan
Biomolecules 2022, 12(3), 430; https://doi.org/10.3390/biom12030430 - 10 Mar 2022
Cited by 30 | Viewed by 5578
Abstract
Stents are lifesaving mechanical devices that re-establish essential blood flow to the coronary circulation after significant vessel occlusion due to coronary vessel disease or thrombolytic blockade. Improvements in stent surface engineering over the last 20 years have seen significant reductions in complications arising [...] Read more.
Stents are lifesaving mechanical devices that re-establish essential blood flow to the coronary circulation after significant vessel occlusion due to coronary vessel disease or thrombolytic blockade. Improvements in stent surface engineering over the last 20 years have seen significant reductions in complications arising due to restenosis and thrombosis. However, under certain conditions such as diabetes mellitus (DM), the incidence of stent-mediated complications remains 2–4-fold higher than seen in non-diabetic patients. The stents with the largest market share are designed to target the mechanisms behind neointimal hyperplasia (NIH) through anti-proliferative drugs that prevent the formation of a neointima by halting the cell cycle of vascular smooth muscle cells (VSMCs). Thrombosis is treated through dual anti-platelet therapy (DAPT), which is the continual use of aspirin and a P2Y12 inhibitor for 6–12 months. While the most common stents currently in use are reasonably effective at treating these complications, there is still significant room for improvement. Recently, inflammation and redox stress have been identified as major contributing factors that increase the risk of stent-related complications following percutaneous coronary intervention (PCI). The aim of this review is to examine the mechanisms behind inflammation and redox stress through the lens of PCI and its complications and to establish whether tailored targeting of these key mechanistic pathways offers improved outcomes for patients, particularly those where stent placement remains vulnerable to complications. In summary, our review highlights the most recent and promising research being undertaken in understanding the mechanisms of redox biology and inflammation in the context of stent design. We emphasize the benefits of a targeted mechanistic approach to decrease all-cause mortality, even in patients with diabetes. Full article
Show Figures

Figure 1

29 pages, 1310 KiB  
Review
Nuclear-Mitochondrial Interactions
by Brittni R. Walker and Carlos T. Moraes
Biomolecules 2022, 12(3), 427; https://doi.org/10.3390/biom12030427 - 10 Mar 2022
Cited by 43 | Viewed by 6633
Abstract
Mitochondria, the cell’s major energy producers, also act as signaling hubs, interacting with other organelles both directly and indirectly. Despite having its own circular genome, the majority of mitochondrial proteins are encoded by nuclear DNA. To respond to changes in cell physiology, the [...] Read more.
Mitochondria, the cell’s major energy producers, also act as signaling hubs, interacting with other organelles both directly and indirectly. Despite having its own circular genome, the majority of mitochondrial proteins are encoded by nuclear DNA. To respond to changes in cell physiology, the mitochondria must send signals to the nucleus, which can, in turn, upregulate gene expression to alter metabolism or initiate a stress response. This is known as retrograde signaling. A variety of stimuli and pathways fall under the retrograde signaling umbrella. Mitochondrial dysfunction has already been shown to have severe implications for human health. Disruption of retrograde signaling, whether directly associated with mitochondrial dysfunction or cellular environmental changes, may also contribute to pathological deficits. In this review, we discuss known signaling pathways between the mitochondria and the nucleus, examine the possibility of direct contacts, and identify pathological consequences of an altered relationship. Full article
Show Figures

Figure 1

21 pages, 2987 KiB  
Review
Roles of Cullin-RING Ubiquitin Ligases in Cardiovascular Diseases
by Stephanie Diaz, Kankan Wang, Benita Sjögren and Xing Liu
Biomolecules 2022, 12(3), 416; https://doi.org/10.3390/biom12030416 - 8 Mar 2022
Cited by 11 | Viewed by 4874
Abstract
Maintenance of protein homeostasis is crucial for virtually every aspect of eukaryotic biology. The ubiquitin-proteasome system (UPS) represents a highly regulated quality control machinery that protects cells from a variety of stress conditions as well as toxic proteins. A large body of evidence [...] Read more.
Maintenance of protein homeostasis is crucial for virtually every aspect of eukaryotic biology. The ubiquitin-proteasome system (UPS) represents a highly regulated quality control machinery that protects cells from a variety of stress conditions as well as toxic proteins. A large body of evidence has shown that UPS dysfunction contributes to the pathogenesis of cardiovascular diseases. This review highlights the latest findings regarding the physiological and pathological roles of cullin-RING ubiquitin ligases (CRLs), an essential player in the UPS, in the cardiovascular system. To inspire potential therapeutic invention, factors regulating CRL activities are also discussed. Full article
(This article belongs to the Special Issue The Ubiquitin Proteasome System (UPS) in Pathogenesis and Diseases)
Show Figures

Figure 1

13 pages, 3014 KiB  
Article
β-Sheet to Random Coil Transition in Self-Assembling Peptide Scaffolds Promotes Proteolytic Degradation
by Elsa Genové, Nausika Betriu and Carlos E. Semino
Biomolecules 2022, 12(3), 411; https://doi.org/10.3390/biom12030411 - 7 Mar 2022
Cited by 7 | Viewed by 2804
Abstract
One of the most desirable properties that biomaterials designed for tissue engineering or drug delivery applications should fulfill is biodegradation and resorption without toxicity. Therefore, there is an increasing interest in the development of biomaterials able to be enzymatically degraded once implanted at [...] Read more.
One of the most desirable properties that biomaterials designed for tissue engineering or drug delivery applications should fulfill is biodegradation and resorption without toxicity. Therefore, there is an increasing interest in the development of biomaterials able to be enzymatically degraded once implanted at the injury site or once delivered to the target organ. In this paper, we demonstrate the protease sensitivity of self-assembling amphiphilic peptides, in particular, RAD16-I (AcN-RADARADARADARADA-CONH2), which contains four potential cleavage sites for trypsin. We detected that when subjected to thermal denaturation, the peptide secondary structure suffers a transition from β-sheet to random coil. We also used Matrix-Assisted Laser Desorption/Ionization-Time-Of-Flight (MALDI-TOF) to detect the proteolytic breakdown products of samples subjected to incubation with trypsin as well as atomic force microscopy (AFM) to visualize the effect of the degradation on the nanofiber scaffold. Interestingly, thermally treated samples had a higher extent of degradation than non-denatured samples, suggesting that the transition from β-sheet to random coil leaves the cleavage sites accessible and susceptible to protease degradation. These results indicate that the self-assembling peptide can be reduced to short peptide sequences and, subsequently, degraded to single amino acids, constituting a group of naturally biodegradable materials optimal for their application in tissue engineering and regenerative medicine. Full article
(This article belongs to the Special Issue Biomolecules and Materials Based Approaches in Biomedical Field)
Show Figures

Graphical abstract

16 pages, 2424 KiB  
Article
Evidence for Enhanced Efficacy of Passive Immunotherapy against Beta-Amyloid in CD33-Negative 5xFAD Mice
by Kathrin Gnoth, Stefanie Geissler, Julia Feldhaus, Nadine Taudte, Victoria Ilse, Sebastian Zürner, Sebastian Greiser, Ulf-Dietrich Braumann, Jens-Ulrich Rahfeld, Holger Cynis and Stephan Schilling
Biomolecules 2022, 12(3), 399; https://doi.org/10.3390/biom12030399 - 4 Mar 2022
Cited by 1 | Viewed by 2932
Abstract
Passive immunotherapy is a very promising approach for the treatment of Alzheimer’s disease (AD). Among the different antibodies under development, those targeting post-translationally modified Aβ peptides might combine efficient reduction in beta-amyloid accompanied by lower sequestration in peripheral compartments and thus anticipated and [...] Read more.
Passive immunotherapy is a very promising approach for the treatment of Alzheimer’s disease (AD). Among the different antibodies under development, those targeting post-translationally modified Aβ peptides might combine efficient reduction in beta-amyloid accompanied by lower sequestration in peripheral compartments and thus anticipated and reduced treatment-related side effects. In that regard, we recently demonstrated that the antibody-mediated targeting of isoD7-modified Aβ peptides leads to the attenuation of AD-like amyloid pathology in 5xFAD mice. In order to assess novel strategies to enhance the efficacy of passive vaccination approaches, we investigated the role of CD33 for Aβ phagocytosis in transgenic mice treated with an isoD7-Aβ antibody. We crossbred 5xFAD transgenic mice with CD33 knock out (CD33KO) mice and compared the amyloid pathology in the different genotypes of the crossbreds. The knockout of CD33 in 5xFAD mice leads to a significant reduction in Aβ plaques and concomitant rescue of behavioral deficits. Passive immunotherapy of 5xFAD/CD33KO showed a significant increase in plaque-surrounding microglia compared to 5xFAD treated with the antibody. Additionally, we observed a stronger lowering of Aβ plaque load after passive immunotherapy in 5xFAD/CD33KO mice. The data suggest an additive effect of passive immunotherapy and CD33KO in terms of lowering Aβ pathology. Hence, a combination of CD33 antagonists and monoclonal antibodies might represent a strategy to enhance efficacy of passive immunotherapy in AD. Full article
Show Figures

Figure 1

13 pages, 1597 KiB  
Review
Amino Acid Signaling for TOR in Eukaryotes: Sensors, Transducers, and a Sustainable Agricultural fuTORe
by Nanticha Lutt and Jacob O. Brunkard
Biomolecules 2022, 12(3), 387; https://doi.org/10.3390/biom12030387 - 2 Mar 2022
Cited by 13 | Viewed by 3805
Abstract
Eukaryotic cells monitor and regulate metabolism through the atypical protein kinase target of rapamycin (TOR) regulatory hub. TOR is activated by amino acids in animals and fungi through molecular signaling pathways that have been extensively defined in the past ten years. Very recently, [...] Read more.
Eukaryotic cells monitor and regulate metabolism through the atypical protein kinase target of rapamycin (TOR) regulatory hub. TOR is activated by amino acids in animals and fungi through molecular signaling pathways that have been extensively defined in the past ten years. Very recently, several studies revealed that TOR is also acutely responsive to amino acid metabolism in plants, but the mechanisms of amino acid sensing are not yet established. In this review, we summarize these discoveries, emphasizing the diversity of amino acid sensors in human cells and highlighting pathways that are indirectly sensitive to amino acids, i.e., how TOR monitors changes in amino acid availability without a bona fide amino acid sensor. We then discuss the relevance of these model discoveries to plant biology. As plants can synthesize all proteinogenic amino acids from inorganic precursors, we focus on the possibility that TOR senses both organic metabolites and inorganic nutrients. We conclude that an evolutionary perspective on nutrient sensing by TOR benefits both agricultural and biomedical science, contributing to ongoing efforts to generate crops for a sustainable agricultural future. Full article
(This article belongs to the Collection TOR Signaling Pathway)
Show Figures

Figure 1

17 pages, 1199 KiB  
Review
Potential of Using Infrapatellar–Fat–Pad–Derived Mesenchymal Stem Cells for Therapy in Degenerative Arthritis: Chondrogenesis, Exosomes, and Transcription Regulation
by Hsiu-Jung Liao, Chih-Hung Chang, Chi-Ying F. Huang and Hui-Ting Chen
Biomolecules 2022, 12(3), 386; https://doi.org/10.3390/biom12030386 - 1 Mar 2022
Cited by 12 | Viewed by 4560
Abstract
Infrapatellar fat pad–derived mesenchymal stem cells (IPFP-MSCs) are a type of adipose-derived stem cell (ADSC). They potentially contribute to cartilage regeneration and modulation of the immune microenvironment in patients with osteoarthritis (OA). The ability of IPFP-MSCs to increase chondrogenic capacity has been reported [...] Read more.
Infrapatellar fat pad–derived mesenchymal stem cells (IPFP-MSCs) are a type of adipose-derived stem cell (ADSC). They potentially contribute to cartilage regeneration and modulation of the immune microenvironment in patients with osteoarthritis (OA). The ability of IPFP-MSCs to increase chondrogenic capacity has been reported to be greater, less age dependent, and less affected by inflammatory changes than that of other MSCs. Transcription-regulatory factors strictly regulate the cartilage differentiation of MSCs. However, few studies have explored the effect of transcriptional factors on IPFP-MSC-based neocartilage formation, cartilage engineering, and tissue functionality during and after chondrogenesis. Instead of intact MSCs, MSC-derived extracellular vesicles could be used for the treatment of OA. Furthermore, exosomes are increasingly being considered the principal therapeutic agent in MSC secretions that is responsible for the regenerative and immunomodulatory functions of MSCs in cartilage repair. The present study provides an overview of advancements in enhancement strategies for IPFP-MSC chondrogenic differentiation, including the effects of transcriptional factors, the modulation of released exosomes, delivery mechanisms for MSCs, and ethical and regulatory points concerning the development of MSC products. This review will contribute to the understanding of the IPFP-MSC chondrogenic differentiation process and enable the improvement of IPFP-MSC-based cartilage tissue engineering. Full article
(This article belongs to the Collection Mesenchymal Stem Cell Fate and Potential Therapy)
Show Figures

Figure 1

51 pages, 5141 KiB  
Article
IMGT®Homo sapiens IG and TR Loci, Gene Order, CNV and Haplotypes: New Concepts as a Paradigm for Jawed Vertebrates Genome Assemblies
by Marie-Paule Lefranc and Gérard Lefranc
Biomolecules 2022, 12(3), 381; https://doi.org/10.3390/biom12030381 - 28 Feb 2022
Cited by 6 | Viewed by 3406
Abstract
IMGT®, the international ImMunoGeneTics information system®, created in 1989, by Marie-Paule Lefranc (Université de Montpellier and CNRS), marked the advent of immunoinformatics, a new science which emerged at the interface between immunogenetics and bioinformatics for the study of the [...] Read more.
IMGT®, the international ImMunoGeneTics information system®, created in 1989, by Marie-Paule Lefranc (Université de Montpellier and CNRS), marked the advent of immunoinformatics, a new science which emerged at the interface between immunogenetics and bioinformatics for the study of the adaptive immune responses. IMGT® is based on a standardized nomenclature of the immunoglobulin (IG) and T cell receptor (TR) genes and alleles from fish to humans and on the IMGT unique numbering for the variable (V) and constant (C) domains of the immunoglobulin superfamily (IgSF) of vertebrates and invertebrates, and for the groove (G) domain of the major histocompatibility (MH) and MH superfamily (MhSF) proteins. IMGT® comprises 7 databases, 17 tools and more than 25,000 pages of web resources for sequences, genes and structures, based on the IMGT Scientific chart rules generated from the IMGT-ONTOLOGY axioms and concepts. IMGT® reference directories are used for the analysis of the NGS high-throughput expressed IG and TR repertoires (natural, synthetic and/or bioengineered) and for bridging sequences, two-dimensional (2D) and three-dimensional (3D) structures. This manuscript focuses on the IMGT®Homo sapiens IG and TR loci, gene order, copy number variation (CNV) and haplotypes new concepts, as a paradigm for jawed vertebrates genome assemblies. Full article
(This article belongs to the Collection Feature Papers in Synthetic Biology and Bioengineering)
Show Figures

Figure 1

19 pages, 3457 KiB  
Review
The Role of Membrane Lipids in Light-Activation of Drosophila TRP Channels
by Rita Gutorov, Ben Katz, Elisheva Rhodes-Mordov, Rachel Zaguri, Tal Brandwine-Shemmer and Baruch Minke
Biomolecules 2022, 12(3), 382; https://doi.org/10.3390/biom12030382 - 28 Feb 2022
Cited by 2 | Viewed by 3511
Abstract
Transient Receptor Potential (TRP) channels constitute a large superfamily of polymodal channel proteins with diverse roles in many physiological and sensory systems that function both as ionotropic and metabotropic receptors. From the early days of TRP channel discovery, membrane lipids were suggested to [...] Read more.
Transient Receptor Potential (TRP) channels constitute a large superfamily of polymodal channel proteins with diverse roles in many physiological and sensory systems that function both as ionotropic and metabotropic receptors. From the early days of TRP channel discovery, membrane lipids were suggested to play a fundamental role in channel activation and regulation. A prominent example is the Drosophila TRP and TRP-like (TRPL) channels, which are predominantly expressed in the visual system of Drosophila. Light activation of the TRP and TRPL channels, the founding members of the TRP channel superfamily, requires activation of phospholipase Cβ (PLC), which hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) into Diacylglycerol (DAG) and Inositol 1, 4,5-trisphosphate (IP3). However, the events required for channel gating downstream of PLC activation are still under debate and led to several hypotheses regarding the mechanisms by which lipids gate the channels. Despite many efforts, compelling evidence of the involvement of DAG accumulation, PIP2 depletion or IP3-mediated Ca2+ release in light activation of the TRP/TRPL channels are still lacking. Exogeneous application of poly unsaturated fatty acids (PUFAs), a product of DAG hydrolysis was demonstrated as an efficient way to activate the Drosophila TRP/TRPL channels. However, compelling evidence for the involvement of PUFAs in physiological light-activation of the TRP/TRPL channels is still lacking. Light-induced mechanical force generation was measured in photoreceptor cells prior to channel opening. This mechanical force depends on PLC activity, suggesting that the enzymatic activity of PLC converting PIP2 into DAG generates membrane tension, leading to mechanical gating of the channels. In this review, we will present the roles of membrane lipids in light activation of Drosophila TRP channels and present the many advantages of this model system in the exploration of TRP channel activation under physiological conditions. Full article
(This article belongs to the Special Issue Lipid-Gating and Lipid-Protein Interactions in Ion Channels)
Show Figures

Figure 1

20 pages, 2822 KiB  
Article
Recognition of ATT Triplex and DNA:RNA Hybrid Structures by Benzothiazole Ligands
by Iva Zonjić, Lidija-Marija Tumir, Ivo Crnolatac, Filip Šupljika, Livio Racané, Sanja Tomić and Marijana Radić Stojković
Biomolecules 2022, 12(3), 374; https://doi.org/10.3390/biom12030374 - 27 Feb 2022
Cited by 3 | Viewed by 3400
Abstract
Interactions of an array of nucleic acid structures with a small series of benzothiazole ligands (bis-benzothiazolyl-pyridines—group 1, 2-thienyl/2-benzothienyl-substituted 6-(2-imidazolinyl)benzothiazoles—group 2, and three 2-aryl/heteroaryl-substituted 6-(2-imidazolinyl)benzothiazoles—group 3) were screened by competition dialysis. Due to the involvement of DNA:RNA hybrids and triplex helices in many essential [...] Read more.
Interactions of an array of nucleic acid structures with a small series of benzothiazole ligands (bis-benzothiazolyl-pyridines—group 1, 2-thienyl/2-benzothienyl-substituted 6-(2-imidazolinyl)benzothiazoles—group 2, and three 2-aryl/heteroaryl-substituted 6-(2-imidazolinyl)benzothiazoles—group 3) were screened by competition dialysis. Due to the involvement of DNA:RNA hybrids and triplex helices in many essential functions in cells, this study’s main aim is to detect benzothiazole-based moieties with selective binding or spectroscopic response to these nucleic structures compared to regular (non-hybrid) DNA and RNA duplexes and single-stranded forms. Complexes of nucleic acids and benzothiazoles, selected by this method, were characterized by UV/Vis, fluorescence and circular dichroism (CD) spectroscopy, isothermal titration calorimetry, and molecular modeling. Two compounds (1 and 6) from groups 1 and 2 demonstrated the highest affinities against 13 nucleic acid structures, while another compound (5) from group 2, despite lower affinities, yielded higher selectivity among studied compounds. Compound 1 significantly inhibited RNase H. Compound 6 could differentiate between B- (binding of 6 dimers inside minor groove) and A-type (intercalation) helices by an induced CD signal, while both 5 and 6 selectively stabilized ATT triplex in regard to AT duplex. Compound 3 induced strong condensation-like changes in CD spectra of AT-rich DNA sequences. Full article
(This article belongs to the Special Issue Polynucleotides)
Show Figures

Graphical abstract

15 pages, 1350 KiB  
Review
Metallothionein and Cadmium Toxicology—Historical Review and Commentary
by Monica Nordberg and Gunnar F. Nordberg
Biomolecules 2022, 12(3), 360; https://doi.org/10.3390/biom12030360 - 24 Feb 2022
Cited by 92 | Viewed by 6410
Abstract
More than one and a half centuries ago, adverse human health effects were reported after use of a cadmium-containing silver polishing agent. Long-term cadmium exposure gives rise to kidney or bone disease, reproductive toxicity and cancer in animals and humans. At present, high [...] Read more.
More than one and a half centuries ago, adverse human health effects were reported after use of a cadmium-containing silver polishing agent. Long-term cadmium exposure gives rise to kidney or bone disease, reproductive toxicity and cancer in animals and humans. At present, high human exposures to cadmium occur in small-scale mining, underlining the need for preventive measures. This is particularly urgent in view of the growing demand for minerals and metals in global climate change mitigation. This review deals with a specific part of cadmium toxicology that is important for understanding when toxic effects appear and, thus, is crucial for risk assessment. The discovery of the low-molecular-weight protein metallothionein (MT) in 1957 was an important milestone because, when this protein binds cadmium, it modifies cellular cadmium toxicity. The present authors contributed evidence in the 1970s concerning cadmium binding to MT and synthesis of the protein in tissues. We showed that binding of cadmium to metallothionein in tissues prevented some toxic effects, but that metallothionein can increase the transport of cadmium to the kidneys. Special studies showed the importance of the Cd/Zn ratio in MT for expression of toxicity in the kidneys. We also developed models of cadmium toxicokinetics based on our MT-related findings. This model combined with estimates of tissue levels giving rise to toxicity, made it possible to calculate expected risks in relation to exposure. Other scientists developed these models further and international organizations have successfully used these amended models in recent publications. Our contributions in recent decades included studies in humans of MT-related biomarkers showing the importance of MT gene expression in lymphocytes and MT autoantibodies for risks of Cd-related adverse effects in cadmium-exposed population groups. In a study of the impact of zinc status on the risk of kidney dysfunction in a cadmium-exposed group, the risks were low when zinc status was good and high when zinc status was poor. The present review summarizes this evidence in a risk assessment context and calls for its application in order to improve preventive measures against adverse effects of cadmium exposures in humans and animals. Full article
(This article belongs to the Special Issue Toxic and Essential Metals in Human Health and Disease 2021)
Show Figures

Figure 1

15 pages, 6819 KiB  
Article
Correlation of Serum Acylcarnitines with Clinical Presentation and Severity of Coronary Artery Disease
by Olga Deda, Eleftherios Panteris, Thomas Meikopoulos, Olga Begou, Thomai Mouskeftara, Efstratios Karagiannidis, Andreas S. Papazoglou, Georgios Sianos, Georgios Theodoridis and Helen Gika
Biomolecules 2022, 12(3), 354; https://doi.org/10.3390/biom12030354 - 23 Feb 2022
Cited by 19 | Viewed by 3004
Abstract
Recent studies support that acylcarnitines exert a significant role in cardiovascular disease development and progression. The aim of this metabolomics-based study was to investigate the association of serum acylcarnitine levels with coronary artery disease (CAD) severity, as assessed via SYNTAX Score. Within the [...] Read more.
Recent studies support that acylcarnitines exert a significant role in cardiovascular disease development and progression. The aim of this metabolomics-based study was to investigate the association of serum acylcarnitine levels with coronary artery disease (CAD) severity, as assessed via SYNTAX Score. Within the context of the prospective CorLipid trial (NCT04580173), the levels of 13 circulating acylcarnitines were accurately determined through a newly developed HILIC-MS/MS method in 958 patients undergoing coronary angiography in the AHEPA University Hospital of Thessaloniki, Greece. Patients presenting with acute coronary syndrome had significantly lower median acylcarnitine C8, C10, C16, C18:1 and C18:2 values, compared to patients with chronic coronary syndrome (p = 0.012, 0.007, 0.018, 0.011 and <0.001, respectively). Among CAD subgroups, median C5 levels were significantly decreased in unstable angina compared to STEMI (p = 0.026), while median C10, C16, C18:1 and C18:2 levels were higher in stable angina compared to STEMI (p = 0.019 p = 0.012, p = 0.013 and p < 0.001, respectively). Moreover, median C2, C3, C4 and C8 levels were significantly elevated in patients with diabetes mellitus (p < 0.001, <0.001, 0.029 and 0.011, respectively). Moreover, short-chain acylcarnitine C2, C4, C5 and C6 levels were elevated in patients with heavier calcification and lower left ventricular ejection fraction (LVEF) % (all p-values less than 0.05). With regard to CAD severity, median C4 and C5 levels were elevated and C16 and C18:2 levels were reduced in the high CAD complexity group with SYNTAX Score > 22 (p = 0.002, 0.024, 0.044 and 0.012, respectively), indicating a potential prognostic capability of those metabolites and of the ratio C4/C18:2 for the prediction of CAD severity. In conclusion, serum acylcarnitines could serve as clinically useful biomarkers leading to a more individualized management of patients with CAD, once further clinically oriented metabolomics-based studies provide similar evidence. Full article
Show Figures

Graphical abstract

12 pages, 901 KiB  
Review
Glucose- and Non-Glucose-Induced Mitochondrial Dysfunction in Diabetic Kidney Disease
by Marie Ito, Margaret Zvido Gurumani, Sandra Merscher and Alessia Fornoni
Biomolecules 2022, 12(3), 351; https://doi.org/10.3390/biom12030351 - 23 Feb 2022
Cited by 16 | Viewed by 3633
Abstract
Mitochondrial dysfunction plays an important role in the pathogenesis and progression of diabetic kidney disease (DKD). In this review, we will discuss mitochondrial dysfunction observed in preclinical models of DKD as well as in clinical DKD with a focus on oxidative phosphorylation (OXPHOS), [...] Read more.
Mitochondrial dysfunction plays an important role in the pathogenesis and progression of diabetic kidney disease (DKD). In this review, we will discuss mitochondrial dysfunction observed in preclinical models of DKD as well as in clinical DKD with a focus on oxidative phosphorylation (OXPHOS), mitochondrial reactive oxygen species (mtROS), biogenesis, fission and fusion, mitophagy and urinary mitochondrial biomarkers. Both glucose- and non-glucose-induced mitochondrial dysfunction will be discussed. In terms of glucose-induced mitochondrial dysfunction, the energetic shift from OXPHOS to aerobic glycolysis, called the Warburg effect, occurs and the resulting toxic intermediates of glucose metabolism contribute to DKD-induced injury. In terms of non-glucose-induced mitochondrial dysfunction, we will review the roles of lipotoxicity, hypoxia and vasoactive pathways, including endothelin-1 (Edn1)/Edn1 receptor type A signaling pathways. Although the relative contribution of each of these pathways to DKD remains unclear, the goal of this review is to highlight the complexity of mitochondrial dysfunction in DKD and to discuss how markers of mitochondrial dysfunction could help us stratify patients at risk for DKD. Full article
(This article belongs to the Special Issue Redox Imbalance and Mitochondrial Abnormalities in Kidney Disease)
Show Figures

Figure 1

24 pages, 2687 KiB  
Review
Nutrient Regulation of Pancreatic Islet β-Cell Secretory Capacity and Insulin Production
by Kristen E. Rohli, Cierra K. Boyer, Sandra E. Blom and Samuel B. Stephens
Biomolecules 2022, 12(2), 335; https://doi.org/10.3390/biom12020335 - 20 Feb 2022
Cited by 18 | Viewed by 5390
Abstract
Pancreatic islet β-cells exhibit tremendous plasticity for secretory adaptations that coordinate insulin production and release with nutritional demands. This essential feature of the β-cell can allow for compensatory changes that increase secretory output to overcome insulin resistance early in Type 2 diabetes (T2D). [...] Read more.
Pancreatic islet β-cells exhibit tremendous plasticity for secretory adaptations that coordinate insulin production and release with nutritional demands. This essential feature of the β-cell can allow for compensatory changes that increase secretory output to overcome insulin resistance early in Type 2 diabetes (T2D). Nutrient-stimulated increases in proinsulin biosynthesis may initiate this β-cell adaptive compensation; however, the molecular regulators of secretory expansion that accommodate the increased biosynthetic burden of packaging and producing additional insulin granules, such as enhanced ER and Golgi functions, remain poorly defined. As these adaptive mechanisms fail and T2D progresses, the β-cell succumbs to metabolic defects resulting in alterations to glucose metabolism and a decline in nutrient-regulated secretory functions, including impaired proinsulin processing and a deficit in mature insulin-containing secretory granules. In this review, we will discuss how the adaptative plasticity of the pancreatic islet β-cell’s secretory program allows insulin production to be carefully matched with nutrient availability and peripheral cues for insulin signaling. Furthermore, we will highlight potential defects in the secretory pathway that limit or delay insulin granule biosynthesis, which may contribute to the decline in β-cell function during the pathogenesis of T2D. Full article
(This article belongs to the Special Issue The Pancreatic Beta Cell)
Show Figures

Figure 1

16 pages, 1162 KiB  
Review
Targeting the Endocannabinoidome in Pancreatic Cancer
by Valerio Falasca and Marco Falasca
Biomolecules 2022, 12(2), 320; https://doi.org/10.3390/biom12020320 - 17 Feb 2022
Cited by 6 | Viewed by 4388
Abstract
Pancreatic Ductal adenocarcinoma (PDAC), the most common malignancy of the pancreas, is an aggressive and lethal form of cancer with a very high mortality rate. High heterogeneity, asymptomatic initial stages and a lack of specific diagnostic markers result in an end-stage diagnosis when [...] Read more.
Pancreatic Ductal adenocarcinoma (PDAC), the most common malignancy of the pancreas, is an aggressive and lethal form of cancer with a very high mortality rate. High heterogeneity, asymptomatic initial stages and a lack of specific diagnostic markers result in an end-stage diagnosis when the tumour has locally advanced or metastasised. PDAC is resistant to most of the available chemotherapy and radiation therapy treatments, making surgery the most potent curative treatment. The desmoplastic tumour microenvironment contributes to determining PDAC pathophysiology, immune response and therapeutic efficacy. The existing therapeutic approaches such as FDA-approved chemotherapeutics, gemcitabine, abraxane and folfirinox, prolong survival marginally and are accompanied by adverse effects. Several studies suggest the role of cannabinoids as anti-cancer agents. Cannabinoid receptors are known to be expressed in pancreatic cells, with a higher expression reported in pancreatic cancer patients. Therefore, pharmacological targeting of the endocannabinoid system might offer therapeutic benefits in pancreatic cancer. In addition, emerging data suggest that cannabinoids in combination with chemotherapy can increase survival in transgenic pancreatic cancer murine models. This review provides an overview of the regulation of the expanded endocannabinoid system, or endocannabinoidome, in PDAC and will explore the potential of targeting this system for novel anticancer approaches. Full article
(This article belongs to the Collection Recent Advances in Pancreatic Cancer)
Show Figures

Figure 1

19 pages, 7615 KiB  
Review
Cytoplasmic and Nuclear Functions of cIAP1
by Aymeric Zadoroznyj and Laurence Dubrez
Biomolecules 2022, 12(2), 322; https://doi.org/10.3390/biom12020322 - 17 Feb 2022
Cited by 10 | Viewed by 3662
Abstract
Cellular inhibitor of apoptosis 1 (cIAP1) is a cell signaling regulator of the IAP family. Through its E3-ubiquitine ligase activity, it has the ability to activate intracellular signaling pathways, modify signal transduction pathways by changing protein-protein interaction networks, and stop signal transduction by [...] Read more.
Cellular inhibitor of apoptosis 1 (cIAP1) is a cell signaling regulator of the IAP family. Through its E3-ubiquitine ligase activity, it has the ability to activate intracellular signaling pathways, modify signal transduction pathways by changing protein-protein interaction networks, and stop signal transduction by promoting the degradation of critical components of signaling pathways. Thus, cIAP1 appears to be a potent determinant of the response of cells, enabling their rapid adaptation to changing environmental conditions or intra- or extracellular stresses. It is expressed in almost all tissues, found in the cytoplasm, membrane and/or nucleus of cells. cIAP1 regulates innate immunity by controlling signaling pathways mediated by tumor necrosis factor receptor superfamily (TNFRs), some cytokine receptors and pattern recognition-receptors (PRRs). Although less documented, cIAP1 has also been involved in the regulation of cell migration and in the control of transcriptional programs. Full article
(This article belongs to the Special Issue State-of-the-Art Cell Death in France 2020-2021)
Show Figures

Figure 1

42 pages, 1981 KiB  
Review
Exploring the Wnt Pathway as a Therapeutic Target for Prostate Cancer
by Sarah Koushyar, Valerie S. Meniel, Toby J. Phesse and Helen B. Pearson
Biomolecules 2022, 12(2), 309; https://doi.org/10.3390/biom12020309 - 15 Feb 2022
Cited by 20 | Viewed by 6138
Abstract
Aberrant activation of the Wnt pathway is emerging as a frequent event during prostate cancer that can facilitate tumor formation, progression, and therapeutic resistance. Recent discoveries indicate that targeting the Wnt pathway to treat prostate cancer may be efficacious. However, the functional consequence [...] Read more.
Aberrant activation of the Wnt pathway is emerging as a frequent event during prostate cancer that can facilitate tumor formation, progression, and therapeutic resistance. Recent discoveries indicate that targeting the Wnt pathway to treat prostate cancer may be efficacious. However, the functional consequence of activating the Wnt pathway during the different stages of prostate cancer progression remains unclear. Preclinical work investigating the efficacy of targeting Wnt signaling for the treatment of prostate cancer, both in primary and metastatic lesions, and improving our molecular understanding of treatment responses is crucial to identifying effective treatment strategies and biomarkers that help guide treatment decisions and improve patient care. In this review, we outline the type of genetic alterations that lead to activated Wnt signaling in prostate cancer, highlight the range of laboratory models used to study the role of Wnt genetic drivers in prostate cancer, and discuss new mechanistic insights into how the Wnt cascade facilitates prostate cancer growth, metastasis, and drug resistance. Full article
Show Figures

Figure 1

19 pages, 1166 KiB  
Review
An Introduction to Bacterial Biofilms and Their Proteases, and Their Roles in Host Infection and Immune Evasion
by Juan Sebastián Ramírez-Larrota and Ulrich Eckhard
Biomolecules 2022, 12(2), 306; https://doi.org/10.3390/biom12020306 - 14 Feb 2022
Cited by 31 | Viewed by 5620
Abstract
Bacterial biofilms represent multicellular communities embedded in a matrix of extracellular polymeric substances, conveying increased resistance against environmental stress factors but also antibiotics. They are shaped by secreted enzymes such as proteases, which can aid pathogenicity by degrading host proteins of the connective [...] Read more.
Bacterial biofilms represent multicellular communities embedded in a matrix of extracellular polymeric substances, conveying increased resistance against environmental stress factors but also antibiotics. They are shaped by secreted enzymes such as proteases, which can aid pathogenicity by degrading host proteins of the connective tissue or the immune system. Importantly, both secreted proteases and the capability of biofilm formation are considered key virulence factors. In this review, we focus on the basic aspects of proteolysis and protein secretion, and highlight various secreted bacterial proteases involved in biofilm establishment and dispersal, and how they aid bacteria in immune evasion by degrading immunoglobulins and components of the complement system. Thus, secreted proteases represent not only prominent antimicrobial targets but also enzymes that can be used for dedicated applications in biotechnology and biomedicine, including their use as laundry detergents, in mass spectrometry for the glycoprofiling of antibodies, and the desensitization of donor organs intended for positive crossmatch patients. Full article
Show Figures

Figure 1

22 pages, 2330 KiB  
Review
Impact of Non-Coding RNAs on Chemotherapeutic Resistance in Oral Cancer
by Karen Yamaguchi, Tomofumi Yamamoto, Junichiro Chikuda, Tatsuo Shirota and Yusuke Yamamoto
Biomolecules 2022, 12(2), 284; https://doi.org/10.3390/biom12020284 - 9 Feb 2022
Cited by 13 | Viewed by 3394
Abstract
Drug resistance in oral cancer is one of the major problems in oral cancer therapy because therapeutic failure directly results in tumor recurrence and eventually in metastasis. Accumulating evidence has demonstrated the involvement of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long [...] Read more.
Drug resistance in oral cancer is one of the major problems in oral cancer therapy because therapeutic failure directly results in tumor recurrence and eventually in metastasis. Accumulating evidence has demonstrated the involvement of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in processes related to the development of drug resistance. A number of studies have shown that ncRNAs modulate gene expression at the transcriptional or translational level and regulate biological processes, such as epithelial-to-mesenchymal transition, apoptosis, DNA repair and drug efflux, which are tightly associated with drug resistance acquisition in many types of cancer. Interestingly, these ncRNAs are commonly detected in extracellular vesicles (EVs) and are known to be delivered into surrounding cells. This intercellular communication via EVs is currently considered to be important for acquired drug resistance. Here, we review the recent advances in the study of drug resistance in oral cancer by mainly focusing on the function of ncRNAs, since an increasing number of studies have suggested that ncRNAs could be therapeutic targets as well as biomarkers for cancer diagnosis. Full article
(This article belongs to the Special Issue Non-coding RNAs in Cancer Biology)
Show Figures

Figure 1

15 pages, 1301 KiB  
Article
Genetic Variants of Matrix Metalloproteinase and Sepsis: The Need Speed Study
by Nicola Fiotti, Filippo Mearelli, Filippo Giorgio Di Girolamo, Luigi Mario Castello, Alessio Nunnari, Salvatore Di Somma, Enrico Lupia, Efrem Colonetti, Maria Lorenza Muiesan, Giuseppe Montrucchio, Carlo Giansante, Gian Carlo Avanzi and Gianni Biolo
Biomolecules 2022, 12(2), 279; https://doi.org/10.3390/biom12020279 - 9 Feb 2022
Cited by 4 | Viewed by 2102
Abstract
Many causal mechanisms in sepsis susceptibility are largely unknown and the functional genetic polymorphisms (GP) of matrix metalloproteinases (MMPs) and their natural tissue inhibitor of MMPs (TIMP1) could play a role in its development. GPs of MMPs and TIMP (namely MMP-1 rs1799750, MMP-3 [...] Read more.
Many causal mechanisms in sepsis susceptibility are largely unknown and the functional genetic polymorphisms (GP) of matrix metalloproteinases (MMPs) and their natural tissue inhibitor of MMPs (TIMP1) could play a role in its development. GPs of MMPs and TIMP (namely MMP-1 rs1799750, MMP-3 rs3025058, MMP-8 rs11225395, MMP-9 rs2234681, and TIMP-1 rs4898) have been compared in 1058 patients with suspected sepsis to assess the association with susceptibility and etiology of sepsis. Prevalence of MMP8 rs11225395 G/G genotype was higher in sepsis patients than in those with non-infective Systemic Inflammatory Reaction Syndrome (35.6 vs. 26%, hazard ratio, HR 1.56, 95% C.I. 1.04–2.42, p = 0.032). G/G patients developed less hyperthermia (p = 0.041), even after stratification for disease severity (p = 0.003). Patients carrying the 6A allele in MMP3 rs3025058 had a higher probability of microbiologically-proven sepsis (HR 1.4. 95%C.I. 1.01–1.94, p = 0.044), particularly when due to virus (H.R. 2.14, 95% C.I. 1.06–4.31, p = 0.046), while MMP-1 G/G genotype patients carried a higher risk for intracellular bacteria (Chlamydia, Mycoplasma, and Legionella, H.R. 6.46, 95% C.I. 1.58–26.41, p = 0.003). Neither severity of sepsis at presentation, nor 30-day mortality were influenced by the investigated variants or their haplotype. MMP8 rs11225395 G/G carriers have lower temperature at presentation and a more than 50% increased susceptibility to sepsis. Among patients with sepsis, carriers of MMP1 rs1799750 G/G have an increased susceptibility for intracellular pathogen infections, while virus serology is more often positive in those with the MMP3 rs3025058 A/A genotype. Full article
(This article belongs to the Special Issue Matrix Metalloproteinases in Health and Disease 2.0)
Show Figures

Figure 1

11 pages, 2585 KiB  
Article
Matrix Metalloproteinase 7 Expression and Apical Epithelial Defects in Atp8b1 Mutant Mouse Model of Pulmonary Fibrosis
by Emma Westermann-Clark, Ramani Soundararajan, Jutaro Fukumoto, Sahebgowda Sidramagowda Patil, Timothy M. Stearns, Smita Saji, Alexander Czachor, Helena Hernandez-Cuervo, Mason Breitzig, Sudarshan Krishnamurthy, Richard F. Lockey and Narasaiah Kolliputi
Biomolecules 2022, 12(2), 283; https://doi.org/10.3390/biom12020283 - 9 Feb 2022
Cited by 2 | Viewed by 2412
Abstract
Abnormalities in airway epithelia and lung parenchyma are found in Atp8b1 mutant mice, which develop pulmonary fibrosis after hyperoxic insult. Microarray and ingenuity pathway analysis (IPA) show numerous transcripts involved in ciliogenesis are downregulated in 14-month (14 M) -old Atp8b1 mouse lung compared [...] Read more.
Abnormalities in airway epithelia and lung parenchyma are found in Atp8b1 mutant mice, which develop pulmonary fibrosis after hyperoxic insult. Microarray and ingenuity pathway analysis (IPA) show numerous transcripts involved in ciliogenesis are downregulated in 14-month (14 M) -old Atp8b1 mouse lung compared with wild-type C57BL/6. Lung epithelium of Atp8b1 mice demonstrate apical abnormalities of ciliated and club cells in the bronchial epithelium on transmission electron microscopy (TEM). Matrix metalloproteinase 7 (MMP7) regulates of ciliogenesis and is a biomarker for idiopathic pulmonary fibrosis (IPF) in humans. Mmp7 transcript and protein expression are significantly upregulated in 14 M Atp8b1 mutant mouse lung. MMP7 expression is also increased in bronchoalveolar lavage fluid (BAL). Immunohistochemistry is localized MMP7 to bronchial epithelial cells in the Atp8b1 mutant. In conclusion, MMP7 is upregulated in the aged Atp8b1 mouse model, which displays abnormal ciliated cell and club cell morphology. This mouse model can facilitate the exploration of the role of MMP7 in epithelial integrity and ciliogenesis in IPF. The Atp8b1 mutant mouse is proposed as a model for IPF. Full article
(This article belongs to the Collection Feature Papers in Section 'Molecular Medicine')
Show Figures

Figure 1

21 pages, 44025 KiB  
Article
A Comparative Evaluation of the Structural and Dynamic Properties of Insect Odorant Binding Proteins
by George Tzotzos
Biomolecules 2022, 12(2), 282; https://doi.org/10.3390/biom12020282 - 9 Feb 2022
Cited by 2 | Viewed by 2360
Abstract
Insects devote a major part of their metabolic resources to the production of odorant binding proteins (OBPs). Although initially, these proteins were implicated in the solubilisation, binding and transport of semiochemicals to olfactory receptors, it is now recognised that they may play diverse, [...] Read more.
Insects devote a major part of their metabolic resources to the production of odorant binding proteins (OBPs). Although initially, these proteins were implicated in the solubilisation, binding and transport of semiochemicals to olfactory receptors, it is now recognised that they may play diverse, as yet uncharacterised, roles in insect physiology. The structures of these OBPs, the majority of which are known as “classical” OBPs, have shed some light on their potential functional roles. However, the dynamic properties of these proteins have received little attention despite their functional importance. Structural dynamics are encoded in the native protein fold and enable the adaptation of proteins to substrate binding. This paper provides a comparative review of the structural and dynamic properties of OBPs, making use of sequence/structure analysis, statistical and theoretical physics-based methods. It provides a new layer of information and additional methodological tools useful in unravelling the relationship between structure, dynamics and function of insect OBPs. The dynamic properties of OBPs, studied by means of elastic network models, reflect the similarities/dissimilarities observed in their respective structures and provides insights regarding protein motions that may have important implications for ligand recognition and binding. Furthermore, it was shown that the OBPs studied in this paper share conserved structural ‘core’ that may be of evolutionary and functional importance. Full article
(This article belongs to the Special Issue Insect Receptors: Biochemical, Physiological and Molecular Studies)
Show Figures

Figure 1

9 pages, 784 KiB  
Article
IGFBP7 Concentration May Reflect Subclinical Myocardial Damage and Kidney Function in Patients with Stable Ischemic Heart Disease
by Anna Lisowska, Anna Szyszkowska, Małgorzata Knapp, Magda Łapińska, Marcin Kondraciuk, Inga Kamińska, Tomasz Hryszko, Katarzyna Ptaszyńska-Kopczyńska and Karol Kamiński
Biomolecules 2022, 12(2), 274; https://doi.org/10.3390/biom12020274 - 8 Feb 2022
Cited by 4 | Viewed by 1892
Abstract
The objective of this study was to determine the associations between insulin-like growth-factor-binding protein 7(IGFBP7) concentrations and concentrations of troponin T(TnT), N-terminal pro-B-type natriuretic peptide(NT-proBNP) and the parameters of kidney function in patients with stable ischemic heart disease(IHD). The IHD group consisted of [...] Read more.
The objective of this study was to determine the associations between insulin-like growth-factor-binding protein 7(IGFBP7) concentrations and concentrations of troponin T(TnT), N-terminal pro-B-type natriuretic peptide(NT-proBNP) and the parameters of kidney function in patients with stable ischemic heart disease(IHD). The IHD group consisted of 88 patients, and the population group comprised 66 subjects without a history of IHD. IGFBP7, TnT and NTproBNP concentrations were measured. The IGFBP7 value was considerably higher in the IHD group (1.76 ± 1 ng/mL vs. 1.43 ± 0.44 ng/mL, respectively, p = 0.019). Additionally, IHD subjects had a significantly higher concentration of TnT and NTproBNP. In both groups there was a significant correlation between IGFBP7 and serum parameters of kidney function (creatinine concentration: population gr. r = 0.45, p < 0.001, IHD gr. r = 0.86, p < 0.0001; urea concentration: population gr. r = 0.51, p < 0.0001, IHD gr. r = 0.71, p < 0.00001). No correlation between IGFBP7 and microalbuminuria or the albumin to creatinine ratio in urine was found. Moreover, there was a significant correlation between IGFBP7 concentration and markers of heart injury/overload-TnT and NT-BNP(r = 0.76, p < 0.001 and r = 0.72, p < 0.001, respectively). Multivariate regression analysis in joint both revealed that the IGFBP7 concentration is independently associated with urea, creatinine and TnT concentrations (R2 for the model 0.76). IHD patients presented significantly higher IGFBP7 concentrations than the population group. Elevated IGFBP7 levels are associated predominantly with markers of kidney function and myocardial damage or overload. Full article
Show Figures

Figure 1

22 pages, 3701 KiB  
Article
APR-246—The Mutant TP53 Reactivator—Increases the Effectiveness of Berberine and Modified Berberines to Inhibit the Proliferation of Pancreatic Cancer Cells
by James Andrew McCubrey, Stephen L. Abrams, Linda S. Steelman, Lucio Cocco, Stefano Ratti, Alberto M. Martelli, Paolo Lombardi, Agnieszka Gizak and Przemysław Duda
Biomolecules 2022, 12(2), 276; https://doi.org/10.3390/biom12020276 - 8 Feb 2022
Cited by 7 | Viewed by 2658
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer. In ~75% of PDAC, the tumor suppressor TP53 gene is mutated. Novel approaches to treat cancer involve compounds called mutant TP53 reactivators. They interact with mutant TP53 proteins and restore some [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer. In ~75% of PDAC, the tumor suppressor TP53 gene is mutated. Novel approaches to treat cancer involve compounds called mutant TP53 reactivators. They interact with mutant TP53 proteins and restore some of their growth suppressive properties, but they may also interact with other proteins, e.g., TP63 and TP73. We examined the ability of the TP53 reactivator APR-246 to interact with eleven modified berberine compounds (NAX compounds) in the presence and absence of WT-TP53 in two PDAC cell lines: the MIA-PaCa-2, which has gain of function (GOF) TP53 mutations on both alleles, and PANC-28, which lacks expression of the WT TP53 protein. Our results indicate the TP53 reactivator-induced increase in therapeutic potential of many modified berberines. Full article
Show Figures

Figure 1

17 pages, 12147 KiB  
Article
Unlocking the Memory Component of Alzheimer’s Disease: Biological Processes and Pathways across Brain Regions
by Nikolas Dovrolis, Maria Nikou, Alexandra Gkrouzoudi, Nikolaos Dimitriadis and Ioanna Maroulakou
Biomolecules 2022, 12(2), 263; https://doi.org/10.3390/biom12020263 - 6 Feb 2022
Cited by 3 | Viewed by 2916
Abstract
Alzheimer’s Disease (AD) is a neurodegenerative disorder characterized by a progressive loss of memory and a general cognitive decline leading to dementia. AD is characterized by changes in the behavior of the genome and can be traced across multiple brain regions and cell [...] Read more.
Alzheimer’s Disease (AD) is a neurodegenerative disorder characterized by a progressive loss of memory and a general cognitive decline leading to dementia. AD is characterized by changes in the behavior of the genome and can be traced across multiple brain regions and cell types. It is mainly associated with β-amyloid deposits and tau protein misfolding, leading to neurofibrillary tangles. In recent years, however, research has shown that there is a high complexity of mechanisms involved in AD neurophysiology and functional decline enabling its diverse presentation and allowing more questions to arise. In this study, we present a computational approach to facilitate brain region-specific analysis of genes and biological processes involved in the memory process in AD. Utilizing current genetic knowledge we provide a gene set of 265 memory-associated genes in AD, combinations of which can be found co-expressed in 11 different brain regions along with their functional role. The identified genes participate in a spectrum of biological processes ranging from structural and neuronal communication to epigenetic alterations and immune system responses. These findings provide new insights into the molecular background of AD and can be used to bridge the genotype–phenotype gap and allow for new therapeutic hypotheses. Full article
(This article belongs to the Special Issue Core of Biomolecules Affecting Degenerative Disorders)
Show Figures

Figure 1

12 pages, 2449 KiB  
Article
Protein Binding of Benzofuran Derivatives: A CD Spectroscopic and In Silico Comparative Study of the Effects of 4-Nitrophenyl Functionalized Benzofurans and Benzodifurans on BSA Protein Structure
by Pasqualina Liana Scognamiglio, Caterina Vicidomini, Francesco Fontanella, Claudio De Stefano, Rosanna Palumbo and Giovanni N. Roviello
Biomolecules 2022, 12(2), 262; https://doi.org/10.3390/biom12020262 - 5 Feb 2022
Cited by 7 | Viewed by 2473
Abstract
Benzofuran derivatives are synthetic compounds that are finding an increasing interest in the scientific community not only as building blocks for the realization of new materials, but also as potential drugs thanks to their ability to interact with nucleic acids, interfere with the [...] Read more.
Benzofuran derivatives are synthetic compounds that are finding an increasing interest in the scientific community not only as building blocks for the realization of new materials, but also as potential drugs thanks to their ability to interact with nucleic acids, interfere with the amyloid peptide aggregation and cancer cell cycle. However, their ability to interact with proteins is a theme still in need of investigation for the therapeutic importance that benzofurans could have in the modulation of protein-driven processes and for the possibility of making use of serum albumins as benzofurans delivery systems. To this scope, we investigated the protein binding ability of two 4-nitrophenyl-functionalized benzofurans previously synthesized in our laboratory and herein indicated as BF1 and BDF1, which differed for the number of furan rings (a single moiety in BF1, two in BDF1), using bovine serum albumin (BSA) as a model protein. By circular dichroism (CD) spectroscopy we demonstrated the ability of the two heteroaromatic compounds to alter the secondary structure of the serum albumin leading to different consequences in terms of BSA thermal stability with respect to the unbound protein (ΔTm > 3 °C for BF1, −0.8 °C for BDF1 with respect to unbound BSA, in PBS buffer, pH 7.5) as revealed in our CD melting studies. Moreover, a molecular docking study allowed us to compare the possible ligand binding modes of the mono and difuranic derivatives showing that while BF1 is preferentially housed in the interior of protein structure, BDF1 is predicted to bind the albumin surface with a lower affinity than BF1. Interestingly, the different affinity for the protein target predicted computationally was confirmed also experimentally by fluorescence spectroscopy (kD = 142.4 ± 64.6 nM for BDF1 vs. 28.4 ± 10.1 nM for BF1). Overall, the above findings suggest the ability of benzofurans to bind serum albumins that could act as their carriers in drug delivery applications. Full article
Show Figures

Figure 1

15 pages, 2825 KiB  
Article
Interaction with the Assembly Chaperone Ump1 Promotes Incorporation of the β7 Subunit into Half-Proteasome Precursor Complexes Driving Their Dimerization
by Jessica Zimmermann, Paula C. Ramos and R. Jürgen Dohmen
Biomolecules 2022, 12(2), 253; https://doi.org/10.3390/biom12020253 - 4 Feb 2022
Cited by 5 | Viewed by 2395
Abstract
Biogenesis of the eukaryotic 20S proteasome core particle (PC) is a complex process assisted by specific chaperones absent from the active complex. The first identified chaperone, Ump1, was found in a precursor complex (PC) called 15S PC. Yeast cells lacking Ump1 display strong [...] Read more.
Biogenesis of the eukaryotic 20S proteasome core particle (PC) is a complex process assisted by specific chaperones absent from the active complex. The first identified chaperone, Ump1, was found in a precursor complex (PC) called 15S PC. Yeast cells lacking Ump1 display strong defects in the autocatalytic processing of β subunits, and consequently have lower proteolytic activity. Here, we dissect an important interaction of Ump1 with the β7 subunit that is critical for proteasome biogenesis. Functional domains of Ump1 and the interacting proteasome subunit β7 were mapped, and the functional consequences of their deletion or mutation were analyzed. Cells in which the first sixteen Ump1 residues were deleted display growth phenotypes similar to ump1∆, but massively accumulate 15S PC and distinct proteasome intermediate complexes containing the truncated protein. The viability of these cells depends on the transcription factor Rpn4. Remarkably, β7 subunit overexpression re-established viability in the absence of Rpn4. We show that an N-terminal domain of Ump1 and the propeptide of β7 promote direct interaction of the two polypeptides in vitro. This interaction is of critical importance for the recruitment of β7 precursor during proteasome assembly, a step that drives dimerization of 15S PCs and the formation of 20S CPs. Full article
(This article belongs to the Special Issue The Assembly and Function of Proteasomes in Health and Disease)
Show Figures

Figure 1

26 pages, 6801 KiB  
Review
PrimPol: A Breakthrough among DNA Replication Enzymes and a Potential New Target for Cancer Therapy
by Alberto Díaz-Talavera, Cristina Montero-Conde, Luis Javier Leandro-García and Mercedes Robledo
Biomolecules 2022, 12(2), 248; https://doi.org/10.3390/biom12020248 - 3 Feb 2022
Cited by 9 | Viewed by 5258
Abstract
DNA replication can encounter blocking obstacles, leading to replication stress and genome instability. There are several mechanisms for evading this blockade. One mechanism consists of repriming ahead of the obstacles, creating a new starting point; in humans, PrimPol is responsible for carrying out [...] Read more.
DNA replication can encounter blocking obstacles, leading to replication stress and genome instability. There are several mechanisms for evading this blockade. One mechanism consists of repriming ahead of the obstacles, creating a new starting point; in humans, PrimPol is responsible for carrying out this task. PrimPol is a primase that operates in both the nucleus and mitochondria. In contrast with conventional primases, PrimPol is a DNA primase able to initiate DNA synthesis de novo using deoxynucleotides, discriminating against ribonucleotides. In vitro, PrimPol can act as a DNA primase, elongating primers that PrimPol itself sythesizes, or as translesion synthesis (TLS) DNA polymerase, elongating pre-existing primers across lesions. However, the lack of evidence for PrimPol polymerase activity in vivo suggests that PrimPol only acts as a DNA primase. Here, we provide a comprehensive review of human PrimPol covering its biochemical properties and structure, in vivo function and regulation, and the processes that take place to fill the gap-containing lesion that PrimPol leaves behind. Finally, we explore the available data on human PrimPol expression in different tissues in physiological conditions and its role in cancer. Full article
(This article belongs to the Collection Feature Papers in Molecular Genetics)
Show Figures

Figure 1

13 pages, 1961 KiB  
Article
Identification of the Marine Alkaloid Lepadin A as Potential Inducer of Immunogenic Cell Death
by Genoveffa Nuzzo, Carmela Gallo, Fabio Crocetta, Lucia Romano, Giusi Barra, Giuseppina Senese, Mario dell’Isola, Dalila Carbone, Valentina Tanduo, Federica Albiani, Guido Villani, Giuliana d’Ippolito, Emiliano Manzo and Angelo Fontana
Biomolecules 2022, 12(2), 246; https://doi.org/10.3390/biom12020246 - 2 Feb 2022
Cited by 11 | Viewed by 2717
Abstract
Natural products and their synthetic analogs and derivatives are a traditional source of bioactive molecules with potential development as drug candidates. In this context, Marine Natural Products (MNPs) represent a rich reservoir of diverse molecular skeletons with potential pharmacological activity that, so far, [...] Read more.
Natural products and their synthetic analogs and derivatives are a traditional source of bioactive molecules with potential development as drug candidates. In this context, Marine Natural Products (MNPs) represent a rich reservoir of diverse molecular skeletons with potential pharmacological activity that, so far, has been mostly explored in cancer and infectious diseases. Starting from the development of a novel bioassay-guided screening platform for immunomodulatory compounds from an in-house MNPs library, we report the identification of the alkaloid lepadin A as a new model compound for immune-based anticancer activity with characteristics that suggest a possible mechanism as Immunogenic Cell Death inducer. The work describes the molecular-based bioprospecting in the Gulf of Naples together with the bioassay-guided fractionation, the chemical characterization of the alkaloid, and the biological activity in mouse dendritic cells (D1). Full article
Show Figures

Graphical abstract

14 pages, 968 KiB  
Review
Role of EPA in Inflammation: Mechanisms, Effects, and Clinical Relevance
by Rosalia Crupi and Salvatore Cuzzocrea
Biomolecules 2022, 12(2), 242; https://doi.org/10.3390/biom12020242 - 1 Feb 2022
Cited by 31 | Viewed by 5789
Abstract
Many chronic inflammatory processes are linked with the continuous release of inflammatory mediators and the activation of harmful signal-transduction pathways that are able to facilitate disease progression. In this context atherosclerosis represents the most common pathological substrate of coronary heart disease, and the [...] Read more.
Many chronic inflammatory processes are linked with the continuous release of inflammatory mediators and the activation of harmful signal-transduction pathways that are able to facilitate disease progression. In this context atherosclerosis represents the most common pathological substrate of coronary heart disease, and the characterization of the disease as a chronic low-grade inflammatory condition is now validated. The biomarkers of inflammation associated with clinical cardiovascular risk support the theory that targeted anti-inflammatory treatment appears to be a promising strategy in reducing residual cardiovascular risk. Several literature data highlight cardioprotective effects of the long-chain omega-3 polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA). This PUFA lowers plasma triglyceride levels and has potential beneficial effects on atherosclerotic plaques. Preclinical studies reported that EPA reduces both pro-inflammatory cytokines and chemokines levels. Clinical studies in patients with coronary artery disease that receive pharmacological statin therapy suggest that EPA may decrease plaque vulnerability preventing plaque progression. This review aims to provide an overview of the links between inflammation and cardiovascular risk factors, importantly focusing on the role of diet, in particular examining the proposed role of EPA as well as the success or failure of standard pharmacological therapy for cardiovascular diseases. Full article
Show Figures

Figure 1

14 pages, 2105 KiB  
Article
Spexin Regulates Hypothalamic Leptin Action on Feeding Behavior
by Bora Jeong, Kwang-Kon Kim, Tae-Hwan Lee, Han-Rae Kim, Byong-Seo Park, Jeong-Woo Park, Jin-Kwon Jeong, Jae-Young Seong and Byung-Ju Lee
Biomolecules 2022, 12(2), 236; https://doi.org/10.3390/biom12020236 - 31 Jan 2022
Cited by 17 | Viewed by 3991
Abstract
Spexin (SPX) is a recently identified neuropeptide that is believed to play an important role in the regulation of energy homeostasis. Here, we describe a mediating function of SPX in hypothalamic leptin action. Intracerebroventricular (icv) SPX administration induced a decrease in food intake [...] Read more.
Spexin (SPX) is a recently identified neuropeptide that is believed to play an important role in the regulation of energy homeostasis. Here, we describe a mediating function of SPX in hypothalamic leptin action. Intracerebroventricular (icv) SPX administration induced a decrease in food intake and body weight gain. SPX was found to be expressed in cells expressing leptin receptor ObRb in the mouse hypothalamus. In line with this finding, icv leptin injection increased SPX mRNA in the ObRb-positive cells of the hypothalamus, which was blocked by treatment with a STAT3 inhibitor. Leptin also increased STAT3 binding to the SPX promoter, as measured by chromatin immunoprecipitation assays. In vivo blockade of hypothalamic SPX biosynthesis with an antisense oligodeoxynucleotide (AS ODN) resulted in a diminished leptin effect on food intake and body weight. AS ODN reversed leptin’s effect on the proopiomelanocortin (POMC) mRNA expression and, moreover, decreased leptin-induced STAT3 binding to the POMC promoter sequence. These results suggest that SPX is involved in leptin’s action on POMC gene expression in the hypothalamus and impacts the anorexigenic effects of leptin. Full article
Show Figures

Figure 1

23 pages, 3578 KiB  
Review
Leukemia Inhibitory Factor: An Important Cytokine in Pathologies and Cancer
by Megan M. Jorgensen and Pilar de la Puente
Biomolecules 2022, 12(2), 217; https://doi.org/10.3390/biom12020217 - 27 Jan 2022
Cited by 27 | Viewed by 8021
Abstract
Leukemia Inhibitory Factor (LIF) is a member of the IL-6 cytokine family and is expressed in almost every tissue type within the body. Although LIF was named for its ability to induce differentiation of myeloid leukemia cells, studies of LIF in additional diseases [...] Read more.
Leukemia Inhibitory Factor (LIF) is a member of the IL-6 cytokine family and is expressed in almost every tissue type within the body. Although LIF was named for its ability to induce differentiation of myeloid leukemia cells, studies of LIF in additional diseases and solid tumor types have shown that it has the potential to contribute to many other pathologies. Exploring the roles of LIF in normal physiology and non-cancer pathologies can give important insights into how it may be dysregulated within cancers, and the possible effects of this dysregulation. Within various cancer types, LIF expression has been linked to hallmarks of cancer, such as proliferation, metastasis, and chemoresistance, as well as overall patient survival. The mechanisms behind these effects of LIF are not well understood and can differ between different tissue types. In fact, research has shown that while LIF may promote malignancy progression in some solid tumors, it can have anti-neoplastic effects in others. This review will summarize current knowledge of how LIF expression impacts cellular function and dysfunction to help reveal new adjuvant treatment options for cancer patients, while also revealing potential adverse effects of treatments targeting LIF signaling. Full article
(This article belongs to the Special Issue Biomolecules in Drug Resistance in Cancer and Metastatic Cancers)
Show Figures

Figure 1

16 pages, 3569 KiB  
Article
A Stepwise Framework for the Systematic Development of Lipid Nanoparticles
by João Basso, Maria Mendes, Tânia Cova, João Sousa, Alberto Pais, Ana Fortuna, Rui Vitorino and Carla Vitorino
Biomolecules 2022, 12(2), 223; https://doi.org/10.3390/biom12020223 - 27 Jan 2022
Cited by 17 | Viewed by 8471
Abstract
A properly designed nanosystem aims to deliver an optimized concentration of the active pharmaceutical ingredient (API) at the site of action, resulting in a therapeutic response with reduced adverse effects. Due to the vast availability of lipids and surfactants, producing stable lipid dispersions [...] Read more.
A properly designed nanosystem aims to deliver an optimized concentration of the active pharmaceutical ingredient (API) at the site of action, resulting in a therapeutic response with reduced adverse effects. Due to the vast availability of lipids and surfactants, producing stable lipid dispersions is a double-edged sword: on the one hand, the versatility of composition allows for a refined design and tuning of properties; on the other hand, the complexity of the materials and their physical interactions often result in laborious and time-consuming pre-formulation studies. However, how can they be tailored, and which premises are required for a “right at first time” development? Here, a stepwise framework encompassing the sequential stages of nanoparticle production for disulfiram delivery is presented. Drug in lipid solubility analysis leads to the selection of the most suitable liquid lipids. As for the solid lipid, drug partitioning studies point out the lipids with increased capacity for solubilizing and entrapping disulfiram. The microscopical evaluation of the physical compatibility between liquid and solid lipids further indicates the most promising core compositions. The impact of the outer surfactant layer on the colloidal properties of the nanosystems is evaluated recurring to machine learning algorithms, in particular, hierarchical clustering, principal component analysis, and partial least squares regression. Overall, this work represents a comprehensive systematic approach to nanoparticle formulation studies that serves as a basis for selecting the most suitable excipients that comprise solid lipid nanoparticles and nanostructured lipid carriers. Full article
(This article belongs to the Special Issue Applications of Nanoparticles in Tumor Therapy)
Show Figures

Figure 1

18 pages, 2129 KiB  
Review
Transgenic Mouse Overexpressing Spermine Oxidase in Cerebrocortical Neurons: Astrocyte Dysfunction and Susceptibility to Epileptic Seizures
by Manuela Marcoli, Chiara Cervetto, Sarah Amato, Cristian Fiorucci, Guido Maura, Paolo Mariottini and Manuela Cervelli
Biomolecules 2022, 12(2), 204; https://doi.org/10.3390/biom12020204 - 25 Jan 2022
Cited by 9 | Viewed by 3424
Abstract
Polyamines are organic polycations ubiquitously present in living cells. Polyamines are involved in many cellular processes, and their content in mammalian cells is tightly controlled. Among their function, these molecules modulate the activity of several ion channels. Spermine oxidase, specifically oxidized spermine, is [...] Read more.
Polyamines are organic polycations ubiquitously present in living cells. Polyamines are involved in many cellular processes, and their content in mammalian cells is tightly controlled. Among their function, these molecules modulate the activity of several ion channels. Spermine oxidase, specifically oxidized spermine, is a neuromodulator of several types of ion channel and ionotropic glutamate receptors, and its deregulated activity has been linked to several brain pathologies, including epilepsy. The Dach-SMOX mouse line was generated using a Cre/loxP-based recombination approach to study the complex and critical functions carried out by spermine oxidase and spermine in the mammalian brain. This mouse genetic model overexpresses spermine oxidase in the neocortex and is a chronic model of excitotoxic/oxidative injury and neuron vulnerability to oxidative stress and excitotoxic, since its phenotype revealed to be more susceptible to different acute oxidative insults. In this review, the molecular mechanisms underlined the Dach-SMOX phenotype, linked to reactive astrocytosis, neuron loss, chronic oxidative and excitotoxic stress, and susceptibility to seizures have been discussed in detail. The Dach-SMOX mouse model overexpressing SMOX may help in shedding lights on the susceptibility to epileptic seizures, possibly helping to understand the mechanisms underlying epileptogenesis in vulnerable individuals and contributing to provide new molecular mechanism targets to search for novel antiepileptic drugs. Full article
(This article belongs to the Section Molecular Genetics)
Show Figures

Figure 1

13 pages, 2993 KiB  
Article
Exogenous Gibberellin Treatment Enhances Melatonin Synthesis for Melatonin-Enriched Rice Production
by Ok Jin Hwang and Kyoungwhan Back
Biomolecules 2022, 12(2), 198; https://doi.org/10.3390/biom12020198 - 24 Jan 2022
Cited by 14 | Viewed by 3520
Abstract
Melatonin production is induced by many abiotic and biotic stressors; it modulates the levels of many plant hormones and their signaling pathways. This study investigated the effects of plant hormones on melatonin synthesis. Melatonin synthesis in rice seedlings was significantly induced upon exogenous [...] Read more.
Melatonin production is induced by many abiotic and biotic stressors; it modulates the levels of many plant hormones and their signaling pathways. This study investigated the effects of plant hormones on melatonin synthesis. Melatonin synthesis in rice seedlings was significantly induced upon exogenous gibberellin 3 (GA3) treatment, while it was severely decreased by GA synthesis inhibitor paclobutrazol. In contrast, abscisic acid (ABA) strongly inhibited melatonin synthesis, whereas its inhibitor norflurazon (NF) induced melatonin synthesis. The observed GA-mediated increase in melatonin was closely associated with elevated expression levels of melatonin biosynthetic genes such as TDC3, T5H, and ASMT1; it was also associated with reduced expression levels of catabolic genes ASDAC and M2H. In a paddy field, the treatment of immature rice seeds with exogenous GA led to enhanced melatonin production in rice seeds; various transgenic rice plants downregulating a GA biosynthesis gene (GA3ox2) and a signaling gene () showed severely decreased melatonin levels, providing in vivo genetic evidence that GA has a positive effect on melatonin synthesis. This is the first study to report that GA is positively involved in melatonin synthesis in plants; GA treatment can be used to produce melatonin-rich seeds, vegetables, and fruits, which are beneficial for human health. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

14 pages, 1286 KiB  
Review
Folic Acid, Folinic Acid, 5 Methyl TetraHydroFolate Supplementation for Mutations That Affect Epigenesis through the Folate and One-Carbon Cycles
by Yves Menezo, Kay Elder, Arthur Clement and Patrice Clement
Biomolecules 2022, 12(2), 197; https://doi.org/10.3390/biom12020197 - 24 Jan 2022
Cited by 60 | Viewed by 16137
Abstract
Methylation is an essential biochemical mechanism that is central to the transmission of life, and crucially responsible for regulating gametogenesis and continued embryo development. The methylation of DNA and histones drives cell division and regulation of gene expression through epigenesis and imprinting. Brain [...] Read more.
Methylation is an essential biochemical mechanism that is central to the transmission of life, and crucially responsible for regulating gametogenesis and continued embryo development. The methylation of DNA and histones drives cell division and regulation of gene expression through epigenesis and imprinting. Brain development and its maturation also depend on correct lipid methylation, and continued neuronal function depends on biogenic amines that require methylation for their synthesis. All methylation processes are carried out via a methyltransferase enzyme and its unique co-factor S-adenosylmethionine (SAM); the transfer of a methyl group to a target molecule results in the release of SAH (SA homocysteine), and then homocysteine (Hcy). Both of these molecules are toxic, inhibiting methylation in a variety of ways, and Hcy recycling to methionine is imperative; this is achieved via the one carbon cycle, supported by the folates cycle. Folate deficiency causes hyperhomocysteinaemia, with several associated diseases; during early pregnancy, deficiency interferes with closure of the neural tube at the fourth week of gestation, and nutraceutical supplementation has been routinely prescribed to prevent neural tube defects, mainly involving B vitamins, Zn and folates. The two metabolic pathways are subject to single nucleotide polymorphisms that alter their activity/capacity, often severely, impairing specific physiological functions including fertility, brain and cardiac function. The impact of three types of nutraceutical supplements, folic acid (FA), folinic acid (FLA) and 5 Methyl THF (MTHF), will be discussed here, with their positive effects alongside potentially hazardous secondary effects. The issue surrounding FA and its association with UMFA (unmetabolized folic acid) syndrome is now a matter of concern, as UMFA is currently found in the umbilical cord of the fetus, and even in infants’ blood. We will discuss its putative role in influencing the acquisition of epigenetic marks in the germline, acquired during embryogenesis, as well as the role of FA in the management of cancerous disease. Full article
(This article belongs to the Collection Feature Papers in Molecular Genetics)
Show Figures

Figure 1

31 pages, 841 KiB  
Review
Targeted NMDA Receptor Interventions for Autism: Developmentally Determined Expression of GluN2B and GluN2A-Containing Receptors and Balanced Allosteric Modulatory Approaches
by Stephen I. Deutsch, Zachary N. M. Luyo and Jessica A. Burket
Biomolecules 2022, 12(2), 181; https://doi.org/10.3390/biom12020181 - 22 Jan 2022
Cited by 13 | Viewed by 4820
Abstract
Various ASD risk alleles have been associated with impairment of NMDA receptor activation (i.e., NMDA Receptor Hypofunction) and/or disturbance of the careful balance between activation mediated by GluN2B-subtype and GluN2A-subtype-containing NMDA receptors. Importantly, although these various risk alleles affect NMDA receptor activation through [...] Read more.
Various ASD risk alleles have been associated with impairment of NMDA receptor activation (i.e., NMDA Receptor Hypofunction) and/or disturbance of the careful balance between activation mediated by GluN2B-subtype and GluN2A-subtype-containing NMDA receptors. Importantly, although these various risk alleles affect NMDA receptor activation through different mechanisms, they share the pathogenic consequences of causing disturbance of highly regulated NMDA receptor activation. Disturbances of NMDA receptor activation due to sequence variants, protein termination variants and copy number variants are often cell-specific and regionally selective. Thus, translational therapeutic NMDA receptor agonist interventions, which may require chronic administration, must have specificity, selectivity and facilitate NMDA receptor activation in a manner that is physiologic (i.e., mimicking that of endogenously released glutamate and glycine/D-serine released in response to salient and relevant socio-cognitive provocations within discrete neural circuits). Importantly, knockout mice with absent expression and mice with haploinsufficient expression of the deleterious genes often serve as good models to test the potential efficacy of promising pharmacotherapeutic strategies. The Review considers diverse examples of “illness” genes, their pathogenic effects on NMDA receptor activation and, when available, results of studies of impaired sociability in mouse models, including “proof of principle/proof of concept” experiments exploring NMDA receptor agonist interventions and the development of promising positive allosteric modulators (PAMs), which serve as support and models for developing an inventory of PAMs and negative allosteric modulators (NAMs) for translational therapeutic intervention. Conceivably, selective PAMs and NAMs either alone or in combination will be administered to patients guided by their genotype in order to potentiate and/or restore disrupted balance between activation mediated by GluN2B-subtype and GluN2A-subtype containing NMDA receptors. Full article
Show Figures

Figure 1

13 pages, 3409 KiB  
Article
CNS-Sparing Histamine H3 Receptor Antagonist as a Candidate to Prevent the Diabetes-Associated Gastrointestinal Symptoms
by Arianna Carolina Rosa, Patrizia Nardini, Silvia Sgambellone, Maura Gurrieri, Simona Federica Spampinato, Alfonso Dell’Accio, Paul L Chazot, Ilona Obara, Wai L Liu and Alessandro Pini
Biomolecules 2022, 12(2), 184; https://doi.org/10.3390/biom12020184 - 22 Jan 2022
Cited by 6 | Viewed by 3502
Abstract
Among the histamine receptors, growing evidence points to the histamine H3 receptor as a pharmacological candidate to counteract the autonomic neuropathy associated with diabetes. The study aimed to evaluate the effect of PF00868087 (also known as ZPL-868), a CNS-sparing histamine H3 [...] Read more.
Among the histamine receptors, growing evidence points to the histamine H3 receptor as a pharmacological candidate to counteract the autonomic neuropathy associated with diabetes. The study aimed to evaluate the effect of PF00868087 (also known as ZPL-868), a CNS-sparing histamine H3 receptor antagonist, on the autonomic neuropathy of the intestinal tract associated with diabetes. Diabetes was induced in male BALB/c mice by a single high dose of streptozotocin (150 mg/kg). Colorectal specimens from control and diabetic mice, randomized to vehicle or PF0086087 (10, 30, 100 mg/kg/day by oral gavage for 14 days), were processed for morphological and immunohistochemical analysis. A significant overproduction of mucus in the intestinal mucosa of diabetic mice compared to the controls was observed. PF0086087 at the highest dose prevented mucin overproduction. The immunohistochemistry analysis demonstrated that diabetes causes a decrease in the inhibitory component of enteric motility, measured as the percentage of neuronal nitric oxide synthase-positive neurons (p < 0.05) and a parallel increase in the excitatory component evaluated as substance P-positive fibres (p < 0.01). PF0086087 dose-dependently prevented these pathophysiological events. In conclusion, PF0086087 may be an essential tool in preventing nitrergic dysfunction in the myenteric plexus of the distal colon and diabetes-induced gastrointestinal complications. Full article
(This article belongs to the Special Issue New Developments in Histamine Research)
Show Figures

Graphical abstract

27 pages, 764 KiB  
Review
Dysregulated Epicardial Adipose Tissue as a Risk Factor and Potential Therapeutic Target of Heart Failure with Preserved Ejection Fraction in Diabetes
by Teresa Salvatore, Raffaele Galiero, Alfredo Caturano, Erica Vetrano, Luca Rinaldi, Francesca Coviello, Anna Di Martino, Gaetana Albanese, Sara Colantuoni, Giulia Medicamento, Raffaele Marfella, Celestino Sardu and Ferdinando Carlo Sasso
Biomolecules 2022, 12(2), 176; https://doi.org/10.3390/biom12020176 - 21 Jan 2022
Cited by 33 | Viewed by 5972
Abstract
Cardiovascular (CV) disease and heart failure (HF) are the leading cause of mortality in type 2 diabetes (T2DM), a metabolic disease which represents a fast-growing health challenge worldwide. Specifically, T2DM induces a cluster of systemic metabolic and non-metabolic signaling which may promote myocardium [...] Read more.
Cardiovascular (CV) disease and heart failure (HF) are the leading cause of mortality in type 2 diabetes (T2DM), a metabolic disease which represents a fast-growing health challenge worldwide. Specifically, T2DM induces a cluster of systemic metabolic and non-metabolic signaling which may promote myocardium derangements such as inflammation, fibrosis, and myocyte stiffness, which represent the hallmarks of heart failure with preserved ejection fraction (HFpEF). On the other hand, several observational studies have reported that patients with T2DM have an abnormally enlarged and biologically transformed epicardial adipose tissue (EAT) compared with non-diabetic controls. This expanded EAT not only causes a mechanical constriction of the diastolic filling but is also a source of pro-inflammatory mediators capable of causing inflammation, microcirculatory dysfunction and fibrosis of the underlying myocardium, thus impairing the relaxability of the left ventricle and increasing its filling pressure. In addition to representing a potential CV risk factor, emerging evidence shows that EAT may guide the therapeutic decision in diabetic patients as drugs such as metformin, glucagon-like peptide-1 (GLP-1) receptor agonists and sodium-glucose cotransporter 2 inhibitors (SGLT2-Is), have been associated with attenuation of EAT enlargement. Full article
(This article belongs to the Special Issue Pharmacology of Cardiovascular Disease)
Show Figures

Figure 1

26 pages, 2815 KiB  
Article
Multi-Omics Analysis of Multiple Glucose-Sensing Receptor Systems in Yeast
by Shuang Li, Yuanyuan Li, Blake R. Rushing, Sarah E. Harris, Susan L. McRitchie, Daniel Dominguez, Susan J. Sumner and Henrik G. Dohlman
Biomolecules 2022, 12(2), 175; https://doi.org/10.3390/biom12020175 - 21 Jan 2022
Cited by 9 | Viewed by 3934
Abstract
The yeast Saccharomyces cerevisiae has long been used to produce alcohol from glucose and other sugars. While much is known about glucose metabolism, relatively little is known about the receptors and signaling pathways that indicate glucose availability. Here, we compare the two glucose [...] Read more.
The yeast Saccharomyces cerevisiae has long been used to produce alcohol from glucose and other sugars. While much is known about glucose metabolism, relatively little is known about the receptors and signaling pathways that indicate glucose availability. Here, we compare the two glucose receptor systems in S. cerevisiae. The first is a heterodimer of transporter-like proteins (transceptors), while the second is a seven-transmembrane receptor coupled to a large G protein (Gpa2) that acts in coordination with two small G proteins (Ras1 and Ras2). Through comprehensive measurements of glucose-dependent transcription and metabolism, we demonstrate that the two receptor systems have distinct roles in glucose signaling: the G-protein-coupled receptor directs carbohydrate and energy metabolism, while the transceptors regulate ancillary processes such as ribosome, amino acids, cofactor and vitamin metabolism. The large G-protein transmits the signal from its cognate receptor, while the small G-protein Ras2 (but not Ras1) integrates responses from both receptor pathways. Collectively, our analysis reveals the molecular basis for glucose detection and the earliest events of glucose-dependent signal transduction in yeast. Full article
Show Figures

Figure 1

24 pages, 1808 KiB  
Review
Passive Immunization in Alpha-Synuclein Preclinical Animal Models
by Jonas Folke, Nelson Ferreira, Tomasz Brudek, Per Borghammer and Nathalie Van Den Berge
Biomolecules 2022, 12(2), 168; https://doi.org/10.3390/biom12020168 - 20 Jan 2022
Cited by 14 | Viewed by 5238
Abstract
Alpha-synucleinopathies include Parkinson’s disease, dementia with Lewy bodies, pure autonomic failure and multiple system atrophy. These are all progressive neurodegenerative diseases that are characterized by pathological misfolding and accumulation of the protein alpha-synuclein (αsyn) in neurons, axons or glial cells in the brain, [...] Read more.
Alpha-synucleinopathies include Parkinson’s disease, dementia with Lewy bodies, pure autonomic failure and multiple system atrophy. These are all progressive neurodegenerative diseases that are characterized by pathological misfolding and accumulation of the protein alpha-synuclein (αsyn) in neurons, axons or glial cells in the brain, but also in other organs. The abnormal accumulation and propagation of pathogenic αsyn across the autonomic connectome is associated with progressive loss of neurons in the brain and peripheral organs, resulting in motor and non-motor symptoms. To date, no cure is available for synucleinopathies, and therapy is limited to symptomatic treatment of motor and non-motor symptoms upon diagnosis. Recent advances using passive immunization that target different αsyn structures show great potential to block disease progression in rodent studies of synucleinopathies. However, passive immunotherapy in clinical trials has been proven safe but less effective than in preclinical conditions. Here we review current achievements of passive immunotherapy in animal models of synucleinopathies. Furthermore, we propose new research strategies to increase translational outcome in patient studies, (1) by using antibodies against immature conformations of pathogenic αsyn (monomers, post-translationally modified monomers, oligomers and protofibrils) and (2) by focusing treatment on body-first synucleinopathies where damage in the brain is still limited and effective immunization could potentially stop disease progression by blocking the spread of pathogenic αsyn from peripheral organs to the brain. Full article
Show Figures

Figure 1

19 pages, 2721 KiB  
Review
Bcl-2 Family Members and the Mitochondrial Import Machineries: The Roads to Death
by Lisenn Lalier, François Vallette and Stéphen Manon
Biomolecules 2022, 12(2), 162; https://doi.org/10.3390/biom12020162 - 19 Jan 2022
Cited by 36 | Viewed by 4057
Abstract
The localization of Bcl-2 family members at the mitochondrial outer membrane (MOM) is a crucial step in the implementation of apoptosis. We review evidence showing the role of the components of the mitochondrial import machineries (translocase of the outer membrane (TOM) and the [...] Read more.
The localization of Bcl-2 family members at the mitochondrial outer membrane (MOM) is a crucial step in the implementation of apoptosis. We review evidence showing the role of the components of the mitochondrial import machineries (translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM)) in the mitochondrial localization of Bcl-2 family members and how these machineries regulate the function of pro- and anti-apoptotic proteins in resting cells and in cells committed into apoptosis. Full article
(This article belongs to the Special Issue State-of-the-Art Cell Death in France 2020-2021)
Show Figures

Figure 1

27 pages, 2062 KiB  
Review
The Urokinase Plasminogen Activation System in Pancreatic Cancer: Prospective Diagnostic and Therapeutic Targets
by Ashna A. Kumar, Benjamin J. Buckley and Marie Ranson
Biomolecules 2022, 12(2), 152; https://doi.org/10.3390/biom12020152 - 18 Jan 2022
Cited by 23 | Viewed by 6802
Abstract
Pancreatic cancer is a highly aggressive malignancy that features high recurrence rates and the poorest prognosis of all solid cancers. The urokinase plasminogen activation system (uPAS) is strongly implicated in the pathophysiology and clinical outcomes of patients with pancreatic ductal adenocarcinoma (PDAC), which [...] Read more.
Pancreatic cancer is a highly aggressive malignancy that features high recurrence rates and the poorest prognosis of all solid cancers. The urokinase plasminogen activation system (uPAS) is strongly implicated in the pathophysiology and clinical outcomes of patients with pancreatic ductal adenocarcinoma (PDAC), which accounts for more than 90% of all pancreatic cancers. Overexpression of the urokinase-type plasminogen activator (uPA) or its cell surface receptor uPAR is a key step in the acquisition of a metastatic phenotype via multiple mechanisms, including the increased activation of cell surface localised plasminogen which generates the serine protease plasmin. This triggers multiple downstream processes that promote tumour cell migration and invasion. Increasing clinical evidence shows that the overexpression of uPA, uPAR, or of both is strongly associated with worse clinicopathological features and poor prognosis in PDAC patients. This review provides an overview of the current understanding of the uPAS in the pathogenesis and progression of pancreatic cancer, with a focus on PDAC, and summarises the substantial body of evidence that supports the role of uPAS components, including plasminogen receptors, in this disease. The review further outlines the clinical utility of uPAS components as prospective diagnostic and prognostic biomarkers for PDAC, as well as a rationale for the development of novel uPAS-targeted therapeutics. Full article
(This article belongs to the Special Issue Plasminogen, Plasminogen Receptors and Binding Mechanisms in Cancer)
Show Figures

Figure 1

19 pages, 797 KiB  
Review
Adrenomedullin: Not Just Another Gastrointestinal Peptide
by Sonia Martínez-Herrero and Alfredo Martínez
Biomolecules 2022, 12(2), 156; https://doi.org/10.3390/biom12020156 - 18 Jan 2022
Cited by 11 | Viewed by 4705
Abstract
Adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP) are two bioactive peptides derived from the same precursor with several biological functions including vasodilation, angiogenesis, or anti-inflammation, among others. AM and PAMP are widely expressed throughout the gastrointestinal (GI) tract where they behave as [...] Read more.
Adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP) are two bioactive peptides derived from the same precursor with several biological functions including vasodilation, angiogenesis, or anti-inflammation, among others. AM and PAMP are widely expressed throughout the gastrointestinal (GI) tract where they behave as GI hormones, regulating numerous physiological processes such as gastric emptying, gastric acid release, insulin secretion, bowel movements, or intestinal barrier function. Furthermore, it has been recently demonstrated that AM/PAMP have an impact on gut microbiome composition, inhibiting the growth of bacteria related with disease and increasing the number of beneficial bacteria such as Lactobacillus or Bifidobacterium. Due to their wide functions in the GI tract, AM and PAMP are involved in several digestive pathologies such as peptic ulcer, diabetes, colon cancer, or inflammatory bowel disease (IBD). AM is a key protective factor in IBD onset and development, as it regulates cytokine production in the intestinal mucosa, improves vascular and lymphatic regeneration and function and mucosal epithelial repair, and promotes a beneficial gut microbiome composition. AM and PAMP are relevant GI hormones that can be targeted to develop novel therapeutic agents for IBD, other GI disorders, or microbiome-related pathologies. Full article
(This article belongs to the Special Issue Gastrointestinal Hormones)
Show Figures

Figure 1

19 pages, 3310 KiB  
Article
Potential Anticancer Agents against Melanoma Cells Based on an As-Synthesized Thiosemicarbazide Derivative
by Paweł Kozyra, Agnieszka Korga-Plewko, Zbigniew Karczmarzyk, Anna Hawrył, Waldemar Wysocki, Michał Człapski, Magdalena Iwan, Marta Ostrowska-Leśko, Emilia Fornal and Monika Pitucha
Biomolecules 2022, 12(2), 151; https://doi.org/10.3390/biom12020151 - 18 Jan 2022
Cited by 20 | Viewed by 3021
Abstract
In this paper, thiosemicarbazide derivatives were synthesized as potential anticancer agents. X-ray investigations for 1-(2,4-dichlorophenoxy)acetyl-4-(2-fluorophenyl) thiosemicarbazide, 1-(2,4-dichlorophenoxy)acetyl-4-(4-metylothiophenyl)thiosemicarbazide and 1-(2,4-di chlorophenoxy)acetyl-4-(4-iodophenyl)thiosemicarbazide were carried out in order to confirm the synthesis pathways, identify their tautomeric forms, analyze the conformational preferences of molecules, and identify intra- [...] Read more.
In this paper, thiosemicarbazide derivatives were synthesized as potential anticancer agents. X-ray investigations for 1-(2,4-dichlorophenoxy)acetyl-4-(2-fluorophenyl) thiosemicarbazide, 1-(2,4-dichlorophenoxy)acetyl-4-(4-metylothiophenyl)thiosemicarbazide and 1-(2,4-di chlorophenoxy)acetyl-4-(4-iodophenyl)thiosemicarbazide were carried out in order to confirm the synthesis pathways, identify their tautomeric forms, analyze the conformational preferences of molecules, and identify intra- and intermolecular interactions in the crystalline state. TLC and RP-HPLC analyses were used to determine lipophilicity. The lipophilicity analysis revealed that the 4-substituted halogen derivatives of thiosemicarbazides showed greater lipophilicity compared with 2-substituted derivatives. The optimal range of lipophilicity for biologically active compounds logkw is between 4.14 and 4.78. However, as the analysis showed, it is not a decisive parameter. The cytotoxicity of the new compounds was evaluated against both the G-361 and BJ cell lines. Cytotoxicity analyses and cell-cycle and cell apoptosis assays were performed. The MTT test demonstrated that three compounds were cytotoxic to melanoma cells and not toxic to normal fibroblasts in the concentration range used. The cell cycle analysis showed that the compounds had no significant effect on the cell cycle inhibition. An extensive gene expression analysis additionally revealed that all compounds tested downregulated the expression of dihydroorotate dehydrogenase (DHODH). DHODH is a mitochondrial enzyme involved in the de novo synthesis of pyrimidines. Due to the rapid rate of cancer cell proliferation and the increased demand for nucleotide synthesis, it has become a potential therapeutic target. Full article
(This article belongs to the Special Issue New Approaches for the Treatment of Civilization Diseases)
Show Figures

Figure 1

16 pages, 959 KiB  
Review
Antioxidant Roles of SGLT2 Inhibitors in the Kidney
by Carmen Llorens-Cebrià, Mireia Molina-Van den Bosch, Ander Vergara, Conxita Jacobs-Cachá and Maria José Soler
Biomolecules 2022, 12(1), 143; https://doi.org/10.3390/biom12010143 - 16 Jan 2022
Cited by 25 | Viewed by 3935
Abstract
The reduction-oxidation (redox) system consists of the coupling and coordination of various electron gradients that are generated thanks to serial reduction-oxidation enzymatic reactions. These reactions happen in every cell and produce radical oxidants that can be mainly classified into reactive oxygen species (ROS) [...] Read more.
The reduction-oxidation (redox) system consists of the coupling and coordination of various electron gradients that are generated thanks to serial reduction-oxidation enzymatic reactions. These reactions happen in every cell and produce radical oxidants that can be mainly classified into reactive oxygen species (ROS) and reactive nitrogen species (RNS). ROS and RNS modulate cell-signaling pathways and cellular processes fundamental to normal cell function. However, overproduction of oxidative species can lead to oxidative stress (OS) that is pathological. Oxidative stress is a main contributor to diabetic kidney disease (DKD) onset. In the kidney, the proximal tubular cells require a high energy supply to reabsorb proteins, metabolites, ions, and water. In a diabetic milieu, glucose-induced toxicity promotes oxidative stress and mitochondrial dysfunction, impairing tubular function. Increased glucose level in urine and ROS enhance the activity of sodium/glucose co-transporter type 2 (SGLT2), which in turn exacerbates OS. SGLT2 inhibitors have demonstrated clear cardiovascular benefits in DKD which may be in part ascribed to the generation of a beneficial equilibrium between oxidant and antioxidant mechanisms. Full article
(This article belongs to the Special Issue Redox Imbalance and Mitochondrial Abnormalities in Kidney Disease)
Show Figures

Figure 1

20 pages, 1653 KiB  
Review
β-Synuclein: An Enigmatic Protein with Diverse Functionality
by Junna Hayashi and John A. Carver
Biomolecules 2022, 12(1), 142; https://doi.org/10.3390/biom12010142 - 16 Jan 2022
Cited by 22 | Viewed by 3252
Abstract
α-Synuclein (αS) is a small, unstructured, presynaptic protein expressed in the brain. Its aggregated form is a major component of Lewy bodies, the large proteinaceous deposits in Parkinson’s disease. The closely related protein, β-Synuclein (βS), is co-expressed with αS. In vitro, βS acts [...] Read more.
α-Synuclein (αS) is a small, unstructured, presynaptic protein expressed in the brain. Its aggregated form is a major component of Lewy bodies, the large proteinaceous deposits in Parkinson’s disease. The closely related protein, β-Synuclein (βS), is co-expressed with αS. In vitro, βS acts as a molecular chaperone to inhibit αS aggregation. As a result of this assignation, βS has been largely understudied in comparison to αS. However, recent reports suggest that βS promotes neurotoxicity, implying that βS is involved in other cellular pathways with functions independent of αS. Here, we review the current literature pertaining to human βS in order to understand better the role of βS in homeostasis and pathology. Firstly, the structure of βS is discussed. Secondly, the ability of βS to (i) act as a molecular chaperone; (ii) regulate synaptic function, lipid binding, and the nigrostriatal dopaminergic system; (iii) mediate apoptosis; (iv) participate in protein degradation pathways; (v) modulate intracellular metal levels; and (vi) promote cellular toxicity and protein aggregation is explored. Thirdly, the P123H and V70M mutations of βS, which are associated with dementia with Lewy bodies, are discussed. Finally, the importance of post-translational modifications on the structure and function of βS is reviewed. Overall, it is concluded that βS has both synergistic and antagonistic interactions with αS, but it may also possess important cellular functions independent of αS. Full article
Show Figures

Figure 1

26 pages, 3482 KiB  
Review
Mass Spectrometry-Based Structural Proteomics for Metal Ion/Protein Binding Studies
by Yanchun Lin and Michael L. Gross
Biomolecules 2022, 12(1), 135; https://doi.org/10.3390/biom12010135 - 15 Jan 2022
Cited by 6 | Viewed by 4488
Abstract
Metal ions are critical for the biological and physiological functions of many proteins. Mass spectrometry (MS)-based structural proteomics is an ever-growing field that has been adopted to study protein and metal ion interactions. Native MS offers information on metal binding and its stoichiometry. [...] Read more.
Metal ions are critical for the biological and physiological functions of many proteins. Mass spectrometry (MS)-based structural proteomics is an ever-growing field that has been adopted to study protein and metal ion interactions. Native MS offers information on metal binding and its stoichiometry. Footprinting approaches coupled with MS, including hydrogen/deuterium exchange (HDX), “fast photochemical oxidation of proteins” (FPOP) and targeted amino-acid labeling, identify binding sites and regions undergoing conformational changes. MS-based titration methods, including “protein–ligand interactions by mass spectrometry, titration and HD exchange” (PLIMSTEX) and “ligand titration, fast photochemical oxidation of proteins and mass spectrometry” (LITPOMS), afford binding stoichiometry, binding affinity, and binding order. These MS-based structural proteomics approaches, their applications to answer questions regarding metal ion protein interactions, their limitations, and recent and potential improvements are discussed here. This review serves as a demonstration of the capabilities of these tools and as an introduction to wider applications to solve other questions. Full article
(This article belongs to the Collection Advances in Metal Binding Proteins)
Show Figures

Graphical abstract

Back to TopTop