Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6204 KiB  
Article
Iron-Bound Lipocalin-2 Protects Renal Cell Carcinoma from Ferroptosis
by Julia K. Meier, Matthias Schnetz, Susanne Beck, Tobias Schmid, Monica Dominguez, Sanela Kalinovic, Andreas Daiber, Bernhard Brüne and Michaela Jung
Metabolites 2021, 11(5), 329; https://doi.org/10.3390/metabo11050329 - 19 May 2021
Cited by 22 | Viewed by 4373
Abstract
While the importance of the iron-load of lipocalin-2 (Lcn-2) in promoting tumor progression is widely appreciated, underlying molecular mechanisms largely remain elusive. Considering its role as an iron-transporter, we aimed at clarifying iron-loaded, holo-Lcn-2 (hLcn-2)-dependent signaling pathways in affecting renal cancer cell viability. [...] Read more.
While the importance of the iron-load of lipocalin-2 (Lcn-2) in promoting tumor progression is widely appreciated, underlying molecular mechanisms largely remain elusive. Considering its role as an iron-transporter, we aimed at clarifying iron-loaded, holo-Lcn-2 (hLcn-2)-dependent signaling pathways in affecting renal cancer cell viability. Applying RNA sequencing analysis in renal CAKI1 tumor cells to explore highly upregulated molecular signatures in response to hLcn-2, we identified a cluster of genes (SLC7A11, GCLM, GLS), which are implicated in regulating ferroptosis. Indeed, hLcn-2-stimulated cells are protected from erastin-induced ferroptosis. We also noticed a rapid increase in reactive oxygen species (ROS) with subsequent activation of the antioxidant Nrf2 pathway. However, knocking down Nrf2 by siRNA was not sufficient to induce erastin-dependent ferroptotic cell death in hLcn-2-stimulated tumor cells. In contrast, preventing oxidative stress through N-acetyl-l-cysteine (NAC) supplementation was still able to induce erastin-dependent ferroptotic cell death in hLcn-2-stimulated tumor cells. Besides an oxidative stress response, we noticed activation of the integrated stress response (ISR), shown by enhanced phosphorylation of eIF-2α and induction of ATF4 after hLcn-2 addition. ATF4 knockdown as well as inhibition of the ISR sensitized hLcn-2-treated renal tumor cells to ferroptosis, thus linking the ISR to pro-tumor characteristics of hLcn-2. Our study provides mechanistic details to better understand tumor pro-survival pathways initiated by iron-loaded Lcn-2. Full article
(This article belongs to the Section Cell Metabolism)
Show Figures

Figure 1

16 pages, 2807 KiB  
Article
Lifelong Aerobic Exercise Alleviates Sarcopenia by Activating Autophagy and Inhibiting Protein Degradation via the AMPK/PGC-1α Signaling Pathway
by Jiling Liang, Hu Zhang, Zhengzhong Zeng, Liangwen Wu, Ying Zhang, Yanju Guo, Jun Lv, Cenyi Wang, Jingjing Fan and Ning Chen
Metabolites 2021, 11(5), 323; https://doi.org/10.3390/metabo11050323 - 18 May 2021
Cited by 37 | Viewed by 5274
Abstract
Sarcopenia is an aging-induced syndrome characterized by a progressive reduction of skeletal muscle mass and strength. Increasing evidence has attested that appropriate and scientific exercise could induce autophagy or optimize the functional status of autophagy, which plays a critical role in senescent muscular [...] Read more.
Sarcopenia is an aging-induced syndrome characterized by a progressive reduction of skeletal muscle mass and strength. Increasing evidence has attested that appropriate and scientific exercise could induce autophagy or optimize the functional status of autophagy, which plays a critical role in senescent muscular dystrophy. As a publicly recognized strategy for extending lifespan and improving the health of the elderly, the underlying mechanisms of lifelong regular aerobic exercise for the prevention of sarcopenia have not been fully elucidated. To explore the role of lifelong aerobic exercise in the beneficial regulation of autophagic signaling pathways in senescent skeletal muscle, the natural aging mice were used as the sarcopenia model and subjected to lifelong treadmill running to evaluate corresponding parameters related to skeletal muscle atrophy and autophagic signaling pathways. Compared with the young control mice, the aged mice showed a significant reduction in skeletal muscle mass, gastrocnemius muscle weight/body weight (GMW/BW) ratio, and cross-sectional areas (CSA) of skeletal muscle fibers (p < 0.01). In contrast, lifelong aerobic exercise effectively rescued these reduced biomarkers associated with muscle atrophy. Moreover, as shown in the activated AMPK/PGC-1α signaling pathway, lifelong aerobic exercise successfully prevented the aging-induced impairment of the ubiquitin-proteasome system (UPS), excessive apoptosis, defective autophagy, and mitochondrial dysfunction. The exercise-induced autophagy suppressed the key regulatory components of the UPS, inhibited excessive apoptosis, and optimized mitochondrial quality control, thereby preventing and delaying aging-induced skeletal muscle atrophy. Full article
(This article belongs to the Special Issue Skeletal Muscle Atrophy and Metabolic Adaptation)
Show Figures

Graphical abstract

28 pages, 3076 KiB  
Article
Exploration of Blood Lipoprotein and Lipid Fraction Profiles in Healthy Subjects through Integrated Univariate, Multivariate, and Network Analysis Reveals Association of Lipase Activity and Cholesterol Esterification with Sex and Age
by Yasmijn Balder, Alessia Vignoli, Leonardo Tenori, Claudio Luchinat and Edoardo Saccenti
Metabolites 2021, 11(5), 326; https://doi.org/10.3390/metabo11050326 - 18 May 2021
Cited by 4 | Viewed by 4201
Abstract
In this study, we investigated blood lipoprotein and lipid fraction profiles, quantified using nuclear magnetic resonance, in a cohort of 844 healthy blood donors, integrating standard univariate and multivariate analysis with predictive modeling and network analysis. We observed a strong association of lipoprotein [...] Read more.
In this study, we investigated blood lipoprotein and lipid fraction profiles, quantified using nuclear magnetic resonance, in a cohort of 844 healthy blood donors, integrating standard univariate and multivariate analysis with predictive modeling and network analysis. We observed a strong association of lipoprotein and lipid main fraction profiles with sex and age. Our results suggest an age-dependent remodulation of lipase lipoprotein activity in men and a change in the mechanisms controlling the ratio between esterified and non-esterified cholesterol in both men and women. Full article
(This article belongs to the Collection Advances in Metabolomics)
Show Figures

Figure 1

20 pages, 2398 KiB  
Review
Browning of White Adipose Tissue as a Therapeutic Tool in the Fight against Atherosclerosis
by Christel L. Roth, Filippo Molica and Brenda R. Kwak
Metabolites 2021, 11(5), 319; https://doi.org/10.3390/metabo11050319 - 14 May 2021
Cited by 17 | Viewed by 4320
Abstract
Despite continuous medical advances, atherosclerosis remains the prime cause of mortality worldwide. Emerging findings on brown and beige adipocytes highlighted that these fat cells share the specific ability of non-shivering thermogenesis due to the expression of uncoupling protein 1. Brown fat is established [...] Read more.
Despite continuous medical advances, atherosclerosis remains the prime cause of mortality worldwide. Emerging findings on brown and beige adipocytes highlighted that these fat cells share the specific ability of non-shivering thermogenesis due to the expression of uncoupling protein 1. Brown fat is established during embryogenesis, and beige cells emerge from white adipose tissue exposed to specific stimuli like cold exposure into a process called browning. The consecutive energy expenditure of both thermogenic adipose tissues has shown therapeutic potential in metabolic disorders like obesity and diabetes. The latest data suggest promising effects on atherosclerosis development as well. Upon cold exposure, mice and humans have a physiological increase in brown adipose tissue activation and browning of white adipocytes is promoted. The use of drugs like β3-adrenergic agonists in murine models induces similar effects. With respect to atheroprotection, thermogenic adipose tissue activation has beneficial outcomes in mice by decreasing plasma triglycerides, total cholesterol and low-density lipoproteins, by increasing high-density lipoproteins, and by inducing secretion of atheroprotective adipokines. Atheroprotective effects involve an unaffected hepatic clearance. Latest clinical data tend to find thinner atherosclerotic lesions in patients with higher brown adipose tissue activity. Strategies for preserving healthy arteries are a major concern for public health. Full article
Show Figures

Figure 1

10 pages, 1304 KiB  
Article
Correcting for Naturally Occurring Mass Isotopologue Abundances in Stable-Isotope Tracing Experiments with PolyMID
by Heesoo Jeong, Yan Yu, Henrik J. Johansson, Frank C. Schroeder, Janne Lehtiö and Nathaniel M. Vacanti
Metabolites 2021, 11(5), 310; https://doi.org/10.3390/metabo11050310 - 12 May 2021
Cited by 4 | Viewed by 4014
Abstract
Stable-isotope tracing is a method to measure intracellular metabolic pathway utilization by feeding a cellular system a stable-isotope-labeled tracer nutrient. The power of the method to resolve differential pathway utilization is derived from the enrichment of metabolites in heavy isotopes that are synthesized [...] Read more.
Stable-isotope tracing is a method to measure intracellular metabolic pathway utilization by feeding a cellular system a stable-isotope-labeled tracer nutrient. The power of the method to resolve differential pathway utilization is derived from the enrichment of metabolites in heavy isotopes that are synthesized from the tracer nutrient. However, the readout is complicated by the presence of naturally occurring heavy isotopes that are not derived from the tracer nutrient. Herein we present an algorithm, and a tool that applies it (PolyMID-Correct, part of the PolyMID software package), to computationally remove the influence of naturally occurring heavy isotopes. The algorithm is applicable to stable-isotope tracing data collected on low- and high- mass resolution mass spectrometers. PolyMID-Correct is open source and available under an MIT license. Full article
(This article belongs to the Special Issue Mitochondrial Metabolism and Bioenergetics)
Show Figures

Figure 1

16 pages, 1754 KiB  
Article
Untargeted Lipidomic Profiling of Dry Blood Spots Using SFC-HRMS
by Pauline Le Faouder, Julia Soullier, Marie Tremblay-Franco, Anthony Tournadre, Jean-François Martin, Yann Guitton, Caroline Carlé, Sylvie Caspar-Bauguil, Pierre-Damien Denechaud and Justine Bertrand-Michel
Metabolites 2021, 11(5), 305; https://doi.org/10.3390/metabo11050305 - 11 May 2021
Cited by 9 | Viewed by 3293
Abstract
Lipids are essential cellular constituents that have many critical roles in physiological functions. They are notably involved in energy storage and cell signaling as second messengers, and they are major constituents of cell membranes, including lipid rafts. As a consequence, they are implicated [...] Read more.
Lipids are essential cellular constituents that have many critical roles in physiological functions. They are notably involved in energy storage and cell signaling as second messengers, and they are major constituents of cell membranes, including lipid rafts. As a consequence, they are implicated in a large number of heterogeneous diseases, such as cancer, diabetes, neurological disorders, and inherited metabolic diseases. Due to the high structural diversity and complexity of lipid species, the presence of isomeric and isobaric lipid species, and their occurrence at a large concentration scale, a complete lipidomic profiling of biological matrices remains challenging, especially in clinical contexts. Using supercritical fluid chromatography coupled with high-resolution mass spectrometry, we have developed and validated an untargeted lipidomic approach to the profiling of plasma and blood. Moreover, we have tested the technique using the Dry Blood Spot (DBS) method and found that it allows for the easy collection of blood for analysis. To develop the method, we performed the optimization of the separation and detection of lipid species on pure standards, reference human plasma (SRM1950), whole blood, and DBS. These analyses allowed an in-house lipid data bank to be built. Using the MS-Dial software, we developed an automatic process for the relative quantification of around 500 lipids species belonging to the 6 main classes of lipids (including phospholipids, sphingolipids, free fatty acids, sterols, and fatty acyl-carnitines). Then, we compared the method using the published data for SRM 1950 and a mouse blood sample, along with another sample of the same blood collected using the DBS method. In this study, we provided a method for blood lipidomic profiling that can be used for the easy sampling of dry blood spots. Full article
(This article belongs to the Special Issue Mass Spectrometry-Based Lipidomics)
Show Figures

Figure 1

15 pages, 671 KiB  
Review
FFAR from the Gut Microbiome Crowd: SCFA Receptors in T1D Pathology
by Medha Priyadarshini, Kristen Lednovich, Kai Xu, Sophie Gough, Barton Wicksteed and Brian T. Layden
Metabolites 2021, 11(5), 302; https://doi.org/10.3390/metabo11050302 - 11 May 2021
Cited by 11 | Viewed by 3945
Abstract
The gut microbiome has emerged as a novel determinant of type 1 diabetes (T1D), but the underlying mechanisms are unknown. In this context, major gut microbial metabolites, short-chain fatty acids (SCFAs), are considered to be an important link between the host and gut [...] Read more.
The gut microbiome has emerged as a novel determinant of type 1 diabetes (T1D), but the underlying mechanisms are unknown. In this context, major gut microbial metabolites, short-chain fatty acids (SCFAs), are considered to be an important link between the host and gut microbiome. We, along with other laboratories, have explored how SCFAs and their cognate receptors affect various metabolic conditions, including obesity, type 2 diabetes, and metabolic syndrome. Though gut microbiome and SCFA-level changes have been reported in T1D and in mouse models of the disease, the role of SCFA receptors in T1D remains under explored. In this review article, we will highlight the existing and possible roles of these receptors in T1D pathology. We conclude with a discussion of SCFA receptors as therapeutic targets for T1D, exploring an exciting new potential for novel treatments of glucometabolic disorders. Full article
(This article belongs to the Special Issue Islet Biology and Metabolism)
Show Figures

Figure 1

16 pages, 2024 KiB  
Review
Isolation and Proteomics of the Insulin Secretory Granule
by Nicholas Norris, Belinda Yau and Melkam Alamerew Kebede
Metabolites 2021, 11(5), 288; https://doi.org/10.3390/metabo11050288 - 30 Apr 2021
Cited by 15 | Viewed by 4733
Abstract
Insulin, a vital hormone for glucose homeostasis is produced by pancreatic beta-cells and when secreted, stimulates the uptake and storage of glucose from the blood. In the pancreas, insulin is stored in vesicles termed insulin secretory granules (ISGs). In Type 2 diabetes (T2D), [...] Read more.
Insulin, a vital hormone for glucose homeostasis is produced by pancreatic beta-cells and when secreted, stimulates the uptake and storage of glucose from the blood. In the pancreas, insulin is stored in vesicles termed insulin secretory granules (ISGs). In Type 2 diabetes (T2D), defects in insulin action results in peripheral insulin resistance and beta-cell compensation, ultimately leading to dysfunctional ISG production and secretion. ISGs are functionally dynamic and many proteins present either on the membrane or in the lumen of the ISG may modulate and affect different stages of ISG trafficking and secretion. Previously, studies have identified few ISG proteins and more recently, proteomics analyses of purified ISGs have uncovered potential novel ISG proteins. This review summarizes the proteins identified in the current ISG proteomes from rat insulinoma INS-1 and INS-1E cell lines. Here, we also discuss techniques of ISG isolation and purification, its challenges and potential future directions. Full article
(This article belongs to the Special Issue Islet Biology and Metabolism)
Show Figures

Figure 1

22 pages, 5682 KiB  
Article
Metabolic View on Human Healthspan: A Lipidome-Wide Association Study
by Justin Carrard, Hector Gallart-Ayala, Denis Infanger, Tony Teav, Jonathan Wagner, Raphael Knaier, Flora Colledge, Lukas Streese, Karsten Königstein, Timo Hinrichs, Henner Hanssen, Julijana Ivanisevic and Arno Schmidt-Trucksäss
Metabolites 2021, 11(5), 287; https://doi.org/10.3390/metabo11050287 - 30 Apr 2021
Cited by 15 | Viewed by 5498
Abstract
As ageing is a major risk factor for the development of non-communicable diseases, extending healthspan has become a medical and societal necessity. Precise lipid phenotyping that captures metabolic individuality could support healthspan extension strategies. This study applied ‘omic-scale lipid profiling to characterise sex-specific [...] Read more.
As ageing is a major risk factor for the development of non-communicable diseases, extending healthspan has become a medical and societal necessity. Precise lipid phenotyping that captures metabolic individuality could support healthspan extension strategies. This study applied ‘omic-scale lipid profiling to characterise sex-specific age-related differences in the serum lipidome composition of healthy humans. A subset of the COmPLETE-Health study, composed of 73 young (25.2 ± 2.6 years, 43% female) and 77 aged (73.5 ± 2.3 years, 48% female) clinically healthy individuals, was investigated, using an untargeted liquid chromatography high-resolution mass spectrometry approach. Compared to their younger counterparts, aged females and males exhibited significant higher levels in 138 and 107 lipid species representing 15 and 13 distinct subclasses, respectively. Percentage of difference ranged from 5.8% to 61.7% (females) and from 5.3% to 46.0% (males), with sphingolipid and glycerophophospholipid species displaying the greatest amplitudes. Remarkably, specific sphingolipid and glycerophospholipid species, previously described as cardiometabolically favourable, were found elevated in aged individuals. Furthermore, specific ether-glycerophospholipid and lyso-glycerophosphocholine species displayed higher levels in aged females only, revealing a more favourable lipidome evolution in females. Altogether, age determined the circulating lipidome composition, while lipid species analysis revealed additional findings that were not observed at the subclass level. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Graphical abstract

33 pages, 2516 KiB  
Review
Vitamin D Sources, Metabolism, and Deficiency: Available Compounds and Guidelines for Its Treatment
by Ligia J. Dominguez, Mario Farruggia, Nicola Veronese and Mario Barbagallo
Metabolites 2021, 11(4), 255; https://doi.org/10.3390/metabo11040255 - 20 Apr 2021
Cited by 90 | Viewed by 17379
Abstract
Studies on vitamin/hormone D deficiency have received a vast amount of attention in recent years, particularly concerning recommendations, guidelines, and treatments. Moreover, vitamin D’s role as a hormone has been confirmed in various enzymatic, metabolic, physiological, and pathophysiological processes related to many organs [...] Read more.
Studies on vitamin/hormone D deficiency have received a vast amount of attention in recent years, particularly concerning recommendations, guidelines, and treatments. Moreover, vitamin D’s role as a hormone has been confirmed in various enzymatic, metabolic, physiological, and pathophysiological processes related to many organs and systems in the human body. This growing interest is mostly due to the evidence that modest-to-severe vitamin D deficiency is widely prevalent around the world. There is broad agreement that optimal vitamin D status is necessary for bones, muscles, and one’s general health, as well as for the efficacy of antiresorptive and anabolic bone-forming treatments. Food supplementation with vitamin D, or the use of vitamin D supplements, are current strategies to improve vitamin D levels and treat deficiency. This article reviews consolidated and emerging concepts about vitamin D/hormone D metabolism, food sources, deficiency, as well as the different vitamin D supplements available, and current recommendations on the proper use of these compounds. Full article
(This article belongs to the Special Issue Vitamin D and Bone Metabolism)
Show Figures

Figure 1

15 pages, 2645 KiB  
Article
Serum Zinc, Copper, and Other Biometals Are Associated with COVID-19 Severity Markers
by Anatoly V. Skalny, Peter S. Timashev, Michael Aschner, Jan Aaseth, Lyubov N. Chernova, Vladimir E. Belyaev, Andrey R. Grabeklis, Svetlana V. Notova, Ryszard Lobinski, Aristides Tsatsakis, Andrey A. Svistunov, Victor V. Fomin, Alexey A. Tinkov and Peter V. Glybochko
Metabolites 2021, 11(4), 244; https://doi.org/10.3390/metabo11040244 - 15 Apr 2021
Cited by 58 | Viewed by 5276
Abstract
The objective of the present study was to evaluate of serum metal levels in COVID-19 patients with different disease severity, and to investigate the independent association between serum metal profile and markers of lung damage. The cohort of COVID-19 patients consisted of groups [...] Read more.
The objective of the present study was to evaluate of serum metal levels in COVID-19 patients with different disease severity, and to investigate the independent association between serum metal profile and markers of lung damage. The cohort of COVID-19 patients consisted of groups of subjects with mild, moderate, and severe illness, 50 examinees each. Forty-four healthy subjects of the respective age were involved in the current study as the control group. Serum metal levels were evaluated using inductively-coupled plasma mass-spectrometry. Examination of COVID-19 patients demonstrated that heart rate, respiratory rate, body temperature, C-reactive protein levels, as well as lung damage increased significantly with COVID-19 severity, whereas SpO2 decreased gradually. Increasing COVID-19 severity was also associated with a significant gradual decrease in serum Ca, Fe, Se, Zn levels as compared to controls, whereas serum Cu and especially Cu/Zn ratio were elevated. No significant group differences in serum Mg and Mn levels were observed. Serum Ca, Fe, Se, Zn correlated positively with SpO2, being inversely associated with fever, lung damage, and C-reactive protein concentrations. Opposite correlations were observed for Cu and Cu/Zn ratio. In regression models, serum Se levels were inversely associated with lung damage independently of other markers of disease severity, anthropometric, biochemical, and hemostatic parameters. Cu/Zn ratio was also considered as a significant predictor of lower SpO2 in adjusted regression models. Taken together, these findings demonstrated that metal metabolism significantly interferes with COVID-19 pathogenesis, although the causal relations as well as precise mechanisms are yet to be characterized. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Graphical abstract

24 pages, 2182 KiB  
Review
Clinical Insights into Mitochondrial Neurodevelopmental and Neurodegenerative Disorders: Their Biosignatures from Mass Spectrometry-Based Metabolomics
by Haorong Li, Martine Uittenbogaard, Ling Hao and Anne Chiaramello
Metabolites 2021, 11(4), 233; https://doi.org/10.3390/metabo11040233 - 10 Apr 2021
Cited by 9 | Viewed by 4333
Abstract
Mitochondria are dynamic multitask organelles that function as hubs for many metabolic pathways. They produce most ATP via the oxidative phosphorylation pathway, a critical pathway that the brain relies on its energy need associated with its numerous functions, such as synaptic homeostasis and [...] Read more.
Mitochondria are dynamic multitask organelles that function as hubs for many metabolic pathways. They produce most ATP via the oxidative phosphorylation pathway, a critical pathway that the brain relies on its energy need associated with its numerous functions, such as synaptic homeostasis and plasticity. Therefore, mitochondrial dysfunction is a prevalent pathological hallmark of many neurodevelopmental and neurodegenerative disorders resulting in altered neurometabolic coupling. With the advent of mass spectrometry (MS) technology, MS-based metabolomics provides an emerging mechanistic understanding of their global and dynamic metabolic signatures. In this review, we discuss the pathogenetic causes of mitochondrial metabolic disorders and the recent MS-based metabolomic advances on their metabolomic remodeling. We conclude by exploring the MS-based metabolomic functional insights into their biosignatures to improve diagnostic platforms, stratify patients, and design novel targeted therapeutic strategies. Full article
(This article belongs to the Special Issue The Role of Metabolism in Brain Diseases)
Show Figures

Graphical abstract

16 pages, 676 KiB  
Article
Metabolomic Analysis of Small Extracellular Vesicles Derived from Pancreatic Cancer Cells Cultured under Normoxia and Hypoxia
by Ryosuke Hayasaka, Sho Tabata, Masako Hasebe, Satsuki Ikeda, Sumiko Ohnuma, Masaru Mori, Tomoyoshi Soga, Masaru Tomita and Akiyoshi Hirayama
Metabolites 2021, 11(4), 215; https://doi.org/10.3390/metabo11040215 - 1 Apr 2021
Cited by 17 | Viewed by 3550
Abstract
Extracellular vesicles (EVs) released from cancer cells contribute to various malignant phenotypes of cancer, including metastasis, cachexia, and angiogenesis. Although DNA, mRNAs, miRNAs, and proteins contained in EVs have been extensively studied, the function of metabolites in EVs remains unclear. In this study, [...] Read more.
Extracellular vesicles (EVs) released from cancer cells contribute to various malignant phenotypes of cancer, including metastasis, cachexia, and angiogenesis. Although DNA, mRNAs, miRNAs, and proteins contained in EVs have been extensively studied, the function of metabolites in EVs remains unclear. In this study, we performed a comprehensive metabolomic analysis of pancreatic cancer cells, PANC-1, cultured under different oxygen concentrations, and small EVs (sEVs) released from them, considering the fact that hypoxia contributes to the malignant behavior of cells in pancreatic cancer, which is a poorly diagnosed cancer. sEVs were collected by ultracentrifugation, and hydrophilic metabolites were analyzed using capillary ion chromatography-mass spectrometry and liquid chromatography-mass spectrometry, and lipids were analyzed by supercritical fluid chromatography-tandem mass spectrometry. A total of 140 hydrophilic metabolites and 494 lipids were detected in sEVs, and their profiles were different from those in cells. In addition, the metabolomic profile of sEVs was observed to change under hypoxic stress, and an increase in metabolites involved in angiogenesis was also detected. We reveal the hallmark of the metabolites contained in sEVs and the effect of tumor hypoxia on their profiles, which may help in understanding EV-mediated cancer malignancy. Full article
(This article belongs to the Section Cell Metabolism)
Show Figures

Figure 1

15 pages, 3680 KiB  
Article
Optical Microscopy-Guided Laser Ablation Electrospray Ionization Ion Mobility Mass Spectrometry: Ambient Single Cell Metabolomics with Increased Confidence in Molecular Identification
by Michael J. Taylor, Sara Mattson, Andrey Liyu, Sylwia A. Stopka, Yehia M. Ibrahim, Akos Vertes and Christopher R. Anderton
Metabolites 2021, 11(4), 200; https://doi.org/10.3390/metabo11040200 - 27 Mar 2021
Cited by 25 | Viewed by 3893
Abstract
Single cell analysis is a field of increasing interest as new tools are continually being developed to understand intercellular differences within large cell populations. Laser-ablation electrospray ionization mass spectrometry (LAESI-MS) is an emerging technique for single cell metabolomics. Over the years, it has [...] Read more.
Single cell analysis is a field of increasing interest as new tools are continually being developed to understand intercellular differences within large cell populations. Laser-ablation electrospray ionization mass spectrometry (LAESI-MS) is an emerging technique for single cell metabolomics. Over the years, it has been validated that this ionization technique is advantageous for probing the molecular content of individual cells in situ. Here, we report the integration of a microscope into the optical train of the LAESI source to allow for visually informed ambient in situ single cell analysis. Additionally, we have coupled this ‘LAESI microscope’ to a drift-tube ion mobility mass spectrometer to enable separation of isobaric species and allow for the determination of ion collision cross sections in conjunction with accurate mass measurements. This combined information helps provide higher confidence for structural assignment of molecules ablated from single cells. Here, we show that this system enables the analysis of the metabolite content of Allium cepa epidermal cells with high confidence structural identification together with their spatial locations within a tissue. Full article
(This article belongs to the Special Issue Imaging Mass Spectrometry in Metabolome)
Show Figures

Figure 1

17 pages, 1341 KiB  
Article
Goldfish Response to Chronic Hypoxia: Mitochondrial Respiration, Fuel Preference and Energy Metabolism
by Elie Farhat, Hang Cheng, Caroline Romestaing, Matthew Pamenter and Jean-Michel Weber
Metabolites 2021, 11(3), 187; https://doi.org/10.3390/metabo11030187 - 22 Mar 2021
Cited by 27 | Viewed by 5625
Abstract
Hypometabolism is a hallmark strategy of hypoxia tolerance. To identify potential mechanisms of metabolic suppression, we have used the goldfish to quantify the effects of chronically low oxygen (4 weeks; 10% air saturation) on mitochondrial respiration capacity and fuel preference. The responses of [...] Read more.
Hypometabolism is a hallmark strategy of hypoxia tolerance. To identify potential mechanisms of metabolic suppression, we have used the goldfish to quantify the effects of chronically low oxygen (4 weeks; 10% air saturation) on mitochondrial respiration capacity and fuel preference. The responses of key enzymes from glycolysis, β-oxidation and the tricarboxylic acid (TCA) cycle, and Na+/K+-ATPase were also monitored in various tissues of this champion of hypoxia tolerance. Results show that mitochondrial respiration of individual tissues depends on oxygen availability as well as metabolic fuel oxidized. All the respiration parameters measured in this study (LEAK, OXPHOS, Respiratory Control Ratio, CCCP-uncoupled, and COX) are affected by hypoxia, at least for one of the metabolic fuels. However, no common pattern of changes in respiration states is observed across tissues, except for the general downregulation of COX that may help metabolic suppression. Hypoxia causes the brain to switch from carbohydrates to lipids, with no clear fuel preference in other tissues. It also downregulates brain Na+/K+-ATPase (40%) and causes widespread tissue-specific effects on glycolysis and beta-oxidation. This study shows that hypoxia-acclimated goldfish mainly promote metabolic suppression by adjusting the glycolytic supply of pyruvate, reducing brain Na+/K+-ATPase, and downregulating COX, most likely decreasing mitochondrial density. Full article
(This article belongs to the Special Issue Ectotherms Metabolism: Plasticity and Adaptation)
Show Figures

Graphical abstract

28 pages, 1452 KiB  
Review
Advances and Perspectives in Prostate Cancer Biomarker Discovery in the Last 5 Years through Tissue and Urine Metabolomics
by Ana Rita Lima, Joana Pinto, Filipa Amaro, Maria de Lourdes Bastos, Márcia Carvalho and Paula Guedes de Pinho
Metabolites 2021, 11(3), 181; https://doi.org/10.3390/metabo11030181 - 19 Mar 2021
Cited by 39 | Viewed by 4705
Abstract
Prostate cancer (PCa) is the second most diagnosed cancer in men worldwide. For its screening, serum prostate specific antigen (PSA) test has been largely performed over the past decade, despite its lack of accuracy and inability to distinguish indolent from aggressive disease. Metabolomics [...] Read more.
Prostate cancer (PCa) is the second most diagnosed cancer in men worldwide. For its screening, serum prostate specific antigen (PSA) test has been largely performed over the past decade, despite its lack of accuracy and inability to distinguish indolent from aggressive disease. Metabolomics has been widely applied in cancer biomarker discovery due to the well-known metabolic reprogramming characteristic of cancer cells. Most of the metabolomic studies have reported alterations in urine of PCa patients due its noninvasive collection, but the analysis of prostate tissue metabolome is an ideal approach to disclose specific modifications in PCa development. This review aims to summarize and discuss the most recent findings from tissue and urine metabolomic studies applied to PCa biomarker discovery. Eighteen metabolites were found consistently altered in PCa tissue among different studies, including alanine, arginine, uracil, glutamate, fumarate, and citrate. Urine metabolomic studies also showed consistency in the dysregulation of 15 metabolites and, interestingly, alterations in the levels of valine, taurine, leucine and citrate were found in common between urine and tissue studies. These findings unveil that the impact of PCa development in human metabolome may offer a promising strategy to find novel biomarkers for PCa diagnosis. Full article
(This article belongs to the Special Issue Cancer Metabolomic 2020)
Show Figures

Figure 1

17 pages, 4659 KiB  
Article
Lung Metabolomics Profiling of Congenital Diaphragmatic Hernia in Fetal Rats
by Maria del Mar Romero-Lopez, Marc Oria, Miki Watanabe-Chailland, Maria Florencia Varela, Lindsey Romick-Rosendale and Jose L. Peiro
Metabolites 2021, 11(3), 177; https://doi.org/10.3390/metabo11030177 - 18 Mar 2021
Cited by 6 | Viewed by 2601
Abstract
Congenital diaphragmatic hernia (CDH) is characterized by the herniation of abdominal contents into the thoracic cavity during the fetal period. This competition for fetal thoracic space results in lung hypoplasia and vascular maldevelopment that can generate severe pulmonary hypertension (PH). The detailed mechanisms [...] Read more.
Congenital diaphragmatic hernia (CDH) is characterized by the herniation of abdominal contents into the thoracic cavity during the fetal period. This competition for fetal thoracic space results in lung hypoplasia and vascular maldevelopment that can generate severe pulmonary hypertension (PH). The detailed mechanisms of CDH pathogenesis are yet to be understood. Acknowledgment of the lung metabolism during the in-utero CDH development can help to discern the CDH pathophysiology changes. Timed-pregnant dams received nitrofen or vehicle (olive oil) on E9.5 day of gestation. All fetal lungs exposed to nitrofen or vehicle control were harvested at day E21.5 by C-section and processed for metabolomics analysis using nuclear magnetic resonance (NMR) spectroscopy. The three groups analyzed were nitrofen-CDH (NCDH), nitrofen-control (NC), and vehicle control (VC). A total of 64 metabolites were quantified and subjected to statistical analysis. The multivariate analysis identified forty-four metabolites that were statistically different between the three groups. The highest Variable importance in projection (VIP) score (>2) metabolites were lactate, glutamate, and adenosine 5′-triphosphate (ATP). Fetal CDH lungs have changes related to oxidative stress, nucleotide synthesis, amino acid metabolism, glycerophospholipid metabolism, and glucose metabolism. This work provides new insights into the molecular mechanisms behind the CDH pathophysiology and can explore potential novel treatment targets for CDH patients. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Graphical abstract

19 pages, 4209 KiB  
Article
Inhibition of Ganglioside Synthesis Suppressed Liver Cancer Cell Proliferation through Targeting Kinetochore Metaphase Signaling
by Ting Su, Xian-Yang Qin, Naoshi Dohmae, Feifei Wei, Yutaka Furutani, Soichi Kojima and Wenkui Yu
Metabolites 2021, 11(3), 167; https://doi.org/10.3390/metabo11030167 - 15 Mar 2021
Cited by 10 | Viewed by 3414
Abstract
The incidence and mortality of liver cancer, mostly hepatocellular carcinoma (HCC), have increased during the last two decades, partly due to persistent inflammation in the lipid-rich microenvironment associated with lifestyle diseases, such as obesity. Gangliosides are sialic acid-containing glycosphingolipids known to be important [...] Read more.
The incidence and mortality of liver cancer, mostly hepatocellular carcinoma (HCC), have increased during the last two decades, partly due to persistent inflammation in the lipid-rich microenvironment associated with lifestyle diseases, such as obesity. Gangliosides are sialic acid-containing glycosphingolipids known to be important in the organization of the membrane and membrane protein-mediated signal transduction. Ganglioside synthesis is increased in several types of cancers and has been proposed as a promising target for cancer therapy. Here, we provide evidence that ganglioside synthesis was increased in the livers of an animal model recapitulating the features of activation and expansion of liver progenitor-like cells and liver cancer (stem) cells. Chemical inhibition of ganglioside synthesis functionally suppressed proliferation and sphere growth of liver cancer cells, but had no impact on apoptotic and necrotic cell death. Proteome-based mechanistic analysis revealed that inhibition of ganglioside synthesis downregulated the expression of AURKA, AURKB, TTK, and NDC80 involved in the regulation of kinetochore metaphase signaling, which is essential for chromosome segregation and mitotic progression and probably under the control of activation of TP53-dependent cell cycle arrest. These data suggest that targeting ganglioside synthesis holds promise for the development of novel preventive/therapeutic strategies for HCC treatment. Full article
Show Figures

Graphical abstract

23 pages, 3181 KiB  
Article
Metabolites Secreted by Bovine Embryos In Vitro Predict Pregnancies That the Recipient Plasma Metabolome Cannot, and Vice Versa
by Enrique Gomez, Nuria Canela, Pol Herrero, Adrià Cereto, Isabel Gimeno, Susana Carrocera, David Martin-Gonzalez, Antonio Murillo and Marta Muñoz
Metabolites 2021, 11(3), 162; https://doi.org/10.3390/metabo11030162 - 11 Mar 2021
Cited by 11 | Viewed by 2783
Abstract
This work describes the use of mass spectrometry-based metabolomics as a non-invasive approach to accurately predict birth prior to embryo transfer (ET) starting from embryo culture media and plasma recipient. Metabolomics was used here as a predictive platform. Day-6 in vitro produced embryos [...] Read more.
This work describes the use of mass spectrometry-based metabolomics as a non-invasive approach to accurately predict birth prior to embryo transfer (ET) starting from embryo culture media and plasma recipient. Metabolomics was used here as a predictive platform. Day-6 in vitro produced embryos developed singly in modified synthetic oviduct fluid culture medium (CM) drops for 24 h were vitrified as Day-7 blastocysts and transferred to recipients. Day-0 and Day-7 recipient plasma (N = 36 × 2) and CM (N = 36) were analyzed by gas chromatography coupled to the quadrupole time of flight mass spectrometry (GC-qTOF). Metabolites quantified in CM and plasma were analyzed as a function to predict pregnancy at Day-40, Day-62, and birth (univariate and multivariate statistics). Subsequently, a Boolean matrix (F1 score) was constructed with metabolite pairs (one from the embryo, and one from the recipient) to combine the predictive power of embryos and recipients. Validation was performed in independent cohorts of ETs analyzed. Embryos that did not reach birth released more stearic acid, capric acid, palmitic acid, and glyceryl monostearate in CM (i.e., (p < 0.05, FDR < 0.05, Receiver Operator Characteristic—area under curve (ROC-AUC) > 0.669)). Within Holstein recipients, hydrocinnamic acid, alanine, and lysine predicted birth (ROC-AUC > 0.778). Asturiana de los Valles recipients that reached birth showed lower concentrations of 6-methyl-5-hepten-2-one, stearic acid, palmitic acid, and hippuric acid (ROC-AUC > 0.832). Embryonal capric acid and glyceryl-monostearate formed F1 scores generally >0.900, with metabolites found both to differ (e.g., hippuric acid, hydrocinnamic acid) or not (e.g., heptadecanoic acid, citric acid) with pregnancy in plasmas, as hypothesized. Efficient lipid metabolism in the embryo and the recipient can allow pregnancy to proceed. Changes in phenolics from plasma suggest that microbiota and liver metabolism influence the pregnancy establishment in cattle. Full article
(This article belongs to the Special Issue Metabolomic Applications in Animal Science Volume 2)
Show Figures

Graphical abstract

10 pages, 250 KiB  
Article
Pre-Diagnostic Circulating Metabolites and Colorectal Cancer Risk in the Cancer Prevention Study-II Nutrition Cohort
by Marjorie L. McCullough, Rebecca A. Hodge, Peter T. Campbell, Victoria L. Stevens and Ying Wang
Metabolites 2021, 11(3), 156; https://doi.org/10.3390/metabo11030156 - 9 Mar 2021
Cited by 12 | Viewed by 2662
Abstract
Untargeted metabolomic studies have identified potential biomarkers of colorectal cancer risk, but evidence is still limited and broadly inconsistent. Among 39,239 Cancer Prevention Study II Nutrition cohort participants who provided a blood sample between 1998–2001, 517 newly diagnosed colorectal cancers were identified through [...] Read more.
Untargeted metabolomic studies have identified potential biomarkers of colorectal cancer risk, but evidence is still limited and broadly inconsistent. Among 39,239 Cancer Prevention Study II Nutrition cohort participants who provided a blood sample between 1998–2001, 517 newly diagnosed colorectal cancers were identified through 30 June 2015. In this nested case–control study, controls were matched 1:1 to cases on age, sex, race and date of blood draw. Mass spectroscopy-based metabolomic analyses of pre-diagnostic plasma identified 886 named metabolites, after quality control exclusions. Conditional logistic regression models estimated multivariable-adjusted odds ratios (OR) and 95% confidence intervals (CI) for 1 standard deviation (SD) increase in each metabolite with risk of colorectal cancer. Six metabolites were associated with colorectal cancer risk at a false discovery rate < 0.20. These metabolites were of several classes, including cofactors and vitamins, nucleotides, xenobiotics, lipids and amino acids. Five metabolites (guanidinoacetate, 2’-O-methylcytidine, vanillylmandelate, bilirubin (E,E) and N-palmitoylglycine) were positively associated (OR per 1 SD = 1.29 to 1.32), and one (3-methylxanthine) was inversely associated with CRC risk (OR = 0.79, 95% CI, 0.69–0.89). We did not replicate findings from two earlier prospective studies of 250 cases each after adjusting for multiple comparisons. Large pooled prospective analyses are warranted to confirm or refute these findings and to discover and replicate metabolites associated with colorectal cancer risk. Full article
(This article belongs to the Special Issue Metabolomics Meets Epidemiology)
Show Figures

Graphical abstract

34 pages, 2754 KiB  
Review
Metabolomics and Lipidomics: Expanding the Molecular Landscape of Exercise Biology
by Mehdi R. Belhaj, Nathan G. Lawler and Nolan J. Hoffman
Metabolites 2021, 11(3), 151; https://doi.org/10.3390/metabo11030151 - 7 Mar 2021
Cited by 40 | Viewed by 8380
Abstract
Dynamic changes in circulating and tissue metabolites and lipids occur in response to exercise-induced cellular and whole-body energy demands to maintain metabolic homeostasis. The metabolome and lipidome in a given biological system provides a molecular snapshot of these rapid and complex metabolic perturbations. [...] Read more.
Dynamic changes in circulating and tissue metabolites and lipids occur in response to exercise-induced cellular and whole-body energy demands to maintain metabolic homeostasis. The metabolome and lipidome in a given biological system provides a molecular snapshot of these rapid and complex metabolic perturbations. The application of metabolomics and lipidomics to map the metabolic responses to an acute bout of aerobic/endurance or resistance exercise has dramatically expanded over the past decade thanks to major analytical advancements, with most exercise-related studies to date focused on analyzing human biofluids and tissues. Experimental and analytical considerations, as well as complementary studies using animal model systems, are warranted to help overcome challenges associated with large human interindividual variability and decipher the breadth of molecular mechanisms underlying the metabolic health-promoting effects of exercise. In this review, we provide a guide for exercise researchers regarding analytical techniques and experimental workflows commonly used in metabolomics and lipidomics. Furthermore, we discuss advancements in human and mammalian exercise research utilizing metabolomic and lipidomic approaches in the last decade, as well as highlight key technical considerations and remaining knowledge gaps to continue expanding the molecular landscape of exercise biology. Full article
Show Figures

Graphical abstract

11 pages, 751 KiB  
Article
Metabolomics of Cerebrospinal Fluid from Healthy Subjects Reveal Metabolites Associated with Ageing
by Henrik Carlsson, Niclas Rollborn, Stephanie Herman, Eva Freyhult, Anders Svenningsson, Joachim Burman and Kim Kultima
Metabolites 2021, 11(2), 126; https://doi.org/10.3390/metabo11020126 - 23 Feb 2021
Cited by 15 | Viewed by 2891
Abstract
To increase our understanding of age-related diseases affecting the central nervous system (CNS) it is important to understand the molecular processes of biological ageing. Metabolomics of cerebrospinal fluid (CSF) is a promising methodology to increase our understanding of naturally occurring processes of ageing [...] Read more.
To increase our understanding of age-related diseases affecting the central nervous system (CNS) it is important to understand the molecular processes of biological ageing. Metabolomics of cerebrospinal fluid (CSF) is a promising methodology to increase our understanding of naturally occurring processes of ageing of the brain and CNS that could be reflected in CSF. In the present study the CSF metabolomes of healthy subjects aged 30–74 years (n = 23) were studied using liquid chromatography high-resolution mass spectrometry (LC-HRMS), and investigated in relation to age. Ten metabolites were identified with high confidence as significantly associated with ageing, eight with increasing levels with ageing: isoleucine, acetylcarnitine, pipecolate, methionine, glutarylcarnitine, 5-hydroxytryptophan, ketoleucine, and hippurate; and two decreasing with ageing: methylthioadenosine and 3-methyladenine. To our knowledge, this is the first time the CSF metabolomes of healthy subjects are assessed in relation to ageing. The present study contributes to the field of ageing metabolomics by presenting a number of metabolites present in CSF with potential relevance for ageing and the results motivate further studies. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

14 pages, 782 KiB  
Review
Mitochondrial Lipid Signaling and Adaptive Thermogenesis
by Helaina Von Bank, Mae Hurtado-Thiele, Nanami Oshimura and Judith Simcox
Metabolites 2021, 11(2), 124; https://doi.org/10.3390/metabo11020124 - 22 Feb 2021
Cited by 22 | Viewed by 3886
Abstract
Thermogenesis is an energy demanding process by which endotherms produce heat to maintain their body temperature in response to cold exposure. Mitochondria in the brown and beige adipocytes play a key role in thermogenesis, as the site for uncoupling protein 1 (UCP1), which [...] Read more.
Thermogenesis is an energy demanding process by which endotherms produce heat to maintain their body temperature in response to cold exposure. Mitochondria in the brown and beige adipocytes play a key role in thermogenesis, as the site for uncoupling protein 1 (UCP1), which allows for the diffusion of protons through the mitochondrial inner membrane to produce heat. To support this energy demanding process, the mitochondria in brown and beige adipocytes increase oxidation of glucose, amino acids, and lipids. This review article explores the various mitochondria-produced and processed lipids that regulate thermogenesis including cardiolipins, free fatty acids, and acylcarnitines. These lipids play a number of roles in thermogenic adipose tissue including structural support of UCP1, transcriptional regulation, fuel source, and activation of cell signaling cascades. Full article
(This article belongs to the Special Issue Mitochondrial Metabolism and Bioenergetics)
Show Figures

Figure 1

15 pages, 1748 KiB  
Article
Untargeted and Targeted Metabolomic Profiling of Preterm Newborns with EarlyOnset Sepsis: A Case-Control Study
by Veronica Mardegan, Giuseppe Giordano, Matteo Stocchero, Paola Pirillo, Gabriele Poloniato, Enrica Donadel, Sabrina Salvadori, Carlo Giaquinto, Elena Priante and Eugenio Baraldi
Metabolites 2021, 11(2), 115; https://doi.org/10.3390/metabo11020115 - 18 Feb 2021
Cited by 16 | Viewed by 2624
Abstract
Sepsis is a major concern in neonatology, but there are no reliable biomarkers for its early diagnosis. The aim of the study was to compare the metabolic profiles of plasma and urine samples collected at birth from preterm neonates with and without earlyonset [...] Read more.
Sepsis is a major concern in neonatology, but there are no reliable biomarkers for its early diagnosis. The aim of the study was to compare the metabolic profiles of plasma and urine samples collected at birth from preterm neonates with and without earlyonset sepsis (EOS) to identify metabolic perturbations that might orient the search for new early biomarkers. All preterm newborns admitted to the neonatal intensive care unit were eligible for this proof-of-concept, prospective case-control study. Infants were enrolled as “cases” if they developed EOS, and as “controls”if they did not. Plasma samples collected at birth and urine samples collected within 24 h of birth underwent untargeted and targeted metabolomic analysis using mass spectrometry coupled with ultra-performance liquid chromatography. Univariate and multivariate statistical analyses were applied. Of 123 eligible newborns, 15 developed EOS. These 15 newborns matched controls for gestational age and weight. Metabolomic analysis revealed evident clustering of the cases versus controls, with the glutathione and tryptophan metabolic pathways markedly disrupted in the former. In conclusion, neonates with EOS had a metabolic profile at birth that clearly distinguished them from those without sepsis, and metabolites of glutathione and tryptophan pathways are promising as new biomarkers of neonatal sepsis. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

27 pages, 2779 KiB  
Review
Transporters at the Interface between Cytosolic and Mitochondrial Amino Acid Metabolism
by Keeley G. Hewton, Amritpal S. Johal and Seth J. Parker
Metabolites 2021, 11(2), 112; https://doi.org/10.3390/metabo11020112 - 16 Feb 2021
Cited by 17 | Viewed by 8353
Abstract
Mitochondria are central organelles that coordinate a vast array of metabolic and biologic functions important for cellular health. Amino acids are intricately linked to the bioenergetic, biosynthetic, and homeostatic function of the mitochondrion and require specific transporters to facilitate their import, export, and [...] Read more.
Mitochondria are central organelles that coordinate a vast array of metabolic and biologic functions important for cellular health. Amino acids are intricately linked to the bioenergetic, biosynthetic, and homeostatic function of the mitochondrion and require specific transporters to facilitate their import, export, and exchange across the inner mitochondrial membrane. Here we review key cellular metabolic outputs of eukaryotic mitochondrial amino acid metabolism and discuss both known and unknown transporters involved. Furthermore, we discuss how utilization of compartmentalized amino acid metabolism functions in disease and physiological contexts. We examine how improved methods to study mitochondrial metabolism, define organelle metabolite composition, and visualize cellular gradients allow for a more comprehensive understanding of how transporters facilitate compartmentalized metabolism. Full article
(This article belongs to the Special Issue Mitochondrial Metabolism and Bioenergetics)
Show Figures

Graphical abstract

13 pages, 4376 KiB  
Article
A Metabolomics Analysis of Postmenopausal Breast Cancer Risk in the Cancer Prevention Study II
by Steven C. Moore, Kaitlyn M. Mazzilli, Joshua N. Sampson, Charles E. Matthews, Brian D. Carter, Mary C. Playdon, Ying Wang and Victoria L. Stevens
Metabolites 2021, 11(2), 95; https://doi.org/10.3390/metabo11020095 - 10 Feb 2021
Cited by 17 | Viewed by 4528
Abstract
Breast cancer is the most common cancer in women, but its incidence can only be partially explained through established risk factors. Our aim was to use metabolomics to identify novel risk factors for breast cancer and to validate recently reported metabolite-breast cancer findings. [...] Read more.
Breast cancer is the most common cancer in women, but its incidence can only be partially explained through established risk factors. Our aim was to use metabolomics to identify novel risk factors for breast cancer and to validate recently reported metabolite-breast cancer findings. We measured levels of 1275 metabolites in prediagnostic serum in a nested case-control study of 782 postmenopausal breast cancer cases and 782 matched controls. Metabolomics analysis was performed by Metabolon Inc using ultra-performance liquid chromatography and a Q-Exactive high resolution/accurate mass spectrometer. Controls were matched by birth date, date of blood draw, and race/ethnicity. Odds ratios (ORs) and 95% confidence intervals (CIs) of breast cancer at the 90th versus 10th percentile (modeled on a continuous basis) of metabolite levels were estimated using conditional logistic regression, with adjustment for age. Twenty-four metabolites were significantly associated with breast cancer risk at a false discovery rate <0.20. For the nine metabolites positively associated with risk, the ORs ranged from 1.75 (95% CI: 1.29–2.36) to 1.45 (95% CI: 1.13–1.85), and for the 15 metabolites inversely associated with risk, ORs ranged from 0.59 (95% CI: 0.43–0.79) to 0.69 (95% CI: 0.55–0.87). These metabolites largely comprised carnitines, glycerolipids, and sex steroid metabolites. Associations for three sex steroid metabolites validated findings from recent studies and the remainder were novel. These findings contribute to growing data on metabolite-breast cancer associations by confirming prior findings and identifying novel leads for future validation efforts. Full article
(This article belongs to the Special Issue Metabolomics Meets Epidemiology)
Show Figures

Figure 1

17 pages, 1786 KiB  
Review
Carotenoids and Some Other Pigments from Fungi and Yeasts
by Alexander Rapoport, Irina Guzhova, Lorenzo Bernetti, Pietro Buzzini, Marek Kieliszek and Anna Maria Kot
Metabolites 2021, 11(2), 92; https://doi.org/10.3390/metabo11020092 - 6 Feb 2021
Cited by 51 | Viewed by 5458
Abstract
Carotenoids are an essential group of compounds that may be obtained by microbiological synthesis. They are instrumental in various areas of industry, medicine, agriculture, and ecology. The increase of carotenoids’ demand at the global market is now essential. At the moment, the production [...] Read more.
Carotenoids are an essential group of compounds that may be obtained by microbiological synthesis. They are instrumental in various areas of industry, medicine, agriculture, and ecology. The increase of carotenoids’ demand at the global market is now essential. At the moment, the production of natural carotenoids is more expensive than obtaining their synthetic forms, but several new approaches/directions on how to decrease this difference were developed during the last decades. This review briefly describes the information accumulated until now about the beneficial effects of carotenoids on human health protection, their possible application in the treatments of various diseases, and their use in the food and feed industry. This review also describes some issues that are linked with biotechnological production of fungal and yeasts carotenoids, as well as new approaches/directions to make their biotechnological production more efficient. Full article
(This article belongs to the Special Issue Metabolites Produced by Yeast Cells)
Show Figures

Figure 1

12 pages, 1595 KiB  
Article
The Increased Expression of Regulator of G-Protein Signaling 2 (RGS2) Inhibits Insulin-Induced Akt Phosphorylation and Is Associated with Uncontrolled Glycemia in Patients with Type 2 Diabetes
by J. Gustavo Vazquez-Jimenez, M. Stephanie Corpus-Navarro, J. Miguel Rodriguez-Chavez, Hiram J. Jaramillo-Ramirez, Judith Hernandez-Aranda, Octavio Galindo-Hernandez, J. Rene Machado-Contreras, Marina Trejo-Trejo, Agustin Guerrero-Hernandez and J. Alberto Olivares-Reyes
Metabolites 2021, 11(2), 91; https://doi.org/10.3390/metabo11020091 - 5 Feb 2021
Cited by 5 | Viewed by 2608
Abstract
Experimental evidence in mice models has demonstrated that a high regulator of G-protein signaling 2 (RSG2) protein levels precede an insulin resistance state. In the same context, a diet rich in saturated fatty acids induces an increase in RGS2 protein expression, which has [...] Read more.
Experimental evidence in mice models has demonstrated that a high regulator of G-protein signaling 2 (RSG2) protein levels precede an insulin resistance state. In the same context, a diet rich in saturated fatty acids induces an increase in RGS2 protein expression, which has been associated with decreased basal metabolism in mice; however, the above has not yet been analyzed in humans. For this reason, in the present study, we examined the association between RGS2 expression and insulin resistance state. The incubation with palmitic acid (PA), which inhibits insulin-mediated Akt Ser473 phosphorylation, resulted in the increased RGS2 expression in human umbilical vein endothelial-CS (HUVEC-CS) cells. The RGS2 overexpression without PA was enough to inhibit insulin-mediated Akt Ser473 phosphorylation in HUVEC-CS cells. Remarkably, the platelet RGS2 expression levels were higher in type 2 diabetes mellitus (T2DM) patients than in healthy donors. Moreover, an unbiased principal component analysis (PCA) revealed that RGS2 expression level positively correlated with glycated hemoglobin (HbA1c) and negatively with age and high-density lipoprotein cholesterol (HDL) in T2DM patients. Furthermore, PCA showed that healthy subjects segregated from T2DM patients by having lower levels of HbA1c and RGS2. These results demonstrate that RGS2 overexpression leads to decreased insulin signaling in a human endothelial cell line and is associated with poorly controlled diabetes. Full article
(This article belongs to the Collection Insulin Resistance in the 2020's)
Show Figures

Graphical abstract

8 pages, 224 KiB  
Article
Vitamin D Metabolites and Sex Steroid Indices in Postmenopausal Women with and without Low Bone Mass
by Nasser M. Al-Daghri, Sobhy M. Yakout, Mohammed G.A. Ansari, Syed D. Hussain, Kaiser A. Wani and Shaun Sabico
Metabolites 2021, 11(2), 86; https://doi.org/10.3390/metabo11020086 - 1 Feb 2021
Cited by 7 | Viewed by 1925
Abstract
While the independent roles of vitamin D and sex hormones in skeletal health are well established, the associations of vitamin D and its metabolites to sex hormones and their indices are less investigated. In this observational study, clinical information of 189 Saudi postmenopausal [...] Read more.
While the independent roles of vitamin D and sex hormones in skeletal health are well established, the associations of vitamin D and its metabolites to sex hormones and their indices are less investigated. In this observational study, clinical information of 189 Saudi postmenopausal women aged ≥50 years old [N = 80 with normal bone mineral density (BMD), aged 53.3 ± 7.7 years with body mass index (BMI)= 34.1kg/m2 ± 5.8, and N = 109 with low BMD (T-score −1.0 to −2.5), aged 57.0 ± 8.2 years, BMI = 32.4kg/m2 ± 6.2] was extracted from an existing capital-wide osteoporosis registry in Riyadh, Saudi Arabia. Data included were BMD scores, serum total 25(OH)D, sex hormones, and bone turnover markers which were measured using commercially available assays. Age- and BMI-adjusted comparisons revealed significantly higher parathyroid hormone (PTH) levels as well as significantly lower testosterone and bioavailable testosterone in the low BMD group than the normal BMD group (p-values 0.04, 0.02, and 0.03, respectively). Stepwise linear regression showed that circulating testosterone levels accounted for 9.7% and 8.9% of the variances perceived in bioavailable 25(OH)D and free 25(OH)D, respectively (p < 0.01), independent of other sex hormones, sex hormone indices, and bone turnover markers. Our study suggests that androgens are significantly associated with non-conventional vitamin D metabolites and these associations may have clinical relevance in assessing risk for low BMD and osteoporosis in Arab postmenopausal women. Full article
(This article belongs to the Special Issue Vitamin D and Bone Metabolism)
Show Figures

Graphical abstract

16 pages, 2591 KiB  
Article
Reproducibility of Baseline Tumour Metabolic Volume Measurements in Diffuse Large B-Cell Lymphoma: Is There a Superior Method?
by Florian Eude, Mathieu Nessim Toledano, Pierre Vera, Hervé Tilly, Sorina-Dana Mihailescu and Stéphanie Becker
Metabolites 2021, 11(2), 72; https://doi.org/10.3390/metabo11020072 - 26 Jan 2021
Cited by 20 | Viewed by 2251
Abstract
The metabolic tumour volume (MTV) is an independent prognostic indicator in diffuse large B-cell lymphoma (DLBCL). However, its measurement is not standardised and is subject to wide variations depending on the method used. This study aimed to compare the reproducibility of MTV measurement [...] Read more.
The metabolic tumour volume (MTV) is an independent prognostic indicator in diffuse large B-cell lymphoma (DLBCL). However, its measurement is not standardised and is subject to wide variations depending on the method used. This study aimed to compare the reproducibility of MTV measurement as well as the thresholds obtained for each method and their prognostic values. The baseline MTV was measured in 239 consecutive patients treated at Henri Becquerel Centre by two blinded evaluators. Eight methods were compared: 3 absolute (SUV (standardised uptake value) ≥ 2.5; SUV≥ liver SUVmax; SUV≥ PERCIST SUV), 1 percentage SUV threshold method (SUV ≥ 41% SUVmax) and 4 adaptive methods (Daisne, Nestle, Fitting, Black). The intraclass correlation coefficients were excellent, from 0.91 to 0.96, for the absolute SUV methods, Black and Nestle methods, and good for 41% SUVmax, Fitting and Daisne methods (0.82 to 0.88), with a significantly lower variability with absolute methods compared to 41% SUVmax (p < 0.04). Thresholds were found to be specific to each segmentation method and ranged from 295 to 552 cm3. There was a strong correlation between the MTV and patient prognosis regardless of the segmentation method used (p = 0.001 for PFS and OS). The largest inter-observer cut-off variability was observed in the 41% SUVmax method, which resulted in more inter-observer disagreements in the classification of patients between high and low MTV groups. MTV measurements based on absolute SUV criteria were found to be significantly more reproducible than those based on 41% SUVmax criteria. The threshold was specific for each of eight segmentation methods, but all predicted prognosis. Full article
(This article belongs to the Special Issue Metabolic Volume Measurements)
Show Figures

Graphical abstract

12 pages, 1560 KiB  
Article
Maternal Metabolome in Pregnancy and Childhood Asthma or Recurrent Wheeze in the Vitamin D Antenatal Asthma Reduction Trial
by Mengna Huang, Rachel S. Kelly, Su H. Chu, Priyadarshini Kachroo, Gözde Gürdeniz, Bo L. Chawes, Hans Bisgaard, Scott T. Weiss and Jessica Lasky-Su
Metabolites 2021, 11(2), 65; https://doi.org/10.3390/metabo11020065 - 23 Jan 2021
Cited by 14 | Viewed by 2457
Abstract
The in utero environment during pregnancy has important implications for the developing health of the child. We aim to examine the potential impact of maternal metabolome at two different timepoints in pregnancy on offspring respiratory health in early life. In 685 mother-child pairs [...] Read more.
The in utero environment during pregnancy has important implications for the developing health of the child. We aim to examine the potential impact of maternal metabolome at two different timepoints in pregnancy on offspring respiratory health in early life. In 685 mother-child pairs from the Vitamin D Antenatal Asthma Reduction Trial, we assessed the prospective associations between maternal metabolites at both baseline (10–18 weeks gestation) and third trimester (32–38 weeks gestation) and the risk of child asthma or recurrent wheeze by age three using logistic regression models accounting for confounding factors. Subgroup analyses were performed by child sex. Among 632 metabolites, 19 (3.0%) and 62 (9.8%) from baseline and third trimester, respectively, were associated with the outcome (p-value < 0.05). Coffee-related metabolites in the maternal metabolome appeared to be of particular importance. Caffeine, theophylline, trigonelline, quinate, and 3-hydroxypyridine sulfate were inversely associated with asthma risk at a minimum of one timepoint. Additional observations also highlight the roles of steroid and sphingolipid metabolites. Overall, there was a stronger relationship between the metabolome in later pregnancy and offspring asthma risk. Our results suggest that alterations in prenatal metabolites may act as drivers of the development of offspring asthma. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

20 pages, 2865 KiB  
Article
Metabotypes of Pseudomonas aeruginosa Correlate with Antibiotic Resistance, Virulence and Clinical Outcome in Cystic Fibrosis Chronic Infections
by Oriane Moyne, Florence Castelli, Dominique J. Bicout, Julien Boccard, Boubou Camara, Benoit Cournoyer, Eric Faudry, Samuel Terrier, Dalil Hannani, Sarah Huot-Marchand, Claire Léger, Max Maurin, Tuan-Dung Ngo, Caroline Plazy, Robert A. Quinn, Ina Attree, François Fenaille, Bertrand Toussaint and Audrey Le Gouëllec
Metabolites 2021, 11(2), 63; https://doi.org/10.3390/metabo11020063 - 21 Jan 2021
Cited by 16 | Viewed by 3670
Abstract
Pseudomonas aeruginosa (P.a) is one of the most critical antibiotic resistant bacteria in the world and is the most prevalent pathogen in cystic fibrosis (CF), causing chronic lung infections that are considered one of the major causes of mortality in CF [...] Read more.
Pseudomonas aeruginosa (P.a) is one of the most critical antibiotic resistant bacteria in the world and is the most prevalent pathogen in cystic fibrosis (CF), causing chronic lung infections that are considered one of the major causes of mortality in CF patients. Although several studies have contributed to understanding P.a within-host adaptive evolution at a genomic level, it is still difficult to establish direct relationships between the observed mutations, expression of clinically relevant phenotypes, and clinical outcomes. Here, we performed a comparative untargeted LC/HRMS-based metabolomics analysis of sequential isolates from chronically infected CF patients to obtain a functional view of P.a adaptation. Metabolic profiles were integrated with expression of bacterial phenotypes and clinical measurements following multiscale analysis methods. Our results highlighted significant associations between P.a “metabotypes”, expression of antibiotic resistance and virulence phenotypes, and frequency of clinical exacerbations, thus identifying promising biomarkers and therapeutic targets for difficult-to-treat P.a infections Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Graphical abstract

17 pages, 3170 KiB  
Article
Systemic Metabolic Alterations Correlate with Islet-Level Prostaglandin E2 Production and Signaling Mechanisms That Predict β-Cell Dysfunction in a Mouse Model of Type 2 Diabetes
by Michael D. Schaid, Yanlong Zhu, Nicole E. Richardson, Chinmai Patibandla, Irene M. Ong, Rachel J. Fenske, Joshua C. Neuman, Erin Guthery, Austin Reuter, Harpreet K. Sandhu, Miles H. Fuller, Elizabeth D. Cox, Dawn B. Davis, Brian T. Layden, Allan R. Brasier, Dudley W. Lamming, Ying Ge and Michelle E. Kimple
Metabolites 2021, 11(1), 58; https://doi.org/10.3390/metabo11010058 - 16 Jan 2021
Cited by 13 | Viewed by 4176
Abstract
The transition from β-cell compensation to β-cell failure is not well understood. Previous works by our group and others have demonstrated a role for Prostaglandin EP3 receptor (EP3), encoded by the Ptger3 gene, in the loss of functional β-cell mass in Type 2 [...] Read more.
The transition from β-cell compensation to β-cell failure is not well understood. Previous works by our group and others have demonstrated a role for Prostaglandin EP3 receptor (EP3), encoded by the Ptger3 gene, in the loss of functional β-cell mass in Type 2 diabetes (T2D). The primary endogenous EP3 ligand is the arachidonic acid metabolite prostaglandin E2 (PGE2). Expression of the pancreatic islet EP3 and PGE2 synthetic enzymes and/or PGE2 excretion itself have all been shown to be upregulated in primary mouse and human islets isolated from animals or human organ donors with established T2D compared to nondiabetic controls. In this study, we took advantage of a rare and fleeting phenotype in which a subset of Black and Tan BRachyury (BTBR) mice homozygous for the Leptinob/ob mutation—a strong genetic model of T2D—were entirely protected from fasting hyperglycemia even with equal obesity and insulin resistance as their hyperglycemic littermates. Utilizing this model, we found numerous alterations in full-body metabolic parameters in T2D-protected mice (e.g., gut microbiome composition, circulating pancreatic and incretin hormones, and markers of systemic inflammation) that correlate with improvements in EP3-mediated β-cell dysfunction. Full article
(This article belongs to the Special Issue Islet Inflammation and Metabolic Homeostasis)
Show Figures

Graphical abstract

21 pages, 1982 KiB  
Review
L-Carnitine and Acylcarnitines: Mitochondrial Biomarkers for Precision Medicine
by Marc R. McCann, Mery Vet George De la Rosa, Gus R. Rosania and Kathleen A. Stringer
Metabolites 2021, 11(1), 51; https://doi.org/10.3390/metabo11010051 - 14 Jan 2021
Cited by 136 | Viewed by 9389
Abstract
Biomarker discovery and implementation are at the forefront of the precision medicine movement. Modern advances in the field of metabolomics afford the opportunity to readily identify new metabolite biomarkers across a wide array of disciplines. Many of the metabolites are derived from or [...] Read more.
Biomarker discovery and implementation are at the forefront of the precision medicine movement. Modern advances in the field of metabolomics afford the opportunity to readily identify new metabolite biomarkers across a wide array of disciplines. Many of the metabolites are derived from or directly reflective of mitochondrial metabolism. L-carnitine and acylcarnitines are established mitochondrial biomarkers used to screen neonates for a series of genetic disorders affecting fatty acid oxidation, known as the inborn errors of metabolism. However, L-carnitine and acylcarnitines are not routinely measured beyond this screening, despite the growing evidence that shows their clinical utility outside of these disorders. Measurements of the carnitine pool have been used to identify the disease and prognosticate mortality among disorders such as diabetes, sepsis, cancer, and heart failure, as well as identify subjects experiencing adverse drug reactions from various medications like valproic acid, clofazimine, zidovudine, cisplatin, propofol, and cyclosporine. The aim of this review is to collect and interpret the literature evidence supporting the clinical biomarker application of L-carnitine and acylcarnitines. Further study of these metabolites could ultimately provide mechanistic insights that guide therapeutic decisions and elucidate new pharmacologic targets. Full article
(This article belongs to the Special Issue Mitochondrial Metabolism and Bioenergetics)
Show Figures

Graphical abstract

15 pages, 4989 KiB  
Article
Tissue-Specific 1H-NMR Metabolomic Profiling in Mice with Adenine-Induced Chronic Kidney Disease
by Ram B. Khattri, Trace Thome and Terence E. Ryan
Metabolites 2021, 11(1), 45; https://doi.org/10.3390/metabo11010045 - 10 Jan 2021
Cited by 19 | Viewed by 4311
Abstract
Chronic kidney disease (CKD) results in the impaired filtration of metabolites, which may be toxic or harmful to organs/tissues. The objective of this study was to perform unbiased 1H nuclear magnetic resonance (NMR)-based metabolomics profiling of tissues from mice with CKD. Five-month-old [...] Read more.
Chronic kidney disease (CKD) results in the impaired filtration of metabolites, which may be toxic or harmful to organs/tissues. The objective of this study was to perform unbiased 1H nuclear magnetic resonance (NMR)-based metabolomics profiling of tissues from mice with CKD. Five-month-old male C57BL6J mice were placed on either a casein control diet or adenine-supplemented diet to induce CKD for 24 weeks. CKD was confirmed by significant increases in blood urea nitrogen (24.1 ± 7.7 vs. 105.3 ± 18.3 mg/dL, p < 0.0001) in adenine-fed mice. Following this chronic adenine diet, the kidney, heart, liver, and quadriceps muscles were rapidly dissected; snap-frozen in liquid nitrogen; and the metabolites were extracted. Metabolomic profiling coupled with multivariate analyses confirm clear separation in both aqueous and organic phases between control and CKD mice. Severe energetic stress and apparent impaired mitochondrial metabolism were observed in CKD kidneys evidenced by the depletion of ATP and NAD+, along with significant alterations in tricarboxylic acid (TCA) cycle intermediates. Altered amino acid metabolism was observed in all tissues, although significant differences in specific amino acids varied across tissue types. Taken together, this study provides a metabolomics fingerprint of multiple tissues from mice with and without severe CKD induced by chronic adenine feeding. Full article
(This article belongs to the Special Issue Metabolomics in Kidney Disease)
Show Figures

Graphical abstract

11 pages, 1374 KiB  
Article
Amino Acid and Acylcarnitine Levels in Chronic Patients with Schizophrenia: A Preliminary Study
by Irina A. Mednova, Alexander A. Chernonosov, Marat F. Kasakin, Elena G. Kornetova, Arkadiy V. Semke, Nikolay A. Bokhan, Vladimir V. Koval and Svetlana A. Ivanova
Metabolites 2021, 11(1), 34; https://doi.org/10.3390/metabo11010034 - 5 Jan 2021
Cited by 8 | Viewed by 2425
Abstract
Amino acids and acylcarnitines play an important role as substrates and intermediate products in most of pathways involved in schizophrenia development such as mitochondrial dysfunction, inflammation, lipid oxidation, DNA damage, oxidative stress, and apoptosis. It seems relevant to use an integrated approach with [...] Read more.
Amino acids and acylcarnitines play an important role as substrates and intermediate products in most of pathways involved in schizophrenia development such as mitochondrial dysfunction, inflammation, lipid oxidation, DNA damage, oxidative stress, and apoptosis. It seems relevant to use an integrated approach with ‘omics’ technology to study their contribution. The aim of our study was to investigate serum amino acid and acylcarnitine levels in antipsychotics-treated patients with chronic schizophrenia compared with healthy donors. We measured serum levels of 15 amino acids and 30 acylcarnitines in 37 patients with schizophrenia and 36 healthy donors by means of tandem mass spectrometry. In summary, patients with chronic schizophrenia had an altered concentration of a few amino acids and acylcarnitines in comparison to the healthy probands. Further research is needed to assess and understand the identified changes. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Graphical abstract

11 pages, 689 KiB  
Review
Sodium-Glucose Cotransporter-2 Inhibitors for Treatment of Nonalcoholic Fatty Liver Disease: A Meta-Analysis of Randomized Controlled Trials
by Alessandro Mantovani, Graziana Petracca, Alessandro Csermely, Giorgia Beatrice and Giovanni Targher
Metabolites 2021, 11(1), 22; https://doi.org/10.3390/metabo11010022 - 30 Dec 2020
Cited by 73 | Viewed by 4197
Abstract
Recent randomized controlled trials (RCTs) tested the efficacy of sodium-glucose cotransporter-2 (SGLT-2) inhibitors to specifically treat nonalcoholic fatty liver disease (NAFLD). We systematically searched three electronic databases (up to 31 October 2020) for identifying placebo-controlled or head-to-head RCTs that used SGLT-2 inhibitors for [...] Read more.
Recent randomized controlled trials (RCTs) tested the efficacy of sodium-glucose cotransporter-2 (SGLT-2) inhibitors to specifically treat nonalcoholic fatty liver disease (NAFLD). We systematically searched three electronic databases (up to 31 October 2020) for identifying placebo-controlled or head-to-head RCTs that used SGLT-2 inhibitors for treatment of NAFLD. No published RCTs with paired liver biopsy data were available for the meta-analysis. Primary outcome measures were changes in serum liver enzyme levels and liver fat content on imaging techniques. Overall, we included a total of twelve RCTs testing the efficacy of dapagliflozin (n = six RCTs), empagliflozin (n = three RCTs), ipragliflozin (n = two RCTs) or canagliflozin (n = one RCT) to specifically treat NAFLD for a median period of 24 weeks with aggregate data on 850 middle-aged overweight or obese individuals with NAFLD (90% with type 2 diabetes). Compared to placebo/reference therapy, treatment with SGLT-2 inhibitors significantly decreased serum alanine aminotransferase (weighted mean differences (WMD): −10.0 IU/L, 95%CI −12.2 to −7.79 IU/L; I2 = 10.5%) and gamma-glutamyltransferase levels (WMD: −14.49 IU/L, 95%CI −19.35 to −9.63 IU/L, I2 = 38.7%), as well as the absolute percentage of liver fat content on magnetic resonance-based techniques (WMD: −2.05%, 95%CI −2.61 to −1.48%; I2 = 0%). In conclusion, SGLT-2 inhibitors seem to be a promising treatment option for NAFLD. Full article
Show Figures

Graphical abstract

26 pages, 1584 KiB  
Review
Biostimulants for Plant Growth and Mitigation of Abiotic Stresses: A Metabolomics Perspective
by Lerato Nephali, Lizelle A. Piater, Ian A. Dubery, Veronica Patterson, Johan Huyser, Karl Burgess and Fidele Tugizimana
Metabolites 2020, 10(12), 505; https://doi.org/10.3390/metabo10120505 - 10 Dec 2020
Cited by 109 | Viewed by 12025
Abstract
Adverse environmental conditions due to climate change, combined with declining soil fertility, threaten food security. Modern agriculture is facing a pressing situation where novel strategies must be developed for sustainable food production and security. Biostimulants, conceptually defined as non-nutrient substances or microorganisms with [...] Read more.
Adverse environmental conditions due to climate change, combined with declining soil fertility, threaten food security. Modern agriculture is facing a pressing situation where novel strategies must be developed for sustainable food production and security. Biostimulants, conceptually defined as non-nutrient substances or microorganisms with the ability to promote plant growth and health, represent the potential to provide sustainable and economically favorable solutions that could introduce novel approaches to improve agricultural practices and crop productivity. Current knowledge and phenotypic observations suggest that biostimulants potentially function in regulating and modifying physiological processes in plants to promote growth, alleviate stresses, and improve quality and yield. However, to successfully develop novel biostimulant-based formulations and programs, understanding biostimulant-plant interactions, at molecular, cellular and physiological levels, is a prerequisite. Metabolomics, a multidisciplinary omics science, offers unique opportunities to predictively decode the mode of action of biostimulants on crop plants, and identify signatory markers of biostimulant action. Thus, this review intends to highlight the current scientific efforts and knowledge gaps in biostimulant research and industry, in context of plant growth promotion and stress responses. The review firstly revisits models that have been elucidated to describe the molecular machinery employed by plants in coping with environmental stresses. Furthermore, current definitions, claims and applications of plant biostimulants are pointed out, also indicating the lack of biological basis to accurately postulate the mechanisms of action of plant biostimulants. The review articulates briefly key aspects in the metabolomics workflow and the (potential) applications of this multidisciplinary omics science in the biostimulant industry. Full article
(This article belongs to the Special Issue Metabolomics in Agriculture Volume 2)
Show Figures

Figure 1

21 pages, 2378 KiB  
Review
Carbonic Anhydrase Inhibitors Targeting Metabolism and Tumor Microenvironment
by Andrea Angeli, Fabrizio Carta, Alessio Nocentini, Jean-Yves Winum, Raivis Zalubovskis, Atilla Akdemir, Valentina Onnis, Wagdy M. Eldehna, Clemente Capasso, Giuseppina De Simone, Simona Maria Monti, Simone Carradori, William A. Donald, Shoukat Dedhar and Claudiu T. Supuran
Metabolites 2020, 10(10), 412; https://doi.org/10.3390/metabo10100412 - 14 Oct 2020
Cited by 112 | Viewed by 6017
Abstract
The tumor microenvironment is crucial for the growth of cancer cells, triggering particular biochemical and physiological changes, which frequently influence the outcome of anticancer therapies. The biochemical rationale behind many of these phenomena resides in the activation of transcription factors such as hypoxia-inducible [...] Read more.
The tumor microenvironment is crucial for the growth of cancer cells, triggering particular biochemical and physiological changes, which frequently influence the outcome of anticancer therapies. The biochemical rationale behind many of these phenomena resides in the activation of transcription factors such as hypoxia-inducible factor 1 and 2 (HIF-1/2). In turn, the HIF pathway activates a number of genes including those involved in glucose metabolism, angiogenesis, and pH regulation. Several carbonic anhydrase (CA, EC 4.2.1.1) isoforms, such as CA IX and XII, actively participate in these processes and were validated as antitumor/antimetastatic drug targets. Here, we review the field of CA inhibitors (CAIs), which selectively inhibit the cancer-associated CA isoforms. Particular focus was on the identification of lead compounds and various inhibitor classes, and the measurement of CA inhibitory on-/off-target effects. In addition, the preclinical data that resulted in the identification of SLC-0111, a sulfonamide in Phase Ib/II clinical trials for the treatment of hypoxic, advanced solid tumors, are detailed. Full article
(This article belongs to the Special Issue Metabolism in the Tumor Microenvironment)
Show Figures

Graphical abstract

30 pages, 943 KiB  
Review
Unraveling Arbuscular Mycorrhiza-Induced Changes in Plant Primary and Secondary Metabolome
by Sukhmanpreet Kaur and Vidya Suseela
Metabolites 2020, 10(8), 335; https://doi.org/10.3390/metabo10080335 - 18 Aug 2020
Cited by 120 | Viewed by 8043
Abstract
Arbuscular mycorrhizal fungi (AMF) is among the most ubiquitous plant mutualists that enhance plant growth and yield by facilitating the uptake of phosphorus and water. The countless interactions that occur in the rhizosphere between plants and its AMF symbionts are mediated through the [...] Read more.
Arbuscular mycorrhizal fungi (AMF) is among the most ubiquitous plant mutualists that enhance plant growth and yield by facilitating the uptake of phosphorus and water. The countless interactions that occur in the rhizosphere between plants and its AMF symbionts are mediated through the plant and fungal metabolites that ensure partner recognition, colonization, and establishment of the symbiotic association. The colonization and establishment of AMF reprogram the metabolic pathways of plants, resulting in changes in the primary and secondary metabolites, which is the focus of this review. During initial colonization, plant–AMF interaction is facilitated through the regulation of signaling and carotenoid pathways. After the establishment, the AMF symbiotic association influences the primary metabolism of the plant, thus facilitating the sharing of photosynthates with the AMF. The carbon supply to AMF leads to the transport of a significant amount of sugars to the roots, and also alters the tricarboxylic acid cycle. Apart from the nutrient exchange, the AMF imparts abiotic stress tolerance in host plants by increasing the abundance of several primary metabolites. Although AMF initially suppresses the defense response of the host, it later primes the host for better defense against biotic and abiotic stresses by reprogramming the biosynthesis of secondary metabolites. Additionally, the influence of AMF on signaling pathways translates to enhanced phytochemical content through the upregulation of the phenylpropanoid pathway, which improves the quality of the plant products. These phytometabolome changes induced by plant–AMF interaction depends on the identity of both plant and AMF species, which could contribute to the differential outcome of this symbiotic association. A better understanding of the phytochemical landscape shaped by plant–AMF interactions would enable us to harness this symbiotic association to enhance plant performance, particularly under non-optimal growing conditions. Full article
(This article belongs to the Special Issue Ecometabolomics)
Show Figures

Figure 1

15 pages, 901 KiB  
Review
Metabolic Reprogramming of Chemoresistant Cancer Cells and the Potential Significance of Metabolic Regulation in the Reversal of Cancer Chemoresistance
by Xun Chen, Shangwu Chen and Dongsheng Yu
Metabolites 2020, 10(7), 289; https://doi.org/10.3390/metabo10070289 - 16 Jul 2020
Cited by 69 | Viewed by 4167
Abstract
Metabolic reprogramming is one of the hallmarks of tumors. Alterations of cellular metabolism not only contribute to tumor development, but also mediate the resistance of tumor cells to antitumor drugs. The metabolic response of tumor cells to various chemotherapy drugs can be analyzed [...] Read more.
Metabolic reprogramming is one of the hallmarks of tumors. Alterations of cellular metabolism not only contribute to tumor development, but also mediate the resistance of tumor cells to antitumor drugs. The metabolic response of tumor cells to various chemotherapy drugs can be analyzed by metabolomics. Although cancer cells have experienced metabolic reprogramming, the metabolism of drug resistant cancer cells has been further modified. Metabolic adaptations of drug resistant cells to chemotherapeutics involve redox, lipid metabolism, bioenergetics, glycolysis, polyamine synthesis and so on. The proposed metabolic mechanisms of drug resistance include the increase of glucose and glutamine demand, active pathways of glutaminolysis and glycolysis, promotion of NADPH from the pentose phosphate pathway, adaptive mitochondrial reprogramming, activation of fatty acid oxidation, and up-regulation of ornithine decarboxylase for polyamine production. Several genes are associated with metabolic reprogramming and drug resistance. Intervening regulatory points described above or targeting key genes in several important metabolic pathways may restore cell sensitivity to chemotherapy. This paper reviews the metabolic changes of tumor cells during the development of chemoresistance and discusses the potential of reversing chemoresistance by metabolic regulation. Full article
Show Figures

Figure 1

16 pages, 678 KiB  
Review
The Pentose Phosphate Pathway Dynamics in Cancer and Its Dependency on Intracellular pH
by Khalid O. Alfarouk, Samrein B. M. Ahmed, Robert L. Elliott, Amanda Benoit, Saad S. Alqahtani, Muntaser E. Ibrahim, Adil H. H. Bashir, Sari T. S. Alhoufie, Gamal O. Elhassan, Christian C. Wales, Laurent H. Schwartz, Heyam S. Ali, Ahmed Ahmed, Patrick F. Forde, Jesus Devesa, Rosa A. Cardone, Stefano Fais, Salvador Harguindey and Stephan J. Reshkin
Metabolites 2020, 10(7), 285; https://doi.org/10.3390/metabo10070285 - 11 Jul 2020
Cited by 63 | Viewed by 8758
Abstract
The Pentose Phosphate Pathway (PPP) is one of the key metabolic pathways occurring in living cells to produce energy and maintain cellular homeostasis. Cancer cells have higher cytoplasmic utilization of glucose (glycolysis), even in the presence of oxygen; this is known as the [...] Read more.
The Pentose Phosphate Pathway (PPP) is one of the key metabolic pathways occurring in living cells to produce energy and maintain cellular homeostasis. Cancer cells have higher cytoplasmic utilization of glucose (glycolysis), even in the presence of oxygen; this is known as the “Warburg Effect”. However, cytoplasmic glucose utilization can also occur in cancer through the PPP. This pathway contributes to cancer cells by operating in many different ways: (i) as a defense mechanism via the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) to prevent apoptosis, (ii) as a provision for the maintenance of energy by intermediate glycolysis, (iii) by increasing genomic material to the cellular pool of nucleic acid bases, (iv) by promoting survival through increasing glycolysis, and so increasing acid production, and (v) by inducing cellular proliferation by the synthesis of nucleic acid, fatty acid, and amino acid. Each step of the PPP can be upregulated in some types of cancer but not in others. An interesting aspect of this metabolic pathway is the shared regulation of the glycolytic and PPP pathways by intracellular pH (pHi). Indeed, as with glycolysis, the optimum activity of the enzymes driving the PPP occurs at an alkaline pHi, which is compatible with the cytoplasmic pH of cancer cells. Here, we outline each step of the PPP and discuss its possible correlation with cancer. Full article
(This article belongs to the Section Cell Metabolism)
Show Figures

Figure 1

23 pages, 2513 KiB  
Review
Machine Learning Applications for Mass Spectrometry-Based Metabolomics
by Ulf W. Liebal, An N. T. Phan, Malvika Sudhakar, Karthik Raman and Lars M. Blank
Metabolites 2020, 10(6), 243; https://doi.org/10.3390/metabo10060243 - 13 Jun 2020
Cited by 160 | Viewed by 15297
Abstract
The metabolome of an organism depends on environmental factors and intracellular regulation and provides information about the physiological conditions. Metabolomics helps to understand disease progression in clinical settings or estimate metabolite overproduction for metabolic engineering. The most popular analytical metabolomics platform is mass [...] Read more.
The metabolome of an organism depends on environmental factors and intracellular regulation and provides information about the physiological conditions. Metabolomics helps to understand disease progression in clinical settings or estimate metabolite overproduction for metabolic engineering. The most popular analytical metabolomics platform is mass spectrometry (MS). However, MS metabolome data analysis is complicated, since metabolites interact nonlinearly, and the data structures themselves are complex. Machine learning methods have become immensely popular for statistical analysis due to the inherent nonlinear data representation and the ability to process large and heterogeneous data rapidly. In this review, we address recent developments in using machine learning for processing MS spectra and show how machine learning generates new biological insights. In particular, supervised machine learning has great potential in metabolomics research because of the ability to supply quantitative predictions. We review here commonly used tools, such as random forest, support vector machines, artificial neural networks, and genetic algorithms. During processing steps, the supervised machine learning methods help peak picking, normalization, and missing data imputation. For knowledge-driven analysis, machine learning contributes to biomarker detection, classification and regression, biochemical pathway identification, and carbon flux determination. Of important relevance is the combination of different omics data to identify the contributions of the various regulatory levels. Our overview of the recent publications also highlights that data quality determines analysis quality, but also adds to the challenge of choosing the right model for the data. Machine learning methods applied to MS-based metabolomics ease data analysis and can support clinical decisions, guide metabolic engineering, and stimulate fundamental biological discoveries. Full article
(This article belongs to the Special Issue Metabolic Engineering and Synthetic Biology Volume 2)
Show Figures

Figure 1

26 pages, 1131 KiB  
Article
The Bovine Metabolome
by Aidin Foroutan, Carolyn Fitzsimmons, Rupasri Mandal, Hamed Piri-Moghadam, Jiamin Zheng, AnChi Guo, Carin Li, Le Luo Guan and David S. Wishart
Metabolites 2020, 10(6), 233; https://doi.org/10.3390/metabo10060233 - 5 Jun 2020
Cited by 74 | Viewed by 4930
Abstract
From an animal health perspective, relatively little is known about the typical or healthy ranges of concentrations for many metabolites in bovine biofluids and tissues. Here, we describe the results of a comprehensive, quantitative metabolomic characterization of six bovine biofluids and tissues, including [...] Read more.
From an animal health perspective, relatively little is known about the typical or healthy ranges of concentrations for many metabolites in bovine biofluids and tissues. Here, we describe the results of a comprehensive, quantitative metabolomic characterization of six bovine biofluids and tissues, including serum, ruminal fluid, liver, Longissimus thoracis (LT) muscle, semimembranosus (SM) muscle, and testis tissues. Using nuclear magnetic resonance (NMR) spectroscopy, liquid chromatography–tandem mass spectrometry (LC–MS/MS), and inductively coupled plasma–mass spectrometry (ICP–MS), we were able to identify and quantify more than 145 metabolites in each of these biofluids/tissues. Combining these results with previous work done by our team on other bovine biofluids, as well as previously published literature values for other bovine tissues and biofluids, we were able to generate quantitative reference concentration data for 2100 unique metabolites across five different bovine biofluids and seven different tissues. These experimental data were combined with computer-aided, genome-scale metabolite inference techniques to add another 48,628 unique metabolites that are biochemically expected to be in bovine tissues or biofluids. Altogether, 51,801 unique metabolites were identified in this study. Detailed information on these 51,801 unique metabolites has been placed in a publicly available database called the Bovine Metabolome Database. Full article
(This article belongs to the Section Animal Metabolism)
Show Figures

Graphical abstract

18 pages, 1088 KiB  
Review
Recommendations and Best Practices for Standardizing the Pre-Analytical Processing of Blood and Urine Samples in Metabolomics
by Raúl González-Domínguez, Álvaro González-Domínguez, Ana Sayago and Ángeles Fernández-Recamales
Metabolites 2020, 10(6), 229; https://doi.org/10.3390/metabo10060229 - 3 Jun 2020
Cited by 72 | Viewed by 9101
Abstract
Metabolomics can be significantly influenced by a range of pre-analytical factors, such as sample collection, pre-processing, aliquoting, transport, storage and thawing. This therefore shows the crucial need for standardizing the pre-analytical phase with the aim of minimizing the inter-sample variability driven by these [...] Read more.
Metabolomics can be significantly influenced by a range of pre-analytical factors, such as sample collection, pre-processing, aliquoting, transport, storage and thawing. This therefore shows the crucial need for standardizing the pre-analytical phase with the aim of minimizing the inter-sample variability driven by these technical issues, as well as for maintaining the metabolic integrity of biological samples to ensure that metabolomic profiles are a direct expression of the in vivo biochemical status. This review article provides an updated literature revision of the most important factors related to sample handling and pre-processing that may affect metabolomics results, particularly focusing on the most commonly investigated biofluids in metabolomics, namely blood plasma/serum and urine. Finally, we also provide some general recommendations and best practices aimed to standardize and accurately report all these pre-analytical aspects in metabolomics research. Full article
(This article belongs to the Special Issue Metabolomics in Human Tissues and Materials)
Show Figures

Figure 1

35 pages, 1844 KiB  
Review
Metabolomics and Multi-Omics Integration: A Survey of Computational Methods and Resources
by Tara Eicher, Garrett Kinnebrew, Andrew Patt, Kyle Spencer, Kevin Ying, Qin Ma, Raghu Machiraju and Ewy A. Mathé
Metabolites 2020, 10(5), 202; https://doi.org/10.3390/metabo10050202 - 15 May 2020
Cited by 66 | Viewed by 12579
Abstract
As researchers are increasingly able to collect data on a large scale from multiple clinical and omics modalities, multi-omics integration is becoming a critical component of metabolomics research. This introduces a need for increased understanding by the metabolomics researcher of computational and statistical [...] Read more.
As researchers are increasingly able to collect data on a large scale from multiple clinical and omics modalities, multi-omics integration is becoming a critical component of metabolomics research. This introduces a need for increased understanding by the metabolomics researcher of computational and statistical analysis methods relevant to multi-omics studies. In this review, we discuss common types of analyses performed in multi-omics studies and the computational and statistical methods that can be used for each type of analysis. We pinpoint the caveats and considerations for analysis methods, including required parameters, sample size and data distribution requirements, sources of a priori knowledge, and techniques for the evaluation of model accuracy. Finally, for the types of analyses discussed, we provide examples of the applications of corresponding methods to clinical and basic research. We intend that our review may be used as a guide for metabolomics researchers to choose effective techniques for multi-omics analyses relevant to their field of study. Full article
(This article belongs to the Special Issue Metabolomics and Multi-Omics Integration)
Show Figures

Figure 1

23 pages, 1537 KiB  
Review
MEATabolomics: Muscle and Meat Metabolomics in Domestic Animals
by Susumu Muroya, Shuji Ueda, Tomohiko Komatsu, Takuya Miyakawa and Per Ertbjerg
Metabolites 2020, 10(5), 188; https://doi.org/10.3390/metabo10050188 - 11 May 2020
Cited by 80 | Viewed by 6637
Abstract
In the past decades, metabolomics has been used to comprehensively understand a variety of food materials for improvement and assessment of food quality. Farm animal skeletal muscles and meat are one of the major targets of metabolomics for the characterization of meat and [...] Read more.
In the past decades, metabolomics has been used to comprehensively understand a variety of food materials for improvement and assessment of food quality. Farm animal skeletal muscles and meat are one of the major targets of metabolomics for the characterization of meat and the exploration of biomarkers in the production system. For identification of potential biomarkers to control meat quality, studies of animal muscles and meat with metabolomics (MEATabolomics) has been conducted in combination with analyses of meat quality traits, focusing on specific factors associated with animal genetic background and sensory scores, or conditions in feeding system and treatments of meat in the processes such as postmortem storage, processing, and hygiene control. Currently, most of MEATabolomics approaches combine separation techniques (gas or liquid chromatography, and capillary electrophoresis)–mass spectrometry (MS) or nuclear magnetic resonance (NMR) approaches with the downstream multivariate analyses, depending on the polarity and/or hydrophobicity of the targeted metabolites. Studies employing these approaches provide useful information to monitor meat quality traits efficiently and to understand the genetic background and production system of animals behind the meat quality. MEATabolomics is expected to improve the knowledge and methodologies in animal breeding and feeding, meat storage and processing, and prediction of meat quality. Full article
(This article belongs to the Special Issue Metabolomic Applications in Animal Science)
Show Figures

Figure 1

24 pages, 401 KiB  
Review
Metabolite Changes during Postharvest Storage: Effects on Fruit Quality Traits
by Delphine M. Pott, José G. Vallarino and Sonia Osorio
Metabolites 2020, 10(5), 187; https://doi.org/10.3390/metabo10050187 - 8 May 2020
Cited by 74 | Viewed by 6333
Abstract
Metabolic changes occurring in ripe or senescent fruits during postharvest storage lead to a general deterioration in quality attributes, including decreased flavor and ‘off-aroma’ compound generation. As a consequence, measures to reduce economic losses have to be taken by the fruit industry and [...] Read more.
Metabolic changes occurring in ripe or senescent fruits during postharvest storage lead to a general deterioration in quality attributes, including decreased flavor and ‘off-aroma’ compound generation. As a consequence, measures to reduce economic losses have to be taken by the fruit industry and have mostly consisted of storage at cold temperatures and the use of controlled atmospheres or ripening inhibitors. However, the biochemical pathways and molecular mechanisms underlying fruit senescence in commercial storage conditions are still poorly understood. In this sense, metabolomic platforms, enabling the profiling of key metabolites responsible for organoleptic and health-promoting traits, such as volatiles, sugars, acids, polyphenols and carotenoids, can be a powerful tool for further understanding the biochemical basis of postharvest physiology and have the potential to play a critical role in the identification of the pathways affected by fruit senescence. Here, we provide an overview of the metabolic changes during postharvest storage, with special attention to key metabolites related to fruit quality. The potential use of metabolomic approaches to yield metabolic markers useful for chemical phenotyping or even storage and marketing decisions is highlighted. Full article
(This article belongs to the Special Issue Fruit Metabolism and Metabolomics)
14 pages, 7327 KiB  
Article
MetaboAnalystR 3.0: Toward an Optimized Workflow for Global Metabolomics
by Zhiqiang Pang, Jasmine Chong, Shuzhao Li and Jianguo Xia
Metabolites 2020, 10(5), 186; https://doi.org/10.3390/metabo10050186 - 7 May 2020
Cited by 315 | Viewed by 21328
Abstract
Liquid chromatography coupled to high-resolution mass spectrometry platforms are increasingly employed to comprehensively measure metabolome changes in systems biology and complex diseases. Over the past decade, several powerful computational pipelines have been developed for spectral processing, annotation, and analysis. However, significant obstacles remain [...] Read more.
Liquid chromatography coupled to high-resolution mass spectrometry platforms are increasingly employed to comprehensively measure metabolome changes in systems biology and complex diseases. Over the past decade, several powerful computational pipelines have been developed for spectral processing, annotation, and analysis. However, significant obstacles remain with regard to parameter settings, computational efficiencies, batch effects, and functional interpretations. Here, we introduce MetaboAnalystR 3.0, a significantly improved pipeline with three key new features: (1) efficient parameter optimization for peak picking; (2) automated batch effect correction; and (3) more accurate pathway activity prediction. Our benchmark studies showed that this workflow was 20~100× faster compared to other well-established workflows and produced more biologically meaningful results. In summary, MetaboAnalystR 3.0 offers an efficient pipeline to support high-throughput global metabolomics in the open-source R environment. Full article
(This article belongs to the Special Issue Metabolomics–Integration of Technology and Bioinformatics)
Show Figures

Figure 1

13 pages, 233 KiB  
Review
A Review of Lipidomics of Cardiovascular Disease Highlights the Importance of Isolating Lipoproteins
by Ming Ding and Kathryn M. Rexrode
Metabolites 2020, 10(4), 163; https://doi.org/10.3390/metabo10040163 - 23 Apr 2020
Cited by 69 | Viewed by 5128
Abstract
Cutting-edge lipidomic profiling measures hundreds or even thousands of lipids in plasma and is increasingly used to investigate mechanisms of cardiovascular disease (CVD). In this review, we introduce lipidomic techniques, describe distributions of lipids across lipoproteins, and summarize findings on the association of [...] Read more.
Cutting-edge lipidomic profiling measures hundreds or even thousands of lipids in plasma and is increasingly used to investigate mechanisms of cardiovascular disease (CVD). In this review, we introduce lipidomic techniques, describe distributions of lipids across lipoproteins, and summarize findings on the association of lipids with CVD based on lipidomics. The main findings of 16 cohort studies were that, independent of total and high-density lipoprotein cholesterol (HDL-c), ceramides (d18:1/16:0, d18:1/18:0, and d18:1/24:1) and phosphatidylcholines (PCs) containing saturated and monounsaturated fatty acyl chains are positively associated with risks of CVD outcomes, while PCs containing polyunsaturated fatty acyl chains (PUFA) are inversely associated with risks of CVD outcomes. Lysophosphatidylcholines (LPCs) may be positively associated with risks of CVD outcomes. Interestingly, the distributions of the identified lipids vary across lipoproteins: LPCs are primarily contained in HDLs, ceramides are mainly contained in low-density lipoproteins (LDLs), and PCs are distributed in both HDLs and LDLs. Thus, the potential mechanism behind previous findings may be related to the effect of the identified lipids on the biological functions of HDLs and LDLs. Only eight studies on the lipidomics of HDL and non-HDL particles and CVD outcomes have been conducted, which showed that higher triglycerides (TAGs), lower PUFA, lower phospholipids, and lower sphingomyelin content in HDLs might be associated with a higher risk of coronary heart disease (CHD). However, the generalizability of these studies is a major concern, given that they used case–control or cross-sectional designs in hospital settings, included a very small number of participants, and did not correct for multiple testing or adjust for blood lipids such as HDL-c, low-density lipoprotein cholesterol (LDL-c), or TAGs. Overall, findings from the literature highlight the importance of research on lipidomics of lipoproteins to enhance our understanding of the mechanism of the association between the identified lipids and the risk of CVD and allow the identification of novel lipid biomarkers in HDLs and LDLs, independent of HDL-c and LDL-c. Lipidomic techniques show the feasibility of this exciting research direction, and the lack of high-quality epidemiological studies warrants well-designed prospective cohort studies. Full article
(This article belongs to the Special Issue Integrative-Metabolomics in Epidemiological Studies)
Back to TopTop