Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2730 KiB  
Article
Spatial and Temporal Dynamics of Electrical and Photosynthetic Activity and the Content of Phytohormones Induced by Local Stimulation of Pea Plants
by Maria Ladeynova, Maxim Mudrilov, Ekaterina Berezina, Dmitry Kior, Marina Grinberg, Anna Brilkina, Vladimir Sukhov and Vladimir Vodeneev
Plants 2020, 9(10), 1364; https://doi.org/10.3390/plants9101364 - 15 Oct 2020
Cited by 14 | Viewed by 2952
Abstract
A local leaf burning causes variation potential (VP) propagation, a decrease in photosynthesis activity, and changes in the content of phytohormones in unstimulated leaves in pea plants. The VP-induced photosynthesis response develops in two phases: fast inactivation and long-term inactivation. Along with a [...] Read more.
A local leaf burning causes variation potential (VP) propagation, a decrease in photosynthesis activity, and changes in the content of phytohormones in unstimulated leaves in pea plants. The VP-induced photosynthesis response develops in two phases: fast inactivation and long-term inactivation. Along with a decrease in photosynthetic activity, there is a transpiration suppression in unstimulated pea leaves, which corresponds to the long-term phase of photosynthesis response. Phytohormone level analysis showed an increase in the concentration of jasmonic acid (JA) preceding a transpiration suppression and a long-term phase of the photosynthesis response. Analysis of the spatial and temporal dynamics of electrical signals, phytohormone levels, photosynthesis, and transpiration activity showed the most pronounced changes in the more distant leaf from the area of local stimulation. The established features are related to the architecture of the vascular bundles in the pea stem. Full article
Show Figures

Graphical abstract

18 pages, 2880 KiB  
Article
Metabolic Responses to Waterlogging Differ between Roots and Shoots and Reflect Phloem Transport Alteration in Medicago truncatula
by Jérémy Lothier, Houssein Diab, Caroline Cukier, Anis M. Limami and Guillaume Tcherkez
Plants 2020, 9(10), 1373; https://doi.org/10.3390/plants9101373 - 15 Oct 2020
Cited by 36 | Viewed by 2830
Abstract
Root oxygen deficiency that is induced by flooding (waterlogging) is a common situation in many agricultural areas, causing considerable loss in yield and productivity. Physiological and metabolic acclimation to hypoxia has mostly been studied on roots or whole seedlings under full submergence. The [...] Read more.
Root oxygen deficiency that is induced by flooding (waterlogging) is a common situation in many agricultural areas, causing considerable loss in yield and productivity. Physiological and metabolic acclimation to hypoxia has mostly been studied on roots or whole seedlings under full submergence. The metabolic difference between shoots and roots during waterlogging, and how roots and shoots communicate in such a situation is much less known. In particular, the metabolic acclimation in shoots and how this, in turn, impacts on roots metabolism is not well documented. Here, we monitored changes in the metabolome of roots and shoots of barrel clover (Medicago truncatula), growth, and gas-exchange, and analyzed phloem sap exudate composition. Roots exhibited a typical response to hypoxia, such as γ-aminobutyrate and alanine accumulation, as well as a strong decline in raffinose, sucrose, hexoses, and pentoses. Leaves exhibited a strong increase in starch, sugars, sugar derivatives, and phenolics (tyrosine, tryptophan, phenylalanine, benzoate, ferulate), suggesting an inhibition of sugar export and their alternative utilization by aromatic compounds production via pentose phosphates and phosphoenolpyruvate. Accordingly, there was an enrichment in sugars and a decline in organic acids in phloem sap exudates under waterlogging. Mass-balance calculations further suggest an increased imbalance between loading by shoots and unloading by roots under waterlogging. Taken as a whole, our results are consistent with the inhibition of sugar import by waterlogged roots, leading to an increase in phloem sugar pool, which, in turn, exert negative feedback on sugar metabolism and utilization in shoots. Full article
(This article belongs to the Special Issue Plant Responses to Hypoxia)
Show Figures

Figure 1

19 pages, 614 KiB  
Review
Improving Horticultural Crops via CRISPR/Cas9: Current Successes and Prospects
by Bed Prakash Bhatta and Subas Malla
Plants 2020, 9(10), 1360; https://doi.org/10.3390/plants9101360 - 14 Oct 2020
Cited by 23 | Viewed by 8481
Abstract
Horticultural crops include a diverse array of crops comprising fruits, vegetables, nuts, flowers, aromatic and medicinal plants. They provide nutritional, medicinal, and aesthetic benefits to mankind. However, these crops undergo many biotic (e.g., diseases, pests) and abiotic stresses (e.g., drought, salinity). Conventional breeding [...] Read more.
Horticultural crops include a diverse array of crops comprising fruits, vegetables, nuts, flowers, aromatic and medicinal plants. They provide nutritional, medicinal, and aesthetic benefits to mankind. However, these crops undergo many biotic (e.g., diseases, pests) and abiotic stresses (e.g., drought, salinity). Conventional breeding strategies to improve traits in crops involve the use of a series of backcrossing and selection for introgression of a beneficial trait into elite germplasm, which is time and resource consuming. Recent new plant breeding tools such as clustered regularly interspaced short palindromic repeats (CRISPR) /CRISPR-associated protein-9 (Cas9) technique have the potential to be rapid, cost-effective, and precise tools for crop improvement. In this review article, we explore the CRISPR/Cas9 technology, its history, classification, general applications, specific uses in horticultural crops, challenges, existing resources, associated regulatory aspects, and the way forward. Full article
Show Figures

Figure 1

19 pages, 3157 KiB  
Article
Phytotoxicity, Morphological, and Metabolic Effects of the Sesquiterpenoid Nerolidol on Arabidopsis thaliana Seedling Roots
by Marco Landi, Biswapriya Biswavas Misra, Antonella Muto, Leonardo Bruno and Fabrizio Araniti
Plants 2020, 9(10), 1347; https://doi.org/10.3390/plants9101347 - 12 Oct 2020
Cited by 13 | Viewed by 3533
Abstract
Natural herbicides that are based on allelopathy of compounds, can offer effective alternatives to chemical herbicides towards sustainable agricultural practices. Nerolidol, a sesquiterpenoid alcohol synthesized by many plant families, was shown to be the most effective allelopathic compound in a preliminary screening performed [...] Read more.
Natural herbicides that are based on allelopathy of compounds, can offer effective alternatives to chemical herbicides towards sustainable agricultural practices. Nerolidol, a sesquiterpenoid alcohol synthesized by many plant families, was shown to be the most effective allelopathic compound in a preliminary screening performed with several other sesquiterpenoids. In the present study, Arabidopsis thaliana seedlings were treated for 14 d with various cis-nerolidol concentrations (0, 50, 100, 200, 400, and 800 µM) to investigate its effects on root growth and morphology. To probe the underlying changes in root metabolome, we conducted untargeted gas chromatography mass spectrometry (GC-MS) based metabolomics to find out the specificity or multi-target action of this sesquiterpenoid alcohol. Oxidative stress (measured as levels of H2O2 and malondialdehyde (MDA) by-product) and antioxidant enzyme activities, i.e., superoxide dismutase (SOD) and catalase (CAT) were also evaluated in the roots. Nerolidol showed an IC50 (120 µM), which can be considered low for natural products. Nerolidol caused alterations in root morphology, brought changes in auxin balance, induced changes in sugar, amino acid, and carboxylic acid profiles, and increased the levels of H2O2 and MDA in root tissues in a dose-dependent manner. Several metabolomic-scale changes induced by nerolidol support the multi-target action of nerolidol, which is a positive feature for a botanical herbicide. Though it warrants further mechanistic investigation, nerolidol is a promising compound for developing a new natural herbicide. Full article
Show Figures

Figure 1

34 pages, 687 KiB  
Review
Zebrafish as a Successful Animal Model for Screening Toxicity of Medicinal Plants
by Amir Modarresi Chahardehi, Hasni Arsad and Vuanghao Lim
Plants 2020, 9(10), 1345; https://doi.org/10.3390/plants9101345 - 12 Oct 2020
Cited by 89 | Viewed by 11359
Abstract
The zebrafish (Danio rerio) is used as an embryonic and larval model to perform in vitro experiments and developmental toxicity studies. Zebrafish may be used to determine the toxicity of samples in early screening assays, often in a high-throughput manner. The [...] Read more.
The zebrafish (Danio rerio) is used as an embryonic and larval model to perform in vitro experiments and developmental toxicity studies. Zebrafish may be used to determine the toxicity of samples in early screening assays, often in a high-throughput manner. The zebrafish embryotoxicity model is at the leading edge of toxicology research due to the short time required for analyses, transparency of embryos, short life cycle, high fertility, and genetic data similarity. Zebrafish toxicity studies range from assessing the toxicity of bioactive compounds or crude extracts from plants to determining the optimal process. Most of the studied extracts were polar, such as ethanol, methanol, and aqueous solutions, which were used to detect the toxicity and bioactivity. This review examines the latest research using zebrafish as a study model and highlights its power as a tool for detecting toxicity of medicinal plants and its effectiveness at enhancing the understanding of new drug generation. The goal of this review was to develop a link to ethnopharmacological zebrafish studies that can be used by other researchers to conduct future research. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants)
Show Figures

Graphical abstract

9 pages, 2092 KiB  
Communication
OsmiR535, a Potential Genetic Editing Target for Drought and Salinity Stress Tolerance in Oryza sativa
by Erkui Yue, Huan Cao and Bohan Liu
Plants 2020, 9(10), 1337; https://doi.org/10.3390/plants9101337 - 10 Oct 2020
Cited by 83 | Viewed by 4396
Abstract
OsmiR535 belongs to the miR156/miR529/miR535 superfamily, a highly conserved miRNA family in plants. OsmiR535 is involved in regulating the cold-stress response, modulating plant development, and determining panicle architecture and grain length. However, the role that OsmiR535 plays in plant responses to drought and [...] Read more.
OsmiR535 belongs to the miR156/miR529/miR535 superfamily, a highly conserved miRNA family in plants. OsmiR535 is involved in regulating the cold-stress response, modulating plant development, and determining panicle architecture and grain length. However, the role that OsmiR535 plays in plant responses to drought and salinity are elusive. In the current study, molecular and genetic engineering techniques were used to elucidate the possible role of OsmiR535 in response to NaCl, PEG(Poly ethylene glycol), ABA(Abscisic acid), and dehydration stresses. Our results showed that OsmiR535 is induced under stressed conditions as compared to control. With transgenic and CRISPR/Cas9 knockout system techniques, our results verified that either inhibition or knockout of OsmiR535 in rice could enhance the tolerance of plants to NaCl, ABA, dehydration and PEG stresses. In addition, the overexpression of OsmiR535 significantly reduced the survival rate of rice seedlings during PEG and dehydration post-stress recovery. Our results demonstrated that OsmiR535 negatively regulates the stress response in rice. Moreover, our practical application of CRISPR/Cas9 mediated genome editing created a homozygous 5 bp deletion in the coding sequence of OsmiR535, demonstrating that OsmiR535 could be a useful genetic editing target for drought and salinity tolerance and a new marker for molecular breeding of Oryza sativa. Full article
(This article belongs to the Special Issue Abiotic Stress Tolerance in Crop and Medical Plants)
Show Figures

Figure 1

29 pages, 1361 KiB  
Review
Understanding Host–Pathogen Interactions in Brassica napus in the Omics Era
by Ting Xiang Neik, Junrey Amas, Martin Barbetti, David Edwards and Jacqueline Batley
Plants 2020, 9(10), 1336; https://doi.org/10.3390/plants9101336 - 10 Oct 2020
Cited by 27 | Viewed by 10218
Abstract
Brassica napus (canola/oilseed rape/rapeseed) is an economically important crop, mostly found in temperate and sub-tropical regions, that is cultivated widely for its edible oil. Major diseases of Brassica crops such as Blackleg, Clubroot, Sclerotinia Stem Rot, Downy Mildew, Alternaria Leaf Spot and White [...] Read more.
Brassica napus (canola/oilseed rape/rapeseed) is an economically important crop, mostly found in temperate and sub-tropical regions, that is cultivated widely for its edible oil. Major diseases of Brassica crops such as Blackleg, Clubroot, Sclerotinia Stem Rot, Downy Mildew, Alternaria Leaf Spot and White Rust have caused significant yield and economic losses in rapeseed-producing countries worldwide, exacerbated by global climate change, and, if not remedied effectively, will threaten global food security. To gain further insights into the host–pathogen interactions in relation to Brassica diseases, it is critical that we review current knowledge in this area and discuss how omics technologies can offer promising results and help to push boundaries in our understanding of the resistance mechanisms. Omics technologies, such as genomics, proteomics, transcriptomics and metabolomics approaches, allow us to understand the host and pathogen, as well as the interaction between the two species at a deeper level. With these integrated data in multi-omics and systems biology, we are able to breed high-quality disease-resistant Brassica crops in a more holistic, targeted and accurate way. Full article
(This article belongs to the Special Issue Omics in Plant-Pathogen Interaction)
Show Figures

Figure 1

16 pages, 3892 KiB  
Article
Artocarpus lakoocha Roxb. and Artocarpus heterophyllus Lam. Flowers: New Sources of Bioactive Compounds
by Arun Kumar Gupta, Muzamil Ahmad Rather, Avinash Kumar Jha, Abhinay Shashank, Somya Singhal, Maanas Sharma, Urbi Pathak, Dipti Sharma and Andrea Mastinu
Plants 2020, 9(10), 1329; https://doi.org/10.3390/plants9101329 - 9 Oct 2020
Cited by 62 | Viewed by 7661
Abstract
Artocarpus heterophyllus Lam. (AH) and Artocarpus lakoocha Roxb. (AL) are two endemic plants that grow on the Asian continent. To date, their applications have been aimed at using their fruit as a food source or for some of their [...] Read more.
Artocarpus heterophyllus Lam. (AH) and Artocarpus lakoocha Roxb. (AL) are two endemic plants that grow on the Asian continent. To date, their applications have been aimed at using their fruit as a food source or for some of their therapeutic virtues. In this study, attention was given to the flowers of AH and AL. Initially, the cytotoxicity of the phytoextracts was assessed, and the content of minerals, phenols, and flavonoids was determined. Furthermore, some antioxidant components were identified by HPLC. Furthermore, the ability of AH and AL extracts to modulate the gene expression of some targets involved in the antioxidant response was studied. The results obtained highlighted the nutritional and antioxidant value of the AH and AL flower extracts. This study will contribute to enhancing the use of AH and AL flowers as potential supplements in human nutrition. Full article
Show Figures

Graphical abstract

16 pages, 16822 KiB  
Article
Plant Disease Classification: A Comparative Evaluation of Convolutional Neural Networks and Deep Learning Optimizers
by Muhammad Hammad Saleem, Johan Potgieter and Khalid Mahmood Arif
Plants 2020, 9(10), 1319; https://doi.org/10.3390/plants9101319 - 6 Oct 2020
Cited by 134 | Viewed by 14433
Abstract
Recently, plant disease classification has been done by various state-of-the-art deep learning (DL) architectures on the publicly available/author generated datasets. This research proposed the deep learning-based comparative evaluation for the classification of plant disease in two steps. Firstly, the best convolutional neural network [...] Read more.
Recently, plant disease classification has been done by various state-of-the-art deep learning (DL) architectures on the publicly available/author generated datasets. This research proposed the deep learning-based comparative evaluation for the classification of plant disease in two steps. Firstly, the best convolutional neural network (CNN) was obtained by conducting a comparative analysis among well-known CNN architectures along with modified and cascaded/hybrid versions of some of the DL models proposed in the recent researches. Secondly, the performance of the best-obtained model was attempted to improve by training through various deep learning optimizers. The comparison between various CNNs was based on performance metrics such as validation accuracy/loss, F1-score, and the required number of epochs. All the selected DL architectures were trained in the PlantVillage dataset which contains 26 different diseases belonging to 14 respective plant species. Keras with TensorFlow backend was used to train deep learning architectures. It is concluded that the Xception architecture trained with the Adam optimizer attained the highest validation accuracy and F1-score of 99.81% and 0.9978 respectively which is comparatively better than the previous approaches and it proves the novelty of the work. Therefore, the method proposed in this research can be applied to other agricultural applications for transparent detection and classification purposes. Full article
Show Figures

Graphical abstract

19 pages, 1174 KiB  
Article
Transcriptome Analyses and Antioxidant Activity Profiling Reveal the Role of a Lignin-Derived Biostimulant Seed Treatment in Enhancing Heat Stress Tolerance in Soybean
by Cristina Campobenedetto, Giuseppe Mannino, Chiara Agliassa, Alberto Acquadro, Valeria Contartese, Christian Garabello and Cinzia Margherita Bertea
Plants 2020, 9(10), 1308; https://doi.org/10.3390/plants9101308 - 2 Oct 2020
Cited by 43 | Viewed by 5299
Abstract
Soybean (Glycine max Merr.) is a worldwide important legume crop, whose growth and yield are negatively affected by heat stress at germination time. Here, we tested the role of a biostimulant based on lignin derivatives, plant-derived amino acids, and molybdenum in enhancing [...] Read more.
Soybean (Glycine max Merr.) is a worldwide important legume crop, whose growth and yield are negatively affected by heat stress at germination time. Here, we tested the role of a biostimulant based on lignin derivatives, plant-derived amino acids, and molybdenum in enhancing soybean heat stress tolerance when applied on seeds. After treatment with the biostimulant at 35 °C, the seed biometric parameters were positively influenced after 24 h, meanwhile, germination percentage was increased after 72 h (+10%). RNA-Seq analyses revealed a modulation of 879 genes (51 upregulated and 828 downregulated) in biostimulant-treated seeds as compared with the control, at 24 h after incubation at 35 °C. Surprisingly, more than 33% of upregulated genes encoded for ribosomal RNA (rRNA) methyltransferases and proteins involved in the ribosome assembly, acting in a specific protein network. Conversely, the downregulated genes were involved in stress response, hormone signaling, and primary metabolism. Finally, from a biochemical point of view, the dramatic H2O2 reduction 40%) correlated to a strong increase in non-protein thiols (+150%), suggested a lower oxidative stress level in biostimulant-treated seeds, at 24 h after incubation at 35 °C. Our results provide insights on the biostimulant mechanism of action and on its application for seed treatments to improve heat stress tolerance during germination. Full article
(This article belongs to the Special Issue Biostimulants in Plants Science)
Show Figures

Figure 1

18 pages, 16506 KiB  
Review
Crop Mass and N Status as Prerequisite Covariables for Unraveling Nitrogen Use Efficiency across Genotype-by-Environment-by-Management Scenarios: A Review
by Gilles Lemaire and Ignacio Ciampitti
Plants 2020, 9(10), 1309; https://doi.org/10.3390/plants9101309 - 2 Oct 2020
Cited by 61 | Viewed by 4464
Abstract
Due to the asymptotic nature of the crop yield response curve to fertilizer N supply, the nitrogen use efficiency (NUE, yield per unit of fertilizer applied) of crops declines as the crop N nutrition becomes less limiting. Therefore, it is difficult to directly [...] Read more.
Due to the asymptotic nature of the crop yield response curve to fertilizer N supply, the nitrogen use efficiency (NUE, yield per unit of fertilizer applied) of crops declines as the crop N nutrition becomes less limiting. Therefore, it is difficult to directly compare the NUE of crops according to genotype-by-environment-by-management interactions in the absence of any indication of crop N status. The determination of the nitrogen nutrition index (NNI) allows the estimation of crop N status independently of the N fertilizer application rate. Moreover, the theory of N dilution in crops indicates clearly that crop N uptake is coregulated by (i) soil N availability and (ii) plant growth rate capacity. Thus, according to genotype-by-environment-by-management interactions leading to variation in potential plant growth capacity, N demand for a given soil N supply condition would be different; consequently, the NUE of the crop would be dissimilar. We demonstrate that NUE depends on the crop potential growth rate and N status defined by the crop NNI. Thus, providing proper context to NUE changes needs to be achieved by considering comparisons with similar crop mass and NNI to avoid any misinterpretation. The latter needs to be considered not only when analyzing genotype-by-environment-by-management interactions for NUE but for other resource use efficiency inputs such as water use efficiency (colimitation N–water) under field conditions. Full article
Show Figures

Graphical abstract

14 pages, 294 KiB  
Review
The Potential of Payment for Ecosystem Services for Crop Wild Relative Conservation
by Nicholas Tyack, Hannes Dempewolf and Colin K. Khoury
Plants 2020, 9(10), 1305; https://doi.org/10.3390/plants9101305 - 2 Oct 2020
Cited by 21 | Viewed by 3672
Abstract
Crop wild relatives (CWR) have proven to be very valuable in agricultural breeding programs but remain a relatively under-utilized and under-protected resource. CWR have provided resistance to pests and diseases, abiotic stress tolerance, quality improvements and yield increases with the annual contribution of [...] Read more.
Crop wild relatives (CWR) have proven to be very valuable in agricultural breeding programs but remain a relatively under-utilized and under-protected resource. CWR have provided resistance to pests and diseases, abiotic stress tolerance, quality improvements and yield increases with the annual contribution of these traits to agriculture estimated at USD 115 billion globally and are considered to possess many valuable traits that have not yet been explored. The use of the genetic diversity found in CWR for breeding provides much-needed resilience to modern agricultural systems and has great potential to help sustainably increase agricultural production to feed a growing world population in the face of climate change and other stresses. A number of CWR taxa are at risk, however, necessitating coordinated local, national, regional and global efforts to preserve the genetic diversity of these plants through complementary in situ and ex situ conservation efforts. We discuss the absence of adequate institutional frameworks to incentivize CWR conservation services and propose payment for ecosystem services (PES) as an under-explored mechanism for financing these efforts. Such mechanisms could serve as a potentially powerful tool for enhancing the long-term protection of CWR. Full article
(This article belongs to the Special Issue Plant Biodiversity and Genetic Resources)
31 pages, 1815 KiB  
Article
Germplasm Acquisition and Distribution by CGIAR Genebanks
by Michael Halewood, Nelissa Jamora, Isabel Lopez Noriega, Noelle L. Anglin, Peter Wenzl, Thomas Payne, Marie-Noelle Ndjiondjop, Luigi Guarino, P. Lava Kumar, Mariana Yazbek, Alice Muchugi, Vania Azevedo, Marimagne Tchamba, Chris S. Jones, Ramaiah Venuprasad, Nicolas Roux, Edwin Rojas and Charlotte Lusty
Plants 2020, 9(10), 1296; https://doi.org/10.3390/plants9101296 - 1 Oct 2020
Cited by 31 | Viewed by 7464
Abstract
The international collections of plant genetic resources for food and agriculture (PGRFA) hosted by 11 CGIAR Centers are important components of the United Nations Food and Agriculture Organization’s global system of conservation and use of PGRFA. They also play an important supportive role [...] Read more.
The international collections of plant genetic resources for food and agriculture (PGRFA) hosted by 11 CGIAR Centers are important components of the United Nations Food and Agriculture Organization’s global system of conservation and use of PGRFA. They also play an important supportive role in realizing Target 2.5 of the Sustainable Development Goals. This paper analyzes CGIAR genebanks’ trends in acquiring and distributing PGRFA over the last 35 years, with a particular focus on the last decade. The paper highlights a number of factors influencing the Centers’ acquisition of new PGRFA to include in the international collections, including increased capacity to analyze gaps in those collections and precisely target new collecting missions, availability of financial resources, and the state of international and national access and benefit-sharing laws and phytosanitary regulations. Factors contributing to Centers’ distributions of PGRFA included the extent of accession-level information, users’ capacity to identify the materials they want, and policies. The genebanks’ rates of both acquisition and distribution increased over the last decade. The paper ends on a cautionary note concerning the potential of unresolved tensions regarding access and benefit sharing and digital genomic sequence information to undermine international cooperation to conserve and use PGRFA. Full article
(This article belongs to the Special Issue Plant Biodiversity and Genetic Resources)
Show Figures

Figure 1

25 pages, 2771 KiB  
Review
Review of the State of the Art of Deep Learning for Plant Diseases: A Broad Analysis and Discussion
by Reem Ibrahim Hasan, Suhaila Mohd Yusuf and Laith Alzubaidi
Plants 2020, 9(10), 1302; https://doi.org/10.3390/plants9101302 - 1 Oct 2020
Cited by 118 | Viewed by 11852
Abstract
Deep learning (DL) represents the golden era in the machine learning (ML) domain, and it has gradually become the leading approach in many fields. It is currently playing a vital role in the early detection and classification of plant diseases. The use of [...] Read more.
Deep learning (DL) represents the golden era in the machine learning (ML) domain, and it has gradually become the leading approach in many fields. It is currently playing a vital role in the early detection and classification of plant diseases. The use of ML techniques in this field is viewed as having brought considerable improvement in cultivation productivity sectors, particularly with the recent emergence of DL, which seems to have increased accuracy levels. Recently, many DL architectures have been implemented accompanying visualisation techniques that are essential for determining symptoms and classifying plant diseases. This review investigates and analyses the most recent methods, developed over three years leading up to 2020, for training, augmentation, feature fusion and extraction, recognising and counting crops, and detecting plant diseases, including how these methods can be harnessed to feed deep classifiers and their effects on classifier accuracy. Full article
Show Figures

Graphical abstract

36 pages, 11967 KiB  
Review
Born to Eat Wild: An Integrated Conservation Approach to Secure Wild Food Plants for Food Security and Nutrition
by Teresa Borelli, Danny Hunter, Bronwen Powell, Tiziana Ulian, Efisio Mattana, Céline Termote, Lukas Pawera, Daniela Beltrame, Daniela Penafiel, Ayfer Tan, Mary Taylor and Johannes Engels
Plants 2020, 9(10), 1299; https://doi.org/10.3390/plants9101299 - 1 Oct 2020
Cited by 61 | Viewed by 9769
Abstract
Overlooked in national reports and in conservation programs, wild food plants (WFPs) have been a vital component of food and nutrition security for centuries. Recently, several countries have reported on the widespread and regular consumption of WFPs, particularly by rural and indigenous communities [...] Read more.
Overlooked in national reports and in conservation programs, wild food plants (WFPs) have been a vital component of food and nutrition security for centuries. Recently, several countries have reported on the widespread and regular consumption of WFPs, particularly by rural and indigenous communities but also in urban contexts. They are reported as critical for livelihood resilience and for providing essential micronutrients to people enduring food shortages or other emergency situations. However, threats derived from changes in land use and climate, overexploitation and urbanization are reducing the availability of these biological resources in the wild and contributing to the loss of traditional knowledge associated with their use. Meanwhile, few policy measures are in place explicitly targeting their conservation and sustainable use. This can be partially attributed to a lack of scientific evidence and awareness among policymakers and relevant stakeholders of the untapped potential of WFPs, accompanied by market and non-market barriers limiting their use. This paper reviews recent efforts being undertaken in several countries to build evidence of the importance of WFPs, while providing examples of cross-sectoral cooperation and multi-stakeholder approaches that are contributing to advance their conservation and sustainable use. An integrated conservation approach is proposed contributing to secure their availability for future generations. Full article
(This article belongs to the Special Issue Plant Biodiversity and Genetic Resources)
Show Figures

Figure 1

24 pages, 2477 KiB  
Article
Potential Effects of Essential Oils Extracted from Mediterranean Aromatic Plants on Target Weeds and Soil Microorganisms
by Amira Jouini, Mercedes Verdeguer, Samuele Pinton, Fabrizio Araniti, Eristanna Palazzolo, Luigi Badalucco and Vito Armando Laudicina
Plants 2020, 9(10), 1289; https://doi.org/10.3390/plants9101289 - 29 Sep 2020
Cited by 26 | Viewed by 3963
Abstract
Essential oils (EOs), extracted from aromatic plants, have been proposed as candidates to develop natural herbicides. This study aimed to evaluate the herbicidal potential of Thymbra capitata (L.) Cav., Mentha × piperita L. and Santolina chamaecyparissus L. essential oils (EOs) on Avena fatua [...] Read more.
Essential oils (EOs), extracted from aromatic plants, have been proposed as candidates to develop natural herbicides. This study aimed to evaluate the herbicidal potential of Thymbra capitata (L.) Cav., Mentha × piperita L. and Santolina chamaecyparissus L. essential oils (EOs) on Avena fatua L., Echinochloa crus-galli (L.) P. Beauv, Portulaca oleracea L. and Amaranthus retroflexus L. and their effects on soil microorganisms. A pot experiment was set up and three EOs at three doses were applied by irrigation. Efficacy and effects of EOs on weed growth were determined. Soil microbial biomass carbon and nitrogen, microbial respiration, and the main microbial groups were determined at days 7, 28 and 56. EOs demonstrated herbicidal activity, increasing their toxicity with the dose. T. capitata was the most effective against all weeds at the maximum dose. P. oleracea was the most resistant weed. Soil microorganisms, after a transient upheaval period induced by the addition of EOs, recovered their initial function and biomass. T. capitata EO at the highest dose did not allow soil microorganisms to recover their initial functionality. EOs exhibited great potential as natural herbicides but the optimum dose of application must be identified to control weeds and not negatively affect soil microorganisms. Full article
Show Figures

Graphical abstract

21 pages, 2543 KiB  
Article
Challenges for Ex Situ Conservation of Wild Bananas: Seeds Collected in Papua New Guinea Have Variable Levels of Desiccation Tolerance
by Simon Kallow, Kevin Longin, Natalia Fanega Sleziak, Steven B. Janssens, Filip Vandelook, John Dickie, Rony Swennen, Janet Paofa, Sebastien Carpentier and Bart Panis
Plants 2020, 9(9), 1243; https://doi.org/10.3390/plants9091243 - 21 Sep 2020
Cited by 16 | Viewed by 6168
Abstract
Ex situ seed conservation of banana crop wild relatives (Musa spp. L.), is constrained by critical knowledge gaps in their storage and germination behaviour. Additionally, challenges in collecting seeds from wild populations impact the quality of seed collections. It is, therefore, crucial [...] Read more.
Ex situ seed conservation of banana crop wild relatives (Musa spp. L.), is constrained by critical knowledge gaps in their storage and germination behaviour. Additionally, challenges in collecting seeds from wild populations impact the quality of seed collections. It is, therefore, crucial to evaluate the viability of seeds from such collecting missions in order to improve the value of future seed collections. We evaluate the seed viability of 37 accessions of seven Musa species, collected from wild populations in Papua New Guinea, during two collecting missions. Seeds from one mission had already been stored in conventional storage (dried for four months at 15% relative humidity, 20 °C and stored for two months at 15% relative humdity, −20 °C), so a post-storage test was carried out. Seeds from the second mission were assessed freshly extracted and following desiccation. We used embryo rescue techniques to overcome the barrier of germinating in vivo Musa seeds. Seeds from the first mission had low viability (19 ± 27% mean and standard deviation) after storage for two months at 15% relative humidity and −20 °C. Musa balbisiana Colla seeds had significantly higher post-storage germination than other species (p < 0.01). Desiccation reduced germination of the seeds from the second collecting mission, from 84 ± 22% (at 16.7 ± 2.4% moisture content) to 36 ± 30% (at 2.4 ± 0.8% moisture content). There was considerable variation between and (to a lesser extent) within accessions, a proportion of individual seeds of all but one species (Musa ingens N.W.Simmonds) survived desiccation and sub-zero temperature storage. We identified that seeds from the basal end of the infructescence were less likely to be viable after storage (p < 0.001); and made morphological observations that identify seeds and infructescences with higher viability in relation to their developmental maturity. We highlight the need for research into seed eco-physiology of crop wild relatives in order to improve future collecting missions. Full article
(This article belongs to the Special Issue Plant Biodiversity and Genetic Resources)
Show Figures

Figure 1

41 pages, 14693 KiB  
Review
Plants-Derived Biomolecules as Potent Antiviral Phytomedicines: New Insights on Ethnobotanical Evidences against Coronaviruses
by Arif Jamal Siddiqui, Corina Danciu, Syed Amir Ashraf, Afrasim Moin, Ritu Singh, Mousa Alreshidi, Mitesh Patel, Sadaf Jahan, Sanjeev Kumar, Mulfi I. M. Alkhinjar, Riadh Badraoui, Mejdi Snoussi and Mohd Adnan
Plants 2020, 9(9), 1244; https://doi.org/10.3390/plants9091244 - 21 Sep 2020
Cited by 48 | Viewed by 12688
Abstract
SARS-CoV-2 infection (COVID-19) is in focus over all known human diseases, because it is destroying the world economy and social life, with increased mortality rate each day. To date, there is no specific medicine or vaccine available against this pandemic disease. However, the [...] Read more.
SARS-CoV-2 infection (COVID-19) is in focus over all known human diseases, because it is destroying the world economy and social life, with increased mortality rate each day. To date, there is no specific medicine or vaccine available against this pandemic disease. However, the presence of medicinal plants and their bioactive molecules with antiviral properties might also be a successful strategy in order to develop therapeutic agents against SARS-CoV-2 infection. Thus, this review will summarize the available literature and other information/data sources related to antiviral medicinal plants, with possible ethnobotanical evidence in correlation with coronaviruses. The identification of novel antiviral compounds is of critical significance, and medicinal plant based natural compounds are a good source for such discoveries. In depth search and analysis revealed several medicinal plants with excellent efficacy against SARS-CoV-1 and MERS-CoV, which are well-known to act on ACE-2 receptor, 3CLpro and other viral protein targets. In this review, we have consolidated the data of several medicinal plants and their natural bioactive metabolites, which have promising antiviral activities against coronaviruses with detailed modes of action/mechanism. It is concluded that this review will be useful for researchers worldwide and highly recommended for the development of naturally safe and effective therapeutic drugs/agents against SARS-CoV-2 infection, which might be used in therapeutic protocols alone or in combination with chemically synthetized drugs. Full article
Show Figures

Graphical abstract

14 pages, 868 KiB  
Review
Accelerating Tomato Breeding by Exploiting Genomic Selection Approaches
by Elisa Cappetta, Giuseppe Andolfo, Antonio Di Matteo, Amalia Barone, Luigi Frusciante and Maria Raffaella Ercolano
Plants 2020, 9(9), 1236; https://doi.org/10.3390/plants9091236 - 18 Sep 2020
Cited by 25 | Viewed by 8782
Abstract
Genomic selection (GS) is a predictive approach that was built up to increase the rate of genetic gain per unit of time and reduce the generation interval by utilizing genome-wide markers in breeding programs. It has emerged as a valuable method for improving [...] Read more.
Genomic selection (GS) is a predictive approach that was built up to increase the rate of genetic gain per unit of time and reduce the generation interval by utilizing genome-wide markers in breeding programs. It has emerged as a valuable method for improving complex traits that are controlled by many genes with small effects. GS enables the prediction of the breeding value of candidate genotypes for selection. In this work, we address important issues related to GS and its implementation in the plant context with special emphasis on tomato breeding. Genomic constraints and critical parameters affecting the accuracy of prediction such as the number of markers, statistical model, phenotyping and complexity of trait, training population size and composition should be carefully evaluated. The comparison of GS approaches for facilitating the selection of tomato superior genotypes during breeding programs is also discussed. GS applied to tomato breeding has already been shown to be feasible. We illustrated how GS can improve the rate of gain in elite line selection, and descendent and backcross schemes. The GS schemes have begun to be delineated and computer science can provide support for future selection strategies. A new promising breeding framework is beginning to emerge for optimizing tomato improvement procedures. Full article
(This article belongs to the Special Issue Molecular Breeding in Horticultural Plants)
Show Figures

Figure 1

26 pages, 3359 KiB  
Review
Management of Infection by Parasitic Weeds: A Review
by Mónica Fernández-Aparicio, Philippe Delavault and Michael P. Timko
Plants 2020, 9(9), 1184; https://doi.org/10.3390/plants9091184 - 11 Sep 2020
Cited by 52 | Viewed by 8177
Abstract
Parasitic plants rely on neighboring host plants to complete their life cycle, forming vascular connections through which they withdraw needed nutritive resources. In natural ecosystems, parasitic plants form one component of the plant community and parasitism contributes to overall community balance. In contrast, [...] Read more.
Parasitic plants rely on neighboring host plants to complete their life cycle, forming vascular connections through which they withdraw needed nutritive resources. In natural ecosystems, parasitic plants form one component of the plant community and parasitism contributes to overall community balance. In contrast, when parasitic plants become established in low biodiversified agroecosystems, their persistence causes tremendous yield losses rendering agricultural lands uncultivable. The control of parasitic weeds is challenging because there are few sources of crop resistance and it is difficult to apply controlling methods selective enough to kill the weeds without damaging the crop to which they are physically and biochemically attached. The management of parasitic weeds is also hindered by their high fecundity, dispersal efficiency, persistent seedbank, and rapid responses to changes in agricultural practices, which allow them to adapt to new hosts and manifest increased aggressiveness against new resistant cultivars. New understanding of the physiological and molecular mechanisms behind the processes of germination and haustorium development, and behind the crop resistant response, in addition to the discovery of new targets for herbicides and bioherbicides will guide researchers on the design of modern agricultural strategies for more effective, durable, and health compatible parasitic weed control. Full article
(This article belongs to the Special Issue Parasitic Plants Management)
Show Figures

Graphical abstract

21 pages, 1321 KiB  
Article
Role of Organic Anions and Phosphatase Enzymes in Phosphorus Acquisition in the Rhizospheres of Legumes and Grasses Grown in a Low Phosphorus Pasture Soil
by Driss Touhami, Richard W. McDowell and Leo M. Condron
Plants 2020, 9(9), 1185; https://doi.org/10.3390/plants9091185 - 11 Sep 2020
Cited by 31 | Viewed by 4766
Abstract
Rhizosphere processes play a critical role in phosphorus (P) acquisition by plants and microbes, especially under P-limited conditions. Here, we investigated the impacts of nutrient addition and plant species on plant growth, rhizosphere processes, and soil P dynamics. In a glasshouse experiment, blue [...] Read more.
Rhizosphere processes play a critical role in phosphorus (P) acquisition by plants and microbes, especially under P-limited conditions. Here, we investigated the impacts of nutrient addition and plant species on plant growth, rhizosphere processes, and soil P dynamics. In a glasshouse experiment, blue lupin (Lupinus angustifolius), white clover (Trifolium repens L.), perennial ryegrass (Lolium perenne L.), and wheat (Triticum aestivum L.) were grown in a low-P pasture soil for 8 weeks with and without the single and combined addition of P (33 mg kg−1) and nitrogen (200 mg kg−1). Phosphorus addition increased plant biomass and total P content across plant species, as well as microbial biomass P in white clover and ryegrass. Alkaline phosphatase activity was higher for blue lupin. Legumes showed higher concentrations of organic anions compared to grasses. After P addition, the concentrations of organic anions increased by 11-,10-, 5-, and 2-fold in the rhizospheres of blue lupin, white clover, wheat, and ryegrass, respectively. Despite the differences in their chemical availability (as assessed by P fractionation), moderately labile inorganic P and stable organic P were the most depleted fractions by the four plant species. Inorganic P fractions were depleted similarly between the four plant species, while blue lupin exhibited a strong depletion of stable organic P. Our findings suggest that organic anions were not related to the acquisition of inorganic P for legumes and grasses. At the same time, alkaline phosphatase activity was associated with the mobilization of stable organic P for blue lupin. Full article
(This article belongs to the Special Issue Soil Fertility and Nutrient Cycling II)
Show Figures

Figure 1

31 pages, 14054 KiB  
Article
Three New Alien Taxa for Europe and a Chorological Update on the Alien Vascular Flora of Calabria (Southern Italy)
by Valentina Lucia Astrid Laface, Carmelo Maria Musarella, Ana Cano Ortiz, Ricardo Quinto Canas, Serafino Cannavò and Giovanni Spampinato
Plants 2020, 9(9), 1181; https://doi.org/10.3390/plants9091181 - 11 Sep 2020
Cited by 28 | Viewed by 4659
Abstract
Knowledge on alien species is needed nowadays to protect natural habitats and prevent ecological damage. The presence of new alien plant species in Italy is increasing every day. Calabria, its southernmost region, is not yet well known with regard to this aspect. Thanks [...] Read more.
Knowledge on alien species is needed nowadays to protect natural habitats and prevent ecological damage. The presence of new alien plant species in Italy is increasing every day. Calabria, its southernmost region, is not yet well known with regard to this aspect. Thanks to fieldwork, sampling, and observing many exotic plants in Calabria, here, we report new data on 34 alien taxa. In particular, we found three new taxa for Europe (Cascabela thevetia, Ipomoea setosa subsp. pavonii, and Tecoma stans), three new for Italy (Brugmansia aurea, NarcissusCotinga’, and NarcissusErlicheer’), one new one for the Italian Peninsula (Luffa aegyptiaca), and 21 new taxa for Calabria (Allium cepa, Asparagus setaceus, Bassia scoparia, Beta vulgaris subsp. vulgaris, Bidens formosa, Casuarina equisetifolia, Cedrus atlantica, Chlorophytum comosum, Cucurbita maxima subsp. maxima, Dolichandra unguis-cati, Fagopyrum esculentum, Freesia alba, Juglans regia, Kalanchoë delagoënsis, Passiflora caerulea, Portulaca grandiflora, Prunus armeniaca, Prunus dulcis, Solanum tuberosum, Tradescantia sillamontana, and Washingtonia filifera). Furthermore, we provide the first geolocalized record of Araujia sericifera, the confirmation of Oxalis stricta, and propose a change of status for four taxa (Cenchrus setaceus, Salpichroa origanifolia, Sesbania punicea, and Nothoscordum gracile) for Calabria. The updated knowledge on the presence of new alien species in Calabria, in Italy and in Europe could allow for the prevention of other new entries and to eliminate this potential ecological threat to natural habitats. Full article
(This article belongs to the Special Issue Threatened Vegetation and Environmental Management)
Show Figures

Figure 1

19 pages, 2234 KiB  
Review
Transient Gene Expression is an Effective Experimental Tool for the Research into the Fine Mechanisms of Plant Gene Function: Advantages, Limitations, and Solutions
by Alexander A. Tyurin, Alexandra V. Suhorukova, Ksenia V. Kabardaeva and Irina V. Goldenkova-Pavlova
Plants 2020, 9(9), 1187; https://doi.org/10.3390/plants9091187 - 11 Sep 2020
Cited by 31 | Viewed by 7079
Abstract
A large data array on plant gene expression accumulated thanks to comparative omic studies directs the efforts of researchers to the specific or fine effects of the target gene functions and, as a consequence, elaboration of relatively simple and concurrently effective approaches allowing [...] Read more.
A large data array on plant gene expression accumulated thanks to comparative omic studies directs the efforts of researchers to the specific or fine effects of the target gene functions and, as a consequence, elaboration of relatively simple and concurrently effective approaches allowing for the insight into the physiological role of gene products. Numerous studies have convincingly demonstrated the efficacy of transient expression strategy for characterization of the plant gene functions. The review goals are (i) to consider the advantages and limitations of different plant systems and methods of transient expression used to find out the role of gene products; (ii) to summarize the current data on the use of the transient expression approaches for the insight into fine mechanisms underlying the gene function; and (iii) to outline the accomplishments in efficient transient expression of plant genes. In general, the review discusses the main and critical steps in each of the methods of transient gene expression in plants; areas of their application; main results obtained using plant objects; their contribution to our knowledge about the fine mechanisms of the plant gene functions underlying plant growth and development; and clarification of the mechanisms regulating complex metabolic pathways. Full article
Show Figures

Graphical abstract

17 pages, 3218 KiB  
Article
Enhanced Agronomic Efficiency Using a New Controlled-Released, Polymeric-Coated Nitrogen Fertilizer in Rice
by Ricardo Gil-Ortiz, Miguel Ángel Naranjo, Antonio Ruiz-Navarro, Sergio Atares, Carlos García, Lincoln Zotarelli, Alberto San Bautista and Oscar Vicente
Plants 2020, 9(9), 1183; https://doi.org/10.3390/plants9091183 - 11 Sep 2020
Cited by 34 | Viewed by 4387
Abstract
Fertilizer-use efficiency is one of the most critical concerns in rice cultivation to reduce N losses, increase yields, and improve crop management. The effects of a new polymeric-coated controlled-release fertilizer (CRF) were compared to those of other slow-release and traditional fertilizers in a [...] Read more.
Fertilizer-use efficiency is one of the most critical concerns in rice cultivation to reduce N losses, increase yields, and improve crop management. The effects of a new polymeric-coated controlled-release fertilizer (CRF) were compared to those of other slow-release and traditional fertilizers in a microscale experiment, which was carried out in cuvettes under partly controlled ambient conditions, and a large-scale field experiment. To evaluate the fertilizer’s efficiency, nitrogen and water-use efficiency were calculated using the measurement of different photosynthetic and crop yield parameters. Improved responses regarding some of the analyzed physiological and growth parameters were observed for those plants fertilized with the new CRF. In the microscale experiment, significantly increased yields (ca. 35%) were produced in the plants treated with CRF as compared to traditional fertilizer. These results were in accordance with ca. 24% significant increased levels of N in leaves of CRF-treated plants, besides increased P, Fe, Mn, and cytokinin contents. At the field scale, similar yields were obtained with the slow-release or traditional fertilizers and CRF at a 20% reduced N dose. The new controlled-release fertilizer is a urea-based fertilizer coated with lignosulfonates, which is cheaply produced from the waste of pulp and wood industries, containing humic acids as biostimulants. In conclusion, CRF is recommended to facilitate rice crop management and to reduce contamination, as it can be formulated with lower N doses and because it is ecological manufacturing. Full article
Show Figures

Figure 1

30 pages, 8578 KiB  
Article
Plant Soft Rot Development and Regulation from the Viewpoint of Transcriptomic Profiling
by Ivan Tsers, Vladimir Gorshkov, Natalia Gogoleva, Olga Parfirova, Olga Petrova and Yuri Gogolev
Plants 2020, 9(9), 1176; https://doi.org/10.3390/plants9091176 - 10 Sep 2020
Cited by 20 | Viewed by 3775
Abstract
Soft rot caused by Pectobacterium species is a devastating plant disease poorly characterized in terms of host plant responses. In this study, changes in the transcriptome of tobacco plants after infection with Pectobacterium atrosepticum (Pba) were analyzed using RNA-Seq. To draw [...] Read more.
Soft rot caused by Pectobacterium species is a devastating plant disease poorly characterized in terms of host plant responses. In this study, changes in the transcriptome of tobacco plants after infection with Pectobacterium atrosepticum (Pba) were analyzed using RNA-Seq. To draw a comprehensive and nontrivially itemized picture of physiological events in Pba-infected plants and to reveal novel potential molecular “players” in plant–Pba interactions, an original functional gene classification was performed. The classifications present in various databases were merged, enriched by “missed” genes, and divided into subcategories. Particular changes in plant cell wall-related processes, perturbations in hormonal and other regulatory systems, and alterations in primary, secondary, and redox metabolism were elucidated in terms of gene expression. Special attention was paid to the prediction of transcription factors (TFs) involved in the disease’s development. Herewith, gene expression was analyzed within the predicted TF regulons assembled at the whole-genome level based on the presence of particular cis-regulatory elements (CREs) in gene promoters. Several TFs, whose regulons were enriched by differentially expressed genes, were considered to be potential master regulators of Pba-induced plant responses. Differential regulation of genes belonging to a particular multigene family and encoding cognate proteins was explained by the presence/absence of the particular CRE in gene promoters. Full article
(This article belongs to the Special Issue Omics in Plant-Pathogen Interaction)
Show Figures

Graphical abstract

23 pages, 5043 KiB  
Article
Variations of Essential Oil Constituents in Oregano (Origanum vulgare subsp. viridulum (= O. heracleoticum) over Cultivation Cycles
by Edoardo Napoli, Antonio Giovino, Alessandra Carrubba, Vandana How Yuen Siong, Carmelo Rinoldo, Onofrio Nina and Giuseppe Ruberto
Plants 2020, 9(9), 1174; https://doi.org/10.3390/plants9091174 - 10 Sep 2020
Cited by 24 | Viewed by 3619
Abstract
Oregano is—probably—the most appreciated and widespread aromatic plant in Sicily. With the aim of evaluating the modifications of oregano’s essential oil composition over time, between 2013 and 2015 six weekly samplings of three different oregano plantations were carried out, from the beginning of [...] Read more.
Oregano is—probably—the most appreciated and widespread aromatic plant in Sicily. With the aim of evaluating the modifications of oregano’s essential oil composition over time, between 2013 and 2015 six weekly samplings of three different oregano plantations were carried out, from the beginning of flowering (early May) until the traditional harvest moment (end of June). Samples were hydrodistilled and the obtained essential oils (EOs) were evaluated by means of a combination of GC–FID and GC–MS. The Origanum plants under study were demonstrated to belong to the high-yielding, thymol-type biotypes, with thymol, γ-terpinene and p-cymene as three main components, among the total of about 50 of the evaluated EOs. In each location, EO yields were found to increase throughout survey dates. Significant variations were found in many EO components, both across years and throughout harvest dates within locations. The choice of the harvest moment was confirmed to be crucial in assessing quality aspects of oregano. Full article
(This article belongs to the Special Issue Plant Volatiles: A Goldmine Not Fully Explored)
Show Figures

Figure 1

14 pages, 1171 KiB  
Article
Longer Photoperiods with the Same Daily Light Integral Increase Daily Electron Transport through Photosystem II in Lettuce
by Claudia Elkins and Marc W. van Iersel
Plants 2020, 9(9), 1172; https://doi.org/10.3390/plants9091172 - 10 Sep 2020
Cited by 27 | Viewed by 4864
Abstract
Controlled environment crop production recommendations often use the daily light integral (DLI) to quantify the light requirements of specific crops. Sole-source electric lighting, used in plant factories, and supplemental electric lighting, used in greenhouses, may be required to attain a specific DLI. Electric [...] Read more.
Controlled environment crop production recommendations often use the daily light integral (DLI) to quantify the light requirements of specific crops. Sole-source electric lighting, used in plant factories, and supplemental electric lighting, used in greenhouses, may be required to attain a specific DLI. Electric lighting is wasteful if not provided in a way that promotes efficient photochemistry. The quantum yield of photosystem II (ΦPSII), the fraction of absorbed light used for photochemistry, decreases with increasing photosynthetic photon flux density (PPFD). Thus, we hypothesized that the daily photochemical integral (DPI), the total electron transport through photosystem II (PSII) integrated over 24 h, would increase if the same DLI was provided at a lower PPFD over a longer photoperiod. To test this, ΦPSII and the electron transport rate (ETR) of lettuce (Lactuca sativa ‘Green Towers’) were measured in a growth chamber at DLIs of 15 and 20 mol m−2 d−1 over photoperiods ranging from 7 to 22 h. This resulted in PPFDs of 189 to 794 μmol m−2 s−1. The ΦPSII decreased from 0.67 to 0.28 and ETR increased from 55 to 99 μmol m−2 s−1 as PPFD increased from 189 to 794 μmol m−2 s−1. The DPI increased linearly as the photoperiod increased, but the magnitude of this response depended on DLI. With a 7-h photoperiod, the DPI was ≈2.7 mol m−2 d−1, regardless of DLI. However, with a 22-h photoperiod, the DPI was 4.54 mol m−2 d−1 with a DLI of 15 mol m−2 d−1 and 5.78 mol m−2 d−1 with a DLI of 20 mol m−2 d−1. Our hypothesis that DPI can be increased by providing the same DLI over longer photoperiods was confirmed. Full article
Show Figures

Graphical abstract

14 pages, 17337 KiB  
Article
Gene Expression Profiles and Flavonoid Accumulation during Salt Stress in Ginkgo biloba Seedlings
by Ningtao Xu, Sian Liu, Zhaogeng Lu, Siyu Pang, Lu Wang, Li Wang and Weixing Li
Plants 2020, 9(9), 1162; https://doi.org/10.3390/plants9091162 - 8 Sep 2020
Cited by 61 | Viewed by 3945
Abstract
Ginkgo biloba is an economically valuable tree, as a variety of flavonoid compounds are produced by the leaves of its seedlings. Although soil salinity is a serious threat to agricultural productivity worldwide, the effect of salt stress on G. biloba seedlings remains unclear. [...] Read more.
Ginkgo biloba is an economically valuable tree, as a variety of flavonoid compounds are produced by the leaves of its seedlings. Although soil salinity is a serious threat to agricultural productivity worldwide, the effect of salt stress on G. biloba seedlings remains unclear. In this study, we found that under high NaCl concentrations (200 and 300 mmol/L), seedling growth was inhibited and the water content, chlorophyll, and peroxidase (POD) enzyme activity were significantly decreased in the leaves, whereas the soluble protein and proline levels increased significantly. However, at low NaCl concentrations (50 and 100 mmol/L), the seedlings grew normally because of the regulation of catalase (CAT) and POD enzyme activities. To elucidate the molecular mechanisms behind G. biloba salt tolerance, we examined the transcriptome of G. biloba seedlings treated with 100 mmol/L NaCl. Twelve differentially expressed genes (DEGs) were found to be involved in ion osmotic potential signal transduction and amplification, including two ABA signaling genes, five CDPK/CIPK genes, and five mitogen-activated protein kinase (MAPK) signaling genes. We also found that NAC transcription factors may be involved in the salt stress response; these included positive regulators (Gb_12203, Gb_27819, Gb_37720, and Gb_41540) and negative regulators (Gb_32549, Gb_35048, and Gb_37444). Importantly, treatment with 100 mmol/L NaCl can significantly improve flavonoid and flavonol glycoside biosynthesis. Simultaneously, the expression of flavonoid biosynthesis-related genes, including PAL (Gb_10949, Gb_21115) and FLS (Gb_00285, Gb_14024, and Gb_14029), was significantly upregulated. Based on these results, we reveal that G. biloba seedlings can tolerate low-level soil salinity stress through the regulation of different kinds of genes and transcriptome factors, especially flavonoid biosynthesis, which is improved to respond to environmental stress. Full article
(This article belongs to the Special Issue The Impacts of Abiotic Stresses on Plant Development)
Show Figures

Figure 1

17 pages, 7395 KiB  
Article
Leaf Soluble Sugars and Free Amino Acids as Important Components of Abscisic Acid—Mediated Drought Response in Tomato
by Bojana Živanović, Sonja Milić Komić, Tomislav Tosti, Marija Vidović, Ljiljana Prokić and Sonja Veljović Jovanović
Plants 2020, 9(9), 1147; https://doi.org/10.3390/plants9091147 - 4 Sep 2020
Cited by 41 | Viewed by 5521
Abstract
Water deficit has a global impact on plant growth and crop yield. Climate changes are going to increase the intensity, duration and frequency of severe droughts, particularly in southern and south-eastern Europe, elevating the water scarcity issues. We aimed to assess the contribution [...] Read more.
Water deficit has a global impact on plant growth and crop yield. Climate changes are going to increase the intensity, duration and frequency of severe droughts, particularly in southern and south-eastern Europe, elevating the water scarcity issues. We aimed to assess the contribution of endogenous abscisic acid (ABA) in the protective mechanisms against water deficit, including stomatal conductance, relative water potential and the accumulation of osmoprotectants, as well as on growth parameters. To achieve that, we used a suitable model system, ABA-deficient tomato mutant, flacca and its parental line. Flacca mutant exhibited constitutively higher levels of soluble sugars (e.g., galactose, arabinose, sorbitol) and free amino acids (AAs) compared with the wild type (WT). Water deficit provoked the strong accumulation of proline in both genotypes, and total soluble sugars only in flacca. Upon re-watering, these osmolytes returned to the initial levels in both genotypes. Our results indicate that flacca compensated higher stomatal conductance with a higher constitutive level of free sugars and AAs. Additionally, we suggest that the accumulation of AAs, particularly proline and its precursors and specific branched-chain AAs in both, glucose and sucrose in flacca, and sorbitol in WT, could contribute to maintaining growth rate during water deficit and recovery in both tomato genotypes. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

14 pages, 988 KiB  
Review
Hydrogenases and the Role of Molecular Hydrogen in Plants
by Grace Russell, Faisal Zulfiqar and John T. Hancock
Plants 2020, 9(9), 1136; https://doi.org/10.3390/plants9091136 - 2 Sep 2020
Cited by 22 | Viewed by 5300
Abstract
Molecular hydrogen (H2) has been suggested to be a beneficial treatment for a range of species, from humans to plants. Hydrogenases catalyze the reversible oxidation of H2, and are found in many organisms, including plants. One of the cellular [...] Read more.
Molecular hydrogen (H2) has been suggested to be a beneficial treatment for a range of species, from humans to plants. Hydrogenases catalyze the reversible oxidation of H2, and are found in many organisms, including plants. One of the cellular effects of H2 is the selective removal of reactive oxygen species (ROS) and reactive nitrogen species (RNS), specifically hydroxyl radicals and peroxynitrite. Therefore, the function of hydrogenases and the action of H2 needs to be reviewed in the context of the signalling roles of a range of redox active compounds. Enzymes can be controlled by the covalent modification of thiol groups, and although motifs targeted by nitric oxide (NO) can be predicted in hydrogenases sequences it is likely that the metal prosthetic groups are the target of inhibition. Here, a selection of hydrogenases, and the possibility of their control by molecules involved in redox signalling are investigated using a bioinformatics approach. Methods of treating plants with H2 along with the role of H2 in plants is also briefly reviewed. It is clear that studies report significant effects of H2 on plants, improving growth and stress responses, and therefore future work needs to focus on the molecular mechanisms involved. Full article
(This article belongs to the Collection Feature Papers in Plant Physiology and Metabolism)
Show Figures

Figure 1

9 pages, 792 KiB  
Review
Roles of Aquaporins in Plant-Pathogen Interaction
by Guangjin Li, Tong Chen, Zhanquan Zhang, Boqiang Li and Shiping Tian
Plants 2020, 9(9), 1134; https://doi.org/10.3390/plants9091134 - 1 Sep 2020
Cited by 27 | Viewed by 6874
Abstract
Aquaporins (AQPs) are a class of small, membrane channel proteins present in a wide range of organisms. In addition to water, AQPs can facilitate the efficient and selective flux of various small solutes involved in numerous essential processes across membranes. A growing body [...] Read more.
Aquaporins (AQPs) are a class of small, membrane channel proteins present in a wide range of organisms. In addition to water, AQPs can facilitate the efficient and selective flux of various small solutes involved in numerous essential processes across membranes. A growing body of evidence now shows that AQPs are important regulators of plant-pathogen interaction, which ultimately lead to either plant immunity or pathogen pathogenicity. In plants, AQPs can mediate H2O2 transport across plasma membranes (PMs) and contribute to the activation of plant defenses by inducing pathogen-associated molecular pattern (PAMP)-triggered immunity and systemic acquired resistance (SAR), followed by downstream defense reactions. This involves the activation of conserved mitogen-activated protein kinase (MAPK) signaling cascades, the production of callose, the activation of NPR1 and PR genes, as well as the opening and closing of stomata. On the other hand, pathogens utilize aquaporins to mediate reactive oxygen species (ROS) signaling and regulate their normal growth, development, secondary or specialized metabolite production and pathogenicity. This review focuses on the roles of AQPs in plant immunity, pathogenicity, and communications during plant-pathogen interaction. Full article
(This article belongs to the Special Issue Plant Aquaporins)
Show Figures

Figure 1

18 pages, 6286 KiB  
Article
Genetic Diversity of Fusarium oxysporum f. sp. cubense, the Fusarium Wilt Pathogen of Banana, in Ecuador
by Freddy Magdama, Lorena Monserrate-Maggi, Lizette Serrano, José García Onofre and María del Mar Jiménez-Gasco
Plants 2020, 9(9), 1133; https://doi.org/10.3390/plants9091133 - 1 Sep 2020
Cited by 12 | Viewed by 10180
Abstract
The continued dispersal of Fusarium oxysporum f. sp. cubense Tropical race 4 (FocTR4), a quarantine soil-borne pathogen that kills banana, has placed this worldwide industry on alert and triggered enormous pressure on National Plant Protection (NPOs) agencies to limit new incursions. [...] Read more.
The continued dispersal of Fusarium oxysporum f. sp. cubense Tropical race 4 (FocTR4), a quarantine soil-borne pathogen that kills banana, has placed this worldwide industry on alert and triggered enormous pressure on National Plant Protection (NPOs) agencies to limit new incursions. Accordingly, biosecurity plays an important role while long-term control strategies are developed. Aiming to strengthen the contingency response plan of Ecuador against FocTR4, a population biology study—including phylogenetics, mating type, vegetative compatibility group (VCG), and pathogenicity testing—was performed on isolates affecting local bananas, presumably associated with race 1 of F. oxysporum f. sp. cubense (Foc). Our results revealed that Foc populations in Ecuador comprise a single clonal lineage, associated with VCG0120. The lack of diversity observed in Foc populations is consistent with a single introduction event from which secondary outbreaks originated. The predominance of VCG0120, together with previous reports of its presence in Latin America countries, suggests this group as the main cause of the devastating Fusarium wilt epidemics that occurred in the 1950s associated to the demise of ‘Gros Michel’ bananas in the region. The isolates sampled from Ecuador caused disease in cultivars that are susceptible to races 1 and 2 under greenhouse experiments, although Fusarium wilt symptoms in the field were only found in ‘Gros Michel’. Isolates belonging to the same VCG0120 have historically caused disease on Cavendish cultivars in the subtropics. Overall, this study shows how Foc can be easily dispersed to other areas if restriction of contaminated materials is not well enforced. We highlight the need of major efforts on awareness and monitoring campaigns to analyze suspected cases and to contain potential first introduction events of FocTR4 in Ecuador. Full article
(This article belongs to the Collection Feature Papers in Plant Protection)
Show Figures

Graphical abstract

13 pages, 2088 KiB  
Article
Phytochemical, Cytotoxicity, Antioxidant and Anti-Inflammatory Effects of Psilocybe Natalensis Magic Mushroom
by Sanah M. Nkadimeng, Alice Nabatanzi, Christiaan M.L. Steinmann and Jacobus N. Eloff
Plants 2020, 9(9), 1127; https://doi.org/10.3390/plants9091127 - 31 Aug 2020
Cited by 29 | Viewed by 17901
Abstract
Psilocybin-containing mushrooms, commonly known as magic mushrooms, have been used since ancient and recent times for depression and to improve quality of life. However, their anti-inflammatory properties are not known. The study aims at investing cytotoxicity; antioxidant; and, for the first time, anti-inflammatory [...] Read more.
Psilocybin-containing mushrooms, commonly known as magic mushrooms, have been used since ancient and recent times for depression and to improve quality of life. However, their anti-inflammatory properties are not known. The study aims at investing cytotoxicity; antioxidant; and, for the first time, anti-inflammatory effects of Psilocybe natalensis, a psilocybin-containing mushroom that grows in South Africa, on lipopolysaccharide-induced RAW 264.7 macrophages. Macrophage cells were stimulated with lipopolysaccharide and treated with different concentrations of Psilocybe natalensis mushroom extracted with boiling hot water, cold water and ethanol over 24 h. Quercetin and N-nitro-L-arginine methyl ester were used as positive controls. Effects of extracts on the lipopolysaccharide-induced nitric oxide, prostaglandin E2, and cytokine activities were investigated. Phytochemical analysis, and the antioxidant and cytotoxicity of extracts, were determined. Results showed that the three extracts inhibited the lipopolysaccharide-induced nitric oxide, prostaglandin E2, and interleukin 1β cytokine production significantly in a dose-dependent manner close to that of the positive controls. A study proposed that ethanol and water extracts of Psilocybe natalensis mushroom were safe at concentrations used, and have antioxidant and anti-inflammatory effects. Phytochemical analysis confirmed the presence of natural antioxidant and anti-inflammatory compounds in the mushroom extracts. Full article
(This article belongs to the Special Issue Structural and Functional Analysis of Extracts in Plants)
Show Figures

Graphical abstract

18 pages, 3034 KiB  
Review
Toward Unifying Global Hotspots of Wild and Domesticated Biodiversity
by Samuel Pironon, James S. Borrell, Ian Ondo, Ruben Douglas, Charlotte Phillips, Colin K. Khoury, Michael B. Kantar, Nathan Fumia, Marybel Soto Gomez, Juan Viruel, Rafael Govaerts, Félix Forest and Alexandre Antonelli
Plants 2020, 9(9), 1128; https://doi.org/10.3390/plants9091128 - 31 Aug 2020
Cited by 28 | Viewed by 9897
Abstract
Global biodiversity hotspots are areas containing high levels of species richness, endemism and threat. Similarly, regions of agriculturally relevant diversity have been identified where many domesticated plants and animals originated, and co-occurred with their wild ancestors and relatives. The agro-biodiversity in these regions [...] Read more.
Global biodiversity hotspots are areas containing high levels of species richness, endemism and threat. Similarly, regions of agriculturally relevant diversity have been identified where many domesticated plants and animals originated, and co-occurred with their wild ancestors and relatives. The agro-biodiversity in these regions has, likewise, often been considered threatened. Biodiversity and agro-biodiversity hotspots partly overlap, but their geographic intricacies have rarely been investigated together. Here we review the history of these two concepts and explore their geographic relationship by analysing global distribution and human use data for all plants, and for major crops and associated wild relatives. We highlight a geographic continuum between agro-biodiversity hotspots that contain high richness in species that are intensively used and well known by humanity (i.e., major crops and most viewed species on Wikipedia) and biodiversity hotspots encompassing species that are less heavily used and documented (i.e., crop wild relatives and species lacking information on Wikipedia). Our contribution highlights the key considerations needed for further developing a unifying concept of agro-biodiversity hotspots that encompasses multiple facets of diversity (including genetic and phylogenetic) and the linkage with overall biodiversity. This integration will ultimately enhance our understanding of the geography of human-plant interactions and help guide the preservation of nature and its contributions to people. Full article
(This article belongs to the Special Issue Plant Biodiversity and Genetic Resources)
Show Figures

Figure 1

16 pages, 748 KiB  
Review
Photosynthetic Traits and Nitrogen Uptake in Crops: Which Is the Role of Arbuscular Mycorrhizal Fungi?
by Raffaella Balestrini, Cecilia Brunetti, Walter Chitarra and Luca Nerva
Plants 2020, 9(9), 1105; https://doi.org/10.3390/plants9091105 - 27 Aug 2020
Cited by 40 | Viewed by 7885
Abstract
Arbuscular mycorrhizal (AM) fungi are root symbionts that provide mineral nutrients to the host plant in exchange for carbon compounds. AM fungi positively affect several aspects of plant life, improving nutrition and leading to a better growth, stress tolerance, and disease resistance and [...] Read more.
Arbuscular mycorrhizal (AM) fungi are root symbionts that provide mineral nutrients to the host plant in exchange for carbon compounds. AM fungi positively affect several aspects of plant life, improving nutrition and leading to a better growth, stress tolerance, and disease resistance and they interact with most crop plants such as cereals, horticultural species, and fruit trees. For this reason, they receive expanding attention for the potential use in sustainable and climate-smart agriculture context. Although several positive effects have been reported on photosynthetic traits in host plants, showing improved performances under abiotic stresses such as drought, salinity and extreme temperature, the involved mechanisms are still to be fully discovered. In this review, some controversy aspects related to AM symbiosis and photosynthesis performances will be discussed, with a specific focus on nitrogen acquisition-mediated by AM fungi. Full article
Show Figures

Figure 1

18 pages, 3454 KiB  
Article
Comparative Metabolomics Profiling of Polyphenols, Nutrients and Antioxidant Activities of Two Red Onion (Allium cepa L.) Cultivars
by Rita Metrani, Jashbir Singh, Pratibha Acharya, Guddadarangavvanahally K. Jayaprakasha and Bhimanagouda S. Patil
Plants 2020, 9(9), 1077; https://doi.org/10.3390/plants9091077 - 21 Aug 2020
Cited by 42 | Viewed by 6138
Abstract
Onion is among the most widely cultivated and consumed economic crops. Onions are an excellent dietary source of polyphenols and nutrients. However, onions phytonutrient compositions vary with cultivars and growing locations. Therefore, the present study involved the evaluation of polyphenol, nutritional composition (proteins, [...] Read more.
Onion is among the most widely cultivated and consumed economic crops. Onions are an excellent dietary source of polyphenols and nutrients. However, onions phytonutrient compositions vary with cultivars and growing locations. Therefore, the present study involved the evaluation of polyphenol, nutritional composition (proteins, nitrogen, and minerals), sugars, pyruvate, antioxidant, and α-amylase inhibition activities of red onion cultivars, sweet Italian, and honeysuckle grown in California and Texas, respectively. The total flavonoid for honeysuckle and sweet Italian was 449 and 345 μg/g FW, respectively. The total anthocyanin for honeysuckle onion was 103 μg/g FW, while for sweet Italian onion was 86 μg/g FW. Cyanidin-3-(6”-malonoylglucoside) and cyanidin-3-(6”-malonoyl-laminaribioside) were the major components in both the cultivars. The pungency of red onions in honeysuckle ranged between 4.9 and 7.9 μmoL/mL, whereas in sweet Italian onion ranged from 8.3 to 10 μmoL/mL. The principal component analysis was applied to determine the most important variables that separate the cultivars of red onion. Overall results indicated that total flavonoids, total phenolic content, total anthocyanins, protein, and calories for honeysuckle onions were higher than the sweet Italian onions. These results could provide information about high quality and adding value to functional food due to the phytochemicals and nutritional composition of red onions. Full article
(This article belongs to the Special Issue Mechanisms of Plant Antioxidants Action)
Show Figures

Figure 1

21 pages, 4314 KiB  
Review
Subcellular Roles of Glutathione in Mediating Plant Defense during Biotic Stress
by Bernd Zechmann
Plants 2020, 9(9), 1067; https://doi.org/10.3390/plants9091067 - 20 Aug 2020
Cited by 56 | Viewed by 4722
Abstract
Glutathione and reactive oxygen species (ROS) play important roles, within different cell compartments, in activating plant defense and the development of resistance. In mitochondria, the accumulation of ROS and the change of glutathione towards its oxidized state leads to mitochondrial dysfunction, activates cell [...] Read more.
Glutathione and reactive oxygen species (ROS) play important roles, within different cell compartments, in activating plant defense and the development of resistance. In mitochondria, the accumulation of ROS and the change of glutathione towards its oxidized state leads to mitochondrial dysfunction, activates cell death, and triggers resistance. The accumulation of glutathione in chloroplasts and peroxisomes at the early stages of plant pathogen interactions is related to increased tolerance and resistance. The collapse of the antioxidative system in these two cell compartments at the later stages leads to cell death through retrograde signaling. The cytosol can be considered to be the switchboard during biotic stress where glutathione is synthesized, equally distributed to, and collected from different cell compartments. Changes in the redox state of glutathione and the accumulation of ROS in the cytosol during biotic stress can initiate the activation of defense genes in nuclei through pathways that involve salicylic acid, jasmonic acid, auxins, and abscisic acid. This review dissects the roles of glutathione in individual organelles during compatible and incompatible bacterial, fungal, and viral diseases in plants and explores the subcelluar roles of ROS, glutathione, ascorbate, and related enzymes in the development of resistance. Full article
(This article belongs to the Special Issue Mechanisms of Resistance to Plant Diseases)
Show Figures

Graphical abstract

33 pages, 1359 KiB  
Review
Artemisia absinthium L.—Importance in the History of Medicine, the Latest Advances in Phytochemistry and Therapeutical, Cosmetological and Culinary Uses
by Agnieszka Szopa, Joanna Pajor, Paweł Klin, Agnieszka Rzepiela, Hosam O. Elansary, Fahed A. Al-Mana, Mohamed A. Mattar and Halina Ekiert
Plants 2020, 9(9), 1063; https://doi.org/10.3390/plants9091063 - 19 Aug 2020
Cited by 71 | Viewed by 21510
Abstract
Artemisia absinthium—wormwood (Asteraceae)—is a very important species in the history of medicine, formerly described in medieval Europe as “the most important master against all exhaustions”. It is a species known as a medicinal plant in Europe and also in West [...] Read more.
Artemisia absinthium—wormwood (Asteraceae)—is a very important species in the history of medicine, formerly described in medieval Europe as “the most important master against all exhaustions”. It is a species known as a medicinal plant in Europe and also in West Asia and North America. The raw material obtained from this species is Absinthii herba and Artemisiae absinthii aetheroleum. The main substances responsible for the biological activity of the herb are: the essential oil, bitter sesquiterpenoid lactones, flavonoids, other bitterness-imparting compounds, azulenes, phenolic acids, tannins and lignans. In the official European medicine, the species is used in both allopathy and homeopathy. In the traditional Asian and European medicine, it has been used as an effective agent in gastrointestinal ailments and also in the treatment of helminthiasis, anaemia, insomnia, bladder diseases, difficult-to-heal wounds, and fever. Today, numerous other directions of biological activity of the components of this species have been demonstrated and confirmed by scientific research, such as antiprotozoal, antibacterial, antifungal, anti-ulcer, hepatoprotective, anti-inflammatory, immunomodulatory, cytotoxic, analgesic, neuroprotective, anti-depressant, procognitive, neurotrophic, and cell membrane stabilizing and antioxidant activities. A. absinthium is also making a successful career as a cosmetic plant. In addition, the importance of this species as a spice plant and valuable additive in the alcohol industry (famous absinthe and vermouth-type wines) has not decreased. The species has also become an object of biotechnological research. Full article
(This article belongs to the Collection Bioactive Compounds in Plants)
Show Figures

Graphical abstract

15 pages, 2595 KiB  
Article
Jasmonate Signalling Contributes to Primary Root Inhibition Upon Oxygen Deficiency in Arabidopsis thaliana
by Vinay Shukla, Lara Lombardi, Ales Pencik, Ondrej Novak, Daan A. Weits, Elena Loreti, Pierdomenico Perata, Beatrice Giuntoli and Francesco Licausi
Plants 2020, 9(8), 1046; https://doi.org/10.3390/plants9081046 - 17 Aug 2020
Cited by 18 | Viewed by 4624
Abstract
Plants, including most crops, are intolerant to waterlogging, a stressful condition that limits the oxygen available for roots, thereby inhibiting their growth and functionality. Whether root growth inhibition represents a preventive measure to save energy or is rather a consequence of reduced metabolic [...] Read more.
Plants, including most crops, are intolerant to waterlogging, a stressful condition that limits the oxygen available for roots, thereby inhibiting their growth and functionality. Whether root growth inhibition represents a preventive measure to save energy or is rather a consequence of reduced metabolic rates has yet to be elucidated. In the present study, we gathered evidence for hypoxic repression of root meristem regulators that leads to root growth inhibition. We also explored the contribution of the hormone jasmonic acid (JA) to this process in Arabidopsis thaliana. Analysis of transcriptomic profiles, visualisation of fluorescent reporters and direct hormone quantification confirmed the activation of JA signalling under hypoxia in the roots. Further, root growth assessment in JA-related mutants in aerobic and anaerobic conditions indicated that JA signalling components contribute to active root inhibition under hypoxia. Finally, we show that the oxygen-sensing transcription factor (TF) RAP2.12 can directly induce Jasmonate Zinc-finger proteins (JAZs), repressors of JA signalling, to establish feedback inhibition. In summary, our study sheds new light on active root growth restriction under hypoxic conditions and on the involvement of the JA hormone in this process and its cross talk with the oxygen sensing machinery of higher plants. Full article
(This article belongs to the Special Issue Plant Responses to Hypoxia)
Show Figures

Graphical abstract

18 pages, 1785 KiB  
Review
Canthaxanthin, a Red-Hot Carotenoid: Applications, Synthesis, and Biosynthetic Evolution
by Bárbara A. Rebelo, Sara Farrona, M. Rita Ventura and Rita Abranches
Plants 2020, 9(8), 1039; https://doi.org/10.3390/plants9081039 - 15 Aug 2020
Cited by 51 | Viewed by 5690
Abstract
Carotenoids are a class of pigments with a biological role in light capture and antioxidant activities. High value ketocarotenoids, such as astaxanthin and canthaxanthin, are highly appealing for applications in human nutraceutical, cosmetic, and animal feed industries due to their color- and health-related [...] Read more.
Carotenoids are a class of pigments with a biological role in light capture and antioxidant activities. High value ketocarotenoids, such as astaxanthin and canthaxanthin, are highly appealing for applications in human nutraceutical, cosmetic, and animal feed industries due to their color- and health-related properties. In this review, recent advances in metabolic engineering and synthetic biology towards the production of ketocarotenoids, in particular the red-orange canthaxanthin, are highlighted. Also reviewed and discussed are the properties of canthaxanthin, its natural producers, and various strategies for its chemical synthesis. We review the de novo synthesis of canthaxanthin and the functional β-carotene ketolase enzyme across organisms, supported by a protein-sequence-based phylogenetic analysis. Various possible modifications of the carotenoid biosynthesis pathway and the present sustainable cost-effective alternative platforms for ketocarotenoids biosynthesis are also discussed. Full article
(This article belongs to the Special Issue Plant Molecular Farming)
Show Figures

Figure 1

16 pages, 2836 KiB  
Article
A GATA Transcription Factor from Soybean (Glycine max) Regulates Chlorophyll Biosynthesis and Suppresses Growth in the Transgenic Arabidopsis thaliana
by Chanjuan Zhang, Yi Huang, Zhiyuan Xiao, Hongli Yang, Qingnan Hao, Songli Yuan, Haifeng Chen, Limiao Chen, Shuilian Chen, Xinan Zhou and Wenjun Huang
Plants 2020, 9(8), 1036; https://doi.org/10.3390/plants9081036 - 15 Aug 2020
Cited by 29 | Viewed by 4055
Abstract
Chlorophyll plays an essential role in photosynthetic light harvesting and energy transduction in green tissues of higher plants and is closely related to photosynthesis and crop yield. Identification of transcription factors (TFs) involved in regulating chlorophyll biosynthesis is still limited in soybean ( [...] Read more.
Chlorophyll plays an essential role in photosynthetic light harvesting and energy transduction in green tissues of higher plants and is closely related to photosynthesis and crop yield. Identification of transcription factors (TFs) involved in regulating chlorophyll biosynthesis is still limited in soybean (Glycine max), and the previously identified GmGATA58 is suggested to potentially modulate chlorophyll and nitrogen metabolisms, but its complete function is still unknown. In this study, subcellular localization assay showed that GmGATA58 was localized in the nucleus. Histochemical GUS assay and qPCR assay indicated that GmGATA58 was mainly expressed in leaves and responded to nitrogen, light and phytohormone treatments. Overexpression of GmGATA58 in the Arabidopsis thaliana ortholog AtGATA21 (gnc) mutant complemented the greening defect, while overexpression in Arabidopsis wild-type led to increasing chlorophyll content in leaves through up-regulating the expression levels of the large of chlorophyll biosynthetic pathway genes, but suppressing plant growth and yield, although the net photosynthetic rate was slightly improved. Dual-luciferase reporter assay also supported that GmGATA58 activated the transcription activities of three promoters of key chlorophyll biosynthetic genes of soybean in transformed protoplast of Arabidopsis. It is concluded that GmGATA58 played an important role in regulating chlorophyll biosynthesis, but suppressed plant growth and yield in transgenic Arabidopsis. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

22 pages, 1334 KiB  
Review
Exploiting Biological Nitrogen Fixation: A Route Towards a Sustainable Agriculture
by Abdoulaye Soumare, Abdala G. Diedhiou, Moses Thuita, Mohamed Hafidi, Yedir Ouhdouch, Subramaniam Gopalakrishnan and Lamfeddal Kouisni
Plants 2020, 9(8), 1011; https://doi.org/10.3390/plants9081011 - 11 Aug 2020
Cited by 164 | Viewed by 21055
Abstract
For all living organisms, nitrogen is an essential element, while being the most limiting in ecosystems and for crop production. Despite the significant contribution of synthetic fertilizers, nitrogen requirements for food production increase from year to year, while the overuse of agrochemicals compromise [...] Read more.
For all living organisms, nitrogen is an essential element, while being the most limiting in ecosystems and for crop production. Despite the significant contribution of synthetic fertilizers, nitrogen requirements for food production increase from year to year, while the overuse of agrochemicals compromise soil health and agricultural sustainability. One alternative to overcome this problem is biological nitrogen fixation (BNF). Indeed, more than 60% of the fixed N on Earth results from BNF. Therefore, optimizing BNF in agriculture is more and more urgent to help meet the demand of the food production needs for the growing world population. This optimization will require a good knowledge of the diversity of nitrogen-fixing microorganisms, the mechanisms of fixation, and the selection and formulation of efficient N-fixing microorganisms as biofertilizers. Good understanding of BNF process may allow the transfer of this ability to other non-fixing microorganisms or to non-leguminous plants with high added value. This minireview covers a brief history on BNF, cycle and mechanisms of nitrogen fixation, biofertilizers market value, and use of biofertilizers in agriculture. The minireview focuses particularly on some of the most effective microbial products marketed to date, their efficiency, and success-limiting in agriculture. It also highlights opportunities and difficulties of transferring nitrogen fixation capacity in cereals. Full article
(This article belongs to the Special Issue The Rhizobium-Legume Symbiosis)
Show Figures

Figure 1

27 pages, 12025 KiB  
Article
Comparative and Functional Screening of Three Species Traditionally used as Antidepressants: Valeriana officinalis L., Valeriana jatamansi Jones ex Roxb. and Nardostachys jatamansi (D.Don) DC.
by Laura Cornara, Gabriele Ambu, Domenico Trombetta, Marcella Denaro, Susanna Alloisio, Jessica Frigerio, Massimo Labra, Govinda Ghimire, Marco Valussi and Antonella Smeriglio
Plants 2020, 9(8), 994; https://doi.org/10.3390/plants9080994 - 5 Aug 2020
Cited by 14 | Viewed by 6923
Abstract
The essential oils (EOs) of three Caprifoliaceae species, the Eurasiatic Valeriana officinalis (Vo), the Himalayan Valeriana jatamansi (Vj) and Nardostachys jatamansi (Nj), are traditionally used to treat neurological disorders. Roots/rhizomes micromorphology, DNA barcoding and EOs phytochemical characterization were carried out, while biological effects [...] Read more.
The essential oils (EOs) of three Caprifoliaceae species, the Eurasiatic Valeriana officinalis (Vo), the Himalayan Valeriana jatamansi (Vj) and Nardostachys jatamansi (Nj), are traditionally used to treat neurological disorders. Roots/rhizomes micromorphology, DNA barcoding and EOs phytochemical characterization were carried out, while biological effects on the nervous system were assessed by acetylcholinesterase (AChE) inhibitory activity and microelectrode arrays (MEA). Nj showed the highest inhibitory activity on AChE (IC50 67.15 μg/mL) followed by Vo (IC50 127.30 μg/mL) and Vj (IC50 246.84 μg/mL). MEA analyses on rat cortical neurons, carried out by recording mean firing rate (MFR) and mean bursting rate (MBR), revealed stronger inhibition by Nj (IC50 18.8 and 11.1 μg/mL) and Vo (16.5 and 22.5 μg/mL), compared with Vj (68.5 and 89.3 μg/mL). These results could be related to different EO compositions, since sesquiterpenes and monoterpenes significantly contribute to the observed effects, but the presence of oxygenated compounds such as aldehydes and ketones is a discriminating factor in determining the order of potency. Our multidisciplinary approach represents an important tool to avoid the adulteration of herbal drugs and permits the evaluation of the effectiveness of EOs that could be used for a wide range of therapeutic applications. Full article
(This article belongs to the Collection Bioactive Compounds in Plants)
Show Figures

Graphical abstract

16 pages, 740 KiB  
Review
Osmotin: A Cationic Protein Leads to Improve Biotic and Abiotic Stress Tolerance in Plants
by Muhammad Ajmal Bashir, Cristian Silvestri, Touqeer Ahmad, Ishfaq Ahmad Hafiz, Nadeem Akhtar Abbasi, Ayesha Manzoor, Valerio Cristofori and Eddo Rugini
Plants 2020, 9(8), 992; https://doi.org/10.3390/plants9080992 - 4 Aug 2020
Cited by 36 | Viewed by 5350
Abstract
Research on biologically active compounds has been increased in order to improve plant protection against various environmental stresses. Among natural sources, plants are the fundamental material for studying these bioactive compounds as their immune system consists of many peptides, proteins, and hormones. Osmotin [...] Read more.
Research on biologically active compounds has been increased in order to improve plant protection against various environmental stresses. Among natural sources, plants are the fundamental material for studying these bioactive compounds as their immune system consists of many peptides, proteins, and hormones. Osmotin is a multifunctional stress-responsive protein belonging to pathogenesis-related 5 (PR-5) defense-related protein family, which is involved in inducing osmo-tolerance in plants. In this scenario, the accumulation of osmotin initiates abiotic and biotic signal transductions. These proteins work as antifungal agents against a broad range of fungal species by increasing plasma membrane permeability and dissipating the membrane potential of infecting fungi. Therefore, overexpression of tobacco osmotin protein in transgenic plants protects them from different stresses by reducing reactive oxygen species (ROS) production, limiting lipid peroxidation, initiating programmed cell death (PCD), and increasing proline content and scavenging enzyme activity. Other than osmotin, its homologous proteins, osmotin-like proteins (OLPs), also have dual function in plant defense against osmotic stress and have strong antifungal activity. Full article
Show Figures

Figure 1

17 pages, 1054 KiB  
Review
Amino Acid Transporters in Plants: Identification and Function
by Xuehui Yao, Jing Nie, Ruoxue Bai and Xiaolei Sui
Plants 2020, 9(8), 972; https://doi.org/10.3390/plants9080972 - 31 Jul 2020
Cited by 64 | Viewed by 9209
Abstract
Amino acid transporters are the main mediators of nitrogen distribution throughout the plant body, and are essential for sustaining growth and development. In this review, we summarize the current state of knowledge on the identity and biological functions of amino acid transporters in [...] Read more.
Amino acid transporters are the main mediators of nitrogen distribution throughout the plant body, and are essential for sustaining growth and development. In this review, we summarize the current state of knowledge on the identity and biological functions of amino acid transporters in plants, and discuss the regulation of amino acid transporters in response to environmental stimuli. We focus on transporter function in amino acid assimilation and phloem loading and unloading, as well as on the molecular identity of amino acid exporters. Moreover, we discuss the effects of amino acid transport on carbon assimilation, as well as their cross-regulation, which is at the heart of sustainable agricultural production. Full article
(This article belongs to the Special Issue Amino Acid Translocation, Transport and Transporters in Plants)
Show Figures

Figure 1

17 pages, 790 KiB  
Review
Amino Acid Transporters in Plant Cells: A Brief Review
by Guangzhe Yang, Qiuxing Wei, Hao Huang and Jixing Xia
Plants 2020, 9(8), 967; https://doi.org/10.3390/plants9080967 - 30 Jul 2020
Cited by 59 | Viewed by 9077
Abstract
Amino acids are not only a nitrogen source that can be directly absorbed by plants, but also the major transport form of organic nitrogen in plants. A large number of amino acid transporters have been identified in different plant species. Despite belonging to [...] Read more.
Amino acids are not only a nitrogen source that can be directly absorbed by plants, but also the major transport form of organic nitrogen in plants. A large number of amino acid transporters have been identified in different plant species. Despite belonging to different families, these amino acid transporters usually exhibit some general features, such as broad expression pattern and substrate selectivity. This review mainly focuses on transporters involved in amino acid uptake, phloem loading and unloading, xylem-phloem transfer, import into seed and intracellular transport in plants. We summarize the other physiological roles mediated by amino acid transporters, including development regulation, abiotic stress tolerance and defense response. Finally, we discuss the potential applications of amino acid transporters for crop genetic improvement. Full article
(This article belongs to the Special Issue Amino Acid Translocation, Transport and Transporters in Plants)
Show Figures

Figure 1

26 pages, 1312 KiB  
Review
Main Challenges and Actions Needed to Improve Conservation and Sustainable Use of Our Crop Wild Relatives
by Johannes M. M. Engels and Imke Thormann
Plants 2020, 9(8), 968; https://doi.org/10.3390/plants9080968 - 30 Jul 2020
Cited by 28 | Viewed by 5103
Abstract
Crop wild relatives (CWR, plural CWRs) are those wild species that are regarded as the ancestors of our cultivated crops. It was only at the end of the last century that they were accorded a high priority for their conservation and, thus, for [...] Read more.
Crop wild relatives (CWR, plural CWRs) are those wild species that are regarded as the ancestors of our cultivated crops. It was only at the end of the last century that they were accorded a high priority for their conservation and, thus, for many genebanks, they are a new and somewhat unknown set of plant genetic resources for food and agriculture. After defining and characterizing CWR and their general threat status, providing an assessment of biological peculiarities of CWR with respect to conservation management, illustrating the need for prioritization and addressing the importance of data and information, we made a detailed assessment of specific aspects of CWRs of direct relevance for their conservation and use. This assessment was complemented by an overview of the current status of CWRs conservation and use, including facts and figures on the in situ conservation, on the ex situ conservation in genebanks and botanic gardens, as well as of the advantages of a combination of in situ and ex situ conservation, the so-called complementary conservation approach. In addition, a brief assessment of the situation with respect to the use of CWRs was made. From these assessments we derived the needs for action in order to achieve a more effective and efficient conservation and use, specifically with respect to the documentation of CWRs, their in situ and ex situ, as well as their complementarity conservation, and how synergies between these components can be obtained. The review was concluded with suggestions on how use can be strengthened, as well as the conservation system at large at the local, national, and regional/international level. Finally, based on the foregoing assessments, a number of recommendations were elaborated on how CWRs can be better conserved and used in order to exploit their potential benefits more effectively. Full article
(This article belongs to the Special Issue Plant Biodiversity and Genetic Resources)
Show Figures

Graphical abstract

13 pages, 3488 KiB  
Article
Physiological Characteristics of Photosynthesis in Yellow-Green, Green and Dark-Green Chinese Kale (Brassica oleracea L. var. alboglabra Musil.) under Varying Light Intensities
by Kuan-Hung Lin, Feng-Chi Shih, Meng-Yuan Huang and Jen-Hsien Weng
Plants 2020, 9(8), 960; https://doi.org/10.3390/plants9080960 - 30 Jul 2020
Cited by 17 | Viewed by 4028
Abstract
The objective of this work was to study physiological characteristics and photosynthetic apparatus in differentially pigmented leaves of three Chinese kale cultivars. Chlorophyll (Chl) fluorescence and photochemical reflectance index (PRI) measurements in green, yellow-green, and dark-green cultivars in response to varying light intensities. [...] Read more.
The objective of this work was to study physiological characteristics and photosynthetic apparatus in differentially pigmented leaves of three Chinese kale cultivars. Chlorophyll (Chl) fluorescence and photochemical reflectance index (PRI) measurements in green, yellow-green, and dark-green cultivars in response to varying light intensities. As light intensity increased from 200 to 2000 photosynthetic photon flux density (PPFD), fraction of light absorbed in photosystem (PS) II and PRI values in all plants were strongly lowered, but fraction of light absorbed in PSII dissipated via thermal energy dissipation and non-photochemical quenching (NPQ) values in all plants wereremarkably elevated.When plants were exposed to 200 PPFD, the values of fraction of light absorbed in PSII, utilized in photosynthetic electron transport(p), andfraction of light absorbed excitation energy in PSII dissipated via thermal energy dissipation (D), remained stable regardless of the changes in levels of Chla + b. Under 800 and 1200 PPFD, the values of p and electron transport rate (ETR) decreased, but D and NPQ increased as Chla + bcontent decreased, suggesting that decrease inChla + bcontent led to lower PSII efficiency and it became necessary to increase dissipate excess energy. On the contrary, in 2000 PPFD, leaves with lower Chla + bcontent had relatively higher p and electron transport rate (ETR) values and lower D level, as well as tended to increase more in NPQ but decrease more in PRI values. The consistent relations between PRI and NPQ suggest that NPQ is mainly consisted ofthe xanthophyll cycle-dependentenergy quenching.Yellow-green cultivar showed lower Chla + bcontent but high carotenoids/Chla + b ratio and had high light protection ability under high PPFD. The precise management of photosynthetic parameters in response to light intensity can maximize the growth and development of Chinese kale plants. Full article
Show Figures

Graphical abstract

29 pages, 1103 KiB  
Review
A Review on Applications and Uses of Thymus in the Food Industry
by Gema Nieto
Plants 2020, 9(8), 961; https://doi.org/10.3390/plants9080961 - 30 Jul 2020
Cited by 116 | Viewed by 10858
Abstract
Thyme is one of the most important medicinal plants because of its ethnopharmacological relevance and high content of bioactive compounds. This review focuses particularly on thyme as an alternative natural antioxidant and antimicrobial with potential use in the food industry. This is in [...] Read more.
Thyme is one of the most important medicinal plants because of its ethnopharmacological relevance and high content of bioactive compounds. This review focuses particularly on thyme as an alternative natural antioxidant and antimicrobial with potential use in the food industry. This is in line with the preferences of the current consumer, who demands healthier and more natural products. Different studies have concluded that the use of thyme increases stability and reduces lipid oxidation during the shelf-life period of foods (meat, meat products, milk, fish or fish products), which makes thyme a promising source of natural additives. Despite these findings, the use of Thymus extracts or essential oils as natural additives in foods is reduced in comparison with other natural preservative extracts. This review provides an overview of the most important information on the positive effect of the bioactive compounds of thyme and its uses as a preservative in foods, taking into account its origin (from plants, plant extracts or essential oils). Full article
(This article belongs to the Special Issue Natural Products from Plant-Derived as Preservatives)
Show Figures

Figure 1

15 pages, 835 KiB  
Article
Utilization Pattern of Indigenous and Naturalized Plants among Some Selected Rural Households of North West Province, South Africa
by Abiodun Olusola Omotayo, Peter Tshepiso Ndhlovu, Seleke Christopher Tshwene and Adeyemi Oladapo Aremu
Plants 2020, 9(8), 953; https://doi.org/10.3390/plants9080953 - 28 Jul 2020
Cited by 20 | Viewed by 4399
Abstract
Globally, a substantial proportion of existing indigenous and naturalized foods are often neglected thereby narrowing the food-base available to humans. The current study explored the use and contribution of indigenous and naturalized plants to the households’ food-pool among 12 communities in the North [...] Read more.
Globally, a substantial proportion of existing indigenous and naturalized foods are often neglected thereby narrowing the food-base available to humans. The current study explored the use and contribution of indigenous and naturalized plants to the households’ food-pool among 12 communities in the North West Province of South Africa. An ethnobotanical survey was conducted among 133 rural households across the 12 selected communities from the four district municipalities in North West Province, South Africa. We analyzed the utilization patterns for 31 selected indigenous and naturalized plants (grains, fruits, and vegetables) among the 133 households using two ethnobotanical indices. In reference to the checklist of 31 plants, the sampled households utilize approximately 94% (29) as staple foods, beverages, fruits and fodder. Sorghum bicolor, Vigna unguiculata, Amaranthus sp., Sclerocarya birrea, Persea americana, and Mimusops zeyheri were among the top-six plants based on the Relative Frequency of Citation (RFC, 40–83%). In terms of the different crop-types, Sorghum bicolor (grain), Amaranthus sp. (vegetable), and Sclerocarya birrea (fruit) were the top-ranked plants based on the Species Popularity Index (SPI, 0.53–0.83) among the participants. Overall, there is a need for a renaissance of indigenous and naturalized plants, which has the potential to encourage rural farmers to further embrace the cultivation of these plants on a larger scale so as to enhance food security in the rural communities. Full article
Show Figures

Figure 1

Back to TopTop