Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 30196 KiB  
Article
High-Accuracy Maize Disease Detection Based on Attention Generative Adversarial Network and Few-Shot Learning
by Yihong Song, Haoyan Zhang, Jiaqi Li, Ran Ye, Xincan Zhou, Bowen Dong, Dongchen Fan and Lin Li
Plants 2023, 12(17), 3105; https://doi.org/10.3390/plants12173105 - 29 Aug 2023
Cited by 6 | Viewed by 1556
Abstract
This study addresses the problem of maize disease detection in agricultural production, proposing a high-accuracy detection method based on Attention Generative Adversarial Network (Attention-GAN) and few-shot learning. The method introduces an attention mechanism, enabling the model to focus more on the significant parts [...] Read more.
This study addresses the problem of maize disease detection in agricultural production, proposing a high-accuracy detection method based on Attention Generative Adversarial Network (Attention-GAN) and few-shot learning. The method introduces an attention mechanism, enabling the model to focus more on the significant parts of the image, thereby enhancing model performance. Concurrently, data augmentation is performed through Generative Adversarial Network (GAN) to generate more training samples, overcoming the difficulties of few-shot learning. Experimental results demonstrate that this method surpasses other baseline models in accuracy, recall, and mean average precision (mAP), achieving 0.97, 0.92, and 0.95, respectively. These results validate the high accuracy and stability of the method in handling maize disease detection tasks. This research provides a new approach to solving the problem of few samples in practical applications and offers valuable references for subsequent research, contributing to the advancement of agricultural informatization and intelligence. Full article
(This article belongs to the Special Issue Deep Learning in Plant Sciences)
Show Figures

Figure 1

60 pages, 2047 KiB  
Review
Embryo Rescue in Plant Breeding
by Ugo Rogo, Marco Fambrini and Claudio Pugliesi
Plants 2023, 12(17), 3106; https://doi.org/10.3390/plants12173106 - 29 Aug 2023
Cited by 10 | Viewed by 7377
Abstract
Embryo rescue (ER) techniques are among the oldest and most successful in vitro tissue culture protocols used with plant species. ER refers to a series of methods that promote the development of an immature or lethal embryo into a viable plant. Intraspecific, interspecific, [...] Read more.
Embryo rescue (ER) techniques are among the oldest and most successful in vitro tissue culture protocols used with plant species. ER refers to a series of methods that promote the development of an immature or lethal embryo into a viable plant. Intraspecific, interspecific, or intergeneric crosses allow the introgression of important alleles of agricultural interest from wild species, such as resistance or tolerance to abiotic and biotic stresses or morphological traits in crops. However, pre-zygotic and post-zygotic reproductive barriers often present challenges in achieving successful hybridization. Pre-zygotic barriers manifest as incompatibility reactions that hinder pollen germination, pollen tube growth, or penetration into the ovule occurring in various tissues, such as the stigma, style, or ovary. To overcome these barriers, several strategies are employed, including cut-style or graft-on-style techniques, the utilization of mixed pollen from distinct species, placenta pollination, and in vitro ovule pollination. On the other hand, post-zygotic barriers act at different tissues and stages ranging from early embryo development to the subsequent growth and reproduction of the offspring. Many crosses among different genera result in embryo abortion due to the failure of endosperm development. In such cases, ER techniques are needed to rescue these hybrids. ER holds great promise for not only facilitating successful crosses but also for obtaining haploids, doubled haploids, and manipulating the ploidy levels for chromosome engineering by monosomic and disomic addition as well substitution lines. Furthermore, ER can be used to shorten the reproductive cycle and for the propagation of rare plants. Additionally, it has been repeatedly used to study the stages of embryonic development, especially in embryo-lethal mutants. The most widely used ER procedure is the culture of immature embryos taken and placed directly on culture media. In certain cases, the in vitro culture of ovule, ovaries or placentas enables the successful development of young embryos from the zygote stage to maturity. Full article
(This article belongs to the Special Issue Plant Developmental Pathways: Haploid, Zygotic and Somatic Embryos)
Show Figures

Figure 1

38 pages, 1208 KiB  
Review
The Application of Arbuscular Mycorrhizal Fungi as Microbial Biostimulant, Sustainable Approaches in Modern Agriculture
by Wenli Sun and Mohamad Hesam Shahrajabian
Plants 2023, 12(17), 3101; https://doi.org/10.3390/plants12173101 - 29 Aug 2023
Cited by 31 | Viewed by 4328
Abstract
Biostimulant application can be considered an effective, practical, and sustainable nutritional crop supplementation and may lessen the environmental problems related to excessive fertilization. Biostimulants provide beneficial properties to plants by increasing plant metabolism, which promotes crop yield and improves the quality of crops; [...] Read more.
Biostimulant application can be considered an effective, practical, and sustainable nutritional crop supplementation and may lessen the environmental problems related to excessive fertilization. Biostimulants provide beneficial properties to plants by increasing plant metabolism, which promotes crop yield and improves the quality of crops; protecting plants against environmental stresses such as water shortage, soil salinization, and exposure to sub-optimal growth temperatures; and promoting plant growth via higher nutrient uptake. Other important benefits include promoting soil enzymatic and microbial activities, changing the architecture of roots, increasing the solubility and mobility of micronutrients, and enhancing the fertility of the soil, predominantly by nurturing the development of complementary soil microbes. Biostimulants are classified as microbial, such as arbuscular mycorrhizae fungi (AMF), plant-growth-promoting rhizobacteria (PGPR), non-pathogenic fungi, protozoa, and nematodes, or non-microbial, such as seaweed extract, phosphite, humic acid, other inorganic salts, chitin and chitosan derivatives, protein hydrolysates and free amino acids, and complex organic materials. Arbuscular mycorrhizal fungi are among the most prominent microbial biostimulants and have an important role in cultivating better, healthier, and more functional foods in sustainable agriculture. AMF assist plant nutrient and water acquisition; enhance plant stress tolerance against salinity, drought, and heavy metals; and reduce soil erosion. AMF are proven to be a sustainable and environmentally friendly source of crop supplements. The current manuscript gives many examples of the potential of biostimulants for the production of different crops. However, further studies are needed to better understand the effectiveness of different biostimulants in sustainable agriculture. The review focuses on how AMF application can overcome nutrient limitations typical of organic systems by improving nutrient availability, uptake, and assimilation, consequently reducing the gap between organic and conventional yields. The aim of this literature review is to survey the impacts of AMF by presenting case studies and successful paradigms in different crops as well as introducing the main mechanisms of action of the different biostimulant products. Full article
Show Figures

Figure 1

25 pages, 6951 KiB  
Article
Alleviation of Adverse Effects of Drought Stress on Growth and Nitrogen Metabolism in Mungbean (Vigna radiata) by Sulphur and Nitric Oxide Involves Up-Regulation of Antioxidant and Osmolyte Metabolism and Gene Expression
by Huida Lian, Cheng Qin, Jie Shen and Mohammad Abass Ahanger
Plants 2023, 12(17), 3082; https://doi.org/10.3390/plants12173082 - 28 Aug 2023
Cited by 9 | Viewed by 2030
Abstract
The influence of drought induced by polyethylene glycol (PEG) and the alleviatory effect of nitric oxide (50 µM) and sulphur (S, 1 mM K2SO4) were studied in Vigna radiata. Drought stress reduced plant height, dry weight, total chlorophylls, [...] Read more.
The influence of drought induced by polyethylene glycol (PEG) and the alleviatory effect of nitric oxide (50 µM) and sulphur (S, 1 mM K2SO4) were studied in Vigna radiata. Drought stress reduced plant height, dry weight, total chlorophylls, carotenoids and the content of nitrogen, phosphorous, potassium and sulphur. The foliar applications of NO and sulphur each individually alleviated the decline, with a greater alleviation observed in seedlings treated with both NO and sulphur. The reduction in intermediates of chlorophyll synthesis pathways and photosynthesis were alleviated by NO and sulphur. Oxidative stress was evident through the increased hydrogen peroxide, superoxide and activity of lipoxygenase and protease which were significantly assuaged by NO, sulphur and NO + sulphur treatments. A reduction in the activity of nitrate reductase, glutamine synthetase and glutamate synthase was mitigated due to the application of NO and the supplementation of sulphur. The endogenous concentration of NO and hydrogen sulphide (HS) was increased due to PEG; however, the PEG-induced increase in NO and HS was lowered due to NO and sulphur. Furthermore, NO and sulphur treatments to PEG-stressed seedlings further enhanced the functioning of the antioxidant system, osmolytes and secondary metabolite accumulation. Activities of γ-glutamyl kinase and phenylalanine ammonia lyase were up-regulated due to NO and S treatments. The treatment of NO and S regulated the expression of the Cu/ZnSOD, POD, CAT, RLP, HSP70 and LEA genes significantly under normal and drought stress. The present study advocates for the beneficial use of NO and sulphur in the mitigation of drought-induced alterations in the metabolism of Vigna radiata. Full article
Show Figures

Figure 1

12 pages, 1932 KiB  
Article
Improvements in Protoplast Isolation Protocol and Regeneration of Different Cabbage (Brassica oleracea var. capitata L.) Cultivars
by Ester Stajič
Plants 2023, 12(17), 3074; https://doi.org/10.3390/plants12173074 - 27 Aug 2023
Cited by 1 | Viewed by 3716
Abstract
Protoplasts are a versatile tool in plant biotechnology since they can be used for basic biological studies as well as for breeding strategies based on genome editing. An efficient protoplast isolation protocol is essential for conducting protoplast-based studies. To optimize the protoplast isolation [...] Read more.
Protoplasts are a versatile tool in plant biotechnology since they can be used for basic biological studies as well as for breeding strategies based on genome editing. An efficient protoplast isolation protocol is essential for conducting protoplast-based studies. To optimize the protoplast isolation protocol in cabbage (Brassica oleracea var. capitata L.), different enzyme solutions were tested for the isolation of leaf mesophyll protoplasts. In our experiments, the combination of 0.5% Cellulase Onozuka RS and 0.1% Macerozyme R-10 showed the best result. The optimized protocol proved suitable for the isolation of protoplasts from five different cabbage cultivars with yields ranging from 2.38 to 4.63 × 106 protoplasts/g fresh weight (fw) and a viability of 93% or more. After three weeks in culture, protoplasts from all of the tested cultivars formed micro-calli, but further callus growth and shoot regeneration depended strongly on the genotype and regeneration protocol used. For shoot formation, 1 mg/L BAP in combination with auxin 0.2 mg/L NAA showed the best results with a regeneration of 23.5%. The results obtained will contribute to the development of different applications of cabbage protoplasts and facilitate the breeding process of this important horticultural crop. Full article
(This article belongs to the Special Issue Advances and Applications in Plant Tissue Culture)
Show Figures

Figure 1

16 pages, 7513 KiB  
Article
Tomato Fruit Detection Using Modified Yolov5m Model with Convolutional Neural Networks
by Fa-Ta Tsai, Van-Tung Nguyen, The-Phong Duong, Quoc-Hung Phan and Chi-Hsiang Lien
Plants 2023, 12(17), 3067; https://doi.org/10.3390/plants12173067 - 26 Aug 2023
Cited by 7 | Viewed by 1712
Abstract
The farming industry is facing the major challenge of intensive and inefficient harvesting labors. Thus, an efficient and automated fruit harvesting system is required. In this study, three object classification models based on Yolov5m integrated with BoTNet, ShuffleNet, and GhostNet convolutional neural networks [...] Read more.
The farming industry is facing the major challenge of intensive and inefficient harvesting labors. Thus, an efficient and automated fruit harvesting system is required. In this study, three object classification models based on Yolov5m integrated with BoTNet, ShuffleNet, and GhostNet convolutional neural networks (CNNs), respectively, are proposed for the automatic detection of tomato fruit. The various models were trained using 1508 normalized images containing three classes of cherry tomatoes, namely ripe, immature, and damaged. The detection accuracy for the three classes was found to be 94%, 95%, and 96%, respectively, for the modified Yolov5m + BoTNet model. The model thus appeared to provide a promising basis for the further development of automated harvesting systems for tomato fruit. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

14 pages, 4661 KiB  
Article
Taxonomic Identification and Molecular DNA Barcoding of Collected Wild-Growing Orchids Used Traditionally for Salep Production
by Aphrodite Tsaballa, George Kelesidis, Nikos Krigas, Virginia Sarropoulou, Panagiotis Bagatzounis and Katerina Grigoriadou
Plants 2023, 12(17), 3038; https://doi.org/10.3390/plants12173038 - 24 Aug 2023
Cited by 4 | Viewed by 2117
Abstract
Molecular DNA barcoding combined with botanical taxonomy can be used for the identification and conservation of collected Greek orchids used for salep production as well as in the regulation of fair salep trade. A modified CTAB protocol was used for DNA extraction, amplification [...] Read more.
Molecular DNA barcoding combined with botanical taxonomy can be used for the identification and conservation of collected Greek orchids used for salep production as well as in the regulation of fair salep trade. A modified CTAB protocol was used for DNA extraction, amplification of barcoding regions (ITS, matK, rbcL, trnH-psbA), and sequencing. Sequencing data were assembled using Bioedit software, and the BLAST algorithm was used on the NCBI database for species identification at the genus level. Molecular barcoding data based on genetic similarity identification was in full coherence with taxonomic classification based on morphological data. The combination of ITS and matK exhibited a greater capacity to identify a species among the Greek salep samples. Out of the 53 samples examined, 52.9% were classified as Dactylorhiza spp. and 33.3% as Anacamptis spp., whereas only 6 samples were identified as Orchis spp. (11.8%). Given that a superior-quality salep beverage comes from tubers of the latter, the number of samples classified as such in northwestern Greece is unexpectedly low. A database of 53 original reference sequences from wild-growing samples of Greek origin was generated, providing a valuable resource for the identification of other salep samples from different regions. The DNA barcoding results unveiled that salep samples from northwestern Greece are related to nine members of four different genera of Orchidaceae. All species are nationally protected and covered by the CITES convention, while many of these orchids are included in the EU Directive 92/43/EEC appendix as “Other Important Species”. Thus, expedited coordinated management actions are needed to ensure their survival in the future. Full article
(This article belongs to the Special Issue Advances in Plant Reproductive Ecology and Conservation Biology)
Show Figures

Figure 1

16 pages, 2019 KiB  
Article
Effect of Plant Extracts Combinations on TNF-α, IL-6 and IL-10 Levels in Serum of Rats Exposed to Acute and Chronic Stress
by Ilin Kandilarov, Petya Gardjeva, Maria Georgieva-Kotetarova, Hristina Zlatanova, Natalia Vilmosh, Ivanka Kostadinova, Mariana Katsarova, Kiril Atliev and Stela Dimitrova
Plants 2023, 12(17), 3049; https://doi.org/10.3390/plants12173049 - 24 Aug 2023
Cited by 6 | Viewed by 2524
Abstract
Oxydative stress, anxiety and depression are associated with changes in cytokine levels. Natural products, including individual and combined plant extracts, have the potential to be used in the treatment of neuropsychiatric disorders. The goal of this study is to investigate the effects of [...] Read more.
Oxydative stress, anxiety and depression are associated with changes in cytokine levels. Natural products, including individual and combined plant extracts, have the potential to be used in the treatment of neuropsychiatric disorders. The goal of this study is to investigate the effects of two combined plant extracts, rich in flavonoids, on the levels of the cytokines TNF-α, IL-6, and IL-10 in rats subjected to models of acute cold stress and chronic unpredictable stress. The study utilized common medicinal plants such as Valeriana officinalis, Melissa officinalis, Crataegus monogyna, Hypericum perforatum, and Serratula coronata, which were combined in two unique combinations—Antistress I and Antistress II. The compositions of the used extracts were determined by HPLC methods. Pro- and anti-inflammatory cytokines in rats’ serum were measured with Enzyme-linked immunosorbent assay. The results from the acute stress model revealed that the individual extract of Crataegus monogyna decreased levels of TNF-α, while Serratula coronata, Hypericum perforatum, and Valeriana officinalis effectively reduced IL-6 levels. Both combinations, Antistress I and Antistress II, were effective in reducing TNF-α and IL-6 levels, with Antistress II also increasing IL-10 levels. In the chronic stress model, Hypericum perforatum extract decreased the levels of the pro-inflammatory cytokines TNF-α and IL-6, whereas extracts of Serratula coronata and Valeriana officinalis only reduced TNF-α levels. The two combined extracts, Antistress I and Antistress II, decreased TNF-α and IL-6 levels, while Antistress I also reduced the levels of the anti-inflammatory cytokine IL-10. The combinations of plant extracts used in our experiment have not been previously studied or documented in the available literature. However, based on our own experimental results, we can draw the conclusion that the combinations exhibit a more pronounced effect in reducing cytokine levels compared to the individual plant extracts. Full article
Show Figures

Figure 1

30 pages, 5120 KiB  
Article
Seed Treatment with Electromagnetic Field Induces Different Effects on Emergence, Growth and Profiles of Biochemical Compounds in Seven Half-Sib Families of Silver Birch
by Ieva Čėsnienė, Diana Miškelytė, Vitalij Novickij, Vida Mildažienė and Vaida Sirgedaitė-Šėžienė
Plants 2023, 12(17), 3048; https://doi.org/10.3390/plants12173048 - 24 Aug 2023
Cited by 5 | Viewed by 1985
Abstract
In the context of climate change, strategies aimed at enhancing trees’ resistance to biotic and abiotic stress are particularly relevant. We applied an electromagnetic field (EMF) seed treatment to observe changes in the establishment and content of biochemical compounds in silver birch seedlings [...] Read more.
In the context of climate change, strategies aimed at enhancing trees’ resistance to biotic and abiotic stress are particularly relevant. We applied an electromagnetic field (EMF) seed treatment to observe changes in the establishment and content of biochemical compounds in silver birch seedlings induced by a short (1 min) seed exposure to a physical stressor. The impact of EMF treatment was evaluated on seedling emergence and growth of one-year-old and two-year-old seedlings from seven half-sib families of silver birch. The effects on numerous biochemical parameters in seedling leaves, such as total phenolic content (TPC), total flavonoid content (TFC), amounts of photosynthetic pigments, total soluble sugars (TSS), level of lipid peroxidation level, antioxidant activity and activity of antioxidant enzymes, were compared using spectrophotometric methods. The results indicated that, in one-year-old seedlings, two of seven (60th and 73rd) half-sib families exhibited a positive response to seed treatment with EMFs in nearly all analyzed parameters. For example, in the 60th family, seed treatment with EMFs increased the percentage of emergence by 3 times, one-year-old seedling height by 71%, leaf TPC by 47%, antioxidant activity by 2 times and amount of chlorophyll a by 4.6 times. Meanwhile, the other two (86th and 179th) families exhibited a more obvious positive response to EMF in two-year-old seedlings as compared to one-year-old seedling controls. The results revealed that short-term EMF treatment of silver birch seeds can potentially be used to improve seedling emergence and growth and increase the content of secondary metabolites, antioxidant capacity and photosynthetic pigments. Understanding of the impact of EMFs as well as the influence of genetic differences on tree responses can be significant for practical applications in forestry. Genetic selection of plant genotypes that exhibit positive response trends can open the way to improve the quality of forest stands. Full article
(This article belongs to the Special Issue Induced Resistance of Plants)
Show Figures

Figure 1

18 pages, 19825 KiB  
Article
Lightweight Algorithm for Apple Detection Based on an Improved YOLOv5 Model
by Yu Sun, Dongwei Zhang, Xindong Guo and Hua Yang
Plants 2023, 12(17), 3032; https://doi.org/10.3390/plants12173032 - 23 Aug 2023
Cited by 6 | Viewed by 2031
Abstract
The detection algorithm of the apple-picking robot contains a complex network structure and huge parameter volume, which seriously limits the inference speed. To enable automatic apple picking in complex unstructured environments based on embedded platforms, we propose a lightweight YOLOv5-CS model for apple [...] Read more.
The detection algorithm of the apple-picking robot contains a complex network structure and huge parameter volume, which seriously limits the inference speed. To enable automatic apple picking in complex unstructured environments based on embedded platforms, we propose a lightweight YOLOv5-CS model for apple detection based on YOLOv5n. Firstly, we introduced the lightweight C3-light module to replace C3 to enhance the extraction of spatial features and boots the running speed. Then, we incorporated SimAM, a parameter-free attention module, into the neck layer to improve the model’s accuracy. The results showed that the size and inference speed of YOLOv5-CS were 6.25 MB and 0.014 s, which were 45 and 1.2 times that of the YOLOv5n model, respectively. The number of floating-point operations (FLOPs) were reduced by 15.56%, and the average precision (AP) reached 99.1%. Finally, we conducted extensive experiments, and the results showed that the YOLOv5-CS outperformed mainstream networks in terms of AP, speed, and model size. Thus, our real-time YOLOv5-CS model detects apples in complex orchard environments efficiently and provides technical support for visual recognition systems for intelligent apple-picking devices. Full article
(This article belongs to the Collection Application of AI in Plants)
Show Figures

Figure 1

29 pages, 4074 KiB  
Article
Response of Aboveground Net Primary Production, Species and Phylogenetic Diversity to Warming and Increased Precipitation in an Alpine Meadow
by Jianyu Xiao, Chengqun Yu and Gang Fu
Plants 2023, 12(17), 3017; https://doi.org/10.3390/plants12173017 - 22 Aug 2023
Cited by 7 | Viewed by 1098
Abstract
The uncertain responses of aboveground net primary productivity (ANPP) and plant diversity to climate warming and increased precipitation will limit our ability to predict changes in vegetation productivity and plant diversity under future climate change and further constrain our ability to protect biodiversity [...] Read more.
The uncertain responses of aboveground net primary productivity (ANPP) and plant diversity to climate warming and increased precipitation will limit our ability to predict changes in vegetation productivity and plant diversity under future climate change and further constrain our ability to protect biodiversity and ecosystems. A long-term experiment was conducted to explore the responses of ANPP, plant species, phylogenetic α–diversity, and community composition to warming and increased precipitation in an alpine meadow of the Northern Tibet from 2014 to 2019. Coverage, height, and species name were obtained by conventional community investigation methods, and ANPP was obtained using observed height and coverage. Open–top chambers with two different heights were used to simulate low- and high-level climate warming. The low- and high-level increased precipitation treatments were achieved by using two kinds of surface area funnel devices. The high-level warming reduced sedge ANPP (ANPPsedge) by 62.81%, species richness (SR) by 21.05%, Shannon by 13.06%, and phylogenetic diversity (PD) by 14.48%, but increased forb ANPP (ANPPforb) by 56.65% and mean nearest taxon distance (MNTD) by 33.88%. Species richness, Shannon, and PD of the high-level warming were 19.64%, 9.67%, and 14.66% lower than those of the low-level warming, respectively. The high-level warming-induced dissimilarity magnitudes of species and phylogenetic composition were greater than those caused by low-level warming. The low- rather than high-level increased precipitation altered species and phylogenetic composition. There were significant inter-annual variations of ANPP, plant species, phylogenetic α–diversity and community composition. Therefore, climate warming and increased precipitation had non-linear effects on ANPP and plant diversity, which were due to non-linear changes in temperature, water availability, and/or soil nutrition caused by warming and increased precipitation. The inter-annual variations of ANPP and plant diversity were stronger than the effects of warming and especially increased precipitation on ANPP and plant diversity. In terms of plant diversity conservation and related policy formulation, we should pay more attention to regions with greater warming, at least for the northern Tibet grasslands. Besides paying attention to the responses of ANPP and plant diversity to climate change, the large inter-annual changes of ANPP and plant diversity should be given great attention because the large inter-annual variation indicates the low temporal stability of ANPP and plant diversity and thus produces great uncertainty for the development of animal husbandry. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

32 pages, 6427 KiB  
Article
Spectroscopic Analyses Highlight Plant Biostimulant Effects of Baker’s Yeast Vinasse and Selenium on Cabbage through Foliar Fertilization
by Ștefan-Ovidiu Dima, Diana Constantinescu-Aruxandei, Naomi Tritean, Marius Ghiurea, Luiza Capră, Cristian-Andi Nicolae, Victor Faraon, Constantin Neamțu and Florin Oancea
Plants 2023, 12(16), 3016; https://doi.org/10.3390/plants12163016 - 21 Aug 2023
Cited by 5 | Viewed by 1744
Abstract
The main aim of this study is to find relevant analytic fingerprints for plants’ structural characterization using spectroscopic techniques and thermogravimetric analyses (TGAs) as alternative methods, particularized on cabbage treated with selenium–baker’s yeast vinasse formulation (Se-VF) included in a foliar fertilizer formula. The [...] Read more.
The main aim of this study is to find relevant analytic fingerprints for plants’ structural characterization using spectroscopic techniques and thermogravimetric analyses (TGAs) as alternative methods, particularized on cabbage treated with selenium–baker’s yeast vinasse formulation (Se-VF) included in a foliar fertilizer formula. The hypothesis investigated is that Se-VF will induce significant structural changes compared with the control, analytically confirming the biofortification of selenium-enriched cabbage as a nutritive vegetable, and particularly the plant biostimulant effects of the applied Se-VF formulation on cabbage grown in the field. The TGA evidenced a structural transformation of the molecular building blocks in the treated cabbage leaves. The ash residues increased after treatment, suggesting increased mineral accumulation in leaves. X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) evidenced a pectin–Iα-cellulose structure of cabbage that correlated with each other in terms of leaf crystallinity. FTIR analysis suggested the accumulation of unesterified pectin and possibly (seleno) glucosinolates and an increased network of hydrogen bonds. The treatment with Se-VF formulation induced a significant increase in the soluble fibers of the inner leaves, accompanied by a decrease in the insoluble fibers. The ratio of soluble/insoluble fibers correlated with the crystallinity determined by XRD and with the FTIR data. The employed analytic techniques can find practical applications as fast methods in studies of the effects of new agrotechnical practices, while in our particular case study, they revealed effects specific to plant biostimulants of the Se-VF formulation treatment: enhanced mineral utilization and improved quality traits. Full article
(This article belongs to the Special Issue Spectra Analysis and Plants Research 2.0)
Show Figures

Graphical abstract

18 pages, 2837 KiB  
Review
Hansen Solubility Parameters Applied to the Extraction of Phytochemicals
by Fábio Junior Moreira Novaes, Daliane Cláudia de Faria, Fabio Zamboni Ferraz and Francisco Radler de Aquino Neto
Plants 2023, 12(16), 3008; https://doi.org/10.3390/plants12163008 - 21 Aug 2023
Cited by 5 | Viewed by 2996
Abstract
In many analytical chemical procedures, organic solvents are required to favour a better global yield upon the separation, extraction, or isolation of the target phytochemical analyte. The selection of extraction solvents is generally based on the solubility difference between target analytes and the [...] Read more.
In many analytical chemical procedures, organic solvents are required to favour a better global yield upon the separation, extraction, or isolation of the target phytochemical analyte. The selection of extraction solvents is generally based on the solubility difference between target analytes and the undesired matrix components, as well as the overall extraction procedure cost and safety. Hansen Solubility Parameters are typically used for this purpose. They are based on the product of three coordinated forces (hydrogen bonds, dispersion, and dipolar forces) calculated for any substance to predict the miscibility of a compound in a pure solvent, in a mixture of solvents, or in non-solvent compounds, saving time and costs on method development based on a scientific understanding of chemical composition and intermolecular interactions. This review summarises how Hansen Solubility Parameters have been incorporated into the classical and emerging (or greener) extraction techniques of phytochemicals as an alternative to trial-and-error approaches, avoiding impractical experimental conditions and resulting in, for example, saving resources and avoiding unnecessary solvent wasting. Full article
Show Figures

Figure 1

21 pages, 352 KiB  
Review
Critical Review of the Increasing Complexity of Access and Benefit-Sharing Policies of Genetic Resources for Genebank Curators and Plant Breeders–A Public and Private Sector Perspective
by Andreas W. Ebert, Johannes M. M. Engels, Roland Schafleitner, Theo van Hintum and Godfrey Mwila
Plants 2023, 12(16), 2992; https://doi.org/10.3390/plants12162992 - 19 Aug 2023
Cited by 5 | Viewed by 1886
Abstract
Plant breeders develop competitive, high-yielding, resistant crop varieties that can cope with the challenges of biotic stresses and tolerate abiotic stresses, resulting in nutritious food for consumers worldwide. To achieve this, plant breeders need continuous and easy access to plant genetic resources (PGR) [...] Read more.
Plant breeders develop competitive, high-yielding, resistant crop varieties that can cope with the challenges of biotic stresses and tolerate abiotic stresses, resulting in nutritious food for consumers worldwide. To achieve this, plant breeders need continuous and easy access to plant genetic resources (PGR) for trait screening, to generate new diversity that can be built into newly improved varieties. International agreements such as the Convention on Biological Diversity (CBD), the International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA) and the Nagoya Protocol recognised the sovereign rights of countries over their genetic resources. Under the CBD/Nagoya Protocol, countries are free to establish specific national legislations regulating germplasm access and benefit-sharing to be negotiated bilaterally. Consequently, access to PGR became increasingly restricted and cumbersome, resulting in a decrease in germplasm exchange. The ITPGRFA attempted to ease this situation by establishing a globally harmonised multilateral system (MLS). Unfortunately, the MLS is (still) restricted to a limited number of food and forage crops, with very few vegetable crops. Easy and continuous access to genetic diversity combined with equitable and fair sharing of derived benefits is a prerequisite to breeding new varieties. Facilitated access contributes to sustainable crop production and food and nutrition security; therefore, access to and, consequently, use of PGRFA needs to be improved. Thus, the authors recommend, among others, expanding the scope of the ITPGRFA to include all PGRFA and making them and all related information accessible under a Standard Material Transfer Agreement (SMTA) combined, if necessary, with a subscription system or a seed sales tax. Such a transparent, functional and efficient system would erase legal uncertainties and minimise transaction costs for conservers, curators and users of genetic resources, thus aiding plant breeders to fulfil their mission. Full article
18 pages, 3558 KiB  
Article
A Comprehensive Evaluation of Tomato Fruit Quality and Identification of Volatile Compounds
by Jing Zhang, Sitian Liu, Xiumei Zhu, Youlin Chang, Cheng Wang, Ning Ma, Junwen Wang, Xiaodan Zhang, Jian Lyu and Jianming Xie
Plants 2023, 12(16), 2947; https://doi.org/10.3390/plants12162947 - 15 Aug 2023
Cited by 15 | Viewed by 4646
Abstract
Tomatoes (Lycopersicon esculentum) are the most valuable vegetable crop in the world. This study identified the morphological characteristics, vitamin content, etc., from 15 tomato varieties in total, that included five each from the three experimental types, during the commercial ripening period. [...] Read more.
Tomatoes (Lycopersicon esculentum) are the most valuable vegetable crop in the world. This study identified the morphological characteristics, vitamin content, etc., from 15 tomato varieties in total, that included five each from the three experimental types, during the commercial ripening period. The results showed that the hardness with peel and the moisture content of tasty tomatoes were 157.81% and 54.50%, and 3.16% and 1.90% lower than those of regular tomatoes and cherry tomatoes, respectively, while the soluble solids were 60.25% and 20.79% higher than those of the latter two types. In addition, the contents of vitamin C, lycopene, fructose, glucose, and total organic acids of tasty tomatoes were higher than those of regular tomatoes and cherry tomatoes. A total of 110 volatile compounds were detected in the 15 tomato varieties. The average volatile compound content of tasty tomatoes was 57.94% higher than that of regular tomatoes and 15.24% higher than that of cherry tomatoes. Twenty of the 34 characteristic tomato aroma components were identified in tasty tomatoes, with fruity and green being the main odor types. Ten characteristic aroma components in regular tomatoes were similar to those of tasty tomatoes; ten types of cherry tomatoes had floral and woody aromas as the main odor types. The flavor sensory score was significantly positively correlated with the content of soluble solids, fructose, glucose, citric acid, fumaric acid, and β-ionone (p < 0.01), and significantly negatively correlated with water content and firmness without peel. Regular, tasty, and cherry tomatoes were separated using principal component analysis, and the quality of tasty tomatoes was found to be better than cherry tomatoes, followed by regular tomatoes. These results provide valuable information for a comprehensive evaluation of fruit quality among tomato varieties to develop consumer guidelines. Full article
(This article belongs to the Special Issue Fruit Development and Quality Formation of Horticultural Crops)
Show Figures

Figure 1

11 pages, 3865 KiB  
Article
Combined Application of Organic Fertilizer with Microbial Inoculum Improved Aggregate Formation and Salt Leaching in a Secondary Salinized Soil
by Yuanyuan Peng, He Zhang, Jinshan Lian, Wen Zhang, Guihua Li and Jianfeng Zhang
Plants 2023, 12(16), 2945; https://doi.org/10.3390/plants12162945 - 15 Aug 2023
Cited by 6 | Viewed by 1722
Abstract
Greenhouse vegetable production provides significant quantities of vegetables throughout the year and improves farmers’ income. However, over-fertilization with mineral fertilizer causes soil secondary salinization and decreases the stability of the soil structure. To improve aggregate formation and decrease salt accumulation in the soil [...] Read more.
Greenhouse vegetable production provides significant quantities of vegetables throughout the year and improves farmers’ income. However, over-fertilization with mineral fertilizer causes soil secondary salinization and decreases the stability of the soil structure. To improve aggregate formation and decrease salt accumulation in the soil profile, bio-organic fertilizers (Protaetia brevitarsis larvae frass with Bacillus amyloliticus and/or Trichoderma harziensis) were applied to partially substitute mineral fertilizer in a salinized vegetable soil. Soil nutrient condition, aggregate stability, and salt movement in the soil profile were measured in a greenhouse double-cucumber system. The results showed that soil organic matter (SOM), total nitrogen (TN), and available phosphorus (AP) increased significantly under bio-organic fertilizer treatments compared with control. Soil electrical conductivity (EC) and total salt content (TSC) decreased by 15.74–24.20% and 19.15–29.05%, respectively, with bio-organic fertilizers (p < 0.05). Cl, NO3, and SO42− content under double inoculation with B. amyloliticus and T. harziensis reduced by 31.19%, 26.30%, and 53.11%, respectively, compared to CK (p < 0.05). In addition, double inoculation was more efficient in reducing nitrate content in the soil profile than single inoculation. Soil microaggregates of 0.25–0.053 mm increased by 75.87–78.51% with bio-fertilizers compared with control, and double inoculation was the best for aggregate formation. In conclusion, the inoculation of plant-growth-promoting and salt-tolerant microorganisms with high humic acid larvae frass can alleviate salinization in vegetable soil, enhance soil nutrient content, and improve the soil structure. Full article
(This article belongs to the Special Issue Advances in Soil Fertility Management for Sustainable Agriculture)
Show Figures

Figure 1

15 pages, 8945 KiB  
Article
Optimization of Callus Induction and Shoot Regeneration from Tomato Cotyledon Explants
by Olha Yaroshko, Taras Pasternak, Eduardo Larriba and José Manuel Pérez-Pérez
Plants 2023, 12(16), 2942; https://doi.org/10.3390/plants12162942 - 14 Aug 2023
Cited by 5 | Viewed by 5199
Abstract
Cultivated tomato (Solanum lycopersicum L.) is one of the most important horticultural crops in the world. The optimization of culture media for callus formation and tissue regeneration of different tomato genotypes presents numerous biotechnological applications. In this work, we have analyzed the [...] Read more.
Cultivated tomato (Solanum lycopersicum L.) is one of the most important horticultural crops in the world. The optimization of culture media for callus formation and tissue regeneration of different tomato genotypes presents numerous biotechnological applications. In this work, we have analyzed the effect of different concentrations of zeatin and indole-3-acetic acid on the regeneration of cotyledon explants in tomato cultivars M82 and Micro-Tom. We evaluated regeneration parameters such as the percentage of callus formation and the area of callus formed, as well as the initiation percentage and the number of adventitious shoots. The best hormone combination produced shoot-like structures after 2–3 weeks. We observed the formation of leaf primordia from these structures after about 3–4 weeks. Upon transferring the regenerating micro-stems to a defined growth medium, it was possible to obtain whole plantlets between 4 and 6 weeks. This hormone combination was applied to other genotypes of S. lycopersicum, including commercial varieties and ancestral tomato varieties. Our method is suitable for obtaining many plantlets of different tomato genotypes from cotyledon explants in a very short time, with direct applications for plant transformation, use of gene editing techniques, and vegetative propagation of elite cultivars. Full article
(This article belongs to the Special Issue In Vitro Morphogenesis of Plants)
Show Figures

Figure 1

28 pages, 5259 KiB  
Review
New Insights into the Latest Advancement in α-Amylase Inhibitors of Plant Origin with Anti-Diabetic Effects
by Hamdy Kashtoh and Kwang-Hyun Baek
Plants 2023, 12(16), 2944; https://doi.org/10.3390/plants12162944 - 14 Aug 2023
Cited by 22 | Viewed by 5904
Abstract
The rising predominance of type 2 diabetes, combined with the poor medical effects seen with commercially available anti-diabetic medications, has motivated the development of innovative treatment approaches for regulating postprandial glucose levels. Natural carbohydrate digestion enzyme inhibitors might be a viable option for [...] Read more.
The rising predominance of type 2 diabetes, combined with the poor medical effects seen with commercially available anti-diabetic medications, has motivated the development of innovative treatment approaches for regulating postprandial glucose levels. Natural carbohydrate digestion enzyme inhibitors might be a viable option for blocking dietary carbohydrate absorption with fewer side effects than manufactured medicines. Alpha-amylase is a metalloenzyme that facilitates digestion by breaking down polysaccharides into smaller molecules such as maltose and maltotriose. It also contributes to elevated blood glucose levels and postprandial hyperglycemia. As a result, scientists are being urged to target α-amylase and create inhibitors that can slow down the release of glucose from carbohydrate chains and prolong its absorption, thereby resulting in lower postprandial plasma glucose levels. Natural α-amylase inhibitors derived from plants have gained popularity as safe and cost-effective alternatives. The bioactive components responsible for the inhibitory actions of various plant extracts have been identified through phytochemical research, paving the way for further development and application. The majority of the findings, however, are based on in vitro investigations. Only a few animal experiments and very few human investigations have confirmed these findings. Despite some promising results, additional investigation is needed to develop feasible anti-diabetic drugs based on plant-derived pancreatic α-amylase inhibitors. This review summarizes the most recent findings from research on plant-derived pancreatic α-amylase inhibitors, including plant extracts and plant-derived bioactive compounds. Furthermore, it offers insights into the structural aspects of the crucial therapeutic target, α-amylases, in addition to their interactions with inhibitors. Full article
Show Figures

Figure 1

21 pages, 3351 KiB  
Article
Structural and Functional Analysis of the MADS-Box Genes Reveals Their Functions in Cold Stress Responses and Flower Development in Tea Plant (Camellia sinensis)
by Juan Hu, Qianqian Chen, Atif Idrees, Wanjun Bi, Zhongxiong Lai and Yun Sun
Plants 2023, 12(16), 2929; https://doi.org/10.3390/plants12162929 - 13 Aug 2023
Cited by 4 | Viewed by 1964
Abstract
MADS-box genes comprise a large family of transcription factors that play crucial roles in all aspects of plant growth and development. However, no detailed information on the evolutionary relationship and functional characterization of MADS-box genes is currently available for some representative lineages, such [...] Read more.
MADS-box genes comprise a large family of transcription factors that play crucial roles in all aspects of plant growth and development. However, no detailed information on the evolutionary relationship and functional characterization of MADS-box genes is currently available for some representative lineages, such as the Camellia plant. In this study, 136 MADS-box genes were detected from a reference genome of the tea plant (Camellia sinensis) by employing a 569 bp HMM (Hidden Markov Model) developed using nucleotide sequencing including 73 type I and 63 type II genes. An additional twenty-seven genes were identified, with five MIKC-type genes. Truncated and/or inaccurate gene models were manually verified and curated to improve their functional characterization. Subsequently, phylogenetic relationships, chromosome locations, conserved motifs, gene structures, and gene expression profiles were systematically investigated. Tea plant MIKC genes were divided into all 14 major eudicot subfamilies, and no gene was found in Mβ. The expansion of MADS-box genes in the tea plant was mainly contributed by WGD/fragment and tandem duplications. The expression profiles of tea plant MADS-box genes in different tissues and seasons were analyzed, revealing widespread evolutionary conservation and genetic redundancy. The expression profiles linked to cold stress treatments suggested the wide involvement of MADS-box genes from the tea plant in response to low temperatures. Moreover, a floral ‘ABCE’ model was proposed in the tea plant and proved to be both conserved and ancient. Our analyses offer a detailed overview of MADS-box genes in the tea plant, allowing us to hypothesize the potential functions of unknown genes and providing a foundation for further functional characterizations. Full article
(This article belongs to the Special Issue Recent Advances in Horticultural Plant Genomics)
Show Figures

Figure 1

19 pages, 3626 KiB  
Article
Salt Tolerance Evaluation of Cucumber Germplasm under Sodium Chloride Stress
by Libin Li, Lianda Du, Qiwei Cao, Zonghui Yang, Yihan Liu, Hua Yang, Xi Duan and Zhaojuan Meng
Plants 2023, 12(16), 2927; https://doi.org/10.3390/plants12162927 - 12 Aug 2023
Cited by 5 | Viewed by 1883
Abstract
Cucumber (Cucumis sativus L.) is an important horticultural crop worldwide. Sodium (Na+) and chloride (Cl) in the surface soil are the major limiting factors in coastal areas of Shandong Province in China. Therefore, to understand the mechanism used [...] Read more.
Cucumber (Cucumis sativus L.) is an important horticultural crop worldwide. Sodium (Na+) and chloride (Cl) in the surface soil are the major limiting factors in coastal areas of Shandong Province in China. Therefore, to understand the mechanism used by cucumber to adapt to sodium chloride (NaCl), we analyzed the phenotypic and physiological indicators of eighteen cucumber germplasms after three days under 100 and 150 mM NaCl treatment. A cluster analysis revealed that eighteen germplasms could be divided into five groups based on their physiological indicators. The first three groups consisted of seven salt-tolerant and medium salt-tolerant germplasms, including HLT1128h, Zhenni, and MC2065. The two remaining groups consisted of five medium salt-sensitive germplasms, including DM26h and M1-2-h-10, and six salt-sensitive germplasms including M1XT and 228. A principal component analysis revealed that the trend of comprehensive scores was consistent with the segmental cluster analysis and survival rates of cucumber seedlings. Overall, the phenotype, comprehensive survival rate, cluster analysis, and principal component analysis revealed that the salt-tolerant and salt-sensitive germplasms were Zhenni, F11-15, MC2065, M1XT, M1-2-h-10, and DM26h. The results of this study will provide references to identify or screen salt-tolerant cucumber germplasms and lay a foundation for breeding salt-tolerant cucumber varieties. Full article
(This article belongs to the Special Issue Defense Strategies of Cereals Affected by Abiotic and Biotic Stresses)
Show Figures

Figure 1

20 pages, 3643 KiB  
Article
Assessment of Soybean Lodging Using UAV Imagery and Machine Learning
by Shagor Sarkar, Jing Zhou, Andrew Scaboo, Jianfeng Zhou, Noel Aloysius and Teng Teeh Lim
Plants 2023, 12(16), 2893; https://doi.org/10.3390/plants12162893 - 8 Aug 2023
Cited by 5 | Viewed by 1842
Abstract
Plant lodging is one of the most essential phenotypes for soybean breeding programs. Soybean lodging is conventionally evaluated visually by breeders, which is time-consuming and subject to human errors. This study aimed to investigate the potential of unmanned aerial vehicle (UAV)-based imagery and [...] Read more.
Plant lodging is one of the most essential phenotypes for soybean breeding programs. Soybean lodging is conventionally evaluated visually by breeders, which is time-consuming and subject to human errors. This study aimed to investigate the potential of unmanned aerial vehicle (UAV)-based imagery and machine learning in assessing the lodging conditions of soybean breeding lines. A UAV imaging system equipped with an RGB (red-green-blue) camera was used to collect the imagery data of 1266 four-row plots in a soybean breeding field at the reproductive stage. Soybean lodging scores were visually assessed by experienced breeders, and the scores were grouped into four classes, i.e., non-lodging, moderate lodging, high lodging, and severe lodging. UAV images were stitched to build orthomosaics, and soybean plots were segmented using a grid method. Twelve image features were extracted from the collected images to assess the lodging scores of each breeding line. Four models, i.e., extreme gradient boosting (XGBoost), random forest (RF), K-nearest neighbor (KNN) and artificial neural network (ANN), were evaluated to classify soybean lodging classes. Five data preprocessing methods were used to treat the imbalanced dataset to improve classification accuracy. Results indicate that the preprocessing method SMOTE-ENN consistently performs well for all four (XGBoost, RF, KNN, and ANN) classifiers, achieving the highest overall accuracy (OA), lowest misclassification, higher F1-score, and higher Kappa coefficient. This suggests that Synthetic Minority Oversampling-Edited Nearest Neighbor (SMOTE-ENN) may be a good preprocessing method for using unbalanced datasets and the classification task. Furthermore, an overall accuracy of 96% was obtained using the SMOTE-ENN dataset and ANN classifier. The study indicated that an imagery-based classification model could be implemented in a breeding program to differentiate soybean lodging phenotype and classify lodging scores effectively. Full article
(This article belongs to the Special Issue Advances in Sensor Systems and Data Analysis for Crop Phenotyping)
Show Figures

Figure 1

18 pages, 15630 KiB  
Article
YOLOv7-Plum: Advancing Plum Fruit Detection in Natural Environments with Deep Learning
by Rong Tang, Yujie Lei, Beisiqi Luo, Junbo Zhang and Jiong Mu
Plants 2023, 12(15), 2883; https://doi.org/10.3390/plants12152883 - 7 Aug 2023
Cited by 9 | Viewed by 2366
Abstract
The plum is a kind of delicious and common fruit with high edible value and nutritional value. The accurate and effective detection of plum fruit is the key to fruit number counting and pest and disease early warning. However, the actual plum orchard [...] Read more.
The plum is a kind of delicious and common fruit with high edible value and nutritional value. The accurate and effective detection of plum fruit is the key to fruit number counting and pest and disease early warning. However, the actual plum orchard environment is complex, and the detection of plum fruits has many problems, such as leaf shading and fruit overlapping. The traditional method of manually estimating the number of fruits and the presence of pests and diseases used in the plum growing industry has disadvantages, such as low efficiency, a high cost, and low accuracy. To detect plum fruits quickly and accurately in a complex orchard environment, this paper proposes an efficient plum fruit detection model based on an improved You Only Look Once version 7(YOLOv7). First, different devices were used to capture high-resolution images of plum fruits growing under natural conditions in a plum orchard in Gulin County, Sichuan Province, and a dataset for plum fruit detection was formed after the manual screening, data enhancement, and annotation. Based on the dataset, this paper chose YOLOv7 as the base model, introduced the Convolutional Block Attention Module (CBAM) attention mechanism in YOLOv7, used Cross Stage Partial Spatial Pyramid Pooling–Fast (CSPSPPF) instead of Cross Stage Partial Spatial Pyramid Pooling(CSPSPP) in the network, and used bilinear interpolation to replace the nearest neighbor interpolation in the original network upsampling module to form the improved target detection algorithm YOLOv7-plum. The tested YOLOv7-plum model achieved an average precision (AP) value of 94.91%, which was a 2.03% improvement compared to the YOLOv7 model. In order to verify the effectiveness of the YOLOv7-plum algorithm, this paper evaluated the performance of the algorithm through ablation experiments, statistical analysis, etc. The experimental results showed that the method proposed in this study could better achieve plum fruit detection in complex backgrounds, which helped to promote the development of intelligent cultivation in the plum industry. Full article
(This article belongs to the Collection Application of AI in Plants)
Show Figures

Figure 1

30 pages, 1862 KiB  
Article
Genebanks at Risk: Hazard Assessment and Risk Management of National and International Genebanks
by Theresa Herbold and Johannes M. M. Engels
Plants 2023, 12(15), 2874; https://doi.org/10.3390/plants12152874 - 4 Aug 2023
Cited by 3 | Viewed by 2544
Abstract
Genebanks are crucial for safeguarding global crop diversity but are themselves exposed to several risks. However, a scientific basis for identifying, assessing, and managing risks is still lacking. Addressing these research gaps, this study provides risk analysis for three key risk groups: natural [...] Read more.
Genebanks are crucial for safeguarding global crop diversity but are themselves exposed to several risks. However, a scientific basis for identifying, assessing, and managing risks is still lacking. Addressing these research gaps, this study provides risk analysis for three key risk groups: natural hazards, political risks, and financial risks, carried out on a sample of 80 important national and international genebanks, comprising at least 4.78 million accessions or roughly 65% of the reported total of ex situ conserved accessions worldwide. The assessment tool of Munich Re “Natural Hazards Edition” allowed a location-specific comparison of the natural hazard exposure. Results showed that genebanks in the Asia-Pacific region are most exposed to natural hazards, while institutions in African and some Asian countries are rather vulnerable to political risks. Financing is a major problem for national genebanks in developing countries, whereas the Global Crop Diversity Trust achieved considerable financial security for international genebanks. Large differences in the risk exposure of genebanks exist, making a location- and institution-specific risk assessment indispensable. Moreover, there is significant room for improvement with respect to quality and risk management at genebanks. Transferring risks of genebanks to third parties is underdeveloped and should be used more widely. Full article
Show Figures

Figure 1

23 pages, 1795 KiB  
Review
Insights into Grape Ripe Rot: A Focus on the Colletotrichum gloeosporioides Species Complex and Its Management Strategies
by Ting-Fang Hsieh, Yuan-Min Shen, Jin-Hsing Huang, Jyh-Nong Tsai, Ming-Te Lu and Chu-Ping Lin
Plants 2023, 12(15), 2873; https://doi.org/10.3390/plants12152873 - 4 Aug 2023
Cited by 6 | Viewed by 2198
Abstract
Grape ripe rot, which is predominantly caused by the Colletotrichum species, presents a growing threat to global grape cultivation. This threat is amplified by the increasing populations of the Colletotrichum species in response to warmer climates. In this review, we investigate the wide-ranging [...] Read more.
Grape ripe rot, which is predominantly caused by the Colletotrichum species, presents a growing threat to global grape cultivation. This threat is amplified by the increasing populations of the Colletotrichum species in response to warmer climates. In this review, we investigate the wide-ranging spectrum of grape ripe rot, specifically highlighting the role and characteristics of the C. gloeosporioides species complex (CGSC). We incorporate this understanding as we explore the diverse symptoms that lead to infected grapevines, their intricate life cycle and epidemiology, and the escalating prevalence of C. viniferum in Asia and globally. Furthermore, we delve into numerous disease management strategies, both conventional and emerging, such as prevention and mitigation measures. These strategies include the examination of host resistances, beneficial cultivation practices, sanitation measures, microbiome health maintenance, fungicide choice and resistance, as well as integrated management approaches. This review seeks to enhance our understanding of this globally significant disease, aspiring to assist in the development and improvement of effective prevention and control strategies. Full article
(This article belongs to the Special Issue Interactions between Colletotrichum Species and Plants III)
Show Figures

Figure 1

29 pages, 1926 KiB  
Review
Phosphorus Plays Key Roles in Regulating Plants’ Physiological Responses to Abiotic Stresses
by Fahad Khan, Abu Bakar Siddique, Sergey Shabala, Meixue Zhou and Chenchen Zhao
Plants 2023, 12(15), 2861; https://doi.org/10.3390/plants12152861 - 3 Aug 2023
Cited by 64 | Viewed by 15519
Abstract
Phosphorus (P), an essential macronutrient, plays a pivotal role in the growth and development of plants. However, the limited availability of phosphorus in soil presents significant challenges for crop productivity, especially when plants are subjected to abiotic stresses such as drought, salinity and [...] Read more.
Phosphorus (P), an essential macronutrient, plays a pivotal role in the growth and development of plants. However, the limited availability of phosphorus in soil presents significant challenges for crop productivity, especially when plants are subjected to abiotic stresses such as drought, salinity and extreme temperatures. Unraveling the intricate mechanisms through which phosphorus participates in the physiological responses of plants to abiotic stresses is essential to ensure the sustainability of agricultural production systems. This review aims to analyze the influence of phosphorus supply on various aspects of plant growth and plant development under hostile environmental conditions, with a special emphasis on stomatal development and operation. Furthermore, we discuss recently discovered genes associated with P-dependent stress regulation and evaluate the feasibility of implementing P-based agricultural practices to mitigate the adverse effects of abiotic stress. Our objective is to provide molecular and physiological insights into the role of P in regulating plants’ tolerance to abiotic stresses, underscoring the significance of efficient P use strategies for agricultural sustainability. The potential benefits and limitations of P-based strategies and future research directions are also discussed. Full article
(This article belongs to the Special Issue Stomatal Activities in Abiotic Stress Tolerant Wild Relatives of Crop)
Show Figures

Figure 1

19 pages, 1374 KiB  
Review
Unraveling the Mechanisms of Virus-Induced Symptom Development in Plants
by Tong Jiang and Tao Zhou
Plants 2023, 12(15), 2830; https://doi.org/10.3390/plants12152830 - 31 Jul 2023
Cited by 9 | Viewed by 3673
Abstract
Plant viruses, as obligate intracellular parasites, induce significant changes in the cellular physiology of host cells to facilitate their multiplication. These alterations often lead to the development of symptoms that interfere with normal growth and development, causing USD 60 billion worth of losses [...] Read more.
Plant viruses, as obligate intracellular parasites, induce significant changes in the cellular physiology of host cells to facilitate their multiplication. These alterations often lead to the development of symptoms that interfere with normal growth and development, causing USD 60 billion worth of losses per year, worldwide, in both agricultural and horticultural crops. However, existing literature often lacks a clear and concise presentation of the key information regarding the mechanisms underlying plant virus-induced symptoms. To address this, we conducted a comprehensive review to highlight the crucial interactions between plant viruses and host factors, discussing key genes that increase viral virulence and their roles in influencing cellular processes such as dysfunction of chloroplast proteins, hormone manipulation, reactive oxidative species accumulation, and cell cycle control, which are critical for symptom development. Moreover, we explore the alterations in host metabolism and gene expression that are associated with virus-induced symptoms. In addition, the influence of environmental factors on virus-induced symptom development is discussed. By integrating these various aspects, this review provides valuable insights into the complex mechanisms underlying virus-induced symptoms in plants, and emphasizes the urgency of addressing viral diseases to ensure sustainable agriculture and food production. Full article
(This article belongs to the Topic Plant Virus)
Show Figures

Figure 1

17 pages, 5233 KiB  
Article
Enhancing the Adaptability of Tea Plants (Camellia sinensis L.) to High-Temperature Stress with Small Peptides and Biosurfactants
by Hao Chen, Yujie Song, He Li, Shah Zaman, Kai Fan, Zhaotang Ding and Yu Wang
Plants 2023, 12(15), 2817; https://doi.org/10.3390/plants12152817 - 29 Jul 2023
Cited by 3 | Viewed by 2269
Abstract
Tea plants are highly susceptible to the adverse effects of a high-temperature climate, which can cause reduced yield and quality and even lead to plant death in severe cases. Therefore, reducing the damage caused by high-temperature stress and maintaining the photosynthetic capacity of [...] Read more.
Tea plants are highly susceptible to the adverse effects of a high-temperature climate, which can cause reduced yield and quality and even lead to plant death in severe cases. Therefore, reducing the damage caused by high-temperature stress and maintaining the photosynthetic capacity of tea plants is a critical technical challenge. In this study, we investigated the impact of small oligopeptides (small peptides) and surfactants on the high-temperature-stress tolerance of tea plants. Our findings demonstrated that the use of small peptides and surfactants enhances the antioxidant capacity of tea plants and protects their photosynthetic system. They also induce an increase in gibberellin (GA) content and a decrease in jasmonic acid (JA), strigolactone (SL), auxin (IAA), and cytokinin (CTK) content. At the same time, small peptides regulate the metabolic pathways of diterpenoid biosynthesis. Additionally, small peptides and surfactants induce an increase in L-Carnosine and N-Glycyl-L-Leucine content and a decrease in (5-L-Glutamyl)-L-Amino Acid content, and they also regulate the metabolic pathways of Beta-Alanine metabolism, Thiamine metabolism, and Glutathione metabolism. In summary, small peptides and surfactants enhance the ability of tea plants to resist high-temperature stress. Full article
(This article belongs to the Special Issue Tea Plants Response to Abiotic Stress)
Show Figures

Figure 1

17 pages, 10662 KiB  
Article
Overexpression of OsPIN9 Impairs Chilling Tolerance via Disturbing ROS Homeostasis in Rice
by Qiqi Ouyang, Yanwen Zhang, Xiaoyi Yang, Chong Yang, Dianyun Hou, Hao Liu and Huawei Xu
Plants 2023, 12(15), 2809; https://doi.org/10.3390/plants12152809 - 28 Jul 2023
Cited by 4 | Viewed by 1647
Abstract
The auxin efflux transporter PIN-FORMED (PIN) family is one of the major protein families that facilitates polar auxin transport in plants. Here, we report that overexpression of OsPIN9 leads to altered plant architecture and chilling tolerance in rice. The expression profile analysis indicated [...] Read more.
The auxin efflux transporter PIN-FORMED (PIN) family is one of the major protein families that facilitates polar auxin transport in plants. Here, we report that overexpression of OsPIN9 leads to altered plant architecture and chilling tolerance in rice. The expression profile analysis indicated that OsPIN9 was gradually suppressed by chilling stress. The shoot height and adventitious root number of OsPIN9-overexpressing (OE) plants were significantly reduced at the seedling stage. The roots of OE plants were more tolerant to N-1-naphthylphthalamic acid (NPA) treatment than WT plants, indicating the disturbance of auxin homeostasis in OE lines. The chilling tolerance assay showed that the survival rate of OE plants was markedly lower than that of wild-type (WT) plants. Consistently, more dead cells, increased electrolyte leakage, and increased malondialdehyde (MDA) content were observed in OE plants compared to those in WT plants under chilling conditions. Notably, OE plants accumulated more hydrogen peroxide (H2O2) and less superoxide anion radicals (O2) than WT plants under chilling conditions. In contrast, catalase (CAT) and superoxide dismutase (SOD) activities in OE lines decreased significantly compared to those in WT plants at the early chilling stage, implying that the impaired chilling tolerance of transgenic plants is probably attributed to the sharp induction of H2O2 and the delayed induction of antioxidant enzyme activities at this stage. In addition, several OsRboh genes, which play a crucial role in ROS production under abiotic stress, showed an obvious increase after chilling stress in OE plants compared to that in WT plants, which probably at least in part contributes to the production of ROS under chilling stress in OE plants. Together, our results reveal that OsPIN9 plays a vital role in regulating plant architecture and, more importantly, is involved in regulating rice chilling tolerance by influencing auxin and ROS homeostasis. Full article
(This article belongs to the Special Issue Abiotic Stress of Crops: Molecular Genetics and Genomics)
Show Figures

Figure 1

23 pages, 3580 KiB  
Article
The Knockdown of AUXIN RESPONSE FACTOR 2 Confers Enhanced Tolerance to Salt and Drought Stresses in Tomato (Solanum lycopersicum L.)
by Ibtihaj El Mamoun, Sarah Bouzroud, Mohamed Zouine and Abdelaziz Smouni
Plants 2023, 12(15), 2804; https://doi.org/10.3390/plants12152804 - 28 Jul 2023
Cited by 8 | Viewed by 1463
Abstract
Auxin response factors (ARFs) act as key elements of the auxin-signaling pathway and play important roles in the process of a plant’s growth, development, and response to environmental conditions. We studied the implication of the SlARF2 gene in the tomato response [...] Read more.
Auxin response factors (ARFs) act as key elements of the auxin-signaling pathway and play important roles in the process of a plant’s growth, development, and response to environmental conditions. We studied the implication of the SlARF2 gene in the tomato response to salt (150 mM of NaCl) and drought (15% PEG 20000) stresses. The functional characterization of SlARF2 knockdown tomato mutants revealed that the downregulation of this gene enhanced primary root length and root branching and reduced plant wilting. At the physiological level, the arf2 mutant line displayed higher chlorophyll, soluble sugars, proline, and relative water contents as well as lower stomatal conductance and a decreased malondialdehyde content. Moreover, SlARF2 knockdown tomato mutants demonstrated higher activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) under salt and drought stresses than the wild type. Indeed, the stress tolerance of the arf2 mutant was also reflected by the upregulation of stress-related genes involved in ROS scavenging and plant defense, including SOD, CAT, dehydration-responsive element-binding protein, and early responsive to dehydration, which can ultimately result in a better resistance to salt and drought stresses. Furthermore, the transcriptional levels of the Δ1-pyrroline-5-carboxylate synthase (P5CS) gene were upregulated in the arf2 mutant after stress, in correlation with the higher levels of proline. Taken together, our findings reveal that SlARF2 is implicated in salt and drought tolerance in tomato and provides some considerable elements for improving the abiotic stress tolerance and increasing the crop yields of tomato. Full article
Show Figures

Figure 1

25 pages, 10856 KiB  
Review
Overview and Management of the Most Common Eukaryotic Diseases of Flax (Linum usitatissimum)
by Julie Moyse, Sylvain Lecomte, Shirley Marcou, Gaëlle Mongelard, Laurent Gutierrez and Monica Höfte
Plants 2023, 12(15), 2811; https://doi.org/10.3390/plants12152811 - 28 Jul 2023
Cited by 4 | Viewed by 2667
Abstract
Flax is an important crop cultivated for its seeds and fibers. It is widely grown in temperate regions, with an increase in cultivation areas for seed production (linseed) in the past 50 years and for fiber production (fiber flax) in the last decade. [...] Read more.
Flax is an important crop cultivated for its seeds and fibers. It is widely grown in temperate regions, with an increase in cultivation areas for seed production (linseed) in the past 50 years and for fiber production (fiber flax) in the last decade. Among fiber-producing crops, fiber flax is the most valuable species. Linseed is the highest omega-3 oleaginous crop, and its consumption provides several benefits for animal and human health. However, flax production is impacted by various abiotic and biotic factors that affect yield and quality. Among biotic factors, eukaryotic diseases pose a significant threat to both seed production and fiber quality, which highlights the economic importance of controlling these diseases. This review focuses on the major eukaryotic diseases that affect flax in the field, describing the pathogens, their transmission modes and the associated plant symptoms. Moreover, this article aims to identify the challenges in disease management and provide future perspectives to overcome these biotic stresses in flax cultivation. By emphasizing the key diseases and their management, this review can aid in promoting sustainable and profitable flax production. Full article
(This article belongs to the Special Issue Flax: A Traditional Culture with Modern Advantages)
Show Figures

Graphical abstract

17 pages, 3106 KiB  
Article
Putative Daucus carota Capsanthin-Capsorubin Synthase (DcCCS) Possesses Lycopene β-Cyclase Activity, Boosts Carotenoid Levels, and Increases Salt Tolerance in Heterologous Plants
by Carolina Rosas-Saavedra, Luis Felipe Quiroz, Samuel Parra, Christian Gonzalez-Calquin, Daniela Arias, Nallat Ocarez, Franco Lopez and Claudia Stange
Plants 2023, 12(15), 2788; https://doi.org/10.3390/plants12152788 - 27 Jul 2023
Cited by 5 | Viewed by 1413
Abstract
Plant carotenoids are synthesized and accumulated in plastids through a highly regulated pathway. Lycopene β-cyclase (LCYB) is a key enzyme involved directly in the synthesis of α-carotene and β-carotene through the cyclization of trans-lycopene. Daucus carota harbors two LCYB genes, of which DcLCYB2 [...] Read more.
Plant carotenoids are synthesized and accumulated in plastids through a highly regulated pathway. Lycopene β-cyclase (LCYB) is a key enzyme involved directly in the synthesis of α-carotene and β-carotene through the cyclization of trans-lycopene. Daucus carota harbors two LCYB genes, of which DcLCYB2 (annotated as CCS-Like) is mostly expressed in mature storage roots, an organ that accumulates high α-carotene and β-carotene content. In this work, we determined that DcLCYB2 of the orange Nantes variety presents plastid localization and encodes for a functional LCYB enzyme determined by means of heterologous complementation in Escherichia coli. Also, ectopic expression of DcLCYB2 in tobacco (Nicotiana tabacum) and kiwi (Actinidia deliciosa) plants increases total carotenoid content showing its functional role in plants. In addition, transgenic tobacco T2 homozygous plants showed better performance under chronic salt treatment, while kiwi transgenic calli also presented a higher survival rate under salt treatments than control calli. Our results allow us to propose DcLCYB2 as a prime candidate to engineer carotenoid biofortified crops as well as crops resilient to saline environments. Full article
Show Figures

Figure 1

22 pages, 8276 KiB  
Article
Salicylic Acid as a Salt Stress Mitigator on Chlorophyll Fluorescence, Photosynthetic Pigments, and Growth of Precocious-Dwarf Cashew in the Post-Grafting Phase
by Thiago Filipe de Lima Arruda, Geovani Soares de Lima, André Alisson Rodrigues da Silva, Carlos Alberto Vieira de Azevedo, Allesson Ramos de Souza, Lauriane Almeida dos Anjos Soares, Hans Raj Gheyi, Vera Lúcia Antunes de Lima, Pedro Dantas Fernandes, Francisco de Assis da Silva, Mirandy dos Santos Dias, Lucia Helena Garófalo Chaves and Luciano Marcelo Fallé Saboya
Plants 2023, 12(15), 2783; https://doi.org/10.3390/plants12152783 - 27 Jul 2023
Cited by 8 | Viewed by 1265
Abstract
Salicylic acid is a phytohormone that has been used to mitigate the effects of saline stress on plants. In this context, the objective was to evaluate the effect of salicylic acid as a salt stress attenuator on the physiology and growth of precocious-dwarf [...] Read more.
Salicylic acid is a phytohormone that has been used to mitigate the effects of saline stress on plants. In this context, the objective was to evaluate the effect of salicylic acid as a salt stress attenuator on the physiology and growth of precocious-dwarf cashew plants in the post-grafting phase. The study was carried out in a plant nursery using a randomized block design in a 5 × 4 factorial arrangement corresponding to five electrical conductivity levels of irrigation water (0.4, 1.2, 2.0, 2.8, and 3.6 dS m−1) and four salicylic acid concentrations (0, 1.0, 2.0, and 3.0 mM), with three replications. Irrigation water with electrical conductivity levels above 0.4 dS m−1 negatively affected the relative water content in the leaf blade, photosynthetic pigments, the fluorescence of chlorophyll a, and plant growth and increased electrolyte leakage in the leaf blade of precocious-dwarf cashew plants in the absence of salicylic acid. It was verified through the regression analysis that salicylic acid at a concentration of 1.1 mM attenuated the effects of salt stress on the relative water content and electrolyte leakage in the leaf blade, while the concentration of 1.7 mM increased the synthesis of photosynthetic pigments in precocious-dwarf cashew plants. Full article
(This article belongs to the Special Issue Strategies to Improve Water-Use Efficiency in Plant Production)
Show Figures

Figure 1

15 pages, 2793 KiB  
Article
Effects of Different Heating Treatments on the Antioxidant Activity and Phenolic Compounds of Ecuadorian Red Dacca Banana
by Diego Armando Tuárez-García, Hugo Galván-Gámez, Cyntia Yadira Erazo Solórzano, Carlos Edison Zambrano, Raquel Rodríguez-Solana, Gema Pereira-Caro, Mónica Sánchez-Parra, José M. Moreno-Rojas and José L. Ordóñez-Díaz
Plants 2023, 12(15), 2780; https://doi.org/10.3390/plants12152780 - 27 Jul 2023
Cited by 6 | Viewed by 1694
Abstract
The banana is a tropical fruit characterized by its composition of healthy and nutritional compounds. This fruit is part of traditional Ecuadorian gastronomy, being consumed in a wide variety of ways. In this context, unripe Red Dacca banana samples and those submitted to [...] Read more.
The banana is a tropical fruit characterized by its composition of healthy and nutritional compounds. This fruit is part of traditional Ecuadorian gastronomy, being consumed in a wide variety of ways. In this context, unripe Red Dacca banana samples and those submitted to different traditional Ecuadorian heating treatments (boiling, roasting, and baking) were evaluated to profile their phenolic content by ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) and the antioxidant activity by ORAC, ABTS, and DPPH assays. A total of sixty-eight phenolic compounds were identified or tentatively identified in raw banana and treated samples, highlighting the content in flavonoids (flavan-3-ols with 88.33% and flavonols with 3.24%) followed by the hydroxybenzoic acid family (5.44%) in raw banana samples. The total phenolic compound content significantly decreased for all the elaborations evaluated, specifically from 442.12 mg/100 g DW in fresh bananas to 338.60 mg/100 g DW in boiled (23.41%), 243.63 mg/100 g DW in roasted (44.90%), and 109.85 mg/100 g DW in baked samples (75.15%). Flavan-3-ols and flavonols were the phenolic groups most affected by the heating treatments, while flavanones and hydroxybenzoic acids showed higher stability against the heating treatments, especially the boiled and roasted samples. In general, the decrease in phenolic compounds corresponded with a decline in antioxidant activity, evaluated by different methods, especially in baked samples. The results obtained from PCA studies confirmed that the impact of heating on the composition of some phenolic compounds was different depending on the technique used. In general, the heating processes applied to the banana samples induced phytochemical modifications. Even so, they remain an important source of bioactive compounds for consumers. Full article
Show Figures

Figure 1

15 pages, 637 KiB  
Article
Comparing the Salt Tolerance of Different Spring Soybean Varieties at the Germination Stage
by Xinyu Zhou, Yumei Tian, Zhipeng Qu, Jinxing Wang, Dezhi Han and Shoukun Dong
Plants 2023, 12(15), 2789; https://doi.org/10.3390/plants12152789 - 27 Jul 2023
Cited by 9 | Viewed by 2369
Abstract
Salinization is a global agricultural problem with many negative effects on crops, including delaying germination, inhibiting growth, and reducing crop yield and quality. This study compared the salt tolerance of 20 soybean varieties at the germination stage to identify soybean germplasm with a [...] Read more.
Salinization is a global agricultural problem with many negative effects on crops, including delaying germination, inhibiting growth, and reducing crop yield and quality. This study compared the salt tolerance of 20 soybean varieties at the germination stage to identify soybean germplasm with a high salt tolerance. Germination tests were conducted in Petri dishes containing 0, 50, 100, 150, and 200 mmol L−1 NaCl. Each Petri dish contained 20 soybean seeds, and each treatment was repeated five times. The indicators of germination potential, germination rate, hypocotyl length, and radicle length were measured. The salt tolerance of 20 soybean varieties was graded, and the theoretical identification concentration was determined by cluster analysis, the membership function method, one-way analysis of variance, and quadratic equation analysis. The relative germination rate, relative germination potential, relative root length, and relative bud length of the 20 soybean germplasms decreased when the salt concentration was >50 mmol L−1, compared with that of the Ctrl. The half-lethal salt concentration of soybean was 164.50 mmol L−1, and the coefficient of variation was 18.90%. Twenty soybean varieties were divided into three salt tolerance levels following cluster analysis: Dongnong 254, Heike 123, Heike 58, Heihe 49, and Heike 68 were salt-tolerant varieties, and Xihai 2, Suinong 94, Kenfeng 16, and Heinong 84 were salt-sensitive varieties, respectively. This study identified suitable soybean varieties for planting in areas severely affected by salt and provided materials for screening and extracting parents or genes to breed salt-tolerant varieties in areas where direct planting is impossible. It assists crop breeding at the molecular level to cope with increasingly serious salt stress. Full article
Show Figures

Figure 1

21 pages, 1872 KiB  
Review
Unveiling Plant-Based Pectins: Exploring the Interplay of Direct Effects, Fermentation, and Technological Applications in Clinical Research with a Focus on the Chemical Structure
by Lucas de Freitas Pedrosa, Karen Rebouças Nascimento, Caroline Giacomelli Soares, Débora Preceliano de Oliveira, Paul de Vos and João Paulo Fabi
Plants 2023, 12(14), 2750; https://doi.org/10.3390/plants12142750 - 24 Jul 2023
Cited by 7 | Viewed by 2499
Abstract
Pectin, a plant-derived polysaccharide, possesses immense technological and biological application value. Several variables influence pectin’s physicochemical aspects, resulting in different fermentations, interactions with receptors, and other functional properties. Some of those variables are molecular weight, degree of methylation and blockiness, and monosaccharide composition. [...] Read more.
Pectin, a plant-derived polysaccharide, possesses immense technological and biological application value. Several variables influence pectin’s physicochemical aspects, resulting in different fermentations, interactions with receptors, and other functional properties. Some of those variables are molecular weight, degree of methylation and blockiness, and monosaccharide composition. Cancer cell cytotoxicity, important fermentation-related byproducts, immunomodulation, and technological application were found in cell culture, animal models, and preclinical and clinical assessments. One of the greater extents of recent pectin technological usage involves nanoencapsulation methods for many different compounds, ranging from chemotherapy and immunotherapy to natural extracts from fruits and other sources. Structural modification (modified pectin) is also utilized to enhance the use of dietary fiber. Although pectin is already recognized as a component of significant importance, there is still a need for a comprehensive review that delves into its intricate relationships with biological effects, which depend on the source and structure of pectin. This review covers all levels of clinical research, including cell culture, animal studies, and clinical trials, to understand how the plant source and pectin structures influence the biological effects in humans and some technological applications of pectin regarding human health. Full article
Show Figures

Figure 1

16 pages, 1182 KiB  
Article
Carbon Storage in Different Compartments in Eucalyptus Stands and Native Cerrado Vegetation
by Fabiana Piontekowski Ribeiro, Alcides Gatto, Alexsandra Duarte de Oliveira, Karina Pulrolnik, Marco Bruno Xavier Valadão, Juliana Baldan Costa Neves Araújo, Arminda Moreira de Carvalho and Eloisa Aparecida Belleza Ferreira
Plants 2023, 12(14), 2751; https://doi.org/10.3390/plants12142751 - 24 Jul 2023
Cited by 3 | Viewed by 3007
Abstract
This study evaluated Carbon (C) storage in different compartments in eucalyptus stands and native Cerrado vegetation. To determine C above ground, an inventory was carried out in the areas where diameter at breast height (DBH), diameter at base height (Db), and total tree [...] Read more.
This study evaluated Carbon (C) storage in different compartments in eucalyptus stands and native Cerrado vegetation. To determine C above ground, an inventory was carried out in the areas where diameter at breast height (DBH), diameter at base height (Db), and total tree height (H) were measured. In the stands, the rigorous cubage was made by the direct method, and in the native vegetation, it was determined by the indirect method through an allometric equation. Roots were collected by direct method using circular monoliths to a depth of 60 cm and determined by the volume of the cylinder. Samples were collected up to 100 cm deep to estimate C stock in the soil. All samples collected directly had C determined using the CHNS elemental analyzer. Gas samples were collected using a manually closed chamber, and the gas concentration was determined by gas chromatography. The results indicate high C storage in the studied areas > 183.99 Mg ha−1, could contribute to CO2 mitigation > 674.17 Mg ha−1. In addition to low emissions (<1 kg ha−1 yr−1) for the three evaluated areas, with no statistical difference in relation to the Global Warming Potential. Concerning the native cerrado vegetation conversion, the “4-year-old eucalyptus stand” seemed to restore the original soil carbon stocks in the first-meter depth, regardless of some losses that might have occurred right after establishment. Conversely, a significant loss of carbon in the soil was observed due to the alternative setting, where similar natural land was converted into agriculture, mostly soybean, and then, years later, turned into the “6-year-old eucalyptus stand” (28.43 Mg ha−1). Under this study, these mixed series of C baselines in landscape transitions have reflected on unlike C dynamics outcomes, whereas at the bottom line, total C stocks were higher in the younger forest (4-year-old stand). Therefore, our finding indicates that we should be thoughtful regarding upscaling carbon emissions and sequestration from small-scale measurements to regional scales Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Graphical abstract

42 pages, 25055 KiB  
Article
Impacts of Anthropogenic Activities and Climate Change on Forage Nutrition Storage in Tibetan Grasslands
by Shaowei Li and Gang Fu
Plants 2023, 12(14), 2735; https://doi.org/10.3390/plants12142735 - 23 Jul 2023
Cited by 8 | Viewed by 1321
Abstract
Uncertainties about the impacts of anthropogenic activities and climate change on forage nutrition storage of grasslands can limit the adaptive management of grasslands across the whole Tibetan Plateau. The main objective was to investigate the impacts of anthropogenic activities and climate change on [...] Read more.
Uncertainties about the impacts of anthropogenic activities and climate change on forage nutrition storage of grasslands can limit the adaptive management of grasslands across the whole Tibetan Plateau. The main objective was to investigate the impacts of anthropogenic activities and climate change on the forage nutrition storage of grasslands on the Tibetan Plateau. Based on random forest models, we quantified the responses of forage nutrition storage to anthropogenic activities and climate change across the whole Tibetan grasslands from 2000 to 2020. Warming and increased precipitation did not always increase forage nutrition storage, and cooling and decreased precipitation did not always reduce forage nutrition storage. Compared to temperature and precipitation changes, radiation change had stronger contributions to potential and actual forage nutrition storage. Humankind’s activities altered the impacts of climate change on forage nutrition storage. The impacts of anthropogenic activities on forage nutrition storage increased linearly with increasing mean annual temperature and decreasing elevation but showed quadratic relationships with longitude, mean annual precipitation and radiation. The change in the impacts of humankind’s activities on forage nutrition storage was more closely related to radiation change than temperature and precipitation changes. The findings observed by this study caution that the impacts of radiation change on forage nutrition forage should be taken seriously under global change. Both climate change and humankind activities cannot always increase forage nutrition storage but may cause the degradation of forage nutrition storage. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

36 pages, 1502 KiB  
Review
Soil and Phytomicrobiome for Plant Disease Suppression and Management under Climate Change: A Review
by Wen Chen, Dixi Modi and Adeline Picot
Plants 2023, 12(14), 2736; https://doi.org/10.3390/plants12142736 - 23 Jul 2023
Cited by 16 | Viewed by 8881
Abstract
The phytomicrobiome plays a crucial role in soil and ecosystem health, encompassing both beneficial members providing critical ecosystem goods and services and pathogens threatening food safety and security. The potential benefits of harnessing the power of the phytomicrobiome for plant disease suppression and [...] Read more.
The phytomicrobiome plays a crucial role in soil and ecosystem health, encompassing both beneficial members providing critical ecosystem goods and services and pathogens threatening food safety and security. The potential benefits of harnessing the power of the phytomicrobiome for plant disease suppression and management are indisputable and of interest in agriculture but also in forestry and landscaping. Indeed, plant diseases can be mitigated by in situ manipulations of resident microorganisms through agronomic practices (such as minimum tillage, crop rotation, cover cropping, organic mulching, etc.) as well as by applying microbial inoculants. However, numerous challenges, such as the lack of standardized methods for microbiome analysis and the difficulty in translating research findings into practical applications are at stake. Moreover, climate change is affecting the distribution, abundance, and virulence of many plant pathogens, while also altering the phytomicrobiome functioning, further compounding disease management strategies. Here, we will first review literature demonstrating how agricultural practices have been found effective in promoting soil health and enhancing disease suppressiveness and mitigation through a shift of the phytomicrobiome. Challenges and barriers to the identification and use of the phytomicrobiome for plant disease management will then be discussed before focusing on the potential impacts of climate change on the phytomicrobiome functioning and disease outcome. Full article
(This article belongs to the Special Issue Phytomicrobiome Research for Disease and Pathogen Management)
Show Figures

Figure 1

17 pages, 1487 KiB  
Article
Physico-Chemical Properties, Fatty Acids Profile, and Economic Properties of Raspberry (Rubus idaeus L.) Seed Oil, Extracted in Various Ways
by Audrone Ispiryan, Ramune Bobinaite, Dalia Urbonaviciene, Kristina Sermuksnyte-Alesiuniene, Pranas Viskelis, Astrida Miceikiene and Jonas Viskelis
Plants 2023, 12(14), 2706; https://doi.org/10.3390/plants12142706 - 20 Jul 2023
Cited by 6 | Viewed by 1646
Abstract
In Europe, the green course is becoming increasingly relevant, and there are more and more suggestions for its improvement. The valorization of food waste attracts increasing attention and is one important current research area. The aim of this study was to examine oils [...] Read more.
In Europe, the green course is becoming increasingly relevant, and there are more and more suggestions for its improvement. The valorization of food waste attracts increasing attention and is one important current research area. The aim of this study was to examine oils from 16 raspberry variety seeds and to compare their yields and fatty acid contents. The next task was to extract oil from the raspberry variety ‘Polka’ by four different methods and to compare the yield, colors, fatty acids content and composition, and kinematic and dynamic viscosity. The last task was to analyze the economic profitability of oil extraction by different methods. This study demonstrates the potential of different varieties of raspberry by-products and shows the influence of different oil extraction methods on the fatty acid composition of the oil and the economic potential of such products. The analysis revealed that the predominating fatty acid in the raspberry variety ‘Polka’ seed oil was linoleic acid (44.0–44.8%), followed by α-linolenic acid (37.9–38.1%) and oleic acid (10.2–10.6%). Of the 16 raspberry cultivars tested, ‘Polka’ seed oil had the least linoleic (ω-6) (44.79%) and the most α-linolenic (ω-3) fatty acids and the best ratio of ω-6 to ω-3 fatty acids—1.2:1. Raspberry variety ‘Polka’ seed oil contains a lot of carotenoids; their total amount depending on the extraction method varies from 0.81 mg/100 g (extracted with subcritical CO2) to 3.25 mg/100 g (extracted with supercritical CO2). The oil yield can be increased by grinding the seeds into a finer fraction. The most expensive method of oil production is supercritical CO2 extraction, and the cheapest method with the fastest payback of equipment is the cold-pressing method. The results of the research have revealed the influence of different oil recovery methods on the yield of oil, the composition of the fatty acid, colors, and viscosity. The results are very important for producers wishing to commercialize raspberry seed oil. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Graphical abstract

16 pages, 2919 KiB  
Article
A Genome-Wide Association Study Reveals Region Associated with Seed Protein Content in Cowpea
by Yilin Chen, Haizheng Xiong, Waltram Ravelombola, Gehendra Bhattarai, Casey Barickman, Ibtisam Alatawi, Theresa Makawa Phiri, Kenani Chiwina, Beiquan Mou, Shyam Tallury and Ainong Shi
Plants 2023, 12(14), 2705; https://doi.org/10.3390/plants12142705 - 20 Jul 2023
Cited by 4 | Viewed by 2160
Abstract
Cowpea (Vigna unguiculata L. Walp., 2n = 2x = 22) is a protein-rich crop that complements staple cereals for humans and serves as fodder for livestock. It is widely grown in Africa and other developing countries as the primary source [...] Read more.
Cowpea (Vigna unguiculata L. Walp., 2n = 2x = 22) is a protein-rich crop that complements staple cereals for humans and serves as fodder for livestock. It is widely grown in Africa and other developing countries as the primary source of protein in the diet; therefore, it is necessary to identify the protein-related loci to improve cowpea breeding. In the current study, we conducted a genome-wide association study (GWAS) on 161 cowpea accessions (151 USDA germplasm plus 10 Arkansas breeding lines) with a wide range of seed protein contents (21.8~28.9%) with 110,155 high-quality whole-genome single-nucleotide polymorphisms (SNPs) to identify markers associated with protein content, then performed genomic prediction (GP) for future breeding. A total of seven significant SNP markers were identified using five GWAS models (single-marker regression (SMR), the general linear model (GLM), Mixed Linear Model (MLM), Fixed and Random Model Circulating Probability Unification (FarmCPU), and Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK), which are located at the same locus on chromosome 8 for seed protein content. This locus was associated with the gene Vigun08g039200, which was annotated as the protein of the thioredoxin superfamily, playing a critical function for protein content increase and nutritional quality improvement. In this study, a genomic prediction (GP) approach was employed to assess the accuracy of predicting seed protein content in cowpea. The GP was conducted using cross-prediction with five models, namely ridge regression best linear unbiased prediction (rrBLUP), Bayesian ridge regression (BRR), Bayesian A (BA), Bayesian B (BB), and Bayesian least absolute shrinkage and selection operator (BL), applied to seven random whole genome marker sets with different densities (10 k, 5 k, 2 k, 1 k, 500, 200, and 7), as well as significant markers identified through GWAS. The accuracies of the GP varied between 42.9% and 52.1% across the seven SNPs considered, depending on the model used. These findings not only have the potential to expedite the breeding cycle through early prediction of individual performance prior to phenotyping, but also offer practical implications for cowpea breeding programs striving to enhance seed protein content and nutritional quality. Full article
(This article belongs to the Special Issue Molecular Markers and Molecular Breeding in Horticultural Plants)
Show Figures

Figure 1

14 pages, 3064 KiB  
Article
A Genomic Evaluation of Six Selected Inbred Lines of the Naturalized Plants of Milk Thistle (Silybum marianum L. Gaertn.) in Korea
by Jeehyoung Shim, Su Young Hong, Jae-Hyuk Han, Yeisoo Yu, Eunae Yoo, Jungsook Sung, Joong Hyoun Chin and O New Lee
Plants 2023, 12(14), 2702; https://doi.org/10.3390/plants12142702 - 20 Jul 2023
Cited by 4 | Viewed by 1656
Abstract
Milk thistle (Silybum marianum) belongs to the Asteraceae family and is a medicinal plant native to the Mediterranean Basin. Silymarin in achene is a widely used herbal product for chronic liver disease. There is growing interest in natural medicine using milk [...] Read more.
Milk thistle (Silybum marianum) belongs to the Asteraceae family and is a medicinal plant native to the Mediterranean Basin. Silymarin in achene is a widely used herbal product for chronic liver disease. There is growing interest in natural medicine using milk thistle in Korea, but the raw material completely relies on imports. Despite its economic importance, phenotypic evaluations of native resources of milk thistle in Korea have not been carried out. In addition, genomic research and molecular marker development are very limited in milk thistle. In this study, we evaluated 220 milk thistle resources consisting of 172 accessions collected from the domestic market, and 48 accessions isolated from 6 accessions distributed by the National Agrobiodiversity Center in Korea. Six plant characteristics (height, seed weight, number of flowers, seed weight per flower, spine length, and color at harvest) were measured, and six samples (M01–M06) were selected to represent the genetic diversity of the population for genomic research. To develop PCR-based and co-dominant insertion/deletion (InDel) markers, we performed genome-wide InDel detection by comparing the whole-genome resequencing data of the six selected accessions with the reference genome sequence (GCA_001541825). As a result, 177 InDel markers with high distinguishability and reproducibility were selected from the 30,845 InDel variants. Unknowingly imported alien plant resources could easily be genetically mixed, and jeopardized seed purity can cause continuous difficulties in the development of high value-added agricultural platforms utilizing natural products. The selected plant materials and 177 validated InDel markers developed via whole-genome resequencing analysis could be valuable resources for breeding, conservation, and ecological studies of natives to Korea, along with acceleration of Silybum marianum industrialization. Full article
(This article belongs to the Special Issue Trends and Prospects of Genetic and Molecular Research in Plant)
Show Figures

Figure 1

15 pages, 4895 KiB  
Article
Differences in the Suitable Distribution Area between Northern and Southern China Landscape Plants
by Chen Wang, Qianqian Sheng, Runan Zhao and Zunling Zhu
Plants 2023, 12(14), 2710; https://doi.org/10.3390/plants12142710 - 20 Jul 2023
Cited by 6 | Viewed by 1328
Abstract
Climate change, a global biodiversity threat, largely influences the geographical distribution patterns of species. China is abundant in woody landscape plants. However, studies on the differences in the adaptive changes of plants under climate change between northern and southern China are unavailable. Therefore, [...] Read more.
Climate change, a global biodiversity threat, largely influences the geographical distribution patterns of species. China is abundant in woody landscape plants. However, studies on the differences in the adaptive changes of plants under climate change between northern and southern China are unavailable. Therefore, herein, the MaxEnt model was used to predict changes in the suitable distribution area (SDA) and dominant environmental variables of 29 tree species under two climate change scenarios, the shared socioeconomic pathways (SSPs) 126 and 585, based on 29 woody plant species and 20 environmental variables in northern and southern China to assess the differences in the adaptive changes of plants between the two under climate change. Temperature factors dominated the SDA distribution of both northern and southern plants. Southern plants are often dominated by one climatic factor, whereas northern plants are influenced by a combination of climatic factors. Northern plants are under greater pressure from SDA change than southern plants, and their SDA shrinkage tendency is significantly higher. However, no significant difference was observed between northern and southern plants in SDA expansion, mean SDA elevation, and latitudinal change in the SDA mass center. Future climate change will drive northern and southern plants to migrate to higher latitudes rather than to higher elevations. Therefore, future climate change has varying effects on plant SDAs within China. The climate change intensity will drive northern landscape plants to experience greater SDA-change-related pressure than southern landscape plants. Therefore, northern landscape plants must be heavily monitored and protected. Full article
(This article belongs to the Special Issue Responses of Vegetation to Global Climate Change)
Show Figures

Figure 1

24 pages, 3494 KiB  
Article
Effects of Single and Combined Drought and Salinity Stress on the Root Morphological Characteristics and Root Hydraulic Conductivity of Different Winter Wheat Varieties
by Yuanyuan Fu, Penghui Li, Abdoul Kader Mounkaila Hamani, Sumei Wan, Yang Gao and Xingpeng Wang
Plants 2023, 12(14), 2694; https://doi.org/10.3390/plants12142694 - 19 Jul 2023
Cited by 12 | Viewed by 1919
Abstract
Water shortages and crop responses to drought and salt stress are related to the efficient use of water resources and are closely related to food security. In addition, PEG or NaCl stress alone affect the root hydraulic conductivity (Lpr). However, the effects of [...] Read more.
Water shortages and crop responses to drought and salt stress are related to the efficient use of water resources and are closely related to food security. In addition, PEG or NaCl stress alone affect the root hydraulic conductivity (Lpr). However, the effects of combined PEG and NaCl stress on Lpr and the differences among wheat varieties are unknown. We investigated the effects of combined PEG and NaCl stress on the root parameters, nitrogen (N) and carbon content, antioxidant enzymes, osmotic adjustment, changes in sodium and potassium, and root hydraulic conductivity of Yannong 1212, Heng 4399, and Xinmai 19. PEG and NaCl stress appreciably decreased the root length (RL), root surface area (RS), root volume (RV), K+ and N content in shoots and roots, and Lpr of the three wheat varieties, while the antioxidant enzyme activity, malondialdehyde (MDA), osmotic adjustment, nonstructural carbon and Na+ content in shoots and roots, etc., remarkably remained increased. Furthermore, the root hydraulic conductivity had the greatest positive association with traits such as RL, RS, and N and K+ content in the shoots of the three wheat varieties. Moreover, the RL/RS directly and actively determined the Lpr, and it had an extremely positive effect on the N content in the shoots of wheat seedlings. Collectively, most of the root characteristics in the wheat seedlings decreased under stress conditions, resulting in a reduction in Lpr. As a result, the ability to transport nutrients—especially N—from the roots to the shoots was affected. Therefore, our study provides a novel insight into the physiological mechanisms of Lpr. Full article
(This article belongs to the Special Issue Abiotic Stress Signaling in Cereals, Especially Wheat)
Show Figures

Figure 1

20 pages, 17378 KiB  
Article
Phenylpropanoid Content of Chickpea Seed Coats in Relation to Seed Dormancy
by Veronika Sedláková, Sanja Ćavar Zeljković, Nikola Štefelová, Petr Smýkal and Pavel Hanáček
Plants 2023, 12(14), 2687; https://doi.org/10.3390/plants12142687 - 19 Jul 2023
Cited by 9 | Viewed by 1558
Abstract
The physical dormancy of seeds is likely to be mediated by the chemical composition and the thickness of the seed coat. Here, we investigate the link between the content of phenylpropanoids (i.e., phenolics and flavonoids) present in the chickpea seed coat and dormancy. [...] Read more.
The physical dormancy of seeds is likely to be mediated by the chemical composition and the thickness of the seed coat. Here, we investigate the link between the content of phenylpropanoids (i.e., phenolics and flavonoids) present in the chickpea seed coat and dormancy. The relationship between selected phenolic and flavonoid metabolites of chickpea seed coats and dormancy level was assessed using wild and cultivated chickpea parental genotypes and a derived population of recombinant inbred lines (RILs). The selected phenolic and flavonoid metabolites were analyzed via the LC-MS/MS method. Significant differences in the concentration of certain phenolic acids were found among cultivated (Cicer arietinum, ICC4958) and wild chickpea (Cicer reticulatum, PI489777) parental genotypes. These differences were observed in the contents of gallic, caffeic, vanillic, syringic, p-coumaric, salicylic, and sinapic acids, as well as salicylic acid-2-O-β-d-glucoside and coniferaldehyde. Additionally, significant differences were observed in the flavonoids myricetin, quercetin, luteolin, naringenin, kaempferol, isoorientin, orientin, and isovitexin. When comparing non-dormant and dormant RILs, significant differences were observed in gallic, 3-hydroxybenzoic, syringic, and sinapic acids, as well as the flavonoids quercitrin, quercetin, naringenin, kaempferol, and morin. Phenolic acids were generally more highly concentrated in the wild parental genotype and dormant RILs. We compared the phenylpropanoid content of chickpea seed coats with related legumes, such as pea, lentil, and faba bean. This information could be useful in chickpea breeding programs to reduce dormancy. Full article
(This article belongs to the Special Issue Advances in Legume Crops Research)
Show Figures

Figure 1

24 pages, 6203 KiB  
Article
Signaling Cross-Talk between Salicylic and Gentisic Acid in the ‘Candidatus Phytoplasma Solani’ Interaction with Sangiovese Vines
by Eliana Nutricati, Mariarosaria De Pascali, Carmine Negro, Piero Attilio Bianco, Fabio Quaglino, Alessandro Passera, Roberto Pierro, Carmine Marcone, Alessandra Panattoni, Erika Sabella, Luigi De Bellis and Andrea Luvisi
Plants 2023, 12(14), 2695; https://doi.org/10.3390/plants12142695 - 19 Jul 2023
Cited by 5 | Viewed by 1365
Abstract
“Bois noir” disease associated with ‘Candidatus Phytoplasma solani’ seriously compromises the production and survival of grapevines (Vitis vinifera L.) in Europe. Understanding the plant response to phytoplasmas should help to improve disease control strategies. Using a combined metabolomic and transcriptomic analysis, [...] Read more.
“Bois noir” disease associated with ‘Candidatus Phytoplasma solani’ seriously compromises the production and survival of grapevines (Vitis vinifera L.) in Europe. Understanding the plant response to phytoplasmas should help to improve disease control strategies. Using a combined metabolomic and transcriptomic analysis, this work, therefore, investigated the phytoplasma–grapevine interaction in red cultivar Sangiovese in a vineyard over four seasonal growth stages (from late spring to late summer), comparing leaves from healthy and infected grapevines (symptomatic and symptomless). We found an accumulation of both conjugate and free salicylic acids (SAs) in the leaves of ‘Ca. P. solani’-positive plants from early stages of infection, when plants are still asymptomatic. A strong accumulation of gentisic acid (GA) associated with symptoms progression was found for the first time. A detailed analysis of phenylpropanoids revealed a significant accumulation of hydroxycinnamic acids, flavonols, flavan 3-ols, and anthocyanin cyanidin 3-O-glucoside, which are extensively studied due to their involvement in the plant response to various pathogens. Metabolomic data corroborated by gene expression analysis indicated that phenylpropanoid biosynthetic and salicylic acid-responsive genes were upregulated in ‘Ca. P. solani-positive plants compared to -negative ones during the observed period. Full article
Show Figures

Graphical abstract

16 pages, 3811 KiB  
Article
Transcriptomic Profiling of Cold Stress-Induced Differentially Expressed Genes in Seedling Stage of Indica Rice
by Tao Yan, Meng Sun, Rui Su, Xiaozhong Wang, Xuedan Lu, Yunhua Xiao, Huabing Deng, Xiong Liu, Wenbang Tang and Guilian Zhang
Plants 2023, 12(14), 2675; https://doi.org/10.3390/plants12142675 - 17 Jul 2023
Cited by 4 | Viewed by 1690
Abstract
Cold stress significantly constrains the growth, development, productivity, and distribution of rice, particularly the indica cultivar, known for its susceptibility to cold, limiting its cultivation to specific regions. This study investigated the genes associated with cold responsiveness in the roots of two indica [...] Read more.
Cold stress significantly constrains the growth, development, productivity, and distribution of rice, particularly the indica cultivar, known for its susceptibility to cold, limiting its cultivation to specific regions. This study investigated the genes associated with cold responsiveness in the roots of two indica cultivars, SQSL (cold-tolerant) and XZX45 (cold-susceptible), through transcriptome dynamics analysis during the seedling stage. The analysis identified 8144 and 6427 differentially expressed genes (DEGs) in XZX45 and SQSL, respectively. Among these DEGs, 4672 (G2) were shared by both cultivars, while 3472 DEGs (G1) were specific to XZX45, and 1755 DEGs (G3) were specific to SQSL. Additionally, 572 differentially expressed transcription factors (TFs) from 48 TF families, including WRKY, NAC, bHLH, ERF, bZIP, MYB, C2H2, and GRAS, were identified. Gene Ontology (GO) enrichment analysis revealed significant enrichment of DEGs in the G3 group, particularly in the “response to cold” category, highlighting the crucial role of these specific genes in response to cold stress in SQSL. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated pronounced enrichment of DEGs in the G3 group in metabolic pathways such as “Pyruvate metabolism”, “Glycolysis/Gluconeogenesis”, and “Starch and sucrose metabolism”, contributing to cold tolerance mechanisms in SQSL. Overall, this study provides comprehensive insights into the molecular mechanisms underlying cold responses in the indica cultivar, informing future genetic improvement strategies to enhance cold tolerance in susceptible indica rice cultivars. Full article
Show Figures

Figure 1

29 pages, 1378 KiB  
Review
The Biosynthesis and Functions of Polyamines in the Interaction of Plant Growth-Promoting Rhizobacteria with Plants
by Michael F. Dunn and Víctor A. Becerra-Rivera
Plants 2023, 12(14), 2671; https://doi.org/10.3390/plants12142671 - 17 Jul 2023
Cited by 7 | Viewed by 2336
Abstract
Plant growth-promoting rhizobacteria (PGPR) are members of the plant rhizomicrobiome that enhance plant growth and stress resistance by increasing nutrient availability to the plant, producing phytohormones or other secondary metabolites, stimulating plant defense responses against abiotic stresses and pathogens, or fixing nitrogen. The [...] Read more.
Plant growth-promoting rhizobacteria (PGPR) are members of the plant rhizomicrobiome that enhance plant growth and stress resistance by increasing nutrient availability to the plant, producing phytohormones or other secondary metabolites, stimulating plant defense responses against abiotic stresses and pathogens, or fixing nitrogen. The use of PGPR to increase crop yield with minimal environmental impact is a sustainable and readily applicable replacement for a portion of chemical fertilizer and pesticides required for the growth of high-yielding varieties. Increased plant health and productivity have long been gained by applying PGPR as commercial inoculants to crops, although with uneven results. The establishment of plant–PGPR relationships requires the exchange of chemical signals and nutrients between the partners, and polyamines (PAs) are an important class of compounds that act as physiological effectors and signal molecules in plant–microbe interactions. In this review, we focus on the role of PAs in interactions between PGPR and plants. We describe the basic ecology of PGPR and the production and function of PAs in them and the plants with which they interact. We examine the metabolism and the roles of PAs in PGPR and plants individually and during their interaction with one another. Lastly, we describe some directions for future research. Full article
(This article belongs to the Special Issue Interactions between Plants and Soil Microorganisms)
Show Figures

Figure 1

17 pages, 4631 KiB  
Article
Abscisic Acid Enhances Trehalose Content via OsTPP3 to Improve Salt Tolerance in Rice Seedlings
by Nenghui Ye, Yuxing Wang, Huihui Yu, Zhonge Qin, Jianhua Zhang, Meijuan Duan and Ling Liu
Plants 2023, 12(14), 2665; https://doi.org/10.3390/plants12142665 - 17 Jul 2023
Cited by 5 | Viewed by 1553
Abstract
Salt stress is one of the major environmental stresses that imposes constraints to plant growth and production. Abscisic acid (ABA) has been well-proven to function as a central integrator in plant under salt stress, and trehalose (Tre) has emerged as an excellent osmolyte [...] Read more.
Salt stress is one of the major environmental stresses that imposes constraints to plant growth and production. Abscisic acid (ABA) has been well-proven to function as a central integrator in plant under salt stress, and trehalose (Tre) has emerged as an excellent osmolyte to induce salt tolerance. However, the interacting mechanism between ABA and Tre in rice seedlings under salt stress is still obscure. Here, we found that the application of exogenous Tre significantly promoted the salt tolerance of rice seedlings by enhancing the activities of antioxidant enzymes. In addition, the expression of OsNCED3 was significantly induced by salt stress. The overexpression of the OsNCED3 gene enhanced the salt tolerance, while the knockout of OsNCED3 reduced the salt tolerance of the rice seedlings. Metabolite analysis revealed that the Tre content was increased in the OsNCED3-overexpressing seedlings and reduced in the nced3 mutant. The application of both ABA and Tre improved the salt tolerance of the nced3 mutant when compared with the WT seedling. OsTPP3 was found to be induced by both the ABA and salt treatments. Consistent with the OsNCED3 gene, the overexpression of OsTPP3 enhanced salt tolerance while the knockout of OsTPP3 reduced the salt tolerance of the rice seedlings. In addition, the Tre content was also higher in the OsTPP3-overexpressing seedling and lower in the tpp3 mutant seedling than the WT plant. The application of exogenous Tre also enhanced the salt tolerance of the tpp3 mutant plant. Overall, our results demonstrate that salt-increased ABA activated the expression of OsTPP3, which resulted in elevated Tre content and thus an improvement in the salt tolerance of rice seedlings. Full article
Show Figures

Figure 1

14 pages, 4147 KiB  
Article
The Effect of Ripening Stages on the Accumulation of Polyphenols and Antioxidant Activity of the Fruit Extracts of Solanum Species
by Jūratė Staveckienė, Jurgita Kulaitienė, Dovilė Levickienė, Nijolė Vaitkevičienė and Viktorija Vaštakaitė-Kairienė
Plants 2023, 12(14), 2672; https://doi.org/10.3390/plants12142672 - 17 Jul 2023
Cited by 5 | Viewed by 1487
Abstract
The aim of the research was to evaluate the influence of the ripening stage on the accumulation of polyphenols and antioxidant activity in fruits of Solanum species. The experiment included two factors: I—four different Solanum species (S. melanocerasum, S. nigrum, [...] Read more.
The aim of the research was to evaluate the influence of the ripening stage on the accumulation of polyphenols and antioxidant activity in fruits of Solanum species. The experiment included two factors: I—four different Solanum species (S. melanocerasum, S. nigrum, S. villosum, and S. retroflexum) and II—three ripening stages. High-performance liquid chromatography (HPLC) was used to analyze the individual phenolic compounds (flavonoids and phenolic acids), and the spectrophotometric method was applied to determine antioxidant activity. The results revealed that the accumulation of polyphenols and antioxidant activity in fruits of Solanum species depends on the stage of ripening and species. All studied Solanum species fruits had the highest content of total phenolic acid at ripening stage III and the greatest antioxidant activity at ripening stage I. Fully ripe fruits of S. melanocerasum contained significantly more total flavonoids, whereas S. nigrum contained significantly more total phenolic acids than other investigated Solanum species fruits. The significantly highest antioxidant activity was found in S. melanocerasum fruits at ripening stage I. Full article
(This article belongs to the Special Issue Natural Resources of Berry and Medicinal Plants Volume II)
Show Figures

Figure 1

19 pages, 4077 KiB  
Article
Bryophyte Diversity and Distribution Patterns along Elevation Gradients of the Mount Etna (Sicily), the Highest Active Volcano in Europea
by Marta Puglisi and Saverio Sciandrello
Plants 2023, 12(14), 2655; https://doi.org/10.3390/plants12142655 - 15 Jul 2023
Cited by 6 | Viewed by 2157
Abstract
Mt Etna in Sicily hosts a bryophyte floristic richness of 306 taxa, corresponding to 259 mosses, 43 liverworts, and 4 hornworts. Species richness shows a hump-shaped relationship with the elevation, with a peak at 1200–1700 m a.s.l. Chorotype patterns clearly change along an [...] Read more.
Mt Etna in Sicily hosts a bryophyte floristic richness of 306 taxa, corresponding to 259 mosses, 43 liverworts, and 4 hornworts. Species richness shows a hump-shaped relationship with the elevation, with a peak at 1200–1700 m a.s.l. Chorotype patterns clearly change along an altitudinal gradient, from the Mediterranean, located at 0–300 m a.s.l., to Arctic-montane and boreo-Arctic montane at 1800–2700 m a.s.l., showing a correlation with the bioclimatic belts identified for the Mt Etna. In regard to the life form pattern, the turf species are the most represented in each elevation gradient, except at 2300–2700 m a.s.l. where the tuft species are prevalent. The life strategy pattern shows the colonists as the prevailing species, featured by an increasing trend up to 2200 m of elevation; above this limit, they are exceeded by the perennial stayers. Furthermore, taking into consideration the red-listed species (at the European and/or Italian level), as well as the species of phytogeographical interest, it was possible to identify the high bryophyte conservation priority areas; these areas are located in thermo-Mediterranean and oro-Mediterranean bioclimatic belts, the latter corresponding to the oldest substrates of the volcano where some of the most interesting bryophyte glacial relicts find refuge. Full article
(This article belongs to the Special Issue Responses and Adaptations of Bryophytes to a Changing World)
Show Figures

Figure 1

Back to TopTop