polymers-logo

Journal Browser

Journal Browser

Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 9834 KiB  
Article
Effect of 3D Printing Process Parameters and Heat Treatment Conditions on the Mechanical Properties and Microstructure of PEEK Parts
by Honglei Zhen, Bin Zhao, Long Quan and Junyu Fu
Polymers 2023, 15(9), 2209; https://doi.org/10.3390/polym15092209 - 6 May 2023
Cited by 15 | Viewed by 3293
Abstract
Fused deposition modeling (FDM) processed Poly-ether-ether-ketone (PEEK) materials are widely used in aerospace, automobile, biomedical, and electronics industries and other industries due to their excellent mechanical properties, thermal properties, chemical resistance, wear resistance, and biocompatibility, etc. However, the manufacture of PEEK materials and [...] Read more.
Fused deposition modeling (FDM) processed Poly-ether-ether-ketone (PEEK) materials are widely used in aerospace, automobile, biomedical, and electronics industries and other industries due to their excellent mechanical properties, thermal properties, chemical resistance, wear resistance, and biocompatibility, etc. However, the manufacture of PEEK materials and parts utilizing the FDM process faces the challenge of fine-tuning a list of process parameters and heat treatment conditions to reach the best-suiting mechanical properties and microstructures. It is non-trivial to make the selection only according to theoretical analysis while counting on a vast number of experiments is the general situation. Therefore, in this paper, the extrusion rate, filling angle, and printing orientation are investigated to adjust the mechanical properties of 3D-printed PEEK parts; then, a variety of heat treatment conditions were applied to tune the crystallinity and strength. The results show that the best mechanical performance is achieved at 1.0 times the extrusion rate, varied angle cross-fillings with ±10° intervals, and vertical printing. Horizontal printing performs better with reduced warpage. Additionally, both crystallinity and mechanical properties are significantly improved after heat treatment, and the best state is achieved after holding at 300 °C for 2 h. The resulting tensile strength is close to 80% of the strength of injection-molded PEEK parts. Full article
(This article belongs to the Special Issue Mechanical and Physical Properties of 3D Printed Polymer Materials)
Show Figures

Figure 1

11 pages, 22113 KiB  
Article
On-Chip 3D Printing of Polymer Waveguide-Coupled Single-Photon Emitter Based on Colloidal Quantum Dots
by Gia Long Ngo, Long Nguyen, Jean-Pierre Hermier and Ngoc Diep Lai
Polymers 2023, 15(9), 2201; https://doi.org/10.3390/polym15092201 - 6 May 2023
Cited by 2 | Viewed by 1987
Abstract
In the field of quantum technology, there has been a growing interest in fully integrated systems that employ single photons due to their potential for high performance and scalability. Here, a simple method is demonstrated for creating on-chip 3D printed polymer waveguide-coupled single-photon [...] Read more.
In the field of quantum technology, there has been a growing interest in fully integrated systems that employ single photons due to their potential for high performance and scalability. Here, a simple method is demonstrated for creating on-chip 3D printed polymer waveguide-coupled single-photon emitters based on colloidal quantum dots (QDs). By using a simple low-one photon absorption technique, we were able to create a 3D polymeric crossed-arc waveguide structure with a bright QD on top. These waveguides can conduct both excitation laser and emitted single photons, which facilitates the characterization of single-photon signals at different outputs with a conventional confocal scanning system. To optimize the guiding effect of the polymeric waveguide structures, comprehensive 3D finite-difference time-domain simulations were performed. Our method provides a straightforward and cost-effective way to integrate high-performance single-photon sources with on-chip photonic devices, enabling scalable and versatile quantum photonic circuits for various applications. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

12 pages, 2173 KiB  
Article
Polypropylene Degradation on Co-Rotating Twin-Screw Extruders
by Matthias Altepeter, Volker Schöppner, Sven Wanke, Laura Austermeier, Philipp Meinheit and Leon Schmidt
Polymers 2023, 15(9), 2181; https://doi.org/10.3390/polym15092181 - 4 May 2023
Cited by 4 | Viewed by 2294
Abstract
Nowadays, usable plastic materials with defined properties are created by blending additives into the base polymer. This is the main task of compounding on co-rotating twin-screw extruders. The thermal and mechanical stress occurring in the process leads to a mostly irreversible damage to [...] Read more.
Nowadays, usable plastic materials with defined properties are created by blending additives into the base polymer. This is the main task of compounding on co-rotating twin-screw extruders. The thermal and mechanical stress occurring in the process leads to a mostly irreversible damage to the material. Consequently, the properties of the polymer melt and the subsequent product are affected. The material degradation of polypropylene (PP) on a 28 mm twin-screw extruder has already been studied and modeled at Kunststofftechnik Paderborn. In this work, the transferability of the previous results to other machine sizes and polypropylene compounds were investigated experimentally. Therefore, pure polypropylene was processed with screw diameters of 25 mm and 45 mm. Furthermore, polypropylene compounds with titanium dioxide as well as carbon fibers were considered on a 28 mm extruder. In the course of the evaluation of the pure polypropylene, the melt flow rates of the samples were measured and the molar masses were calculated on this basis. The compounds were analyzed by gel permeation chromatography. As in the previous investigations, high rotational speeds, low throughputs and high melt temperatures lead to a higher material degradation. In addition, it is illustrated that the previously developed model for the calculation of material degradation is generally able to predict the degradation even for different machine sizes by adjusting the process coefficients. In summary, this article shows that compounders can use the recommendations for action and the calculation model for the material degradation of polypropylene, irrespective of the machine size, to design processes that are gentle on the material. Full article
(This article belongs to the Special Issue Durability and Degradation of Polymeric Materials II)
Show Figures

Figure 1

10 pages, 2226 KiB  
Article
Influence of Incorporating Recycled Windshield Glass, PVB-Foil, and Rubber Granulates on the Properties of Geopolymer Composites and Concretes
by Van Su Le, Katarzyna Ewa Buczkowska, Roberto Ercoli, Kinga Pławecka, Narcisa Mihaela Marian and Petr Louda
Polymers 2023, 15(9), 2122; https://doi.org/10.3390/polym15092122 - 29 Apr 2023
Cited by 1 | Viewed by 1716
Abstract
Waste materials from the automotive industries were re-used as aggregates into metakaolin-based geopolymer (GP), geopolymer mortar (GM), and Bauhaus B20-based concrete composite (C). Specifically, the study evaluates the ability of windshield silica glass (W), PVB-Foils (P), and rubber granulates (G) to impact the [...] Read more.
Waste materials from the automotive industries were re-used as aggregates into metakaolin-based geopolymer (GP), geopolymer mortar (GM), and Bauhaus B20-based concrete composite (C). Specifically, the study evaluates the ability of windshield silica glass (W), PVB-Foils (P), and rubber granulates (G) to impact the mechanical and thermal properties. The addition of the recovered materials into the experimental geopolymers outperformed the commercially available B20. The flexural strength reached values of 7.37 ± 0.51 MPa in concrete with silica glass, 4.06 ± 0.32 in geopolymer malt with PVB-Foils, and 6.99 ± 0.82 MPa in pure geopolymer with rubber granulates; whereas the highest compressive strengths (бc) were obtained by the addition of PVB-Foils in pure geopolymer, geopolymer malt, and concrete (43.16 ± 0.31 MPa, 46.22 ± 2.06 MPa, and 27.24 ± 1.28 MPa, respectively). As well PVB-Foils were able to increase the impact strength (бi) at 5.15 ± 0.28 J/cm2 in pure geopolymer, 5.48 ± 0.41 J/cm2 in geopolymer malt, and 3.19 ± 0.14 J/cm2 in concrete, furnishing a significant improvement over the reference materials. Moreover, a correlation between density and thermal conductivity (λ) was also obtained to provide the suitability of these materials in applications such as insulation or energy storage. These findings serve as a basis for further research on the use of waste materials in the creation of new, environmentally friendly composites. Full article
Show Figures

Figure 1

15 pages, 4720 KiB  
Article
Antibacterial and Physicochemical Properties of Orthodontic Resin Cement Containing ZnO-Loaded Halloysite Nanotubes
by Jeong-Hye Seo, Kwang-Mahn Kim and Jae-Sung Kwon
Polymers 2023, 15(9), 2045; https://doi.org/10.3390/polym15092045 - 25 Apr 2023
Cited by 2 | Viewed by 1534
Abstract
Demineralized white lesions are a common problem when using orthodontic resin cement, which can be prevented with the addition of antibacterial substances. However, the addition of antibacterial substances such as zinc oxide alone may result in the deterioration of the resin cement’s functions. [...] Read more.
Demineralized white lesions are a common problem when using orthodontic resin cement, which can be prevented with the addition of antibacterial substances. However, the addition of antibacterial substances such as zinc oxide alone may result in the deterioration of the resin cement’s functions. Halloysite nanotubes (HNTs) are known to be biocompatible without adversely affecting the mechanical properties of the material while having the ability to load different substances. The purpose of this study was to prepare orthodontic resin cement containing HNT fillers loaded with ZnO (ZnO/HNTs) and to investigate its mechanical, physical, chemical, and antibacterial properties. A group without filler was used as a control. Three groups containing 5 wt.% of HNTs, ZnO, and ZnO/HNTs were prepared. TEM and EDS measurements were carried out to confirm the morphological structure of the HNTs and the successful loading of ZnO onto the HNTs. The mechanical, physical, chemical, and antibacterial properties of the prepared orthodontic resin cement were considered. The ZnO group had high flexural strength and water absorption but a low depth of cure (p < 0.05). The ZnO/HNTs group showed the highest shear bond strength and film thickness (p < 0.05). In the antibacterial test, the ZnO/HNTs group resulted in a significant decrease in the biofilm’s metabolic activity compared to the other groups (p < 0.05). ZnO/HNTs did not affect cell viability. In addition, ZnO was cytotoxic at a concentration of 100% in the extract. The nanocomposite developed in this study exhibited antimicrobial activity against S. mutans while maintaining the mechanical, physical, and chemical properties of orthodontic resin cement. Therefore, it has the potential to be used as an orthodontic resin cement that can prevent DWLs. Full article
(This article belongs to the Special Issue Advanced Polymeric Materials for Dental Applications II)
Show Figures

Figure 1

20 pages, 3994 KiB  
Article
Statistical Copolymers of N–Vinylpyrrolidone and 2–Chloroethyl Vinyl Ether via Radical RAFT Polymerization: Monomer Reactivity Ratios, Thermal Properties, and Kinetics of Thermal Decomposition of the Statistical Copolymers
by Nikolaos V. Plachouras and Marinos Pitsikalis
Polymers 2023, 15(8), 1970; https://doi.org/10.3390/polym15081970 - 21 Apr 2023
Cited by 1 | Viewed by 3324
Abstract
The radical statistical copolymerization of N–vinyl pyrrolidone (NVP) and 2–chloroethyl vinyl ether (CEVE) was conducted using the Reversible Addition–Fragmentation chain Transfer (RAFT) polymerization technique, employing [(O–ethylxanthyl)methyl]benzene (CTA-1) and O–ethyl S–(phthalimidylmethyl) xanthate (CTA-2) as the Chain Transfer Agents (CTAs), leading to P(NVP–stat–CEVE) products. [...] Read more.
The radical statistical copolymerization of N–vinyl pyrrolidone (NVP) and 2–chloroethyl vinyl ether (CEVE) was conducted using the Reversible Addition–Fragmentation chain Transfer (RAFT) polymerization technique, employing [(O–ethylxanthyl)methyl]benzene (CTA-1) and O–ethyl S–(phthalimidylmethyl) xanthate (CTA-2) as the Chain Transfer Agents (CTAs), leading to P(NVP–stat–CEVE) products. After optimizing copolymerization conditions, monomer reactivity ratios were estimated using various linear graphical methods, as well as the COPOINT program, which was applied in the framework of the terminal model. Structural parameters of the copolymers were obtained by calculating the dyad sequence fractions and the monomers’ mean sequence lengths. Thermal properties of the copolymers were studied by Differential Scanning Calorimetry (DSC) and kinetics of their thermal degradation by Thermogravimetric Analysis (TGA) and Differential Thermogravimetry (DTG), applying the isoconversional methodologies of Ozawa–Flynn–Wall (OFW) and Kissinger–Akahira–Sunose (KAS). Full article
Show Figures

Graphical abstract

19 pages, 751 KiB  
Review
Exploiting Polyhydroxyalkanoates for Biomedical Applications
by Vipin Chandra Kalia, Sanjay K. S. Patel and Jung-Kul Lee
Polymers 2023, 15(8), 1937; https://doi.org/10.3390/polym15081937 - 19 Apr 2023
Cited by 19 | Viewed by 5152
Abstract
Polyhydroxyalkanoates (PHA) are biodegradable plastic. Numerous bacteria produce PHAs under environmental stress conditions, such as excess carbon-rich organic matter and limitations of other nutritional elements such as potassium, magnesium, oxygen, phosphorus, and nitrogen. In addition to having physicochemical properties similar to fossil-fuel-based plastics, [...] Read more.
Polyhydroxyalkanoates (PHA) are biodegradable plastic. Numerous bacteria produce PHAs under environmental stress conditions, such as excess carbon-rich organic matter and limitations of other nutritional elements such as potassium, magnesium, oxygen, phosphorus, and nitrogen. In addition to having physicochemical properties similar to fossil-fuel-based plastics, PHAs have unique features that make them ideal for medical devices, such as easy sterilization without damaging the material itself and easy dissolution following use. PHAs can replace traditional plastic materials used in the biomedical sector. PHAs can be used in a variety of biomedical applications, including medical devices, implants, drug delivery devices, wound dressings, artificial ligaments and tendons, and bone grafts. Unlike plastics, PHAs are not manufactured from petroleum products or fossil fuels and are, therefore, environment-friendly. In this review, a recent overview of applications of PHAs with special emphasis on biomedical sectors, including drug delivery, wound healing, tissue engineering, and biocontrols, are discussed. Full article
(This article belongs to the Special Issue Renewable and Biodegradable Polymer-Based Materials and Applications)
Show Figures

Figure 1

22 pages, 5743 KiB  
Review
Investigation of Polymer Aging Mechanisms Using Molecular Simulations: A Review
by Fan Zhang, Rui Yang and Diannan Lu
Polymers 2023, 15(8), 1928; https://doi.org/10.3390/polym15081928 - 18 Apr 2023
Cited by 16 | Viewed by 5305
Abstract
Aging has a serious impact on the properties of functional polymers. Therefore, it is necessary to study the aging mechanism to prolong the service and storage life of polymer-based devices and materials. Due to the limitations of traditional experimental methods, more and more [...] Read more.
Aging has a serious impact on the properties of functional polymers. Therefore, it is necessary to study the aging mechanism to prolong the service and storage life of polymer-based devices and materials. Due to the limitations of traditional experimental methods, more and more studies have adopted molecular simulations to analyze the intrinsic mechanisms of aging. In this paper, recent advances in molecular simulations of the aging of polymers and their composites are reviewed. The characteristics and applications of commonly used simulation methods in the study of the aging mechanisms (traditional molecular dynamics simulation, quantum mechanics, and reactive molecular dynamics simulation) are outlined. The current simulation research progress of physical aging, aging under mechanical stress, thermal aging, hydrothermal aging, thermo-oxidative aging, electric aging, aging under high-energy particle impact, and radiation aging is introduced in detail. Finally, the current research status of the aging simulations of polymers and their composites is summarized, and the future development trend has been prospected. Full article
(This article belongs to the Special Issue Aging of Polymer Materials)
Show Figures

Figure 1

14 pages, 3732 KiB  
Article
Stabilization and Valorization of Beer Bagasse to Obtain Bioplastics
by Daniel Castro-Criado, Johar Amin Ahmed Abdullah, Alberto Romero and Mercedes Jiménez-Rosado
Polymers 2023, 15(8), 1877; https://doi.org/10.3390/polym15081877 - 14 Apr 2023
Cited by 6 | Viewed by 2493
Abstract
Beer bagasse is a residue produced in large quantities, though it is undervalued in the industry. Its high protein and polysaccharide content make it attractive for use in sectors such as the manufacture of bioplastics. However, its high water content makes it necessary [...] Read more.
Beer bagasse is a residue produced in large quantities, though it is undervalued in the industry. Its high protein and polysaccharide content make it attractive for use in sectors such as the manufacture of bioplastics. However, its high water content makes it necessary to stabilize it before being considered as a raw material. The main objective of this work was to evaluate the stabilization of beer bagasse and the production of bioplastics from it. In this sense, different drying methods (freeze-drying and heat treatment at 45 and 105 °C) were studied. The bagasse was also characterized physicochemically to evaluate its potential. In addition, bagasse was used in combination with glycerol (plasticizer) to make bioplastics by injection molding, analyzing their mechanical properties, water absorption capacity and biodegradability. The results showed the great potential of bagasse, presenting a high content of proteins (18–20%) and polysaccharides (60–67%) after its stabilization, with freeze-drying being the most suitable method to avoid its denaturation. Bioplastics present appropriate properties for use in applications such as horticulture and agriculture. Full article
(This article belongs to the Special Issue Polymers for Recycling and Valorization of Soft and Hard Materials)
Show Figures

Figure 1

10 pages, 5443 KiB  
Article
Time–Concentration Superposition for Linear Viscoelasticity of Polymer Solutions
by Can-Qi Li, Horst Henning Winter, Yuan-Qi Fan, Geng-Xin Xu and Xue-Feng Yuan
Polymers 2023, 15(7), 1807; https://doi.org/10.3390/polym15071807 - 6 Apr 2023
Viewed by 2737
Abstract
The concentration dependence of linear viscoelastic properties of polymer solutions is a well-studied topic in polymer physics. Dynamic scaling theories allow qualitative predictions of polymer solution rheology, but quantitative predictions are still limited to model polymers. Meanwhile, the scaling properties of non-model polymer [...] Read more.
The concentration dependence of linear viscoelastic properties of polymer solutions is a well-studied topic in polymer physics. Dynamic scaling theories allow qualitative predictions of polymer solution rheology, but quantitative predictions are still limited to model polymers. Meanwhile, the scaling properties of non-model polymer solutions must be determined experimentally. In present paper, the time–concentration superposition (TCS) of experimental data is shown to be a robust procedure for studying the concentration scaling properties of binary and ternary polymer solutions. TCS can not only identify whether power law scaling may exist or not, and over which concentration range, but also unambiguously estimate the concentration scaling exponents of linear viscoelastic properties for a range of non-model polymer solutions. Full article
(This article belongs to the Special Issue Advances in Rheology of Polymers)
Show Figures

Figure 1

32 pages, 2540 KiB  
Review
Microbial Exopolysaccharide Composites in Biomedicine and Healthcare: Trends and Advances
by Vishal Ahuja, Arvind Kumar Bhatt, J. Rajesh Banu, Vinod Kumar, Gopalakrishnan Kumar, Yung-Hun Yang and Shashi Kant Bhatia
Polymers 2023, 15(7), 1801; https://doi.org/10.3390/polym15071801 - 6 Apr 2023
Cited by 20 | Viewed by 5840
Abstract
Microbial exopolysaccharides (EPSs), e.g., xanthan, dextran, gellan, curdlan, etc., have significant applications in several industries (pharma, food, textiles, petroleum, etc.) due to their biocompatibility, nontoxicity, and functional characteristics. However, biodegradability, poor cell adhesion, mineralization, and lower enzyme activity are some other factors that [...] Read more.
Microbial exopolysaccharides (EPSs), e.g., xanthan, dextran, gellan, curdlan, etc., have significant applications in several industries (pharma, food, textiles, petroleum, etc.) due to their biocompatibility, nontoxicity, and functional characteristics. However, biodegradability, poor cell adhesion, mineralization, and lower enzyme activity are some other factors that might hinder commercial applications in healthcare practices. Some EPSs lack biological activities that make them prone to degradation in ex vivo, as well as in vivo environments. The blending of EPSs with other natural and synthetic polymers can improve the structural, functional, and physiological characteristics, and make the composites suitable for a diverse range of applications. In comparison to EPS, composites have more mechanical strength, porosity, and stress-bearing capacity, along with a higher cell adhesion rate, and mineralization that is required for tissue engineering. Composites have a better possibility for biomedical and healthcare applications and are used for 2D and 3D scaffold fabrication, drug carrying and delivery, wound healing, tissue regeneration, and engineering. However, the commercialization of these products still needs in-depth research, considering commercial aspects such as stability within ex vivo and in vivo environments, the presence of biological fluids and enzymes, degradation profile, and interaction within living systems. The opportunities and potential applications are diverse, but more elaborative research is needed to address the challenges. In the current article, efforts have been made to summarize the recent advancements in applications of exopolysaccharide composites with natural and synthetic components, with special consideration of pharma and healthcare applications. Full article
Show Figures

Figure 1

24 pages, 10193 KiB  
Article
Fatigue and Wear Performance of Autoclave-Processed and Vacuum-Infused Carbon Fibre Reinforced Polymer Gears
by Zoran Bergant, Roman Šturm, Damijan Zorko and Borut Černe
Polymers 2023, 15(7), 1767; https://doi.org/10.3390/polym15071767 - 1 Apr 2023
Cited by 3 | Viewed by 2621
Abstract
This study focuses on investigating the fatigue and wear behaviour of carbon fibre reinforced polymer (CFRP) gears, which have shown promising potential as lightweight and high-performance alternatives to conventional gears. The gears were fabricated via an autoclave process using an 8-layer composite made [...] Read more.
This study focuses on investigating the fatigue and wear behaviour of carbon fibre reinforced polymer (CFRP) gears, which have shown promising potential as lightweight and high-performance alternatives to conventional gears. The gears were fabricated via an autoclave process using an 8-layer composite made of T300 plain weave carbon fabric and ET445 resin and were tested in pair with a 42CrMo4 steel pinion and under nominal tooth bending stress ranging from 60 to 150 MPa. In-situ temperature monitoring was performed, using an infrared camera, and wear rates were regularly assessed. The result of the wear test indicates adhesive wear and three-body abrasion wear mechanisms between the CFRP gears and the steel counterpart. A finite element analysis was performed to examine the in-mesh contact and root stress behaviour of both new and worn gears at various loads and a specified running time. The results point to a substantial divergence from ideal meshing and stress conditions as the wear level is increased. The fatigue results indicated that the CFRP gears exhibited superior performance compared to conventional plastic and composite short-fibrous polymer gears. The described composite gear material was additionally compared with two other composite configurations, including an autoclave-cured T700S plain weave prepreg with DT120 toughened resin and a vacuum-impregnated T300 spread plain weave carbon fabric with LG 900 UV resin. The study found that the use of the T700S-DT120 resulted in additional improvements. Full article
(This article belongs to the Special Issue Failure of Polymer Composites)
Show Figures

Figure 1

13 pages, 7209 KiB  
Article
Influence on Elastic Wave Propagation Behavior in Polymers Composites: An Analysis of Inflection Phenomena
by Guoqiang Luo, Pu Cheng, Yin Yu, Xiangwei Geng, Yue Zhao, Yulong Xia, Ruizhi Zhang and Qiang Shen
Polymers 2023, 15(7), 1680; https://doi.org/10.3390/polym15071680 - 28 Mar 2023
Viewed by 1649
Abstract
Particulate polymer composites (PPCs) are widely applied under different elastic wave loading conditions in the automobile, aviation, and armor protection industries. This study investigates the elastic wave propagation behavior of a typical PPC, specifically a Cu/poly (methyl methacrylate) (PMMA) composite, with [...] Read more.
Particulate polymer composites (PPCs) are widely applied under different elastic wave loading conditions in the automobile, aviation, and armor protection industries. This study investigates the elastic wave propagation behavior of a typical PPC, specifically a Cu/poly (methyl methacrylate) (PMMA) composite, with a wide range of particle contents (30–65 vol. %) and particle sizes (1–100 μm). The results demonstrate an inflection phenomenon in both the elastic wave velocity and attenuation coefficient with increasing volume content. In addition, the inflection point moves to the direction of low content with the increase in particle size. Notably, the elastic wave velocity, attenuation, and wavefront width significantly increased with the particle size. The inflection phenomenon of elastic wave propagation behavior in PPCs is demonstrated to have resulted from particle interaction using the classical scattering theory and finite element analysis. The particle interaction initially intensified and then reduced with increasing particle content. This study elucidates the underlying mechanism governing the elastic wave propagation behavior of high particle content PPCs and provides guidelines for the design and application of wave-absorbing composites. Full article
(This article belongs to the Special Issue Mechanical Properties of Polymer Composites II)
Show Figures

Figure 1

16 pages, 3109 KiB  
Article
π-Electron-Extended Triazine-Based Covalent Organic Framework as Photocatalyst for Organic Pollution Degradation and H2 Production from Water
by Jing Han Wang, Taher A. Gaber, Shiao-Wei Kuo and Ahmed F. M. EL-Mahdy
Polymers 2023, 15(7), 1685; https://doi.org/10.3390/polym15071685 - 28 Mar 2023
Cited by 11 | Viewed by 2825
Abstract
Herein, we report the efficient preparation of π-electron-extended triazine-based covalent organic framework (TFP-TPTPh COF) for photocatalysis and adsorption of the rhodamine B (RhB) dye molecule, as well as for photocatalytic hydrogen generation from water. The resultant TFP-TPTPh COF exhibited remarkable porosity, excellent crystallinity, [...] Read more.
Herein, we report the efficient preparation of π-electron-extended triazine-based covalent organic framework (TFP-TPTPh COF) for photocatalysis and adsorption of the rhodamine B (RhB) dye molecule, as well as for photocatalytic hydrogen generation from water. The resultant TFP-TPTPh COF exhibited remarkable porosity, excellent crystallinity, high surface area of 724 m2 g−1, and massive thermal stability with a char yield of 63.41%. The TFP-TPTPh COF demonstrated an excellent removal efficiency of RhB from water in 60 min when used as an adsorbent, and its maximum adsorption capacity (Qm) of 480 mg g−1 is among the highest Qm values for porous polymers ever to be recorded. In addition, the TFP-TPTPh COF showed a remarkable photocatalytic degradation of RhB dye molecules with a reaction rate constant of 4.1 × 10−2 min−1 and an efficiency of 97.02% under ultraviolet–visible light irradiation. Furthermore, without additional co-catalysts, the TFP-TPTPh COF displayed an excellent photocatalytic capacity for reducing water to generate H2 with a hydrogen evolution rate (HER) of 2712 μmol g−1 h−1. This highly active COF-based photocatalyst appears to be a useful material for dye removal from water, as well as solar energy processing and conversion. Full article
(This article belongs to the Special Issue Polymers: Environmental Aspects)
Show Figures

Figure 1

14 pages, 4502 KiB  
Article
Supramolecular Linear-Dendritic Nanoreactors: Synthesis and Catalytic Activity in “Green” Suzuki-Miyaura Reactions
by Xin Liu, F. Max Yavitt and Ivan Gitsov
Polymers 2023, 15(7), 1671; https://doi.org/10.3390/polym15071671 - 28 Mar 2023
Cited by 1 | Viewed by 1732
Abstract
This study describes the synthesis of novel amphiphilic linear-dendritic block copolymers and their self-assembly in water to form supramolecular nanoreactors capable of catalyzing Suzuki-Miyaura coupling reactions under “green” conditions. The block copolymers were formed through copper(I)-catalyzed alkyne-azide cycloaddition between azide functionalized poly(benzyl ether) [...] Read more.
This study describes the synthesis of novel amphiphilic linear-dendritic block copolymers and their self-assembly in water to form supramolecular nanoreactors capable of catalyzing Suzuki-Miyaura coupling reactions under “green” conditions. The block copolymers were formed through copper(I)-catalyzed alkyne-azide cycloaddition between azide functionalized poly(benzyl ether) dendrons as the perfectly branched blocks, as well as bis-alkyne modified poly(ethylene glycol), PEG, as the linear block. A first-generation poly(benzyl ether) dendron (G1) was coupled to a bis-alkyne modified PEG with molecular mass of 5 kDa, forming an ABA copolymer (G1)2-PEG5k-(G1)2 (yield 62%), while a second-generation dendron (G2) was coupled to a 11 kDa bis-alkyne modified PEG to produce (G2)2-PEG11k-(G2)2 (yield 49%). The structural purity and low dispersity of the linear-dendritic copolymers were verified by size-exclusion chromatography and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Their self-assembly was studied by dynamic light scattering, showing that (G1)2-PEG5k-(G1)2 and (G2)2-PEG11k-(G2)2 formed single populations of micelles (17 nm and 37 nm in diameter, respectively). The triazole rings located at the boundaries between the core and the corona are efficient chelating groups for transition metals. The ability of the micelles to complex Pd was confirmed by 1H NMR, transmission electron microscopy, and inductively coupled plasma. The catalytic activity of the supramolecular linear-dendritic/Pd complexes was tested in water by model Suzuki-Miyaura reactions in which quantitative yields were achieved within 3 h at 40 °C, while, at 17 °C, a yield of more than 70% was attained after 17 h. Full article
(This article belongs to the Special Issue Stimuli-Responsive Polymers)
Show Figures

Figure 1

21 pages, 6804 KiB  
Article
Damage Monitoring of Composite Adhesive Joint Integrity Using Conductivity and Fiber Bragg Grating
by Chow-Shing Shin and Liang-Wei Chen
Polymers 2023, 15(6), 1575; https://doi.org/10.3390/polym15061575 - 22 Mar 2023
Cited by 3 | Viewed by 2108
Abstract
Adhesive joints possess a number of advantages over traditional joining methods and are widely used in composite structures. Conventional non-destructive examination techniques do not readily reveal joint degradation before the formation of explicit defects. Embedded fiber Bragg grating (FBG) sensors and the resistance [...] Read more.
Adhesive joints possess a number of advantages over traditional joining methods and are widely used in composite structures. Conventional non-destructive examination techniques do not readily reveal joint degradation before the formation of explicit defects. Embedded fiber Bragg grating (FBG) sensors and the resistance of carbon nanotube (CNT)-doped conductive joints have been proposed to monitor the structural integrity of adhesive joints. Both techniques will be employed and compared in the current work to monitor damage development in adhesive joints under tensile and cyclic fatigue loading. Most of the previous works took measurements under an applied load, which by itself will affect the monitoring signals without the presence of any damage. Moreover, most FBG works primarily relied on the peak shifting phenomenon for sensing. Degradation of adhesive and inter-facial defects will lead to non-uniform strain that may chirp the FBG spectrum, causing complications in the peak shifting measurement. In view of the above shortfalls, measurements are made at some low and fixed loads to preclude any unwanted effect due to the applied load. The whole FBG spectrum, instead of a single peak, will be used, and a quantitative parameter to describe spectrum changes is proposed for monitoring purposes. The extent of damage is revealed by a fluorescent penetrant and correlated with the monitoring signals. With these refined techniques, we hope to shed some light on the relative merits and limitations of the two techniques. Full article
(This article belongs to the Special Issue Structural Integrity Assessment on Polymers and Composites)
Show Figures

Figure 1

14 pages, 5961 KiB  
Article
The Hypervelocity Impact Behavior and Energy Absorption Evaluation of Fabric
by Huadong Xu, Dong Yu, Jiaxin Cui, Zhixin Shi, Di Song and Changqing Miao
Polymers 2023, 15(6), 1547; https://doi.org/10.3390/polym15061547 - 21 Mar 2023
Cited by 2 | Viewed by 1957
Abstract
In this work, the mechanical behavior and energy absorption characteristics of flexible fabric under hypervelocity impact (HVI) were investigated. Basalt fabric, ultra-high molecular weight polyethylene (UHMWPE) fabric, and aluminum alloy (Al) plate were chosen to be the sample materials for their excellent mechanical [...] Read more.
In this work, the mechanical behavior and energy absorption characteristics of flexible fabric under hypervelocity impact (HVI) were investigated. Basalt fabric, ultra-high molecular weight polyethylene (UHMWPE) fabric, and aluminum alloy (Al) plate were chosen to be the sample materials for their excellent mechanical properties and applicative prospect in spacecraft shielding. HVI experiments had been conducted with the help of a two-stage light-gas gun facility, wherein Al projectile with 3.97 mm diameter was launched at velocities in the range 4.1~4.3 km/s. Impact conditions and areal density were kept constant for all targets. The microstructural damage morphology of fiber post-impact was characterized using a scanning electron microscope (SEM). Analysis results show that a brittle fracture occurred for Basalt fiber during HVI. On the contrary, the ductile fractures with large-scale plastic deformation and apparent thermal softening/melting of the material had happened on the UHMWPE fiber when subjected to a projectile impact. According to the HVI shielding performance and microstructural damage analysis results, it can be inferred that ductile fractures and thermal softening/melting of the material were the prevailing energy absorption behaviors of UHMWPE fabric, which leads to absorbing more impact energy than Basalt fabric and eventually, contributes the superior shielding performance. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymers and Lightweight Structures)
Show Figures

Figure 1

16 pages, 2408 KiB  
Article
Processing, Characterization and Disintegration Properties of Biopolymers Based on Mater-Bi® and Ellagic Acid/Chitosan Coating
by Carolina Villegas, Sara Martínez, Alejandra Torres, Adrián Rojas, Rocío Araya, Abel Guarda and María José Galotto
Polymers 2023, 15(6), 1548; https://doi.org/10.3390/polym15061548 - 21 Mar 2023
Cited by 6 | Viewed by 2636
Abstract
Among the most promising synthetic biopolymers to replace conventional plastics in numerous applications is MaterBi® (MB), a commercial biodegradable polymer based on modified starch and synthetic polymers. Actually, MB has important commercial applications as it shows interesting mechanical properties, thermal stability, processability [...] Read more.
Among the most promising synthetic biopolymers to replace conventional plastics in numerous applications is MaterBi® (MB), a commercial biodegradable polymer based on modified starch and synthetic polymers. Actually, MB has important commercial applications as it shows interesting mechanical properties, thermal stability, processability and biodegradability. On the other hand, research has also focused on the incorporation of natural, efficient and low-cost active compounds into various materials with the aim of incorporating antimicrobial and/or antioxidant capacities into matrix polymers to extend the shelf life of foods. Among these is ellagic acid (EA), a polyphenolic compound abundant in some fruits, nuts and seeds, but also in agroforestry and industrial residues, which seems to be a promising biomolecule with interesting biological activities, including antioxidant activity, antibacterial activity and UV-barrier properties. The objective of this research is to develop a film based on commercial biopolymer Mater-Bi® (MB) EF51L, incorporating active coating from chitosan with a natural active compound (EA) at two concentrations (2.5 and 5 wt.%). The formulations obtained complete characterization and were carried out in order to evaluate whether the incorporation of the coating significantly affects thermal, mechanical, structural, water-vapor barrier and disintegration properties. From the results, FTIR analysis yielded identification, through characteristic peaks, that the type of MB used is constituted by three polymers, namely PLA, TPS and PBAT. With respect to the mechanical properties, the values of tensile modulus and tensile strength of the MB-CHI film were between 15 and 23% lower than the values obtained for the MB film. The addition of 2.5 wt.% EA to the CHI layer did not generate changes in the mechanical properties of the system, whereas a 5 wt.% increase in ellagic acid improved the mechanical properties of the CHI film through the addition of natural phenolic compounds at high concentrations. Finally, the disintegration process was mainly affected by the PBAT biopolymer, causing the material to not disintegrate within the times indicated by ISO 20200. Full article
Show Figures

Graphical abstract

14 pages, 4944 KiB  
Article
Deep Transfer Learning Approach for Localization of Damage Area in Composite Laminates Using Acoustic Emission Signal
by Jingyu Zhao, Weihua Xie, Dong Yu, Qiang Yang, Songhe Meng and Qihui Lyu
Polymers 2023, 15(6), 1520; https://doi.org/10.3390/polym15061520 - 19 Mar 2023
Cited by 6 | Viewed by 2226
Abstract
Intelligent composite structures with self-aware functions are preferable for future aircrafts. The real-time location of damaged areas of composites is a key step. In this study, deep transfer learning was used to achieve the real-time location of damaged areas. The sensor network obtained [...] Read more.
Intelligent composite structures with self-aware functions are preferable for future aircrafts. The real-time location of damaged areas of composites is a key step. In this study, deep transfer learning was used to achieve the real-time location of damaged areas. The sensor network obtained acoustic emission signals from different damaged areas of the aluminum alloy plate. The acoustic emission time-domain signal is transformed into the input image by continuous wavelet transform. The convolutional neural network-based model automatically localized the damaged area by extracting features from the input image. A small amount of composite acoustic emission data was used to fine-tune some network parameters of the basic model through transfer learning. This enabled the model to classify the damaged area of composites. The accuracy of the transfer learning model trained with 900 samples is 96.38%, which is comparable to the accuracy of the model trained directly with 1800 samples; the training time of the former is only 17.68% of that of the latter. The proposed method can be easily adapted to new composite structures using transfer learning and a small dataset, providing a new idea for structural health monitoring. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymers and Lightweight Structures)
Show Figures

Figure 1

17 pages, 6111 KiB  
Article
Effect of Aging on Unidirectional Composite Laminate Polyethylene for Body Armor
by Amy Engelbrecht-Wiggans, Zois Tsinas, Ajay Krishnamurthy and Amanda L. Forster
Polymers 2023, 15(6), 1347; https://doi.org/10.3390/polym15061347 - 8 Mar 2023
Cited by 3 | Viewed by 1841
Abstract
The construction of ballistic-resistant body armor is experiencing an increasing use of flexible unidirectional (UD) composite laminates that comprise multiple layers. Each UD layer contains hexagonally packed high-performance fibers with a very low modulus matrix (sometimes referred to as binder resins). Laminates are [...] Read more.
The construction of ballistic-resistant body armor is experiencing an increasing use of flexible unidirectional (UD) composite laminates that comprise multiple layers. Each UD layer contains hexagonally packed high-performance fibers with a very low modulus matrix (sometimes referred to as binder resins). Laminates are then made from orthogonal stacks of these layers, and these laminate-based armor packages offer significant performance advantages over standard woven materials. When designing any armor system, the long-term reliability of the armor materials is critical, particularly with regard to stability with exposure to temperature and humidity, as these are known causes of degradation in commonly used body armor materials. To better inform future armor designers, this work investigates the tensile behavior of an ultra-high molar mass polyethylene (UHMMPE) flexible UD laminate that was aged for at least 350 d at two accelerated conditions: 70 °C at 76% relative humidity (RH) and 70 °C in a desiccator. Tensile tests were performed at two different loading rates. The mechanical properties of the material after ageing demonstrated less than 10% degradation in tensile strength, indicating high reliability for armor made from this material. Full article
(This article belongs to the Special Issue Durability and Degradation of Polymeric Materials II)
Show Figures

Graphical abstract

14 pages, 2185 KiB  
Article
Feasibility of Valorization of Post-Consumer Recycled Flexible Polypropylene by Adding Fumed Nanosilica for Its Potential Use in Food Packaging toward Sustainability
by Eliezer Velásquez, Carol López de Dicastillo, Cristian Patiño Vidal, Guillermo Copello, Cristopher Reyes, Abel Guarda and María José Galotto
Polymers 2023, 15(5), 1081; https://doi.org/10.3390/polym15051081 - 21 Feb 2023
Cited by 8 | Viewed by 2158
Abstract
The food industry has a current challenge of increasing the recycling of post-consumer plastics to reduce plastic waste towards a circular economy, especially flexible polypropylene, which is highly demanded in food packaging. However, recycling post-consumer plastics is limited because service life and reprocessing [...] Read more.
The food industry has a current challenge of increasing the recycling of post-consumer plastics to reduce plastic waste towards a circular economy, especially flexible polypropylene, which is highly demanded in food packaging. However, recycling post-consumer plastics is limited because service life and reprocessing degrade their physical-mechanical properties and modify the migration of components from the recycled material to the food. This research evaluated the feasibility of valorization of post-consumer recycled flexible polypropylene (PCPP) by incorporating fumed nanosilica (NS). For this purpose, the effect of concentration and type (hydrophilic and hydrophobic) of NS on the morphological, mechanical, sealing, barrier and overall migration properties of PCPP films was studied. Incorporating NS improved Young’s modulus and, more significantly, tensile strength at 0.5 wt% and 1 wt%, where a better particle dispersion was confirmed by EDS-SEM, but it diminished elongation at breakage of the films. Interestingly, NS tended to increase the seal strength of PCPP nanocomposite films more significantly at higher NS content, showing a seal failure of the adhesive peel type which is preferred for flexible packaging. NS at 1 wt% did not affect the water vapor and oxygen permeabilities of the films. Overall migration of PCPP and nanocomposites exceeded the limit value of 10 mg dm−2 allowed by European legislation at the studied concentrations of 1% and 4 wt%. Nonetheless, NS reduced the overall migration of PCPP from 17.3 to 15 mg dm−2 in all nanocomposites. In conclusion, PCPP with 1 wt% of hydrophobic NS presented an improved overall performance of the studied packaging properties. Full article
(This article belongs to the Special Issue Polymers for Recycling and Valorization of Soft and Hard Materials)
Show Figures

Figure 1

21 pages, 497 KiB  
Review
Hydrothermal Ageing of Glass Fibre Reinforced Vinyl Ester Composites: A Review
by James Thomason and Georgios Xypolias
Polymers 2023, 15(4), 835; https://doi.org/10.3390/polym15040835 - 8 Feb 2023
Cited by 12 | Viewed by 2990
Abstract
The use of glass fibre-reinforced polymer (GFRP) composites in load-carrying constructions has significantly increased over the last few decades. Such GFRP composite structures may undergo significant changes in performance as a consequence of long-term environmental exposure. Vinyl ester (VE) resins are a class [...] Read more.
The use of glass fibre-reinforced polymer (GFRP) composites in load-carrying constructions has significantly increased over the last few decades. Such GFRP composite structures may undergo significant changes in performance as a consequence of long-term environmental exposure. Vinyl ester (VE) resins are a class of thermosetting polymers increasingly being used in such structural composites. This increasing use of VE-based GFRPs in such applications has led to an increasing need to better understand the consequences of long-term environmental exposure on their performance. The reliable validation of the environmental durability of new VE-based GFRPs can be a time- and resource-consuming process involving costly testing programs. Accelerated hydrothermal ageing is often used in these investigations. This paper reviews the relevant literature on the hydrothermal ageing of vinyl ester-based GFRP with special attention to the fundamental background of moisture-induced ageing of GFRP, the important role of voids, and the fibre-matrix interface, on composite mechanical performance. Full article
(This article belongs to the Special Issue Durability and Degradation of Polymeric Materials II)
Show Figures

Graphical abstract

20 pages, 3343 KiB  
Article
Enzyme-Catalyzed Polymerization of Kraft Lignin from Eucalyptus globulus: Comparison of Bacterial and Fungal Laccases Efficacy
by Luisa García-Fuentevilla, Gabriela Domínguez, Raquel Martín-Sampedro, Manuel Hernández, María E. Arias, José I. Santos, David Ibarra and María E. Eugenio
Polymers 2023, 15(3), 513; https://doi.org/10.3390/polym15030513 - 18 Jan 2023
Cited by 3 | Viewed by 2755
Abstract
Kraft lignin, a side-stream from the pulp and paper industry, can be modified by laccases for the synthesis of high added-value products. This work aims to study different laccase sources, including a bacterial laccase from Streptomyces ipomoeae (SiLA) and a fungal laccase from [...] Read more.
Kraft lignin, a side-stream from the pulp and paper industry, can be modified by laccases for the synthesis of high added-value products. This work aims to study different laccase sources, including a bacterial laccase from Streptomyces ipomoeae (SiLA) and a fungal laccase from Myceliophthora thermophila (MtL), for kraft lignin polymerization. To study the influence of some variables in these processes, a central composite design (CCD) with two continuous variables (enzyme concentration and reaction time) and three levels for each variable was used. The prediction of the behavior of the output variables (phenolic content and molecular weight of lignins) were modelled by means of response surface methodology (RSM). Moreover, characterization of lignins was performed by Fourier-transform infrared (FTIR) spectroscopy and different nuclear magnetic resonance (NMR) spectroscopy techniques. In addition, antioxidant activity was also analyzed. Results showed that lignin polymerization (referring to polymerization as lower phenolic content and higher molecular weight) occurred by the action of both laccases. The enzyme concentration was the most influential variable in the lignin polymerization reaction within the range studied for SiLA laccase, while the most influential variable for MtL laccase was the reaction time. FTIR and NMR characterization analysis corroborated lignin polymerization results obtained from the RSM. Full article
Show Figures

Figure 1

44 pages, 19950 KiB  
Review
Hybridization of Wide-Angle X-ray and Neutron Diffraction Techniques in the Crystal Structure Analyses of Synthetic Polymers
by Kohji Tashiro, Katsuhiro Kusaka, Hiroko Yamamoto, Takaaki Hosoya, Shuji Okada and Takashi Ohhara
Polymers 2023, 15(2), 465; https://doi.org/10.3390/polym15020465 - 16 Jan 2023
Cited by 2 | Viewed by 2618
Abstract
The development in the crystal structure analysis of synthetic polymers using the hybridized combination of wide-angle X-ray and neutron diffraction (WAXD and WAND, respectively) techniques has been reviewed with many case studies performed by the authors. At first, the technical development was reviewed, [...] Read more.
The development in the crystal structure analysis of synthetic polymers using the hybridized combination of wide-angle X-ray and neutron diffraction (WAXD and WAND, respectively) techniques has been reviewed with many case studies performed by the authors. At first, the technical development was reviewed, in which the usage of high-energy synchrotron X-ray source was emphasized for increasing the total number of the observable diffraction peaks, and several examples were introduced. Secondly, the usage of the WAND method was introduced, in which the successful extraction of hydrogen atomic positions was described. The third example is to show the importance for the hybrid combination of these two diffraction methods. The quantitative WAXD data analysis gave the crystal structures of at-poly(vinyl alcohol) (at-PVA) and at-PVA-iodine complex. However, the thus-proposed structure models were found not to reproduce the observed WAND data very much. The reason came from the remarkable difference in the atomic scattering powers of the constituting atomic species between WAXD and WAND phenomena. The introduction of statistical disorder solved this serious problem, which reproduced both of the observed WAXD and WAND data consistently. The more systematic combination of WAXD and WAND methods, or the so-called X-N method, was applied also to the quantitative evaluation of the bonded electron density distribution along the skeletal chains, where the results about polydiacetylene single crystals were presented as the first successful study. Finally, the application of WAND technique in the trace of structural changes induced under the application of external stress or temperature was described. The future perspective is described for the development of structural science of synthetic polymers on the basis of the combined WAXD/WAND techniques. Full article
(This article belongs to the Special Issue State-of-the-Art Polymer Science and Technology in Japan (2021,2022))
Show Figures

Figure 1

16 pages, 3086 KiB  
Article
Insight into Degrading Effects of Two Fungi on Polyurethane Coating Failure in a Simulated Atmospheric Environment
by Xiangping Hao, Kexin Yang, Dawei Zhang and Lin Lu
Polymers 2023, 15(2), 328; https://doi.org/10.3390/polym15020328 - 9 Jan 2023
Cited by 3 | Viewed by 1997
Abstract
Two different fungi, Talaromyces funiculosus (T. funiculosus) and Phanerochaete chrysosporium (P. chrysosporium), were collected from the Xishuangbanna atmospheric corrosion site and incubated on a polyurethane (PU) coating at 30 °C for two weeks under 95% relative humidity (RH). The biodegrading [...] Read more.
Two different fungi, Talaromyces funiculosus (T. funiculosus) and Phanerochaete chrysosporium (P. chrysosporium), were collected from the Xishuangbanna atmospheric corrosion site and incubated on a polyurethane (PU) coating at 30 °C for two weeks under 95% relative humidity (RH). The biodegrading effects of these fungi on the coating failure were investigated from aspects of metabolism and electrochemistry. The results showed that T. funiculosus contributed more to the degradation of the PU coating failure than P. chrysosporium, and two factors played dominant roles. First, the weight of the T. funiculosus mycelium was nearly 3 times more than that of P. chrysosporium, indicating there was more substrate mycelium of T. funiculosus deep into the coatings to get more nutrition in atmospheric during colonization. Second, T. funiculosus secreted carboxylic acids, such as citric, propanoic, succinic, and tartaric acids, and accelerated the hydrolysis of the ester and urethane bonds in the PU coatings. As a result, the mycelium of T. funiculosus readily penetrated the interface of the coating and substrate resulting in a rapid proliferation. Thus, the |Z|0.01Hz value of the coating decreased to 5.1 × 104 Ω·cm2 after 14 days of colonization by T. funiculosus while the value remained at 7.2 × 107 Ω·cm2 after colonization by P. chrysosporium. These insights suggest that the biodegradation process in simulated atmospheric environments would provide theoretical guidance and directions for the design of antifungal PU coatings. Full article
(This article belongs to the Special Issue Durability and Degradation of Polymeric Materials II)
Show Figures

Figure 1

9 pages, 2286 KiB  
Article
Self- and Cross-Fusing of Furan-Based Polyurea Gels Dynamically Cross-Linked with Maleimides
by Takuya Kumakura, Kenji Takada and Tatsuo Kaneko
Polymers 2023, 15(2), 341; https://doi.org/10.3390/polym15020341 - 9 Jan 2023
Cited by 1 | Viewed by 2003
Abstract
Bio-based polyureas (PUs) with main-chain furan rings were synthesized by the polyaddition of 2,5-bis(aminomethyl)furan with various diisocyanates, such as methylene diphenyl diisocyanate. Several PU’s were soluble in polar organic solvents, and were cast to form thermomechanically stable films with softening temperatures of over [...] Read more.
Bio-based polyureas (PUs) with main-chain furan rings were synthesized by the polyaddition of 2,5-bis(aminomethyl)furan with various diisocyanates, such as methylene diphenyl diisocyanate. Several PU’s were soluble in polar organic solvents, and were cast to form thermomechanically stable films with softening temperatures of over 100 °C. The furan rings of the PU main chains underwent a dynamic Diels-Alder (DA) reaction with bismaleimide (BMI) cross-linkers. While the mixed solution of PU and BMI did not show any apparent signs of reaction at room temperature, the DA reaction proceeded to form gels upon heating to 60 °C, which became a solution again by further heating to 80 °C (retro-DA reaction). The solution phase was maintained by rapid quenching from 80 °C to room temperature, while the gel was reformed upon slow cooling. The recovered gels exhibited self-healing properties. A scratch made by a hot knife at temperatures above 80 °C disappeared spontaneously. When two different gels were cut using a knife at room temperature, placed in contact with each other, and heated to 60 °C, they fused. The ability to control the DA/retro-DA reaction allowed gels of varying composition to heal. Full article
(This article belongs to the Special Issue State-of-the-Art Polymer Science and Technology in Japan (2021,2022))
Show Figures

Graphical abstract

15 pages, 2393 KiB  
Article
Studying the Physical and Chemical Properties of Polydimethylsiloxane Matrix Reinforced by Nanostructured TiO2 Supported on Mesoporous Silica
by Sari Katz, Noa Lachman, Nir Hafif, Lilach Rosh, Alexander Pevzner, Amir Lybman, Tal Amitay-Rosen, Ido Nir and Hadar Rotter
Polymers 2023, 15(1), 81; https://doi.org/10.3390/polym15010081 - 25 Dec 2022
Cited by 6 | Viewed by 3604
Abstract
In this study, a reactive adsorbent filler was integrated into a polymeric matrix as a novel reactive protective barrier without undermining its mechanical, thermal, and chemical properties. For this purpose, newly synthesized TiO2/MCM/polydimethylsiloxane (PDMS) composites were prepared, and their various properties [...] Read more.
In this study, a reactive adsorbent filler was integrated into a polymeric matrix as a novel reactive protective barrier without undermining its mechanical, thermal, and chemical properties. For this purpose, newly synthesized TiO2/MCM/polydimethylsiloxane (PDMS) composites were prepared, and their various properties were thoroughly studied. The filler, TiO2/MCM, is based on a (45 wt%) TiO2 nanoparticle catalyst inside the pores of ordered mesoporous silica, MCM-41, which combines a high adsorption capacity and catalytic capability. This study shows that the incorporation of TiO2/MCM significantly enhances the composite’s Young’s modulus in terms of tensile strength, as an optimal measurement of 1.6 MPa was obtained, compared with that of 0.8 MPa of pristine PDMS. The composites also showed a higher thermal stability, a reduction in the coefficient of thermal expansion (from 290 to 110 ppm/°C), a 25% reduction in the change in the normalized specific heat capacity, and an increase in the thermal degradation temperatures. The chemical stability in organic environments was improved, as toluene swelling decreased by 40% and the contact angle increased by ~15°. The enhanced properties of the novel synthesized TiO2/MCM/PDMS composite can be used in various applications where a high adsorption capacity and catalytic/photocatalytic activity are required, such as in protective equipment, microfluidic applications, and chemical sensor devices. Full article
(This article belongs to the Special Issue Durability and Degradation of Polymeric Materials II)
Show Figures

Graphical abstract

26 pages, 7618 KiB  
Article
Plastic Deformation of High Density Polyethylene with Extended-Chain Crystal Morphology
by Alina Vozniak and Zbigniew Bartczak
Polymers 2023, 15(1), 66; https://doi.org/10.3390/polym15010066 - 24 Dec 2022
Cited by 5 | Viewed by 3305
Abstract
Samples of polyethylene with extended-chain crystal morphology, obtained by crystallization under high pressure, were subjected to uniaxial compression to various strains. Accompanying structural changes were analyzed using scanning electron microscopy. At the true strain of e = 0.2–0.3 the microbuckling instability was observed [...] Read more.
Samples of polyethylene with extended-chain crystal morphology, obtained by crystallization under high pressure, were subjected to uniaxial compression to various strains. Accompanying structural changes were analyzed using scanning electron microscopy. At the true strain of e = 0.2–0.3 the microbuckling instability was observed in longitudinally loaded lamellae, resulting in the formation of angular kinks. This induced a rapid reorientation of the lamellae, facilitating their further deformation by crystallographic slip. Microbuckling instability was found to occur earlier than in samples with folded-chain crystal morphology (e = 0.3–0.4) due to a smaller ratio of the amorphous to crystalline layer thickness. SEM observations demonstrated that the microbuckling instability begins with small undulation in long lamellae. Sharp angular lamellar kinks develop from the initial undulation through intense plastic deformation by crystallographic slip along the chain direction. The same slip system was found to operate throughout the kink, including the tip region as well as both limbs. In contrast to thin folded-chain lamellae that often undergo fragmentation during deformation, the thick extended-chain lamellae deform stably by chain slip and retain their continuity up to high strains, e > 1.6. This stability of deformation is related to the large thickness of extended-chain lamellae. Full article
(This article belongs to the Special Issue Plastics II)
Show Figures

Figure 1

24 pages, 7223 KiB  
Review
Review on Heat Generation of Rubber Composites
by Ying Liu, Wenduo Chen and Dazhi Jiang
Polymers 2023, 15(1), 2; https://doi.org/10.3390/polym15010002 - 20 Dec 2022
Cited by 12 | Viewed by 4101
Abstract
Rubber composites are extensively used in industrial applications for their exceptional elasticity. The fatigue temperature rise occurs during operation, resulting in a serious decline in performance. Reducing heat generation of the composites during cyclic loading will help to avoid substantial overheating that most [...] Read more.
Rubber composites are extensively used in industrial applications for their exceptional elasticity. The fatigue temperature rise occurs during operation, resulting in a serious decline in performance. Reducing heat generation of the composites during cyclic loading will help to avoid substantial overheating that most likely results in the degradation of materials. Herein, we discuss the two main reasons for heat generation, including viscoelasticity and friction. Influencing factors of heat generation are highlighted, including the Payne effect, Mullins effect, interface interaction, crosslink density, bond rubber content, and fillers. Besides, theoretical models to predict the temperature rise are also analyzed. This work provides a promising way to achieve advanced rubber composites with high performance in the future. Full article
(This article belongs to the Special Issue Polymer Composite Analysis and Characterization II)
Show Figures

Graphical abstract

15 pages, 10839 KiB  
Article
Advances in Rubber Compounds Using ZnO and MgO as Co-Cure Activators
by Md Najib Alam, Vineet Kumar and Sang-Shin Park
Polymers 2022, 14(23), 5289; https://doi.org/10.3390/polym14235289 - 3 Dec 2022
Cited by 24 | Viewed by 7009
Abstract
Zinc oxide performs as the best cure activator in sulfur-based vulcanization of rubber, but it is regarded as a highly toxic material for aquatic organisms. Hence, the toxic cure activator should be replaced by a non-toxic one. Still, there is no suitable alternative [...] Read more.
Zinc oxide performs as the best cure activator in sulfur-based vulcanization of rubber, but it is regarded as a highly toxic material for aquatic organisms. Hence, the toxic cure activator should be replaced by a non-toxic one. Still, there is no suitable alternative industrially. However, binary activators combining ZnO and another metal oxide such as MgO can largely reduce the level of ZnO with some improved benefits in the vulcanization of rubber as investigated in this research. Curing, mechanical, and thermal characteristics were investigated to find out the suitability of MgO in the vulcanization of rubber. Curing studies reveal that significant reductions in the optimum curing times are found by using MgO as a co-cure activator. Especially, the rate of vulcanization with conventional 5 phr (per hundred grams) ZnO can be enhanced by more than double, going from 0.3 Nm/min to 0.85 Nm/min by the use of a 3:2 ratio of MgO to ZnO cure activator system that should have high industrial importance. Mechanical and thermal properties investigations suggest that MgO as a co-cure activator used at 60% can provide 7.5% higher M100 (modulus at 100% strain) (0.58 MPa from 0.54 MPa), 20% higher tensile strength (23.7 MPa from 19.5 MPa), 15% higher elongation at break (1455% from 1270%), 68% higher fracture toughness (126 MJ/m3 from 75 MJ/m3), and comparable thermal stability than conventionally using 100 % ZnO. Especially, MgO as a co-cure activator could be very useful for improving the fracture toughness in rubber compounds compared to ZnO as a single-site curing activator. The significant improvements in the curing and mechanical properties suggest that MgO and ZnO undergo chemical interactions during vulcanization. Such rubber compounds can be useful in advanced tough and stretchable applications. Full article
(This article belongs to the Special Issue Advances in Functional Rubber and Elastomer Composites)
Show Figures

Figure 1

21 pages, 7289 KiB  
Article
Efficient Physical Mixing of Small Amounts of Nanosilica Dispersion and Waterborne Polyurethane by Using Mild Stirring Conditions
by María Echarri-Giacchi and José Miguel Martín-Martínez
Polymers 2022, 14(23), 5136; https://doi.org/10.3390/polym14235136 - 25 Nov 2022
Cited by 2 | Viewed by 2171
Abstract
Good dispersion of nanosilica particles in waterborne polyurethane was obtained by mild mechanical stirring when 0.1–0.5 wt.% nanosilica in aqueous dispersion was added. The addition of small amounts of nanosilica produced more negative Z-potential values, increased the surface tension and decreased the Brookfield [...] Read more.
Good dispersion of nanosilica particles in waterborne polyurethane was obtained by mild mechanical stirring when 0.1–0.5 wt.% nanosilica in aqueous dispersion was added. The addition of small amounts of nanosilica produced more negative Z-potential values, increased the surface tension and decreased the Brookfield viscosity, as well as the extent of shear thinning of the waterborne polyurethane. Depending on the amount of nanosilica, the particle-size distributions of the waterborne polyurethanes changed differently and the addition of only 0.1 wt.% nanosilica noticeably increased the percentage of the particles of 298 nm in diameter. The DSC curves showed two melting peaks at 46 °C and 52 °C, as well as an increase in the melting enthalpy. In addition, when nanosilica was added, the crystallization peak of the waterborne polyurethane was displaced to a higher temperature and showed higher enthalpy. Furthermore, the addition of 0.1–0.5 wt.% nanosilica displaced the temperature of decomposition of the soft domains to higher temperatures due to the intercalation of the particles among the soft segments; this led to a change in the degree of phase separation of the waterborne polyurethanes. As a consequence, improved thermal stability and viscoelastic and mechanical properties of the waterborne polyurethanes were obtained. However, the addition of small amounts of nanosilica was detrimental for the wettability and adhesion of the waterborne polyurethanes due to the existence of acrylic moieties on the nanosilica particles, which seemed to migrate to the interface once the polyurethane was cross-linked. In fact, the final T-peel strength values of the joints made with the waterborne polyurethanes containing nanosilica were significantly lower than the one obtained with the waterborne polyurethane without nanosilica; the higher the nanosilica content, the lower the final adhesion. The better the nanosilica dispersion in the waterborne polyurethane+nanosilica, the higher the final T-peel strength value. Full article
(This article belongs to the Special Issue Advances in Multifunctional Polymer-Based Nanocomposites)
Show Figures

Graphical abstract

22 pages, 7308 KiB  
Article
The Influence of Different Sustainable Silk-Based Fillers on the Thermal and Mechanical Properties of Polylactic Acid Composites
by José Miguel Ferri, Miguel Aldas, Emilio Rayon, Maria Dolores Samper and Antonio Abel Lozano-Pérez
Polymers 2022, 14(22), 5016; https://doi.org/10.3390/polym14225016 - 18 Nov 2022
Cited by 4 | Viewed by 2495
Abstract
In this work, different silk fillers combined with maleinized corn oil (MCO), as environmentally friendly plasticizers, were used to modify the mechanical and thermal properties of polylactic acid (PLA) composites. Melt extrusion and injection were used to obtain samples with a content of [...] Read more.
In this work, different silk fillers combined with maleinized corn oil (MCO), as environmentally friendly plasticizers, were used to modify the mechanical and thermal properties of polylactic acid (PLA) composites. Melt extrusion and injection were used to obtain samples with a content of 10 wt.% of MCO and 0.5 phr of different silk fillers: crushed silk (CS), silk fibroin microparticles (SFM), and silk fibroin nanoparticles (SFN). PLA formulation with 10 wt.% of MCO and 0.5 g of CS per hundred grams of composite (phr) showed the highest increase in mechanical ductile properties with an increase in elongation at break of approximately 1400%, compared with PLA. Differential scanning calorimetry (DSC) showed a decrease of 2 °C in their glass transition temperature with the addition of different silk fillers. In addition, SFM and SFN increase the degree of crystallinity of PLA. This increment was also confirmed by infrared spectroscopy analysis. Field emission scanning electron microscopy (FESEM) images revealed a good dispersion of the different silk fillers. Among them, PLA formulation with 10 wt.% MCO and 0.5 phr of SFN, showed an optimal balance between maximum resistance and elongation at break, with 52.0 MPa and 10.8%, respectively, improving elongation at break by 635%. Furthermore, all samples were satisfactorily disintegrated under composting conditions. Full article
(This article belongs to the Special Issue Polylactic Acid (PLA)-Based Materials)
Show Figures

Graphical abstract

24 pages, 5772 KiB  
Article
Bio-Based Electrospun Fibers from Chitosan Schiff Base and Polylactide and Their Cu2+ and Fe3+ Complexes: Preparation and Antibacterial and Anticancer Activities
by Milena Ignatova, Ina Anastasova, Nevena Manolova, Iliya Rashkov, Nadya Markova, Rositsa Kukeva, Radostina Stoyanova, Ani Georgieva and Reneta Toshkova
Polymers 2022, 14(22), 5002; https://doi.org/10.3390/polym14225002 - 18 Nov 2022
Cited by 8 | Viewed by 2151
Abstract
The Schiff base derivative (Ch-8Q) of chitosan (Ch) and 8-hydroxyquinoline-2-carboxaldehyde (8QCHO) was prepared and fibrous mats were obtained by the electrospinning of Ch-8Q/polylactide (PLA) blend solutions in trifluoroacetic acid (TFA). Complexes of the mats were prepared by immersing them in a solution of [...] Read more.
The Schiff base derivative (Ch-8Q) of chitosan (Ch) and 8-hydroxyquinoline-2-carboxaldehyde (8QCHO) was prepared and fibrous mats were obtained by the electrospinning of Ch-8Q/polylactide (PLA) blend solutions in trifluoroacetic acid (TFA). Complexes of the mats were prepared by immersing them in a solution of CuCl2 or FeCl3. Electron paramagnetic resonance (EPR) analysis was performed to examine the complexation of Cu2+(Fe3+) in the Ch-8Q/PLA mats complexes. The morphology of the novel materials and their surface chemical composition were studied by scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The performed microbiological screening demonstrated that in contrast to the neat PLA mats, the Ch-8Q-containing mats and their complexes were able to kill all S. aureus bacteria within 3 h of contact. These fibrous materials had efficiency in suppressing the adhesion of pathogenic bacteria S. aureus. In addition, Ch-8Q/PLA mats and their complexes exerted good anticancer efficacy in vitro against human cervical HeLa cells and human breast MCF-7 cells. The Ch-8Q-containing fibrous materials had no cytotoxicity against non-cancer BALB/c 3T3 mouse fibroblast cells. These properties render the prepared materials promising as wound dressings as well as for application in local cancer treatment. Full article
Show Figures

Graphical abstract

21 pages, 6288 KiB  
Article
Influence of Binder Composition and Material Extrusion (MEX) Parameters on the 3D Printing of Highly Filled Copper Feedstocks
by Mahrukh Sadaf, Santiago Cano, Joamin Gonzalez-Gutierrez, Mario Bragaglia, Stephan Schuschnigg, Christian Kukla, Clemens Holzer, Lilla Vály, Michael Kitzmantel and Francesca Nanni
Polymers 2022, 14(22), 4962; https://doi.org/10.3390/polym14224962 - 16 Nov 2022
Cited by 17 | Viewed by 3326
Abstract
This work aims to better understand the type of thermoplastic binders required to produce highly loaded copper filaments that can be successfully printed via low-cost filament-based material extrusion (MEX). Compounding feedstock material with 55 vol.% of copper and three multi-component binder systems has [...] Read more.
This work aims to better understand the type of thermoplastic binders required to produce highly loaded copper filaments that can be successfully printed via low-cost filament-based material extrusion (MEX). Compounding feedstock material with 55 vol.% of copper and three multi-component binder systems has been performed. The MEX behavior of these feedstocks was evaluated by depositing material at different speeds and appropriately selecting the extrusion temperature depending on the binder composition. The rest of the MEX parameters remained constant to evaluate the printing quality for the different feedstocks. Printable filaments were produced with low ovality and good surface quality. The filaments showed good dispersion of the powder and polymeric binder system in SEM analysis. The feedstock mechanical properties, i.e., the tensile strength of the filament, were sufficient to ensure proper feeding in the MEX machine. The viscosity of the feedstock systems at the adjusted printing temperatures lies in the range of 102–103 Pa·s at the shear rate of 100–1000 s−1, which appears to be sufficient to guarantee the correct flowability and continuous extrusion. The tensile properties vary greatly (e.g., ultimate tensile strength 3–9.8 MPa, elongation at break 1.5–40.5%), and the most fragile filament could not be reliably printed at higher speeds. Micrographs of the cross-section of printed parts revealed that as the printing speed increased, the porosity was minimized because the volumetric flow of the feedstock material increased, which can help to fill pores. This study offers new insights into the feedstock requirements needed to produce low-cost intricate copper components of high quality in a reliable and efficient manner. Such components can find many applications in the electronics, biomedical, and many other industries. Full article
(This article belongs to the Special Issue Sustainable Polymeric Composites: Fabrication and Application)
Show Figures

Figure 1

15 pages, 5776 KiB  
Article
Analysis of Wear Phenomena Produced by Erosion with Abrasive Particles against Fluoropolymeric Coatings
by Guillermo Guerrero-Vaca and Oscar Rodríguez-Alabanda
Polymers 2022, 14(21), 4617; https://doi.org/10.3390/polym14214617 - 31 Oct 2022
Cited by 7 | Viewed by 2090
Abstract
To date, PTFE, PFA, and FEP-based fluoropolymer coatings have proven unbeatable in many services due to their excellent chemical inertness, very low wettability, thermal resistance, high non-stick properties, and good applicability. In use, these coatings usually suffer service cycles with consequent deterioration, and [...] Read more.
To date, PTFE, PFA, and FEP-based fluoropolymer coatings have proven unbeatable in many services due to their excellent chemical inertness, very low wettability, thermal resistance, high non-stick properties, and good applicability. In use, these coatings usually suffer service cycles with consequent deterioration, and it is of great interest to determine the intensity and type of wear caused in addition to the deterioration that occurs in their properties. In this work, the response of three polymeric coatings of interest applied to aluminum substrates, after being subjected to the action of abrasive particles of aluminum corundum, glass, and plastic projected under pressure, has been studied. During the application of a given wear cycle, the hardness, surface roughness, surface texture, and thickness of the coating have been measured, in addition to the slip angle and surface transmittance to analyze the evolution of each type of coating. The results allowed a concise evaluation of the performance of three fluoropolymeric coatings of great interest, differentiating the induced erosive wear phenomena and contributing complete information to facilitate the correct selection for users with practical application purposes and as a basis for future research work focused on advancements in this field. Full article
(This article belongs to the Special Issue Durability and Degradation of Polymeric Materials II)
Show Figures

Figure 1

19 pages, 3853 KiB  
Article
Electrochemical Performance of Biopolymer-Based Hydrogel Electrolyte for Supercapacitors with Eco-Friendly Binders
by Giovanni Landi, Luca La Notte, Alessandro Lorenzo Palma and Giovanni Puglisi
Polymers 2022, 14(20), 4445; https://doi.org/10.3390/polym14204445 - 20 Oct 2022
Cited by 14 | Viewed by 2790
Abstract
An environmentally friendly hydrogel based on gelatin has been investigated as a gel polymer electrolyte in a symmetric carbon-based supercapacitor. To guarantee the complete sustainability of the devices, biomaterials from renewable resources (such as chitosan, casein and carboxymethyl cellulose) and activated carbon (from [...] Read more.
An environmentally friendly hydrogel based on gelatin has been investigated as a gel polymer electrolyte in a symmetric carbon-based supercapacitor. To guarantee the complete sustainability of the devices, biomaterials from renewable resources (such as chitosan, casein and carboxymethyl cellulose) and activated carbon (from coconut shells) have been used as a binder and filler within the electrode, respectively. The electrochemical properties of the devices have been compared by using cyclic voltammetry, galvanostatic charge/discharge curves and impedance spectroscopy. Compared to the liquid electrolyte, the hydrogel supercapacitors show similar energy performance with an enhancement of stability up to 12,000 cycles (e.g., chitosan as a binder). The most performant device can deliver ca. 5.2 Wh/kg of energy at a high power density of 1256 W/kg. A correlation between the electrochemical performances and charge storage mechanisms (involving faradaic and non-faradaic processes) at the interface electrode/hydrogel has been discussed. Full article
Show Figures

Graphical abstract

33 pages, 5442 KiB  
Review
Temperature-Responsive Polymer Brush Coatings for Advanced Biomedical Applications
by Svyatoslav Nastyshyn, Yuriy Stetsyshyn, Joanna Raczkowska, Yuriy Nastishin, Yuriy Melnyk, Yuriy Panchenko and Andrzej Budkowski
Polymers 2022, 14(19), 4245; https://doi.org/10.3390/polym14194245 - 10 Oct 2022
Cited by 40 | Viewed by 4313
Abstract
Modern biomedical technologies predict the application of materials and devices that not only can comply effectively with specific requirements, but also enable remote control of their functions. One of the most prospective materials for these advanced biomedical applications are materials based on temperature-responsive [...] Read more.
Modern biomedical technologies predict the application of materials and devices that not only can comply effectively with specific requirements, but also enable remote control of their functions. One of the most prospective materials for these advanced biomedical applications are materials based on temperature-responsive polymer brush coatings (TRPBCs). In this review, methods for the fabrication and characterization of TRPBCs are summarized, and possibilities for their application, as well as the advantages and disadvantages of the TRPBCs, are presented in detail. Special attention is paid to the mechanisms of thermo-responsibility of the TRPBCs. Applications of TRPBCs for temperature-switchable bacteria killing, temperature-controlled protein adsorption, cell culture, and temperature-controlled adhesion/detachment of cells and tissues are considered. The specific criteria required for the desired biomedical applications of TRPBCs are presented and discussed. Full article
(This article belongs to the Special Issue Polymer Brushes: Synthesis, Properties and Structure)
Show Figures

Figure 1

15 pages, 5785 KiB  
Article
Synthesis of Optically and Redox Active Polyenaminones from Diamines and α,α’-Bis[(dimethylamino)methylidene]cyclohexanediones
by Urša Štanfel, Tomaž Kotnik, Sebastijan Ričko, Uroš Grošelj, Bogdan Štefane, Klemen Pirnat, Ema Žagar, Boštjan Genorio and Jurij Svete
Polymers 2022, 14(19), 4120; https://doi.org/10.3390/polym14194120 - 1 Oct 2022
Cited by 1 | Viewed by 1832
Abstract
New oligo- and polyenaminones with Mw ~ 7–50 KDa were prepared in high yields by transaminative amino-enaminone polymerization of regioisomeric bis[(dimethylamino)methylidene]cyclohexanediones with alkylene and phenylenediamines. The polymers obtained are practically insoluble in aqueous and organic solvents and exhibit film-forming properties, UV light [...] Read more.
New oligo- and polyenaminones with Mw ~ 7–50 KDa were prepared in high yields by transaminative amino-enaminone polymerization of regioisomeric bis[(dimethylamino)methylidene]cyclohexanediones with alkylene and phenylenediamines. The polymers obtained are practically insoluble in aqueous and organic solvents and exhibit film-forming properties, UV light absorption at wavelengths below 500 nm, and redox activity. These properties indicate a promising application potential of these polymers, which could find use in optical and optoelectronic applications and in energy storage devices. Full article
Show Figures

Graphical abstract

14 pages, 3033 KiB  
Article
The Synthesis of Bio-Based Michael Donors from Tall Oil Fatty Acids for Polymer Development
by Ralfs Pomilovskis, Inese Mierina, Hynek Beneš, Olga Trhlíková, Arnis Abolins, Anda Fridrihsone and Mikelis Kirpluks
Polymers 2022, 14(19), 4107; https://doi.org/10.3390/polym14194107 - 30 Sep 2022
Cited by 4 | Viewed by 2221
Abstract
In this study, the synthesis of a Michael donor compound from cellulose production by-products—tall oil fatty acids—was developed. The developed Michael donor compounds can be further used to obtain polymeric materials after nucleophilic polymerization through the Michael reaction. It can be a promising [...] Read more.
In this study, the synthesis of a Michael donor compound from cellulose production by-products—tall oil fatty acids—was developed. The developed Michael donor compounds can be further used to obtain polymeric materials after nucleophilic polymerization through the Michael reaction. It can be a promising alternative method for conventional polyurethane materials, and the Michael addition polymerization reaction takes place under milder conditions than non-isocyanate polyurethane production technology, which requires high pressure, high temperature and a long reaction time. Different polyols, the precursors for Michael donor components, were synthesized from epoxidized tall oil fatty acids by an oxirane ring-opening and esterification reaction with different alcohols (trimethylolpropane and 1,4-butanediol). The addition of functional groups necessary for the Michael reaction was carried out by a transesterification reaction of polyol hydroxyl groups with tert-butyl acetoacetate ester. The following properties of the developed polyols and their acetoacetates were analyzed: hydroxyl value, acid value, moisture content and viscosity. The chemical structure was analyzed using Fourier transform infrared spectroscopy, gel permeation chromatography, size-exclusion chromatography and nuclear magnetic resonance. Matrix-assisted laser desorption/ionization analysis was used for structure identification for this type of acetoacetate for the first time. Full article
(This article belongs to the Special Issue Recent Advances in Polyurethane Materials)
Show Figures

Figure 1

13 pages, 1480 KiB  
Article
Synthesis and Characterization of Quadrupolar-Hydrogen-Bonded Polymeric Ionic Liquids for Potential Self-Healing Electrolytes
by Chenming Li, Rajesh Bhandary, Anja Marinow, Dmitrii Ivanov, Mengxue Du, René Androsch and Wolfgang H. Binder
Polymers 2022, 14(19), 4090; https://doi.org/10.3390/polym14194090 - 29 Sep 2022
Cited by 6 | Viewed by 2532
Abstract
Within the era of battery technology, the urgent demand for improved and safer electrolytes is immanent. In this work, novel electrolytes, based on pyrrolidinium-bistrifluoromethanesulfonyl-imide polymeric ionic liquids (POILs), equipped with quadrupolar hydrogen-bonding moieties of ureido-pyrimidinone (UPy) to mediate self-healing properties were synthesized. Reversible [...] Read more.
Within the era of battery technology, the urgent demand for improved and safer electrolytes is immanent. In this work, novel electrolytes, based on pyrrolidinium-bistrifluoromethanesulfonyl-imide polymeric ionic liquids (POILs), equipped with quadrupolar hydrogen-bonding moieties of ureido-pyrimidinone (UPy) to mediate self-healing properties were synthesized. Reversible addition–fragmentation chain-transfer (RAFT) polymerization was employed using S,S-dibenzyl trithiocarbonate as the chain transfer agent to produce precise POILs with a defined amount of UPy and POIL-moieties. Kinetic studies revealed an excellent control over molecular weight and polydispersity in all polymerizations, with a preferable incorporation of UPy monomers in the copolymerizations together with the ionic monomers. Thermogravimetric analysis proved an excellent thermal stability of the polymeric ionic liquids up to 360 °C. By combining the results from differential scanning calorimetry (DSC), broadband dielectric spectroscopy (BDS), and rheology, a decoupled conductivity of the POILs from glass transition was revealed. While the molecular weight was found to exert the main influence on ionic conductivity, the ultimate strength and the self-healing efficiency (of up to 88%) were also affected, as quantified by tensile tests for both pristine and self-healed samples, evidencing a rational design of self-healing electrolytes bearing both hydrogen bonding moieties and low-molecular-weight polymeric ionic liquids. Full article
(This article belongs to the Special Issue Polymeric Self-Healing Materials)
Show Figures

Graphical abstract

17 pages, 2912 KiB  
Article
Ionic Push–Pull Polythiophenes: A Further Step towards Eco-Friendly BHJ Organic Solar Cells
by Martina Marinelli, Massimiliano Lanzi, Filippo Pierini, Yasamin Ziai, Alberto Zanelli, Debora Quadretti, Francesca Di Maria and Elisabetta Salatelli
Polymers 2022, 14(19), 3965; https://doi.org/10.3390/polym14193965 - 22 Sep 2022
Cited by 3 | Viewed by 2324
Abstract
Four new conjugated polymers alternating benzothiadiazole units and thiophene moieties functionalized with ionic phosphonium or sulfonic acid salts in the side chains were synthesized by a postfunctionalization approach of polymeric precursors. The introduction of ionic groups makes the conjugated polymers soluble in water [...] Read more.
Four new conjugated polymers alternating benzothiadiazole units and thiophene moieties functionalized with ionic phosphonium or sulfonic acid salts in the side chains were synthesized by a postfunctionalization approach of polymeric precursors. The introduction of ionic groups makes the conjugated polymers soluble in water and/or polar solvents, allowing for the fabrication of bulk heterojunction (BHJ) solar cells using environmentally friendly conditions. All polymers were fully characterized by spectroscopic, thermal, electrochemical, X-ray diffraction, scanning electron, and atomic force techniques. BHJ solar cells were obtained from halogen-free solvents (i.e., ethanol and/or anisole) by blending the synthesized ionic push–pull polymers with a serinol-fullerene derivative or an ionic homopolymer acting as electron-acceptor (EA) or electron-donor (ED) counterparts, respectively. The device with the highest optical density and the smoothest surface of the active layer was the best-performing, showing a 4.76% photoconversion efficiency. Full article
(This article belongs to the Special Issue Advance in New Energy Materials and Devices)
Show Figures

Graphical abstract

13 pages, 4098 KiB  
Article
Quantitative Assessment of Tensile Strength and Degradation Coefficient of m-Aramid/p-Aramid Blended Yarns Used for Outer Layers of Firefighter Clothing under Ultraviolet Light and Correlation with Fabrics Data
by Kaoru Wakatsuki, Souta Onoda, Minami Matsubara, Norimichi Watanabe, Limin Bao and Hideaki Morikawa
Polymers 2022, 14(19), 3948; https://doi.org/10.3390/polym14193948 - 21 Sep 2022
Cited by 4 | Viewed by 1788
Abstract
The quantitative relationship between the fraction of UV exposure energy and the retention fraction of tensile strength was investigated on the m-Aramid/p-Aramid blend ratio of spun yarn. An exponential equation to calculate tensile strength from an arbitrary UV exposure energy is evaluated for [...] Read more.
The quantitative relationship between the fraction of UV exposure energy and the retention fraction of tensile strength was investigated on the m-Aramid/p-Aramid blend ratio of spun yarn. An exponential equation to calculate tensile strength from an arbitrary UV exposure energy is evaluated for yarns and fabrics. The spun yarns were exposed to UV light using a xenon-arc weathering meter. The retention fraction of tensile strength decreased exponentially with increasing the fraction of UV exposure energy. Curve fitting of the retention fraction of tensile strength to the fraction of UV exposure energy revealed two groups of degradation coefficients based on the blending ratio of m-Aramid/p-Aramid. The correlation between the degradation coefficients (αy and αf) of spun yarn and fabrics can be linearly regressed. The constant of proportionality in linear regression is considered to be the gap between the structure and the breaking mechanism of the fabric relative to yarn breakage. Based on the correlation between the degradation coefficients of spun yarn and fabrics and a mathematical model of the tensile strength of the spun yarn, the tensile strength of fabrics at a given UV exposure energy can be estimated from the tensile strength of the yarn. Full article
(This article belongs to the Special Issue Recent Development in Textiles and Fibers)
Show Figures

Figure 1

27 pages, 9084 KiB  
Article
Biobased Copolyamides 56/66: Synthesis, Characterization and Crystallization Kinetics
by Chia-Hsiung Tseng and Ping-Szu Tsai
Polymers 2022, 14(18), 3879; https://doi.org/10.3390/polym14183879 - 17 Sep 2022
Cited by 17 | Viewed by 3060
Abstract
This study synthesized a series of new biobased copolyamides (co-PAs), namely PA56/PA66 with various comonomer ratios, by using in situ polycondensation. The structures, compositions, behaviors, and crystallization kinetics of the co-PAs were investigated through proton nuclear magnetic resonance (1H NMR) spectroscopy, [...] Read more.
This study synthesized a series of new biobased copolyamides (co-PAs), namely PA56/PA66 with various comonomer ratios, by using in situ polycondensation. The structures, compositions, behaviors, and crystallization kinetics of the co-PAs were investigated through proton nuclear magnetic resonance (1H NMR) spectroscopy, gel permeation chromatography (GPC), Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), polarized optical microscopy (POM), and X-ray diffraction (XRD). The influence of the composition of co-PAs on their mechanical properties and thermal stability was investigated. The co-PAs exhibited a eutectic melting point when the PA56 content was 50 mol%, with the crystallization temperature decreasing from 229 to a minimum 188 °C and the melting temperature from 253 to a minimum 218 °C. The results indicated that the tensile strength and flexural modulus first decreased and then increased as the PA66 content increased. The nonisothermal crystallization kinetics of the PA56/PA66 co-PAs were analyzed using both the Avrami equation modifications presented by Jeziorny and Mo. The results also indicated that the crystallization rate of the PA56/PA66 co-PAs was higher than that of PA56. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

17 pages, 6144 KiB  
Article
Cell-Laden Composite Hydrogel Bioinks with Human Bone Allograft Particles to Enhance Stem Cell Osteogenesis
by Hadis Gharacheh and Murat Guvendiren
Polymers 2022, 14(18), 3788; https://doi.org/10.3390/polym14183788 - 10 Sep 2022
Cited by 8 | Viewed by 3290
Abstract
There is a growing demand for bone graft substitutes that mimic the extracellular matrix properties of the native bone tissue to enhance stem cell osteogenesis. Composite hydrogels containing human bone allograft particles are particularly interesting due to inherent bioactivity of the allograft tissue. [...] Read more.
There is a growing demand for bone graft substitutes that mimic the extracellular matrix properties of the native bone tissue to enhance stem cell osteogenesis. Composite hydrogels containing human bone allograft particles are particularly interesting due to inherent bioactivity of the allograft tissue. Here, we report a novel photocurable composite hydrogel bioink for bone tissue engineering. Our composite bioink is formulated by incorporating human allograft bone particles in a methacrylated alginate formulation to enhance adult human mesenchymal stem cell (hMSC) osteogenesis. Detailed rheology and printability studies confirm suitability of our composite bioinks for extrusion-based 3D bioprinting technology. In vitro studies reveal high cell viability (~90%) for hMSCs up to 28 days of culture within 3D bioprinted composite scaffolds. When cultured within bioprinted composite scaffolds, hMSCs show significantly enhanced osteogenic differentiation as compared to neat scaffolds based on alkaline phosphatase activity, calcium deposition, and osteocalcin expression. Full article
Show Figures

Graphical abstract

13 pages, 2481 KiB  
Article
Generation of Polyamide 12 Coatings on Stainless Steel Substrates by Directed Energy Deposition with a Thulium-Doped Fiber Laser (DED-LB/P)
by Alexander Wittmann, Oliver Hentschel, Alexander Sommereyns and Michael Schmidt
Polymers 2022, 14(18), 3729; https://doi.org/10.3390/polym14183729 - 7 Sep 2022
Cited by 4 | Viewed by 2480
Abstract
Due to their good material properties (e.g., corrosion and wear resistance, biocompatibility), thermoplastic materials like polyamide 12 (PA12) are interesting for functional coatings on metallic components. To ensure a spatially resolved coating and to shorten the process chain, directed energy deposition of polymer [...] Read more.
Due to their good material properties (e.g., corrosion and wear resistance, biocompatibility), thermoplastic materials like polyamide 12 (PA12) are interesting for functional coatings on metallic components. To ensure a spatially resolved coating and to shorten the process chain, directed energy deposition of polymer powders by means of a laser beam (DED-LB/P) offers a promising approach. Due to characteristic absorption bands, the use of a thulium fiber laser with a wavelength of 1.94 μm is investigated in a DED-LB/P setup to generate PA12 coatings on stainless steel substrates without the need to add any absorbing additives. The influence of the energy density and powder mass flow was analyzed by infrared thermography. Furthermore, the coatings were characterized by differential scanning calorimetry, laser-scanning-microscopy, optical microscopy and cross-cutting tests. The results in this study demonstrate for the first time the basic feasibility of an absorber-free DED-LB/P process by using a thulium fiber laser. PA12 coatings with a low porosity and good adhesion are achievable. Depending on the application-specific requirements, a trade-off must be made between the density and surface quality of the PA12 coatings. The use of infrared thermography is appropriate for in-situ detection of process instabilities caused by an excessive energy input. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

13 pages, 4076 KiB  
Article
Bio-Based pH Indicator Films for Intelligent Food Packaging Applications
by Iulia Păușescu, Diana-Maria Dreavă, Ioan Bîtcan, Raluca Argetoianu, Diana Dăescu and Mihai Medeleanu
Polymers 2022, 14(17), 3622; https://doi.org/10.3390/polym14173622 - 1 Sep 2022
Cited by 11 | Viewed by 4705
Abstract
The widespread concerns about the environmental problems caused by conventional plastic food packaging and food waste led to a growing effort to develop active and intelligent systems produced from renewable biodegradable polymers for food packaging applications. Among intelligent systems, the most widely used [...] Read more.
The widespread concerns about the environmental problems caused by conventional plastic food packaging and food waste led to a growing effort to develop active and intelligent systems produced from renewable biodegradable polymers for food packaging applications. Among intelligent systems, the most widely used are pH indicators, which are generally based on a pH-sensitive dye incorporated into a solid support. The objective of this study was to develop new intelligent systems based on renewable biodegradable polymers and a new bio-inspired pH-sensitive dye. The structure of the dye was elucidated through FT-IR and 1D and 2D NMR spectroscopic analyses. UV-VIS measurements of the dye solutions at various pH values proved their halochromic properties. Their toxicity was evaluated through theoretical calculations, and no toxicity risks were found. The new anthocyanidin was used for the development of biodegradable intelligent systems based on chitosan blends. The obtained polymeric films were characterized through UV-VIS and FT-IR spectroscopy. Their thermal properties were assessed through a thermogravimetric analysis, which showed a better stability of chitosan–PVA–dye and chitosan–starch–dye films compared to those of chitosan–cellulose–dye films and the dye itself. The films’ sensitivity to pH variations was evaluated through immersion in buffer solutions with pH values ranging from 2 to 12, and visible color changes were observed. Full article
(This article belongs to the Special Issue Biodegradable Polymer Composites: Fabrication and Applications)
Show Figures

Figure 1

28 pages, 4424 KiB  
Article
Modeling of Hexavalent Chromium Removal with Hydrophobically Modified Cellulose Nanofibers
by Francisco de Borja Ojembarrena, Jose Luis Sánchez-Salvador, Sergio Mateo, Ana Balea, Angeles Blanco, Noemí Merayo and Carlos Negro
Polymers 2022, 14(16), 3425; https://doi.org/10.3390/polym14163425 - 22 Aug 2022
Cited by 10 | Viewed by 2563
Abstract
Cellulose nanofibers (CNF) are sustainable nanomaterials, obtained by the mechanical disintegration of cellulose, whose properties make them an interesting adsorbent material due to their high specific area and active groups. CNF are easily functionalized to optimize the performance for different uses. The hypothesis [...] Read more.
Cellulose nanofibers (CNF) are sustainable nanomaterials, obtained by the mechanical disintegration of cellulose, whose properties make them an interesting adsorbent material due to their high specific area and active groups. CNF are easily functionalized to optimize the performance for different uses. The hypothesis of this work is that hydrophobization can be used to improve their ability as adsorbents. Therefore, hydrophobic CNF was applied to adsorb hexavalent chromium from wastewater. CNF was synthetized by TEMPO-mediated oxidation, followed by mechanical disintegration. Hydrophobization was performed using methyl trimetoxysilane (MTMS) as a hydrophobic coating agent. The adsorption treatment of hexavalent chromium with hydrophobic CNF was optimized by studying the influence of contact time, MTMS dosage (0–3 mmol·g−1 CNF), initial pH of the wastewater (3–9), initial chromium concentration (0.10–50 mg·L−1), and adsorbent dosage (250–1000 mg CNF·L−1). Furthermore, the corresponding adsorption mechanism was identified. Complete adsorption of hexavalent chromium was achieved with CNF hydrophobized with 1.5 mmol MTMS·g−1 CNF with the faster adsorption kinetic, which proved the initial hypothesis that hydrophobic CNF improves the adsorption capacity of hydrophilic CNF. The optimal adsorption conditions were pH 3 and the adsorbent dosage was over 500 mg·L−1. The maximum removal was found for the initial concentrations of hexavalent chromium below 1 mg·L−1 and a maximum adsorption capacity of 70.38 mg·g−1 was achieved. The kinetic study revealed that pseudo-second order kinetics was the best fitting model at a low concentration while the intraparticle diffusion model fit better for higher concentrations, describing a multi-step mechanism of hexavalent chromium onto the adsorbent surface. The Freundlich isotherm was the best adjustment model. Full article
(This article belongs to the Special Issue Polymeric Materials for Wastewater Treatment Applications)
Show Figures

Figure 1

15 pages, 2920 KiB  
Article
Investigation into Biosorption of Pharmaceuticals from Aqueous Solutions by Biocomposite Material Based on Microbial Biomass and Natural Polymer: Process Variables Optimization and Kinetic Studies
by Lăcrămioara Rusu, Cristina-Gabriela Grigoraș, Andrei-Ionuț Simion, Elena-Mirela Suceveanu, Carol Schnakovszky and Lidia Favier
Polymers 2022, 14(16), 3388; https://doi.org/10.3390/polym14163388 - 19 Aug 2022
Cited by 1 | Viewed by 2196
Abstract
Biosorbtive removal of the antibacterial drug, ethacridine lactate (EL), from aqueous solutions was investigated using as biosorbent Saccharomyces pastorianus residual biomass immobilized in calcium alginate. The aim of this work was to optimize the biosorption process and to evaluate the biosorption capacity in [...] Read more.
Biosorbtive removal of the antibacterial drug, ethacridine lactate (EL), from aqueous solutions was investigated using as biosorbent Saccharomyces pastorianus residual biomass immobilized in calcium alginate. The aim of this work was to optimize the biosorption process and to evaluate the biosorption capacity in the batch system. Response surface methodology, based on a Box–Behnken design, was used to optimize the EL biosorption parameters. Two response functions (removal efficiency and biosorption capacity) were maximized dependent on three factors: initial concentration of EL solution, contact time, and agitation speed. The highest values for the studied functions (89.49%, 26.04 mg/g) were obtained in the following operational conditions: EL initial concentration: 59.73 mg/L; contact time: 94.26 min; agitation speed: 297.57 rpm. A number of nonlinear kinetic models, including pseudo-first-order, pseudo-second-order, Elovich, and Avrami, were utilized to validate the biosorption kinetic behavior of EL in the optimized conditions. The kinetic data fitted the pseudo-first-order and Avrami models. The experimental results demonstrated that the optimized parameters (especially the agitation speed) significantly affect biosorption and should be considered important in such studies. Full article
(This article belongs to the Special Issue Polymer Composites for Biomedical and Environmental Applications)
Show Figures

Graphical abstract

19 pages, 3748 KiB  
Article
Improvement of Interfacial Adhesion and Thermomechanical Properties of PLA Based Composites with Wheat/Rice Bran
by Vito Gigante, Laura Aliotta, Ilaria Canesi, Marco Sandroni, Andrea Lazzeri, Maria-Beatrice Coltelli and Patrizia Cinelli
Polymers 2022, 14(16), 3389; https://doi.org/10.3390/polym14163389 - 19 Aug 2022
Cited by 9 | Viewed by 2631
Abstract
The present work aims to enhance the use of agricultural byproducts for the production of bio-composites by melt extrusion. It is well known that in the production of such bio-composites, the weak point is the filler-matrix interface, for this reason the adhesion between [...] Read more.
The present work aims to enhance the use of agricultural byproducts for the production of bio-composites by melt extrusion. It is well known that in the production of such bio-composites, the weak point is the filler-matrix interface, for this reason the adhesion between a polylactic acid (PLA)/poly(butylene succinate)(PBSA) blend and rice and wheat bran platelets was enhanced by a treatment method applied on the fillers using a suitable beeswax. Moreover, the coupling action of beeswax and inorganic fillers (such as talc and calcium carbonate) were investigated to improve the thermo-mechanical properties of the final composites. Through rheological (MFI), morphological (SEM), thermal (TGA, DSC), mechanical (Tensile, Impact), thermomechanical (HDT) characterizations and the application of analytical models, the optimum among the tested formulations was then selected. Full article
(This article belongs to the Special Issue Biobased and Biodegradable Polymer Blends and Composites)
Show Figures

Figure 1

19 pages, 4362 KiB  
Article
First Insights into the Antiviral Activity of Chitosan-Based Bioactive Polymers towards the Bacteriophage Phi6: Physicochemical Characterization, Inactivation Potential, and Inhibitory Mechanisms
by Olivija Plohl, Katja Fric, Arijana Filipić, Polona Kogovšek, Magda Tušek Žnidarič and Lidija Fras Zemljič
Polymers 2022, 14(16), 3357; https://doi.org/10.3390/polym14163357 - 17 Aug 2022
Cited by 8 | Viewed by 2306
Abstract
The outbreak of the worrisome coronavirus disease in 2019 has caused great concern among the global public, especially regarding the need for personal protective equipment with applied antiviral agents to reduce the spread and transmission of the virus. Thus, in our research, chitosan-based [...] Read more.
The outbreak of the worrisome coronavirus disease in 2019 has caused great concern among the global public, especially regarding the need for personal protective equipment with applied antiviral agents to reduce the spread and transmission of the virus. Thus, in our research, chitosan-based bioactive polymers as potential antiviral agents were first evaluated as colloidal macromolecular solutions by elemental analysis and charge. Three different types of low and high molecular weight chitosan (LMW Ch, HMW Ch) and a LMW Ch derivative, i.e., quaternary chitosan (quart-LMW Ch), were used. To explore their antiviral activity for subsequent use in the form of coatings, the macromolecular Chs dispersions were incubated with the model virus phi6 (surrogate for SARS-CoV-2), and the success of virus inactivation was determined. Inactivation of phi6 with some chitosan-based compounds was very successful (>6 log), and the mechanisms behind this were explored. The changes in viral morphology after incubation were observed and the changes in infrared bands position were determined. In addition, dynamic and electrophoretic light scattering studies were performed to better understand the interaction between Chs and phi6. The results allowed us to better understand the antiviral mode of action of Chs agents as a function of their physicochemical properties. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

Back to TopTop