E-Mail Alert

Add your e-mail address to receive forthcoming issues of this journal:

Journal Browser

Journal Browser

Special Issue "Wind Turbine 2017"

A special issue of Energies (ISSN 1996-1073).

Deadline for manuscript submissions: 30 April 2017

Special Issue Editor

Guest Editor
Prof. Dr. Frede Blaabjerg

Department of Energy Technology, Aalborg University, DK-9220 Aalborg East, Denmark
Website | E-Mail
Fax: +45 9815 1411
Interests: wind power research; power electronics; control of wind turbines and wind farms; interconnection to grid; generators; power converters; ride-through operation

Special Issue Information

Dear Colleagues,

“Wind Turbine 2017” is a continuation of the previous and successful Special Issue, “Wind Turbines 2015”. This Special Issue offers a major forum for the reporting of advances in this rapidly developing technology with the goal of realizing the world-wide potential to harness clean energy from land-based and offshore wind. Similarly, this issue also focuses on recent advances in the wind energy sector on a wide range of topics, including:
•    wind resource mapping,
•    wind intermittency issues
•    aerodynamics, foundations, aeroelasticity
•    wind turbine technologies
•    control of wind turbines, diagnostics,
•    generator concepts including gearless concepts
•    power electronic converters
•    grid interconnection, ride-through operation, protection
•    wind farm layouts - optimization and control, reliability, operations and maintenance
•    effects of wind farms on local and global climate
•    wind power stations
•    smart-grid and micro-grid related to wind turbine operation

Prof. Dr. Frede Blaabjerg
Guest Editor

Submission

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. Papers will be published continuously (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are refereed through a peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed Open Access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1500 CHF (Swiss Francs).

Published Papers (14 papers)

View options order results:
result details:
Displaying articles 1-14
Export citation of selected articles as:

Research

Open AccessArticle Signal-Based Gas Leakage Detection for Fluid Power Accumulators in Wind Turbines
Energies 2017, 10(3), 331; doi:10.3390/en10030331
Received: 16 January 2017 / Accepted: 2 March 2017 / Published: 8 March 2017
PDF Full-text (2005 KB) | HTML Full-text | XML Full-text
Abstract This paper describes the development and application of a signal-based fault detection method for identifying gas leakage in hydraulic accumulators used in wind turbines [...] Full article
(This article belongs to the Special Issue Wind Turbine 2017)
Figures

Open AccessArticle A Novel Parametric Modeling Method and Optimal Design for Savonius Wind Turbines
Energies 2017, 10(3), 301; doi:10.3390/en10030301
Received: 27 November 2016 / Accepted: 28 February 2017 / Published: 3 March 2017
PDF Full-text (12622 KB) | HTML Full-text | XML Full-text
Abstract
Under the inspiration of polar coordinates, a novel parametric modeling and optimization method for Savonius wind turbines was proposed to obtain the highest power output, in which a quadratic polynomial curve was bent to describe a blade. Only two design parameters are needed
[...] Read more.
Under the inspiration of polar coordinates, a novel parametric modeling and optimization method for Savonius wind turbines was proposed to obtain the highest power output, in which a quadratic polynomial curve was bent to describe a blade. Only two design parameters are needed for the shape-complicated blade. Therefore, this novel method reduces sampling scale. A series of transient simulations was run to get the optimal performance coefficient (power coefficient C p) for different modified turbines based on computational fluid dynamics (CFD) method. Then, a global response surface model and a more precise local response surface model were created according to Kriging Method. These models defined the relationship between optimization objective Cp and design parameters. Particle swarm optimization (PSO) algorithm was applied to find the optimal design based on these response surface models. Finally, the optimal Savonius blade shaped like a “hook” was obtained. Cm (torque coefficient), Cp and flow structure were compared for the optimal design and the classical design. The results demonstrate that the optimal Savonius turbine has excellent comprehensive performance. The power coefficient Cp is significantly increased from 0.247 to 0.262 (6% higher). The weight of the optimal blade is reduced by 17.9%. Full article
(This article belongs to the Special Issue Wind Turbine 2017)
Figures

Figure 1

Open AccessArticle Investigating How an Artificial Neural Network Model Can Be Used to Detect Added Mass on a Non-Rotating Beam Using Its Natural Frequencies: A Possible Application for Wind Turbine Blade Ice Detection
Energies 2017, 10(2), 184; doi:10.3390/en10020184
Received: 20 December 2016 / Revised: 30 January 2017 / Accepted: 2 February 2017 / Published: 7 February 2017
PDF Full-text (2562 KB) | HTML Full-text | XML Full-text
Abstract
Structures vibrate with their natural frequencies when disturbed from their equilibrium position. These frequencies reduce when an additional mass accumulates on their structures, like ice accumulation on wind turbines installed in cold climate sites. The added mass has two features: the location and
[...] Read more.
Structures vibrate with their natural frequencies when disturbed from their equilibrium position. These frequencies reduce when an additional mass accumulates on their structures, like ice accumulation on wind turbines installed in cold climate sites. The added mass has two features: the location and quantity of mass. Natural frequencies of the structure reduce differently depending on these two features of the added mass. In this work, a technique based on an artificial neural network (ANN) model is proposed to identify added mass by training the neural network with a dataset of natural frequencies of the structure calculated using different quantities of the added mass at different locations on the structure. The proposed method is demonstrated on a non-rotating beam model fixed at one end. The length of the beam is divided into three zones in which different added masses are considered, and its natural frequencies are calculated using a finite element model of the beam. ANN is trained with this dataset of natural frequencies of the beam as an input and corresponding added masses used in the calculations as an output. ANN approximates the non-linear relationship between these inputs and outputs. An experimental setup of the cantilever beam is fabricated, and experimental modal analysis is carried out considering a few added masses on the beam. The frequencies estimated in the experiments are given as an input to the trained ANN model, and the identified masses are compared against the actual masses used in the experiments. These masses are identified with an error that varies with the location and the quantity of added mass. The reason for these errors can be attributed to the unaccounted stiffness variation in the beam model due to the added mass while generating the dataset for training the neural network. Therefore, the added masses are roughly estimated. At the end of the paper, an application of the current technique for detecting ice mass on a wind turbine blade is studied. A neural network model is designed and trained with a dataset of natural frequencies calculated using the finite element model of the blade considering different ice masses. The trained network model is tested to identify ice masses in four test cases that considers random mass distributions along the blade. The neural network model is able to roughly estimate ice masses, and the error reduces with increasing ice mass on the blade. Full article
(This article belongs to the Special Issue Wind Turbine 2017)
Figures

Figure 1

Open AccessArticle Multi-Objective Aerodynamic and Structural Optimization of Horizontal-Axis Wind Turbine Blades
Energies 2017, 10(1), 101; doi:10.3390/en10010101
Received: 19 September 2016 / Revised: 19 December 2016 / Accepted: 4 January 2017 / Published: 15 January 2017
PDF Full-text (5739 KB) | HTML Full-text | XML Full-text
Abstract
A procedure based on MATLAB combined with ANSYS is presented and utilized for the multi-objective aerodynamic and structural optimization of horizontal-axis wind turbine (HAWT) blades. In order to minimize the cost of energy (COE) and improve the overall performance of the blades, materials
[...] Read more.
A procedure based on MATLAB combined with ANSYS is presented and utilized for the multi-objective aerodynamic and structural optimization of horizontal-axis wind turbine (HAWT) blades. In order to minimize the cost of energy (COE) and improve the overall performance of the blades, materials of carbon fiber reinforced plastic (CFRP) combined with glass fiber reinforced plastic (GFRP) are applied. The maximum annual energy production (AEP), the minimum blade mass and the minimum blade cost are taken as three objectives. Main aerodynamic and structural characteristics of the blades are employed as design variables. Various design requirements including strain, deflection, vibration and buckling limits are taken into account as constraints. To evaluate the aerodynamic performances and the structural behaviors, the blade element momentum (BEM) theory and the finite element method (FEM) are applied in the procedure. Moreover, the non-dominated sorting genetic algorithm (NSGA) II, which constitutes the core of the procedure, is adapted for the multi-objective optimization of the blades. To prove the efficiency and reliability of the procedure, a commercial 1.5 MW HAWT blade is used as a case study, and a set of trade-off solutions is obtained. Compared with the original scheme, the optimization results show great improvements for the overall performance of the blade. Full article
(This article belongs to the Special Issue Wind Turbine 2017)
Figures

Figure 1

Open AccessArticle Effect on Torque and Thrust of the Pointed Tip Shape of a Wind Turbine Blade
Energies 2017, 10(1), 79; doi:10.3390/en10010079
Received: 11 November 2016 / Revised: 2 January 2017 / Accepted: 2 January 2017 / Published: 11 January 2017
PDF Full-text (11428 KB) | HTML Full-text | XML Full-text
Abstract
This paper presents the effect of the tip shape of a wind turbine blade on aerodynamic forces, including the effects of separation, transition and stall. A National Renewable Energy Laboratory (NREL) Phase-VI wind turbine blade was used, in which the shape of the
[...] Read more.
This paper presents the effect of the tip shape of a wind turbine blade on aerodynamic forces, including the effects of separation, transition and stall. A National Renewable Energy Laboratory (NREL) Phase-VI wind turbine blade was used, in which the shape of the tip was modified to a pointed tip. Computational fluid dynamics (CFD) simulations were employed for the analysis and the results were compared with the original NREL blade CFD and experimental data using ANSYS CFX (Ansys Inc., Delaware, PA, USA). To predict the separation and separation-induced transition on both near wall and far away, the shear-stress-transport (SST) Gamma-Theta turbulent model was used. The stall onset of a 20° angle of attack and its effects were also analyzed and presented. The value of torque with the pointed tip blade was found to be 3%–8% higher than the original NREL blade showing the benefit of the pointed tip. Normal force coefficient is lower at the tip for the pointed tip blade, which results in lower deformation of the blade. It was found that the pointed-tip blade is more efficient in terms of generating torque than the original NREL Phase-VI blade in the dynamic stall region of 10–15 m/s wind speeds. Full article
(This article belongs to the Special Issue Wind Turbine 2017)
Figures

Figure 1

Open AccessArticle Theoretical Analysis of Shrouded Horizontal Axis Wind Turbines
Energies 2017, 10(1), 38; doi:10.3390/en10010038
Received: 26 September 2016 / Revised: 13 December 2016 / Accepted: 20 December 2016 / Published: 1 January 2017
PDF Full-text (10155 KB) | HTML Full-text | XML Full-text
Abstract
Numerous analytical studies for power augmentation systems can be found in the literature with the goal to improve the performance of wind turbines by increasing the energy density of the air at the rotor. All methods to date are only concerned with the
[...] Read more.
Numerous analytical studies for power augmentation systems can be found in the literature with the goal to improve the performance of wind turbines by increasing the energy density of the air at the rotor. All methods to date are only concerned with the effects of a diffuser as the power augmentation, and this work extends the semi-empirical shrouded wind turbine model introduced first by Foreman to incorporate a converging-diverging nozzle into the system. The analysis is based on assumptions and approximations of the conservation laws to calculate optimal power coefficients and power extraction, as well as augmentation ratios. It is revealed that the power enhancement is proportional to the mass stream rise produced by the nozzle diffuser-augmented wind turbine (NDAWT). Such mass flow rise can only be accomplished through two essential principles: the increase in the area ratios and/or by reducing the negative back pressure at the exit. The thrust coefficient for optimal power production of a conventional bare wind turbine is known to be 8/9, whereas the theoretical analysis of the NDAWT predicts an ideal thrust coefficient either lower or higher than 8/9 depending on the back pressure coefficient at which the shrouded turbine operates. Computed performance expectations demonstrate a good agreement with numerical and experimental results, and it is demonstrated that much larger power coefficients than for traditional wind turbines are achievable. Lastly, the developed model is very well suited for the preliminary design of a shrouded wind turbine where typically many trade-off studies need to be conducted inexpensively. Full article
(This article belongs to the Special Issue Wind Turbine 2017)
Figures

Figure 1

Open AccessArticle Prognosis of the Remaining Useful Life of Bearings in a Wind Turbine Gearbox
Energies 2017, 10(1), 32; doi:10.3390/en10010032
Received: 13 September 2016 / Revised: 5 December 2016 / Accepted: 21 December 2016 / Published: 31 December 2016
PDF Full-text (4217 KB) | HTML Full-text | XML Full-text
Abstract
Predicting the remaining useful life (RUL) of critical subassemblies can provide an advanced maintenance strategy for wind turbines installed in remote regions. This paper proposes a novel prognostic approach to predict the RUL of bearings in a wind turbine gearbox. An artificial neural
[...] Read more.
Predicting the remaining useful life (RUL) of critical subassemblies can provide an advanced maintenance strategy for wind turbines installed in remote regions. This paper proposes a novel prognostic approach to predict the RUL of bearings in a wind turbine gearbox. An artificial neural network (NN) is used to train data-driven models and to predict short-term tendencies of feature series. By combining the predicted and training features, a polynomial curve reflecting the long-term degradation process of bearings is fitted. Through solving the intersection between the fitted curve and the pre-defined threshold, the RUL can be deduced. The presented approach is validated by an operating wind turbine with a faulty bearing in the gearbox. Full article
(This article belongs to the Special Issue Wind Turbine 2017)
Figures

Figure 1

Open AccessArticle Understanding Inertial Response of Variable-Speed Wind Turbines by Defined Internal Potential Vector
Energies 2017, 10(1), 22; doi:10.3390/en10010022
Received: 29 September 2016 / Revised: 9 December 2016 / Accepted: 12 December 2016 / Published: 25 December 2016
PDF Full-text (3920 KB) | HTML Full-text | XML Full-text
Abstract
With the rapid development of wind power generation, the inertial response of wind turbines (WTs) has become a topic of wide concern recently, due to its influence on grid frequency dynamics and stability. This paper proposes and defines the inner potential to summarize
[...] Read more.
With the rapid development of wind power generation, the inertial response of wind turbines (WTs) has become a topic of wide concern recently, due to its influence on grid frequency dynamics and stability. This paper proposes and defines the inner potential to summarize and understand the inertia control methods and inertial response of type-3 and type-4 WTs, which is analogous to typical synchronous generators (SGs), to make it more easy to understand by system operators and engineers with a traditional power system background. The dynamics of the defined inner potential of the wind turbine without any inertia control is different from SGs, thus the electromechanical inertia is completely hidden. The rapid power control loop and synchronization control loop are the major reasons that the WT’s inertial response is disenabled. On the basis of the defined inner potential’s dynamic, the existing inertia control method for WTs are reviewed and summarized as three approaches, i.e., optimizing the power control or synchronization control or both. At last, the main challenges and issues of these inertia controls are attempted to explain and address. Full article
(This article belongs to the Special Issue Wind Turbine 2017)
Figures

Figure 1

Open AccessArticle Validation of Generic Models for Variable Speed Operation Wind Turbines Following the Recent Guidelines Issued by IEC 61400-27
Energies 2016, 9(12), 1048; doi:10.3390/en9121048
Received: 15 September 2016 / Revised: 8 November 2016 / Accepted: 5 December 2016 / Published: 13 December 2016
PDF Full-text (996 KB) | HTML Full-text | XML Full-text
Abstract
Considerable efforts are currently being made by several international working groups focused on the development of generic, also known as simplified or standard, wind turbine models for power system stability studies. In this sense, the first edition of International Electrotechnical Commission (IEC) 61400-27-1,
[...] Read more.
Considerable efforts are currently being made by several international working groups focused on the development of generic, also known as simplified or standard, wind turbine models for power system stability studies. In this sense, the first edition of International Electrotechnical Commission (IEC) 61400-27-1, which defines generic dynamic simulation models for wind turbines, was published in February 2015. Nevertheless, the correlations of the IEC generic models with respect to specific wind turbine manufacturer models are required by the wind power industry to validate the accuracy and corresponding usability of these standard models. The present work conducts the validation of the two topologies of variable speed wind turbines that present not only the largest market share, but also the most technological advances. Specifically, the doubly-fed induction machine and the full-scale converter (FSC) topology are modeled based on the IEC 61400-27-1 guidelines. The models are simulated for a wide range of voltage dips with different characteristics and wind turbine operating conditions. The simulated response of the IEC generic model is compared to the corresponding simplified model of a wind turbine manufacturer, showing a good correlation in most cases. Validation error sources are analyzed in detail, as well. In addition, this paper reviews in detail the previous work done in this field. Results suggest that wind turbine manufacturers are able to adjust the IEC generic models to represent the behavior of their specific wind turbines for power system stability analysis. Full article
(This article belongs to the Special Issue Wind Turbine 2017)
Figures

Figure 1a

Open AccessArticle A Flexible Ramping Capacity Model for Generation Scheduling with High Levels of Wind Energy Penetration
Energies 2016, 9(12), 1040; doi:10.3390/en9121040
Received: 10 October 2016 / Revised: 19 November 2016 / Accepted: 5 December 2016 / Published: 11 December 2016
PDF Full-text (2664 KB) | HTML Full-text | XML Full-text
Abstract
The penetration level of renewable generation has increased significantly in recent years, which has led to operational concerns associated with the system ramping capability. Here, we propose the flexible ramping capacity (FRC) model, which considers the practical ramping capability of generation resources as
[...] Read more.
The penetration level of renewable generation has increased significantly in recent years, which has led to operational concerns associated with the system ramping capability. Here, we propose the flexible ramping capacity (FRC) model, which considers the practical ramping capability of generation resources as well as the uncertainty in net load. The FRC model also incorporates the demand curve of the ramping capacity, which represents the hourly economic value of the ramping capacity. The model is formulated mathematically using ramp constraints, which are incorporated into unit commitment (UC) and economic dispatch (ED) processes. Simulations are carried out using a 10-unit system to compare the FRC model with conventional methods. We show that the FRC method can improve reliability and reduce expected operating costs. The simulation results also show that, by using the FRC model, system reliability can be satisfied at high wind power generation levels while achieving economic efficiency. Full article
(This article belongs to the Special Issue Wind Turbine 2017)
Figures

Figure 1

Open AccessArticle Development of Seismic Demand for Chang-Bin Offshore Wind Farm in Taiwan Strait
Energies 2016, 9(12), 1036; doi:10.3390/en9121036
Received: 13 September 2016 / Revised: 31 October 2016 / Accepted: 28 November 2016 / Published: 9 December 2016
PDF Full-text (6544 KB) | HTML Full-text | XML Full-text
Abstract
Taiwan is located on the Pacific seismic belt, and the soil conditions of Taiwan’s offshore wind farms are softer than those in Europe. To ensure safety and stability of the offshore wind turbine supporting structures, it is important to assess the offshore wind
[...] Read more.
Taiwan is located on the Pacific seismic belt, and the soil conditions of Taiwan’s offshore wind farms are softer than those in Europe. To ensure safety and stability of the offshore wind turbine supporting structures, it is important to assess the offshore wind farms seismic forces reasonably. In this paper, the relevant seismic and geological data are obtained for Chang-Bin offshore wind farm in Taiwan Strait, the probabilistic seismic hazard analysis (PSHA) is carried out, and the first uniform hazard response spectrum for Chang-Bin offshore wind farm is achieved. Compared with existing design response spectrum in the local regulation, this site-specific seismic hazard analysis has influence on the seismic force considered in the design of supporting structures and therefore affects the cost of the supporting structures. The results show that a site-specific seismic hazard analysis is required for high seismic area. The paper highlights the importance of seismic hazard analysis to assess the offshore wind farms seismic forces. The follow-up recommendations and research directions are given for Taiwan’s offshore wind turbine supporting structures under seismic force considerations. Full article
(This article belongs to the Special Issue Wind Turbine 2017)
Figures

Figure 1

Open AccessArticle Strategy Design of Hybrid Energy Storage System for Smoothing Wind Power Fluctuations
Energies 2016, 9(12), 991; doi:10.3390/en9120991
Received: 10 October 2016 / Revised: 16 November 2016 / Accepted: 21 November 2016 / Published: 25 November 2016
PDF Full-text (15412 KB) | HTML Full-text | XML Full-text
Abstract
With the increasing contribution of wind power plants, the reliability and security of modern power systems have become a huge challenge due to the uncertainty and intermittency of wind energy sources. In this paper, a hybrid energy storage system (HESS) consisting of battery
[...] Read more.
With the increasing contribution of wind power plants, the reliability and security of modern power systems have become a huge challenge due to the uncertainty and intermittency of wind energy sources. In this paper, a hybrid energy storage system (HESS) consisting of battery and supercapacitor is built to smooth the power fluctuations of wind power. A power allocation strategy is proposed to give full play to the respective advantages of the two energy storage components. In the proposed strategy, the low-frequency and high-frequency components of wind power fluctuations are absorbed by battery groups and supercapacitor groups, respectively. By inhibiting the low-frequency components of supercapacitor current, the times of charging-discharging of battery groups can be significantly reduced. A DC/AC converter is applied to achieve the power exchange between the HESS and the grid. Adjustment rules for regulating state-of-charge (SOC) of energy storage elements are designed to avoid overcharge and deep discharge considering the safety and the high efficiency of the energy storage elements. Experimental results on the test platform verify the effectiveness of the proposed power allocation strategy in DC/AC converter and battery SOC adjustment rules for regulating SOC levels. Full article
(This article belongs to the Special Issue Wind Turbine 2017)
Figures

Figure 1

Open AccessArticle An Improved Adaptive-Torque-Gain MPPT Control for Direct-Driven PMSG Wind Turbines Considering Wind Farm Turbulences
Energies 2016, 9(11), 977; doi:10.3390/en9110977
Received: 9 October 2016 / Revised: 9 November 2016 / Accepted: 15 November 2016 / Published: 22 November 2016
PDF Full-text (6042 KB) | HTML Full-text | XML Full-text
Abstract
Maximum power point tracking (MPPT) plays an important role in increasing the efficiency of a wind energy conversion system (WECS). In this paper, three conventional MPPT methods are reviewed: power signal feedback (PSF) control, decreased torque gain (DTG) control, and adaptive torque gain
[...] Read more.
Maximum power point tracking (MPPT) plays an important role in increasing the efficiency of a wind energy conversion system (WECS). In this paper, three conventional MPPT methods are reviewed: power signal feedback (PSF) control, decreased torque gain (DTG) control, and adaptive torque gain (ATG) control, and their potential challenges are investigated. It is found out that the conventional MPPT method ignores the effect of wind turbine inertia and wind speed fluctuations, which lowers WECS efficiency. Accordingly, an improved adaptive torque gain (IATG) method is proposed, which customizes adaptive torque gains and enhances MPPT performances. Specifically, the IATG control considers wind farm turbulences and works out the relationship between the optimal torque gains and the wind speed characteristics, which has not been reported in the literature. The IATG control is promising, especially under the ongoing trend of building wind farms with large-scale wind turbines and at low and medium wind speed sites. Full article
(This article belongs to the Special Issue Wind Turbine 2017)
Figures

Figure 1

Open AccessArticle Electric Circuit Model for the Aerodynamic Performance Analysis of a Three-Blade Darrieus-Type Vertical Axis Wind Turbine: The Tchakoua Model
Energies 2016, 9(10), 820; doi:10.3390/en9100820
Received: 24 July 2016 / Revised: 28 September 2016 / Accepted: 30 September 2016 / Published: 14 October 2016
PDF Full-text (5177 KB) | HTML Full-text | XML Full-text
Abstract
The complex and unsteady aerodynamics of vertical axis wind turbines (VAWTs) pose significant challenges for simulation tools. Recently, significant research efforts have focused on the development of new methods for analysing and optimising the aerodynamic performance of VAWTs. This paper presents an electric
[...] Read more.
The complex and unsteady aerodynamics of vertical axis wind turbines (VAWTs) pose significant challenges for simulation tools. Recently, significant research efforts have focused on the development of new methods for analysing and optimising the aerodynamic performance of VAWTs. This paper presents an electric circuit model for Darrieus-type vertical axis wind turbine (DT-VAWT) rotors. The novel Tchakoua model is based on the mechanical description given by the Paraschivoiu double-multiple streamtube model using a mechanical‑electrical analogy. Model simulations were conducted using MATLAB for a three-bladed rotor architecture, characterized by a NACA0012 profile, an average Reynolds number of 40,000 for the blade and a tip speed ratio of 5. The results obtained show strong agreement with findings from both aerodynamic and computational fluid dynamics (CFD) models in the literature. Full article
(This article belongs to the Special Issue Wind Turbine 2017)
Figures

Journal Contact

MDPI AG
Energies Editorial Office
St. Alban-Anlage 66, 4052 Basel, Switzerland
E-Mail: 
Tel. +41 61 683 77 34
Fax: +41 61 302 89 18
Editorial Board
Contact Details Submit to Special Issue Edit a special issue Review for Energies
Back to Top