Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1154 KiB  
Article
The Role of a Cholecystokinin Receptor Antagonist in the Management of Chronic Pancreatitis: A Phase 1 Trial
by Victor Ciofoaia, Wenqiang Chen, Bakain W. Tarek, Martha Gay, Narayan Shivapurkar and Jill P. Smith
Pharmaceutics 2024, 16(5), 611; https://doi.org/10.3390/pharmaceutics16050611 - 30 Apr 2024
Viewed by 665
Abstract
Chronic pancreatitis (CP) is a rare but debilitating condition with an 8-fold increased risk of developing pancreatic cancer. In addition to the symptoms that come from the loss of endocrine and exocrine function in CP, the management of chronic pain is problematic. We [...] Read more.
Chronic pancreatitis (CP) is a rare but debilitating condition with an 8-fold increased risk of developing pancreatic cancer. In addition to the symptoms that come from the loss of endocrine and exocrine function in CP, the management of chronic pain is problematic. We previously showed that the CCK-receptor antagonist called proglumide could decrease inflammation, acinar-ductal metaplasia, and fibrosis in murine models of CP. We hypothesized that proglumide would be safe and diminish pain caused by CP. A Phase 1 open-labeled safety study was performed in subjects with clinical and radiographic evidence of CP with moderate to severe pain. After a 4-week observation period, the subjects were treated with proglumide in 400 mg capsules three times daily (1200 mg per day) by mouth for 12 weeks, and then subjects returned for a safety visit 4 weeks after the discontinuation of the study medication. The results of three pain surveys (Numeric Rating Scale, COMPAT-SF, and NIH PROMIS) showed that the patients had significantly less pain after 12 weeks of proglumide compared to the pre-treatment observation phase. Of the eight subjects in this study, two experienced nausea and diarrhea with proglumide. These side effects resolved in one subject with doses reduced to 800 mg per day. No abnormalities were noted in the blood chemistries. A blood microRNA blood biomarker panel that corresponded to pancreatic inflammation and fibrosis showed significant improvement. We conclude that proglumide is safe and well tolerated in most subjects with CP at a dose of 1200 mg per day. Furthermore, proglumide therapy may have a beneficial effect by decreasing pain associated with CP. Full article
(This article belongs to the Special Issue New Pharmaceutical Targets to Counteract Chronic Inflammation)
Show Figures

Figure 1

16 pages, 6430 KiB  
Article
Linseed Oil-Based Oleogel Vehicles for Hydrophobic Drug Delivery—Physicochemical and Applicative Properties
by Sonia Kudłacik-Kramarczyk, Anna Drabczyk, Alicja Przybyłowicz and Marcel Krzan
Pharmaceutics 2024, 16(5), 600; https://doi.org/10.3390/pharmaceutics16050600 - 29 Apr 2024
Viewed by 493
Abstract
In this study, a methodology for synthesizing oleogels based on linseed oil and emulsifiers, such as beeswax and Tween 20 and Tween 80, was developed. Linseed oil served as the main oil phase, while beeswax acted as a gelling and emulsifying agent. Tween [...] Read more.
In this study, a methodology for synthesizing oleogels based on linseed oil and emulsifiers, such as beeswax and Tween 20 and Tween 80, was developed. Linseed oil served as the main oil phase, while beeswax acted as a gelling and emulsifying agent. Tween compounds are non-ionic surfactants composed of hydrophobic and hydrophilic parts, allowing for the formation of a stable system with promising properties. Surface wetting analysis of the obtained oleogels, FT-IR spectroscopy, and determination of relative and absolute humidity over time, as well as optical microscope analysis and rheological analysis of the obtained oleogels, were conducted as part of the research. The results indicate that increasing the amount of Tween 20 decreases the hydrophilicity of the oleogel, while Tween 80 exhibits the opposite effect. Surface energy analysis suggests that a higher content of Tween 20 may lead to a reduction in the surface energy of the oleogels, which may indicate greater material stability. Changes in relative humidity and FT-IR spectral analysis confirm the influence of emulsifiers on the presence of characteristic functional groups in the structure of the oleogels. Additionally, microscopic analysis suggests that an emulsifier with a longer hydrophobic tail leads to a denser material structure. Full article
(This article belongs to the Special Issue Functional Biomaterials in Biomedical Applications)
Show Figures

Figure 1

24 pages, 3776 KiB  
Article
Characterization of Surfactant Spheroidal Micelle Structure for Pharmaceutical Applications: A Novel Analytical Framework
by Liberato De Caro, Thibaud Stoll, Arnaud Grandeury, Fabia Gozzo and Cinzia Giannini
Pharmaceutics 2024, 16(5), 604; https://doi.org/10.3390/pharmaceutics16050604 - 29 Apr 2024
Viewed by 523
Abstract
We introduce an innovative theoretical framework tailored for the analysis of Pair Distribution Function (PDF) data derived from Small-Angle X-ray Scattering (SAXS) measurements of core-shell micelles. The new approach involves the exploitation of the first derivative of the PDF and the derivation of [...] Read more.
We introduce an innovative theoretical framework tailored for the analysis of Pair Distribution Function (PDF) data derived from Small-Angle X-ray Scattering (SAXS) measurements of core-shell micelles. The new approach involves the exploitation of the first derivative of the PDF and the derivation of analytical equations to solve the core-shell micelle structure under the hypothesis of a spheroidal shape. These analytical equations enable us to determine the micelle’s aggregation number, degree of ellipticity, and contrast in electron density between the core-shell and shell-buffer regions after having determined the whole micelle size and its shell size from the analysis of the first derivative of the PDF. We have formulated an overdetermined system of analytical equations based on the unknowns that characterize the micelle structure. This allows us to establish a Figure of Merit, which is utilized to identify the most reliable solution within the system of equations. Full article
Show Figures

Figure 1

18 pages, 10346 KiB  
Article
Development of 5-Fluorouracil/pH-Responsive Adjuvant-Embedded Extracellular Vesicles for Targeting αvβ3 Integrin Receptors in Tumors
by Jiseung Kim, Eunsol Lee and Eun Seong Lee
Pharmaceutics 2024, 16(5), 599; https://doi.org/10.3390/pharmaceutics16050599 - 29 Apr 2024
Viewed by 633
Abstract
To selectively target and treat murine melanoma B16BL6 tumors expressing αvβ3 integrin receptors, we engineered tumor-specific functional extracellular vesicles (EVs) tailored for the targeted delivery of antitumor drugs. This objective was achieved through the incorporation of a pH-responsive adjuvant, cyclic [...] Read more.
To selectively target and treat murine melanoma B16BL6 tumors expressing αvβ3 integrin receptors, we engineered tumor-specific functional extracellular vesicles (EVs) tailored for the targeted delivery of antitumor drugs. This objective was achieved through the incorporation of a pH-responsive adjuvant, cyclic arginine-glycine-aspartic acid peptide (cRGD, serving as a tumor-targeting ligand), and 5-fluorouracil (5-FU, employed as a model antitumor drug). The pH-responsive adjuvant, essential for modulating drug release, was synthesized by chemically conjugating 3-(diethylamino)propylamine (DEAP) to deoxycholic acid (DOCA, a lipophilic substance capable of integrating into EVs’ membranes), denoted as DEAP-DOCA. The DOCA, preactivated using N-(2-aminoethyl)maleimide (AEM), was chemically coupled with the thiol group of the cRGD-DOCA through the thiol–maleimide click reaction, resulting in the formation of cRGD-DOCA. Subsequently, DEAP-DOCA, cRGD-DOCA, and 5-FU were efficiently incorporated into EVs using a sonication method. The resulting tumor-targeting EVs, expressing cRGD ligands, demonstrated enhanced in vitro/in vivo cellular uptake specifically for B16BL6 tumors expressing αvβ3 integrin receptors. The ionization characteristics of the DEAP in DEAP-DOCA induced destabilization of the EVs membrane at pH 6.5 through protonation of the DEAP substance, thereby expediting 5-FU release. Consequently, an improvement in the in vivo antitumor efficacy was observed for B16BL6 tumors. Based on these comprehensive in vitro/in vivo findings, we anticipate that this EV system holds substantial promise as an exceptionally effective platform for antitumor therapeutic delivery. Full article
(This article belongs to the Special Issue Extracellular Vesicle-Based Drug Delivery Systems)
Show Figures

Figure 1

15 pages, 2699 KiB  
Article
Enhanced In Vitro Antiviral Activity of Ivermectin-Loaded Nanostructured Lipid Carriers against Porcine Epidemic Diarrhea Virus via Improved Intracellular Delivery
by Xiaolin Xu, Shasha Gao, Qindan Zuo, Jiahao Gong, Xinhao Song, Yongshi Liu, Jing Xiao, Xiaofeng Zhai, Haifeng Sun, Mingzhi Zhang, Xiuge Gao and Dawei Guo
Pharmaceutics 2024, 16(5), 601; https://doi.org/10.3390/pharmaceutics16050601 - 29 Apr 2024
Viewed by 584
Abstract
Porcine epidemic diarrhea virus (PEDV) is an acute enteric coronavirus, inducing watery diarrhea and high mortality in piglets, leading to huge economic losses in global pig industry. Ivermectin (IVM), an FDA-approved antiparasitic agent, is characterized by high efficacy and wide applicability. However, the [...] Read more.
Porcine epidemic diarrhea virus (PEDV) is an acute enteric coronavirus, inducing watery diarrhea and high mortality in piglets, leading to huge economic losses in global pig industry. Ivermectin (IVM), an FDA-approved antiparasitic agent, is characterized by high efficacy and wide applicability. However, the poor bioavailability limits its application. Since the virus is parasitized inside the host cells, increasing the intracellular drug uptake can improve antiviral efficacy. Hence, we aimed to develop nanostructured lipid carriers (NLCs) to enhance the antiviral efficacy of IVM. The findings first revealed the capacity of IVM to inhibit the infectivity of PEDV by reducing viral replication with a certain direct inactivation effect. The as-prepared IVM-NLCs possessed hydrodynamic diameter of 153.5 nm with a zeta potential of −31.5 mV and high encapsulation efficiency (95.72%) and drug loading (11.17%). IVM interacted with lipids and was enveloped in lipid carriers with an amorphous state. Furthermore, its encapsulation in NLCs could enhance drug internalization. Meanwhile, IVM-NLCs inhibited PEDV proliferation by up to three orders of magnitude in terms of viral RNA copies, impeding the accumulation of reactive oxygen species and mitigating the mitochondrial dysfunction caused by PEDV infection. Moreover, IVM-NLCs markedly decreased the apoptosis rate of PEDV-induced Vero cells. Hence, IVM-NLCs showed superior inhibitory effect against PEDV compared to free IVM. Together, these results implied that NLCs is an efficient delivery system for IVM to improve its antiviral efficacy against PEDV via enhanced intracellular uptake. Full article
(This article belongs to the Special Issue Lipid/Polymer-Based Drug Delivery Systems)
Show Figures

Figure 1

15 pages, 3790 KiB  
Article
Targeted Thrombolysis with Magnetic Nanotherapeutics: A Translational Assessment
by Ming-Lu Lin, Siao-Yun Wu, Jyh-Ping Chen, Yi-Ching Lu, Shih-Ming Jung, Shiaw-Pyng Wey, Tony Wu and Yunn-Hwa Ma
Pharmaceutics 2024, 16(5), 596; https://doi.org/10.3390/pharmaceutics16050596 - 27 Apr 2024
Viewed by 505
Abstract
Plasminogen activators, such as recombinant tissue-type plasminogen activators (rtPAs), while effective in treating thromboembolic diseases, often induce hemorrhagic complications due to non-specific enzyme activities in the systemic circulation. This study evaluated the targeting efficiency, efficacy, biodistribution, and potential toxicity of a rtPA covalently [...] Read more.
Plasminogen activators, such as recombinant tissue-type plasminogen activators (rtPAs), while effective in treating thromboembolic diseases, often induce hemorrhagic complications due to non-specific enzyme activities in the systemic circulation. This study evaluated the targeting efficiency, efficacy, biodistribution, and potential toxicity of a rtPA covalently attached to chitosan-coated magnetic nanoparticles (chitosan-MNP-rtPA). The thrombolytic activity of a chitosan-MNP-rtPA was preserved by protection from an endogenous plasminogen activator inhibitor-1 (PAI-1) in whole blood and after circulation in vivo, as examined by thromboelastometry. Single-photon emission computed tomography (SPECT) demonstrated real-time retention of a 99mTc-MNP-rtPA induced by magnet application in a rat embolic model; an 80% reduction in rtPA dosage for a chitosan-MNP-rtPA with magnetic guidance was shown to restore blood flow. After treatment, iron deposition was observed in the reticuloendothelial systems, with portal edema and neutrophil infiltration in the liver at a ten-fold higher dose but not the regular dose. Nevertheless, no liver or renal toxicity was observed at this higher dose. In conclusion, the liver may still be the major deposit site of rtPA nanocomposites after targeted delivery; chitosan-coated MNPs are potentially amenable to target therapeutics with parenteral administration. Full article
(This article belongs to the Special Issue Recent Advances in Biomedical Applications of Magnetic Nanomaterials)
Show Figures

Graphical abstract

19 pages, 5058 KiB  
Article
Development and Efficacy Evaluation of Innovative Cosmetic Formulations with Caryocar brasiliense Fruit Pulp Oil Encapsulated in Freeze-Dried Liposomes
by Letícia Kakuda, Patrícia M. B. G. Maia Campos and Wanderley P. Oliveira
Pharmaceutics 2024, 16(5), 595; https://doi.org/10.3390/pharmaceutics16050595 - 27 Apr 2024
Viewed by 651
Abstract
Encapsulation and drying technologies allow the engineering of innovative raw materials from plant biodiversity, with potential applications in pharmaceutical and cosmetic fields. Lipid-based nanoencapsulation stands out for its efficiency, ease of production, and versatility in encapsulating substances, whether hydrophilic or lipophilic. This work [...] Read more.
Encapsulation and drying technologies allow the engineering of innovative raw materials from plant biodiversity, with potential applications in pharmaceutical and cosmetic fields. Lipid-based nanoencapsulation stands out for its efficiency, ease of production, and versatility in encapsulating substances, whether hydrophilic or lipophilic. This work aimed at encapsulating pequi oil in liposomes and freeze-dried liposomes to enhance its stability and functional benefits, such as skin hydration and anti-aging effects, for use in innovative cosmetic formulations. Pequi oil—extracted from the Caryocar brasiliense fruit pulp, a plant species from Brazilian plant biodiversity—is rich in secondary metabolites and fatty acids. Liposomes and dried liposomes offer controlled production processes and seamless integration into cosmetic formulations. The physicochemical analysis of the developed liposomes confirmed that the formulations are homogeneous and electrokinetically stable, as evidenced by consistent particle size distribution and zeta potential values, respectively. The gel-type formulations loaded with the dried liposomes exhibit enhanced skin hydration, improved barrier function, and refined microrelief, indicating improvements in skin conditions. These results highlight the potential of dried liposomes containing pequi oil for the development of innovative cosmeceutical products. This research contributes to the valorization of Brazilian biodiversity by presenting an innovative approach to leveraging the dermatological benefits of pequi oil in cosmetic applications. Full article
Show Figures

Graphical abstract

18 pages, 2582 KiB  
Review
Plant-Derived Vesicle-like Nanoparticles: The Next-Generation Drug Delivery Nanoplatforms
by Xiaoxia Wang, Congling Xin, Yu Zhou and Tao Sun
Pharmaceutics 2024, 16(5), 588; https://doi.org/10.3390/pharmaceutics16050588 - 26 Apr 2024
Viewed by 585
Abstract
A wide variety of natural bioactive compounds derived from plants have demonstrated significant clinical relevance in the treatment of various diseases such as cancer, chronic disease, and inflammation. An increasing number of studies have surfaced that give credence to the potential of plant-derived [...] Read more.
A wide variety of natural bioactive compounds derived from plants have demonstrated significant clinical relevance in the treatment of various diseases such as cancer, chronic disease, and inflammation. An increasing number of studies have surfaced that give credence to the potential of plant-derived vesicle-like nanoparticles (PDVLNs) as compelling candidates for a drug delivery system (DDS). PDVLNs are cost-effective production, non-toxicity and non-immunogenicity and fascinating bi-ocompatibility. In this review, we attempt to comprehensively review and consolidate the position of PDVLNs as next-generation drug delivery nanoplatforms. We aim to give a quick glance to readers of the current developments of PDVLNs, including their biogenesis, characteristic features, composition, administration routes, advantages, and application. Further, we discuss the advantages and limitations of PDVLNs. We expect that the role of PDVLNs in drug delivery will be significantly enhanced, thus positioning them as the next generation of therapeutic modalities in the foreseeable future. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

18 pages, 7262 KiB  
Article
QbD Approach-Based Preparation and Optimization of Hydrophobic Ion-Pairing Complex of Lysozyme with Sodium Dodecyl Sulphate to Enhance Stability in Lipid-Based Carriers
by Alharith A. A. Hassan, Tamás Sovány, Krisztián Pamlényi, Martin Deák, Viktória Hornok, Edit Csapó, Géza Regdon, Jr., Ildikó Csóka and Katalin Kristó
Pharmaceutics 2024, 16(5), 589; https://doi.org/10.3390/pharmaceutics16050589 - 26 Apr 2024
Viewed by 500
Abstract
Hydrophobic ion pairing (HIP) complexation was found to be an efficient approach in modulating the release and enhancing the stability and encapsulation of hydrophilic macromolecules such as proteins in hydrophobic nano/microcarriers. The present work strives to develop and optimize the preparation of the [...] Read more.
Hydrophobic ion pairing (HIP) complexation was found to be an efficient approach in modulating the release and enhancing the stability and encapsulation of hydrophilic macromolecules such as proteins in hydrophobic nano/microcarriers. The present work strives to develop and optimize the preparation of the HIP complex of the antimicrobial enzyme lysozyme (LYZ) with the ion-pairing agent (IPA) sodium dodecyl sulphate (SDS) relying on the quality-by-design (QbD) approach. The quality target product profile (QTPP) includes the achievement of maximal lipophilicity in a reversible manner to enable the maintenance of biological activity. The related critical quality attributes (CQAs) were defined as complexation efficacy, complex stability, enzyme recovery and activity. Three risk assessment (RA) tools were used to identify and rank the critical process parameters (CPPs) and critical material attributes (CMAs). From this assessment, the pH of the medium, LYZ:SDS molar ratio and drying conditions were determined as high-risk factors that need to be investigated. To the best of our knowledge, for the first time, electrostatic titration was used as a smart approach to determine the optimum molar ratio at different pH values. Based on the predefined CQAs, pH 8 with an LYZ/SDS molar ratio of 1:8 was found to be the optimal condition for complexation efficiency and recovery (%) of a biologically active enzyme. A cost-effective drying process based on a ventilated oven was developed, which resulted in complex qualities comparable to those obtained by the commonly used freeze-drying method. In a nutshell, the optimum conditions for the preparation of the LYZ/SDS HIP complex were efficiently facilitated by the rational application of QbD principles and the utilization of efficient electrostatic titration and ventilated oven-drying methods. Full article
(This article belongs to the Special Issue Advances in Delivering Protein and Peptide Therapeutics, 2nd Edition)
Show Figures

Figure 1

17 pages, 13528 KiB  
Article
Taste-Masked Pellets of Warfarin Sodium: Formulation towards the Dose Personalisation
by Lakija Kovalenko, Kirils Kukuls, Marta Berga and Valentyn Mohylyuk
Pharmaceutics 2024, 16(5), 586; https://doi.org/10.3390/pharmaceutics16050586 - 26 Apr 2024
Viewed by 765
Abstract
The bitter drug, warfarin, has a narrow therapeutic index (NTI) and is used in paediatrics and geriatrics. The aim of this feasibility study was to formulate the taste-masked warfarin-containing pellets to be applicable for dose personalisation and to improve patient compliance, as well [...] Read more.
The bitter drug, warfarin, has a narrow therapeutic index (NTI) and is used in paediatrics and geriatrics. The aim of this feasibility study was to formulate the taste-masked warfarin-containing pellets to be applicable for dose personalisation and to improve patient compliance, as well as to investigate the effect of the core type (PharSQ® Spheres M, CELPHERE™ CP-507, and NaCl) on the warfarin release from the Kollicoat® Smartseal taste-masking-coated pellets. The cores were successfully drug-loaded and coated in a fluid-bed coater with a Wurster insert. An increase in particle size and particle size distribution was observed by optical microscopy. In saliva-simulated pH, at the Kollicoat® Smartseal level of 2 mg/cm2, none of the pellets demonstrated drug release, confirming their efficient taste-masking. However, in a stomach-simulated pH, a faster drug release was observed from PharSQ® Spheres M- and CELPHERE™ CP-507-coated pellets in comparison with NaCl cores. Additional experiments allowed us to explain the slower drug release from NaCl-containing pellets because of the salting-out effect. Despite the successful taste masking, the drug release from pellets was relatively slow (not more than 91% per 60 min), allowing for further formulation improvements. Full article
(This article belongs to the Special Issue Dosage Form Design for Oral Administration)
Show Figures

Graphical abstract

20 pages, 2459 KiB  
Article
Co-Delivery of an Innovative Organoselenium Compound and Paclitaxel by pH-Responsive PCL Nanoparticles to Synergistically Overcome Multidrug Resistance in Cancer
by Daniela Mathes, Letícia Bueno Macedo, Taís Baldissera Pieta, Bianca Costa Maia, Oscar Endrigo Dorneles Rodrigues, Julliano Guerin Leal, Marcelo Wendt, Clarice Madalena Bueno Rolim, Montserrat Mitjans and Daniele Rubert Nogueira-Librelotto
Pharmaceutics 2024, 16(5), 590; https://doi.org/10.3390/pharmaceutics16050590 - 26 Apr 2024
Viewed by 553
Abstract
In this study, we designed the association of the organoselenium compound 5′-Seleno-(phenyl)-3′-(ferulic-amido)-thymidine (AFAT-Se), a promising innovative nucleoside analogue, with the antitumor drug paclitaxel, in poly(ε-caprolactone) (PCL)-based nanoparticles (NPs). The nanoprecipitation method was used, adding the lysine-based surfactant, 77KS, as a pH-responsive adjuvant. The [...] Read more.
In this study, we designed the association of the organoselenium compound 5′-Seleno-(phenyl)-3′-(ferulic-amido)-thymidine (AFAT-Se), a promising innovative nucleoside analogue, with the antitumor drug paclitaxel, in poly(ε-caprolactone) (PCL)-based nanoparticles (NPs). The nanoprecipitation method was used, adding the lysine-based surfactant, 77KS, as a pH-responsive adjuvant. The physicochemical properties presented by the proposed NPs were consistent with expectations. The co-nanoencapsulation of the bioactive compounds maintained the antioxidant activity of the association and evidenced greater antiproliferative activity in the resistant/MDR tumor cell line NCI/ADR-RES, both in the monolayer/two-dimensional (2D) and in the spheroid/three-dimensional (3D) assays. Hemocompatibility studies indicated the safety of the nanoformulation, corroborating the ability to spare non-tumor 3T3 cells and human mononuclear cells of peripheral blood (PBMCs) from cytotoxic effects, indicating its selectivity for the cancerous cells. Furthermore, the synergistic antiproliferative effect was found for both the association of free compounds and the co-encapsulated formulation. These findings highlight the antitumor potential of combining these bioactives, and the proposed nanoformulation as a potentially safe and effective strategy to overcome multidrug resistance in cancer therapy. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Graphical abstract

17 pages, 8529 KiB  
Article
Mass Production of Rg1-Loaded Small Extracellular Vesicles Using a 3D Bioreactor System for Enhanced Cardioprotective Efficacy of Doxorubicin-Induced Cardiotoxicity
by Yunfeng Di, Shuang Zhao, Huilan Fan, Wei Li, Guangjian Jiang, Yong Wang, Chun Li, Wei Wang and Jingyu Wang
Pharmaceutics 2024, 16(5), 593; https://doi.org/10.3390/pharmaceutics16050593 - 26 Apr 2024
Viewed by 513
Abstract
Background: Small extracellular vesicles (sEVs) obtained from human umbilical cord mesenchymal stromal cells (MSCs) have shown cardioprotective efficacy in doxorubicin-induced cardiotoxicity (DIC). However, their clinical application is limited due to the low yield and high consumption. This study aims to achieve large-scale production [...] Read more.
Background: Small extracellular vesicles (sEVs) obtained from human umbilical cord mesenchymal stromal cells (MSCs) have shown cardioprotective efficacy in doxorubicin-induced cardiotoxicity (DIC). However, their clinical application is limited due to the low yield and high consumption. This study aims to achieve large-scale production of sEVs using a three-dimensional (3D) bioreactor system. In addition, sEVs were developed to deliver Ginsenoside Rg1 (Rg1), a compound derived from traditional Chinese medicine, Ginseng, that has cardioprotective properties but limited bioavailability, to enhance the treatment of DIC. Methods: The 3D bioreactor system with spinner flasks was used to expand human umbilical cord MSCs and collect MSC-conditioned medium. Subsequently, sEVs were isolated from the conditioned medium using differential ultra-centrifugation (dUC). The sEVs were loaded with Ginsenoside Rg1 by electroporation and evaluated for cardioprotective efficacy using Cell Counting Kit-8 (CCK-8) analysis, Annexin V/PI staining and live cell count of H9c2 cells under DIC. Results: Using the 3D bioreactor system with spinner flasks, the expansion of MSCs reached ~600 million, and the production of sEVs was up to 2.2 × 1012 particles in five days with significantly reduced bench work compared to traditional 2D flasks. With the optimized protocol, the Ginsenoside Rg1 loading efficiency of sEVs by electroporation was ~21%, higher than sonication or co-incubation. Moreover, Rg1-loaded sEVs had attenuated DOX-induced cardiotoxicity with reduced apoptosis compared to free Ginsenoside Rg1 or sEVs. Conclusions: The 3D culture system scaled up the production of sEVs, which facilitated the Rg1 delivery and attenuated cardiomyocyte apoptosis, suggesting a potential treatment of DOX-induced cardiotoxicity. Full article
(This article belongs to the Special Issue Advances in Exosomes in Drug Delivery Systems)
Show Figures

Graphical abstract

23 pages, 6324 KiB  
Article
Investigating the Influence of Processing Conditions on Dissolution and Physical Stability of Solid Dispersions with Fenofibrate and Mesoporous Silica
by Ana Baumgartner, Nina Dobaj and Odon Planinšek
Pharmaceutics 2024, 16(5), 575; https://doi.org/10.3390/pharmaceutics16050575 - 24 Apr 2024
Viewed by 546
Abstract
The study aimed to enhance the solubility of the poorly water-soluble drug, fenofibrate, by loading it onto mesoporous silica, forming amorphous solid dispersions. Solid dispersions with 30% fenofibrate were prepared using the solvent evaporation method with three solvents (ethyl acetate, acetone, and isopropanol) [...] Read more.
The study aimed to enhance the solubility of the poorly water-soluble drug, fenofibrate, by loading it onto mesoporous silica, forming amorphous solid dispersions. Solid dispersions with 30% fenofibrate were prepared using the solvent evaporation method with three solvents (ethyl acetate, acetone, and isopropanol) at different temperatures (40 °C, boiling point temperature). Various characteristics, including solid-state properties, particle morphology, and drug release, were evaluated by different methods and compared to a pure drug and a physical mixture of fenofibrate and silica. Results revealed that higher solvent temperatures facilitated complete amorphization and rapid drug release, with solvent choice having a lesser impact. The optimal conditions for preparation were identified as ethyl acetate at boiling point temperature. Solid dispersions with different fenofibrate amounts (20%, 25%, 35%) were prepared under these conditions. All formulations were fully amorphous, and their dissolution profiles were comparable to the formulation with 30% fenofibrate. Stability assessments after 8 weeks at 40 °C and 75% relative humidity indicated that formulations prepared with ethyl acetate and at 40 °C were physically stable. Interestingly, some formulations showed improved dissolution profiles compared to initial tests. In conclusion, mesoporous silica-based solid dispersions effectively improved fenofibrate dissolution and demonstrated good physical stability if prepared under appropriate conditions. Full article
Show Figures

Figure 1

25 pages, 2031 KiB  
Review
Attempts to Improve Lipophilic Drugs’ Solubility and Bioavailability: A Focus on Fenretinide
by Silvana Alfei and Guendalina Zuccari
Pharmaceutics 2024, 16(5), 579; https://doi.org/10.3390/pharmaceutics16050579 - 24 Apr 2024
Viewed by 540
Abstract
The development of numerous drugs is often arrested at clinical testing stages, due to their unfavorable biopharmaceutical characteristics. It is the case of fenretinide (4-HPR), a second-generation retinoid, that demonstrated promising in vitro cytotoxic activity against several cancer cell lines. Unfortunately, response rates [...] Read more.
The development of numerous drugs is often arrested at clinical testing stages, due to their unfavorable biopharmaceutical characteristics. It is the case of fenretinide (4-HPR), a second-generation retinoid, that demonstrated promising in vitro cytotoxic activity against several cancer cell lines. Unfortunately, response rates in early clinical trials with 4-HPR did not confirm the in vitro findings, mainly due to the low bioavailability of the oral capsular formulation that was initially developed. Capsular 4-HPR provided variable and insufficient drug plasma levels attributable to the high hepatic first-pass effect and poor drug water solubility. To improve 4-HPR bioavailability, several approaches have been put forward and tested in preclinical and early-phase clinical trials, demonstrating generally improved plasma levels and minimal systemic toxicities, but also modest antitumor efficacy. The challenge is thus currently still far from being met. To redirect the diminished interest of pharmaceutical companies toward 4-HPR and promote its further clinical development, this manuscript reviewed the attempts made so far by researchers to enhance 4-HPR bioavailability. A comparison of the available data was performed, and future directions were proposed. Full article
(This article belongs to the Special Issue Pharmaceutics and Drug Delivery in Italy, 2nd Edition)
Show Figures

Graphical abstract

13 pages, 1331 KiB  
Article
Pharmaceutical Compounding in Veterinary Medicine: Suspension of Itraconazole
by Gema J. Cabañero-Resta, Bárbara Sánchez-Dengra, Alejandro Ruiz-Picazo, Marival Bermejo, Virginia Merino, Isabel Gonzalez-Alvarez and Marta Gonzalez-Alvarez
Pharmaceutics 2024, 16(5), 576; https://doi.org/10.3390/pharmaceutics16050576 - 24 Apr 2024
Viewed by 569
Abstract
Itraconazole is a drug used in veterinary medicine for the treatment of different varieties of dermatophytosis at doses between 3–5 mg/kg/day in cats. Nevertheless, in Spain, it is only available in the market as a 52 mL suspension at 10 mg/mL. The lack [...] Read more.
Itraconazole is a drug used in veterinary medicine for the treatment of different varieties of dermatophytosis at doses between 3–5 mg/kg/day in cats. Nevertheless, in Spain, it is only available in the market as a 52 mL suspension at 10 mg/mL. The lack of alternative formulations, which provide sufficient formulation to cover the treatment of large animals or allow the treatment of a group of them, can be overcome with compounding. For this purpose, it has to be considered that itraconazole is a weak base, class II compound, according to the Biopharmaceutics Classification System, that can precipitate when reaching the duodenum. The aim of this work is to develop alternative oral formulations of itraconazole for the treatment of dermatophytosis. Several oral compounds of itraconazole were prepared and compared, in terms of dissolution rate, permeability, and stability, in order to provide alternatives to the medicine commercialized. The most promising formulation contained hydroxypropyl methylcellulose and β-cyclodextrin. This combination of excipients was capable of dissolving the same concentration as the reference product and delaying the precipitation of itraconazole upon leaving the stomach. Moreover, the intestinal permeability of itraconazole was increased more than two-fold. Full article
Show Figures

Figure 1

16 pages, 1639 KiB  
Review
Plant Protease Inhibitors as Emerging Antimicrobial Peptide Agents: A Comprehensive Review
by Mónica G. Parisi, Brenda Ozón, Sofía M. Vera González, Javier García-Pardo and Walter David Obregón
Pharmaceutics 2024, 16(5), 582; https://doi.org/10.3390/pharmaceutics16050582 - 24 Apr 2024
Viewed by 543
Abstract
Antimicrobial peptides (AMPs) are important mediator molecules of the innate defense mechanisms in a wide range of living organisms, including bacteria, mammals, and plants. Among them, peptide protease inhibitors (PPIs) from plants play a central role in their defense mechanisms by directly attacking [...] Read more.
Antimicrobial peptides (AMPs) are important mediator molecules of the innate defense mechanisms in a wide range of living organisms, including bacteria, mammals, and plants. Among them, peptide protease inhibitors (PPIs) from plants play a central role in their defense mechanisms by directly attacking pathogens or by modulating the plant’s defense response. The growing prevalence of microbial resistance to currently available antibiotics has intensified the interest concerning these molecules as novel antimicrobial agents. In this scenario, PPIs isolated from a variety of plants have shown potential in inhibiting the growth of pathogenic bacteria, protozoans, and fungal strains, either by interfering with essential biochemical or physiological processes or by altering the permeability of biological membranes of invading organisms. Moreover, these molecules are active inhibitors of a range of proteases, including aspartic, serine, and cysteine types, with some showing particular efficacy as trypsin and chymotrypsin inhibitors. In this review, we provide a comprehensive analysis of the potential of plant-derived PPIs as novel antimicrobial molecules, highlighting their broad-spectrum antimicrobial efficacy, specificity, and minimal toxicity. These natural compounds exhibit diverse mechanisms of action and often multifunctionality, positioning them as promising molecular scaffolds for developing new therapeutic antibacterial agents. Full article
Show Figures

Figure 1

14 pages, 2158 KiB  
Article
Evaluation of Drug Blood-Brain-Barrier Permeability Using a Microfluidic Chip
by Jung Yoon Yang, Dae-Seop Shin, Moonkyu Jeong, Seong Soon Kim, Ha Neul Jeong, Byung Hoi Lee, Kyu-Seok Hwang, Yuji Son, Hyeon-Cheol Jeong, Chi-Hoon Choi, Kyeong-Ryoon Lee and Myung Ae Bae
Pharmaceutics 2024, 16(5), 574; https://doi.org/10.3390/pharmaceutics16050574 - 23 Apr 2024
Viewed by 664
Abstract
The blood-brain-barrier (BBB) is made up of blood vessels whose permeability enables the passage of some compounds. A predictive model of BBB permeability is important in the early stages of drug development. The predicted BBB permeabilities of drugs have been confirmed using a [...] Read more.
The blood-brain-barrier (BBB) is made up of blood vessels whose permeability enables the passage of some compounds. A predictive model of BBB permeability is important in the early stages of drug development. The predicted BBB permeabilities of drugs have been confirmed using a variety of in vitro methods to reduce the quantities of drug candidates needed in preclinical and clinical trials. Most prior studies have relied on animal or cell-culture models, which do not fully recapitulate the human BBB. The development of microfluidic models of human-derived BBB cells could address this issue. We analyzed a model for predicting BBB permeability using the Emulate BBB-on-a-chip machine. Ten compounds were evaluated, and their permeabilities were estimated. Our study demonstrated that the permeability trends of ten compounds in our microfluidic-based system resembled those observed in previous animal and cell-based experiments. Furthermore, we established a general correlation between the partition coefficient (Kp) and the apparent permeability (Papp). In conclusion, we introduced a new paradigm for predicting BBB permeability using microfluidic-based systems. Full article
(This article belongs to the Collection Feature Papers in Pharmaceutical Technology)
Show Figures

Graphical abstract

15 pages, 1963 KiB  
Article
Evaluation of the Transport and Binding of Dopamine-Loaded PLGA Nanoparticles for the Treatment of Parkinson’s Disease Using In Vitro Model Systems
by Karin Danz, Jana Fleddermann, Marcus Koch, Elena Fecioru, Lorenz Maahs, Nicole Kinsinger, Johannes Krämer, Annette Kraegeloh and Sylvia Wagner
Pharmaceutics 2024, 16(5), 571; https://doi.org/10.3390/pharmaceutics16050571 - 23 Apr 2024
Viewed by 541
Abstract
The treatment of Parkinson’s disease has been moving into the focus of pharmaceutical development. Yet, the necessity for reliable model systems in the development phase has made research challenging and in vivo models necessary. We have established reliable, reproducible in vitro model systems [...] Read more.
The treatment of Parkinson’s disease has been moving into the focus of pharmaceutical development. Yet, the necessity for reliable model systems in the development phase has made research challenging and in vivo models necessary. We have established reliable, reproducible in vitro model systems to evaluate the binding and transport of dopamine-loaded PLGA nanoparticles for the treatment of Parkinson’s disease and put the results in context with comparable in vivo results. The in vitro models have provided similar results concerning the usability of the investigated nanoparticles as the previously used in vivo models and thus provide a good alternative in line with the 3R principles in pharmaceutical research. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

19 pages, 8253 KiB  
Article
Nucleolin-Targeting AS1411 Aptamer-Conjugated Nanospheres for Targeted Treatment of Glioblastoma
by Kyeongjin Seo, Kihwan Hwang, Kyung Mi Nam, Min Ju Kim, Yoon-Kyu Song and Chae-Yong Kim
Pharmaceutics 2024, 16(4), 566; https://doi.org/10.3390/pharmaceutics16040566 - 21 Apr 2024
Viewed by 874
Abstract
Post-operative chemotherapy is still required for the treatment of glioblastoma (GBM), for which nanocarrier-based drug delivery has been identified as one of the most effective methods. However, the blood-brain barrier (BBB) and non-specific delivery to non-tumor tissues can significantly limit drug accumulation in [...] Read more.
Post-operative chemotherapy is still required for the treatment of glioblastoma (GBM), for which nanocarrier-based drug delivery has been identified as one of the most effective methods. However, the blood-brain barrier (BBB) and non-specific delivery to non-tumor tissues can significantly limit drug accumulation in tumor tissues and cause damage to nearby normal tissues. This study describes a targeted cancer therapy approach that uses AS1411 aptamer-conjugated nanospheres (100–300 nm in size) loaded with doxorubicin (Dox) to selectively identify tumor cells overexpressing nucleolin (NCL) proteins. The study demonstrates that the active target model, which employs aptamer-mediated drug delivery, is more effective than non-specific enhanced permeability and maintenance (EPR)-mediated delivery and passive drug delivery in improving drug penetration and maintenance in tumor cells. Additionally, the study reveals the potential for anti-cancer effects through 3D spheroidal and in vivo GBM xenograft models. The DNA-protein hybrid nanospheres utilized in this study offer numerous benefits, such as efficient synthesis, structural stability, high drug loading, dye labeling, biocompatibility, and biodegradability. When combined with nanospheres, the 1411 aptamer has been shown to be an effective drug delivery carrier allowing for the precise targeting of tumors. This combination has the potential to produce anti-tumor effects in the active targeted therapy of GBM. Full article
(This article belongs to the Special Issue Anti-Cancer Drug Delivery Systems)
Show Figures

Graphical abstract

14 pages, 4213 KiB  
Article
Modulating the Nature of Ionizable Lipids and Number of Layers in Hyaluronan-Decorated Lipid Nanoparticles for In Vitro Delivery of RNAi
by Victor Passos Gibson, Houda Tahiri, Claudia Gilbert, Chun Yang, Quoc Thang Phan, Xavier Banquy and Pierre Hardy
Pharmaceutics 2024, 16(4), 563; https://doi.org/10.3390/pharmaceutics16040563 - 20 Apr 2024
Viewed by 935
Abstract
Lipid nanoparticles (LNPs) have established their position as nonviral vectors for gene therapy. Tremendous efforts have been made to modulate the properties of LNPs to unleash their full clinical potential. Among the strategies being pursued, the layer-by-layer (LbL) technique has gained considerable attention [...] Read more.
Lipid nanoparticles (LNPs) have established their position as nonviral vectors for gene therapy. Tremendous efforts have been made to modulate the properties of LNPs to unleash their full clinical potential. Among the strategies being pursued, the layer-by-layer (LbL) technique has gained considerable attention in the biomedical field. Illuminated by our previous work, here we investigate if the LbL approach could be used to modify the LNP cores formulated with three different ionizable lipids: DODMA, MC3, and DODAP. Additionally, we wondered if more than three layers could be loaded onto LNPs without disrupting their gene transfection ability. Taking advantage of physicochemical analysis, as well as uptake and gene silencing studies, we demonstrate the feasibility of modifying the surface of LNPs with the LbL assembly. Precisely, we successfully modified three different LNPs using the layer-by-layer strategy which abrogated luciferase activity in vitro. Additionally, we constructed a 5×-layered HA-LNP containing the MC3 ionizable lipid which outperformed the 3×-layered counterpart in transfecting miRNA-181-5p to the pediatric GBM cell line, as a proof-of-concept in vitro experiment. The method used herein has been proven reproducible, of easy modification to adapt to different ionizable lipid-containing LNPs, and holds great potential for the translation of RNA-based therapeutic strategies. Full article
(This article belongs to the Special Issue New Nano-Systems for Imaging, Diagnostics, and Drug Delivery)
Show Figures

Figure 1

21 pages, 3239 KiB  
Article
Darunavir Nanoformulation Suppresses HIV Pathogenesis in Macrophages and Improves Drug Delivery to the Brain in Mice
by Lina Zhou, Sandip Godse, Namita Sinha, Sunitha Kodidela, Udai Singh and Santosh Kumar
Pharmaceutics 2024, 16(4), 555; https://doi.org/10.3390/pharmaceutics16040555 - 19 Apr 2024
Viewed by 693
Abstract
Although antiretroviral therapy (ART) can suppress peripheral HIV, patients still suffer from neuroHIV due to insufficient levels of ART drugs in the brain. Hence, this study focuses on developing a poly lactic-co-glycolic acid (PLGA) nanoparticle-based ART drug delivery system for darunavir (DRV) using [...] Read more.
Although antiretroviral therapy (ART) can suppress peripheral HIV, patients still suffer from neuroHIV due to insufficient levels of ART drugs in the brain. Hence, this study focuses on developing a poly lactic-co-glycolic acid (PLGA) nanoparticle-based ART drug delivery system for darunavir (DRV) using an intranasal route that can overcome the limitation of drug metabolic stability and blood–brain barrier (BBB) permeability. The physicochemical properties of PLGA-DRV were characterized. The results indicated that PLGA-DRV formulation inhibits HIV replication in U1 macrophages directly and in the presence of the BBB without inducing cytotoxicity. However, the PLGA-DRV did not inhibit HIV replication more than DRV alone. Notably, the total antioxidant capacity remained unchanged upon treatment with both DRV or PLGA-DRV in U1 cells. Compared to DRV alone, PLGA-DRV further decreased reactive oxygen species, suggesting a decrease in oxidative stress by the formulation. Oxidative stress is generally increased by HIV infection, leading to increased inflammation. Although the PLGA-DRV formulation did not further reduce the inflammatory response, the formulation did not provoke an inflammatory response in HIV-infected U1 macrophages. As expected, in vitro experiments showed higher DRV permeability by PLGA-DRV than DRV alone to U1 macrophages. Importantly, in vivo experiments, especially using intranasal administration of PLGA-DRV in wild-type mice, demonstrated a significant increase in the brain-to-plasma ratio of DRV compared to the free DRV. Overall, findings from this study attest to the potential of the PLGA-DRV nanoformulation in reducing HIV pathogenesis in macrophages and enhancing drug delivery to the brain, offering a promising avenue for treating HIV-related neurological disorders. Full article
Show Figures

Figure 1

20 pages, 7878 KiB  
Article
Host–Guest Complexation of Itraconazole with Cyclodextrins for Bioavailability Enhancement
by Lenuţa-Maria Şuta, Amalia Ridichie, Adriana Ledeţi, Claudia Temereancă, Ionuţ Ledeţi, Delia Muntean, Matilda Rădulescu, Renata-Maria Văruţ, Claudia Watz, Florentin Crăineanu, Denisa Ivan, Gabriela Vlase and Lavinia Stelea
Pharmaceutics 2024, 16(4), 560; https://doi.org/10.3390/pharmaceutics16040560 - 19 Apr 2024
Viewed by 608
Abstract
Itraconazole is an antifungal agent included in the triazole pharmacological classification that belongs to the BCS class II, characterized by a low solubility in an aqueous medium (of 1 ng/mL, at neutral pH), which is frequently translated in a low oral bioavailability but [...] Read more.
Itraconazole is an antifungal agent included in the triazole pharmacological classification that belongs to the BCS class II, characterized by a low solubility in an aqueous medium (of 1 ng/mL, at neutral pH), which is frequently translated in a low oral bioavailability but with a high permeability. In this sense, it is necessary to find solutions to increase/improve the solubility of itraconazole in the aqueous environment. The main purpose of this study is the preparation and analysis of five different guest–host inclusion complexes containing intraconazole. Initially, a blind docking process was carried out to determine the interactions between itraconazole and the selected cyclodextrins. The second step of the study was to find out if the active pharmaceutical ingredient was entrapped in the cavity of the cyclodextrin, by using spectroscopic and thermal techniques. Also, the antifungal activity of the inclusion complexes was studied to examine if the entrapment of itraconazole influences the therapeutic effect. The results showed that the active substance was entrapped in the cavity of the cyclodextrins, with a molar ratio of 1:3 (itraconazole–cyclodextrin), and that the therapeutic effect was not influenced by the entrapment. Full article
(This article belongs to the Special Issue Cyclodextrins in Drug Delivery, 2nd Edition)
Show Figures

Figure 1

18 pages, 6864 KiB  
Review
Hypoxia-Activated Theragnostic Prodrugs (HATPs): Current State and Future Perspectives
by Sankarprasad Bhuniya and Eirinaios I. Vrettos
Pharmaceutics 2024, 16(4), 557; https://doi.org/10.3390/pharmaceutics16040557 - 19 Apr 2024
Viewed by 599
Abstract
Hypoxia is a significant feature of solid tumors and frequently poses a challenge to the effectiveness of tumor-targeted chemotherapeutics, thereby limiting their anticancer activity. Hypoxia-activated prodrugs represent a class of bio-reductive agents that can be selectively activated in hypoxic compartments to unleash the [...] Read more.
Hypoxia is a significant feature of solid tumors and frequently poses a challenge to the effectiveness of tumor-targeted chemotherapeutics, thereby limiting their anticancer activity. Hypoxia-activated prodrugs represent a class of bio-reductive agents that can be selectively activated in hypoxic compartments to unleash the toxic warhead and thus, eliminate malignant tumor cells. However, their applicability can be further elevated by installing fluorescent modalities to yield hypoxia-activated theragnostic prodrugs (HATPs), which can be utilized for the simultaneous visualization and treatment of hypoxic tumor cells. The scope of this review is to summarize noteworthy advances in recent HATPs, highlight the challenges and opportunities for their further development, and discuss their potency to serve as personalized medicines in the future. Full article
(This article belongs to the Special Issue Research on Therapeutic Prodrugs for Targeted Cancer Therapy)
Show Figures

Figure 1

18 pages, 4654 KiB  
Article
Polymeric Amorphous Solid Dispersions of Dasatinib: Formulation and Ecotoxicological Assessment
by Katarina Sokač, Martina Miloloža, Dajana Kučić Grgić and Krunoslav Žižek
Pharmaceutics 2024, 16(4), 551; https://doi.org/10.3390/pharmaceutics16040551 - 18 Apr 2024
Viewed by 1136
Abstract
Dasatinib (DAS), a potent anticancer drug, has been subjected to formulation enhancements due to challenges such as significant first-pass metabolism, poor absorption, and limited oral bioavailability. To improve its release profile, DAS was embedded in a matrix of the hydrophilic polymer polyvinylpyrrolidone (PVP). [...] Read more.
Dasatinib (DAS), a potent anticancer drug, has been subjected to formulation enhancements due to challenges such as significant first-pass metabolism, poor absorption, and limited oral bioavailability. To improve its release profile, DAS was embedded in a matrix of the hydrophilic polymer polyvinylpyrrolidone (PVP). Drug amorphization was induced in a planetary ball mill by solvent-free co-grinding, facilitating mechanochemical activation. This process resulted in the formation of amorphous solid dispersions (ASDs). The ASD capsules exhibited a notable enhancement in the release rate of DAS compared to capsules containing the initial drug. Given that anticancer drugs often undergo limited metabolism in the body with unchanged excretion, the ecotoxicological effect of the native form of DAS was investigated as well, considering its potential accumulation in the environment. The highest ecotoxicological effect was observed on the bacteria Vibrio fischeri, while other test organisms (bacteria Pseudomonas putida, microalgae Chlorella sp., and duckweed Lemna minor) exhibited negligible effects. The enhanced drug release not only contributes to improved oral absorption but also has the potential to reduce the proportion of DAS that enters the environment through human excretion. This comprehensive approach highlights the significance of integrating advances in drug development while considering its environmental implications. Full article
Show Figures

Graphical abstract

18 pages, 3752 KiB  
Article
Early Detection of Myeloid-Derived Suppressor Cells in the Lung Pre-Metastatic Niche by Shortwave Infrared Nanoprobes
by Jake N. Siebert, Jay V. Shah, Mei Chee Tan, Richard E. Riman, Mark C. Pierce, Edmund C. Lattime, Vidya Ganapathy and Prabhas V. Moghe
Pharmaceutics 2024, 16(4), 549; https://doi.org/10.3390/pharmaceutics16040549 - 17 Apr 2024
Viewed by 824
Abstract
Metastatic breast cancer remains a significant source of mortality amongst breast cancer patients and is generally considered incurable in part due to the difficulty in detection of early micro-metastases. The pre-metastatic niche (PMN) is a tissue microenvironment that has undergone changes to support [...] Read more.
Metastatic breast cancer remains a significant source of mortality amongst breast cancer patients and is generally considered incurable in part due to the difficulty in detection of early micro-metastases. The pre-metastatic niche (PMN) is a tissue microenvironment that has undergone changes to support the colonization and growth of circulating tumor cells, a key component of which is the myeloid-derived suppressor cell (MDSC). Therefore, the MDSC has been identified as a potential biomarker for PMN formation, the detection of which would enable clinicians to proactively treat metastases. However, there is currently no technology capable of the in situ detection of MDSCs available in the clinic. Here, we propose the use of shortwave infrared-emitting nanoprobes for the tracking of MDSCs and identification of the PMN. Our rare-earth albumin nanocomposites (ReANCs) are engineered to bind the Gr-1 surface marker of murine MDSCs. When delivered intravenously in murine models of breast cancer with high rates of metastasis, the targeted ReANCs demonstrated an increase in localization to the lungs in comparison to control ReANCs. However, no difference was seen in the model with slower rates of metastasis. This highlights the potential utility of MDSC-targeted nanoprobes to assess PMN development and prognosticate disease progression. Full article
(This article belongs to the Special Issue Cancer Nanomedicine—from the Bench to the Bedside, 2nd Edition)
Show Figures

Figure 1

23 pages, 5698 KiB  
Article
Preparation and Characterization of Polymeric Microparticles Based on Poly(ethylene brassylate-co-squaric Acid) Loaded with Norfloxacin
by Alexandru-Mihail Șerban, Isabella Nacu, Irina Rosca, Alina Ghilan, Alina Gabriela Rusu, Loredana Elena Niță, Raluca Nicoleta Darie-Niță and Aurica P. Chiriac
Pharmaceutics 2024, 16(4), 550; https://doi.org/10.3390/pharmaceutics16040550 - 17 Apr 2024
Viewed by 650
Abstract
In recent years, increasing interest has been accorded to polyester-based polymer microstructures, driven by their promising potential as advanced drug delivery systems. This study presents the preparation and characterization of new polymeric microparticles based on poly(ethylene brassylate-co-squaric acid) loaded with norfloxacin, a broad-spectrum [...] Read more.
In recent years, increasing interest has been accorded to polyester-based polymer microstructures, driven by their promising potential as advanced drug delivery systems. This study presents the preparation and characterization of new polymeric microparticles based on poly(ethylene brassylate-co-squaric acid) loaded with norfloxacin, a broad-spectrum antibiotic. Polymacrolactone was synthesised in mild conditions through the emulsion polymerization of bio-based and renewable monomers, ethylene brassylate, and squaric acid. The microparticles were obtained using the precipitation technique and subsequently subjected to comprehensive characterization. The impact of the copolymer/drug ratio on various properties of the new system was systematically evaluated, confirming the structure of the copolymer and the encapsulation of norfloxacin. The microspheres are approximately spherical and predominantly homogeneously distributed. The average hydrodynamic diameter of the microparticles falls between 400 and 2000 nm, a decrease that is observed with the increase in norfloxacin content. All samples showed good encapsulation efficiency and drug loading capacity, with the highest values obtained for microparticles synthesised using an equal ratio of copolymer and drug. In vitro drug release results disclose that norfloxacin molecules are released in a sustained biphasic manner for up to 24 h. Antimicrobial activity was also studied, with samples showing very good activity against E. coli and moderate activity against S. aureus and E. faecalis. In addition, HDFA human fibroblast cell cultures demonstrated the cytocompatibility of the microparticles. Full article
Show Figures

Figure 1

20 pages, 2311 KiB  
Article
LDLR-Mediated Targeting and Productive Uptake of siRNA-Peptide Ligand Conjugates In Vitro and In Vivo
by Baptiste Broc, Karine Varini, Rose Sonnette, Belinda Pecqueux, Florian Benoist, Maxime Masse, Yasmine Mechioukhi, Géraldine Ferracci, Jamal Temsamani, Michel Khrestchatisky, Guillaume Jacquot and Pascaline Lécorché
Pharmaceutics 2024, 16(4), 548; https://doi.org/10.3390/pharmaceutics16040548 - 17 Apr 2024
Viewed by 739
Abstract
Small RNA molecules such as microRNA and small interfering RNA (siRNA) have become promising therapeutic agents because of their specificity and their potential to modulate gene expression. Any gene of interest can be potentially up- or down-regulated, making RNA-based technology the healthcare breakthrough [...] Read more.
Small RNA molecules such as microRNA and small interfering RNA (siRNA) have become promising therapeutic agents because of their specificity and their potential to modulate gene expression. Any gene of interest can be potentially up- or down-regulated, making RNA-based technology the healthcare breakthrough of our era. However, the functional and specific delivery of siRNAs into tissues of interest and into the cytosol of target cells remains highly challenging, mainly due to the lack of efficient and selective delivery systems. Among the variety of carriers for siRNA delivery, peptides have become essential candidates because of their high selectivity, stability, and conjugation versatility. Here, we describe the development of molecules encompassing siRNAs against SOD1, conjugated to peptides that target the low-density lipoprotein receptor (LDLR), and their biological evaluation both in vitro and in vivo. Full article
(This article belongs to the Special Issue Peptide-Based Carriers for Drug Delivery)
Show Figures

Figure 1

15 pages, 2928 KiB  
Article
Cryo-Milled β-Glucan Nanoparticles for Oral Drug Delivery
by Guanyu Chen, Yi Liu, Darren Svirskis, Hongyu Li, Man Ying, Weiyue Lu and Jingyuan Wen
Pharmaceutics 2024, 16(4), 546; https://doi.org/10.3390/pharmaceutics16040546 - 16 Apr 2024
Viewed by 693
Abstract
Gemcitabine is a nucleoside analog effective against a number of cancers. However, it has an oral bioavailability of less than 10%, due to its high hydrophilicity and low permeability through the intestinal epithelium. Therefore, the aim of this project was to develop a [...] Read more.
Gemcitabine is a nucleoside analog effective against a number of cancers. However, it has an oral bioavailability of less than 10%, due to its high hydrophilicity and low permeability through the intestinal epithelium. Therefore, the aim of this project was to develop a novel nanoparticulate drug delivery system for the oral delivery of gemcitabine to improve its oral bioavailability. In this study, gemcitabine-loaded β-glucan NPs were fabricated using a film-casting method followed by a freezer-milling technique. As a result, the NPs showed a small particle size of 447.6 ± 14.2 nm, and a high drug entrapment efficiency of 64.3 ± 2.1%. By encapsulating gemcitabine into β-glucan NPs, a sustained drug release profile was obtained, and the anomalous diffusion release mechanism was analyzed, indicating that the drug release was governed by diffusion through the NP matrix as well as matrix erosion. The drug-loaded NPs had a greater ex vivo drug permeation through the porcine intestinal epithelial membrane compared to the plain drug solution. Cytotoxicity studies showed a safety profile of the β-glucan polymers, and the IC50s of drug solution and drug-loaded β-glucan NPs were calculated as 228.8 ± 31.2 ng·mL−1 and 306.1 ± 46.3 ng·mL−1, respectively. Additionally, the LD50 of BALB/c nude mice was determined as 204.17 mg/kg in the acute toxicity studies. Notably, pharmacokinetic studies showed that drug-loaded β-glucan NPs could achieve a 7.4-fold longer T1/2 and a 5.1-fold increase in oral bioavailability compared with plain drug solution. Finally, in vivo pharmacodynamic studies showed the promising capability of gemcitabine-loaded β-glucan NPs to inhibit the 4T1 breast tumor growth, with a 3.04- and 1.74-fold reduction compared to the untreated control and drug solution groups, respectively. In conclusion, the presented freezer-milled β-glucan NP system is a suitable drug delivery method for the oral delivery of gemcitabine and demonstrates a promising potential platform for oral chemotherapy. Full article
(This article belongs to the Special Issue Advances in Oral Administration)
Show Figures

Figure 1

34 pages, 627 KiB  
Review
Comprehensive Therapeutic Approaches to Tuberculous Meningitis: Pharmacokinetics, Combined Dosing, and Advanced Intrathecal Therapies
by Ahmad Khalid Madadi and Moon-Jun Sohn
Pharmaceutics 2024, 16(4), 540; https://doi.org/10.3390/pharmaceutics16040540 - 14 Apr 2024
Viewed by 1434
Abstract
Tuberculous meningitis (TBM) presents a critical neurologic emergency characterized by high mortality and morbidity rates, necessitating immediate therapeutic intervention, often ahead of definitive microbiological and molecular diagnoses. The primary hurdle in effective TBM treatment is the blood–brain barrier (BBB), which significantly restricts the [...] Read more.
Tuberculous meningitis (TBM) presents a critical neurologic emergency characterized by high mortality and morbidity rates, necessitating immediate therapeutic intervention, often ahead of definitive microbiological and molecular diagnoses. The primary hurdle in effective TBM treatment is the blood–brain barrier (BBB), which significantly restricts the delivery of anti-tuberculous medications to the central nervous system (CNS), leading to subtherapeutic drug levels and poor treatment outcomes. The standard regimen for initial TBM treatment frequently falls short, followed by adverse side effects, vasculitis, and hydrocephalus, driving the condition toward a refractory state. To overcome this obstacle, intrathecal (IT) sustained release of anti-TB medication emerges as a promising approach. This method enables a steady, uninterrupted, and prolonged release of medication directly into the cerebrospinal fluid (CSF), thus preventing systemic side effects by limiting drug exposure to the rest of the body. Our review diligently investigates the existing literature and treatment methodologies, aiming to highlight their shortcomings. As part of our enhanced strategy for sustained IT anti-TB delivery, we particularly seek to explore the utilization of nanoparticle-infused hydrogels containing isoniazid (INH) and rifampicin (RIF), alongside osmotic pump usage, as innovative treatments for TBM. This comprehensive review delineates an optimized framework for the management of TBM, including an integrated approach that combines pharmacokinetic insights, concomitant drug administration strategies, and the latest advancements in IT and intraventricular (IVT) therapy for CNS infections. By proposing a multifaceted treatment strategy, this analysis aims to enhance the clinical outcomes for TBM patients, highlighting the critical role of targeted drug delivery in overcoming the formidable challenges presented by the blood–brain barrier and the complex pathophysiology of TBM. Full article
(This article belongs to the Topic Challenges and Future Prospects of Antibacterial Therapy)
Show Figures

Figure 1

39 pages, 1216 KiB  
Review
Aptamers for the Delivery of Plant-Based Compounds: A Review
by Joana Gamboa, Pedro Lourenço, Carla Cruz and Eugenia Gallardo
Pharmaceutics 2024, 16(4), 541; https://doi.org/10.3390/pharmaceutics16040541 - 14 Apr 2024
Viewed by 1238
Abstract
Natural compounds have a high potential for the treatment of various conditions, including infections, inflammatory diseases, and cancer. However, they usually present poor pharmacokinetics, low specificity, and even toxicity, which limits their use. Therefore, targeted drug delivery systems, typically composed of a carrier [...] Read more.
Natural compounds have a high potential for the treatment of various conditions, including infections, inflammatory diseases, and cancer. However, they usually present poor pharmacokinetics, low specificity, and even toxicity, which limits their use. Therefore, targeted drug delivery systems, typically composed of a carrier and a targeting ligand, can enhance natural product selectivity and effectiveness. Notably, aptamers—short RNA or single-stranded DNA molecules—have gained attention as promising ligands in targeted drug delivery since they are simple to synthesize and modify, and they present high tissue permeability, stability, and a wide array of available targets. The combination of natural products, namely plant-based compounds, with a drug delivery system utilizing aptamers as targeting agents represents an emerging strategy that has the potential to broaden its applications. This review discusses the potential of aptamers as targeting agents in the delivery of natural compounds, as well as new trends and developments in their utilization in the field of medicine. Full article
(This article belongs to the Special Issue Novel Technological Approaches for Targeted Drug Delivery Systems)
Show Figures

Figure 1

18 pages, 4092 KiB  
Article
First Generic Teriparatide: Structural and Biological Sameness to Its Reference Medicinal Product
by Jimena Fernández-Carneado, Mariona Vallès-Miret, Sílvia Arrastia-Casado, Ana Almazán-Moga, Maria J. Macias, Pau Martin-Malpartida, Marta Vilaseca, Mireia Díaz-Lobo, Mayte Vazquez, Rosa M. Sanahuja, Gemma Gambús and Berta Ponsati
Pharmaceutics 2024, 16(4), 537; https://doi.org/10.3390/pharmaceutics16040537 - 13 Apr 2024
Viewed by 992
Abstract
Teriparatide is an anabolic peptide drug indicated for the treatment of osteoporosis. Recombinant teriparatide was first approved in 2002 and has since been followed by patent-free alternatives under biosimilar or hybrid regulatory application. The aim of this study is to demonstrate the essential [...] Read more.
Teriparatide is an anabolic peptide drug indicated for the treatment of osteoporosis. Recombinant teriparatide was first approved in 2002 and has since been followed by patent-free alternatives under biosimilar or hybrid regulatory application. The aim of this study is to demonstrate the essential similarity between synthetic teriparatide BGW and the reference medicinal product (RMP), and thus to ensure the development of the first generic teriparatide drug. Hence, an extensive side-by-side comparative exercise, focusing on structural and biological activity, was performed using a wide range of state-of-the-art orthogonal methods. Nuclear magnetic resonance (NMR), ion mobility–mass spectrometry (IM–MS), UV, circular dichroism (CD) and Fourier transform infrared (FTIR) demonstrated the structural similarity between teriparatide BGW and the RMP. Comparative cell-based bioassays showed that the synthetic and recombinant peptides have identical behaviors. Teriparatide BGW, as a generic drug, provides an available treatment option for patients with osteoporosis and offers clinical benefits identical to those provided by the RMP. Full article
(This article belongs to the Section Biologics and Biosimilars)
Show Figures

Figure 1

22 pages, 4338 KiB  
Article
Non-Invasive Delivery of Negatively Charged Nanobodies by Anodal Iontophoresis: When Electroosmosis Dominates Electromigration
by Phedra Firdaws Sahraoui, Oscar Vadas and Yogeshvar N. Kalia
Pharmaceutics 2024, 16(4), 539; https://doi.org/10.3390/pharmaceutics16040539 - 13 Apr 2024
Viewed by 792
Abstract
Iontophoresis enables the non-invasive transdermal delivery of moderately-sized proteins and the needle-free cutaneous delivery of antibodies. However, simple descriptors of protein characteristics cannot accurately predict the feasibility of iontophoretic transport. This study investigated the cathodal and anodal iontophoretic transport of the negatively charged [...] Read more.
Iontophoresis enables the non-invasive transdermal delivery of moderately-sized proteins and the needle-free cutaneous delivery of antibodies. However, simple descriptors of protein characteristics cannot accurately predict the feasibility of iontophoretic transport. This study investigated the cathodal and anodal iontophoretic transport of the negatively charged M7D12H nanobody and a series of negatively charged variants with single amino acid substitutions. Surprisingly, M7D12H and its variants were only delivered transdermally by anodal iontophoresis. In contrast, transdermal permeation after cathodal iontophoresis and passive diffusion was <LOQ. The anodal iontophoretic delivery of these negatively charged proteins was achieved because electroosmosis was the dominant electrotransport mechanism. Cutaneous deposition after the anodal iontophoresis of M7D12HWT (wild type), and the R54E and K65E variants, was statistically superior to that after cathodal iontophoresis (6.07 ± 2.11, 9.22 ± 0.80, and 14.45 ± 3.45 μg/cm2, versus 1.12 ± 0.30, 0.72 ± 0.27, and 0.46 ± 0.07 µg/cm2, respectively). This was not the case for S102E, where cutaneous deposition after anodal and cathodal iontophoresis was 11.89 ± 0.87 and 8.33 ± 2.62 µg/cm2, respectively; thus, a single amino acid substitution appeared to be sufficient to impact the iontophoretic transport of a 17.5 kDa protein. Visualization studies using immunofluorescent labeling showed that skin transport of M7D12HWT was achieved via the intercellular and follicular routes. Full article
(This article belongs to the Special Issue Transdermal Delivery: Challenges and Opportunities)
Show Figures

Figure 1

19 pages, 4137 KiB  
Article
Investigation of Photodynamic Therapy Promoted by Cherenkov Light Activated Photosensitizers—New Aspects and Revelations
by Lisa Hübinger, Kerstin Wetzig, Roswitha Runge, Holger Hartmann, Falk Tillner, Katja Tietze, Marc Pretze, David Kästner, Robert Freudenberg, Claudia Brogsitter and Jörg Kotzerke
Pharmaceutics 2024, 16(4), 534; https://doi.org/10.3390/pharmaceutics16040534 - 13 Apr 2024
Viewed by 596
Abstract
This work investigates the proposed enhanced efficacy of photodynamic therapy (PDT) by activating photosensitizers (PSs) with Cherenkov light (CL). The approaches of Yoon et al. to test the effect of CL with external radiation were taken up and refined. The results were used [...] Read more.
This work investigates the proposed enhanced efficacy of photodynamic therapy (PDT) by activating photosensitizers (PSs) with Cherenkov light (CL). The approaches of Yoon et al. to test the effect of CL with external radiation were taken up and refined. The results were used to transfer the applied scheme from external radiation therapy to radionuclide therapy in nuclear medicine. Here, the CL for the activation of the PSs (psoralen and trioxsalen) is generated by the ionizing radiation from rhenium-188 (a high-energy beta-emitter, Re-188). In vitro cell survival studies were performed on FaDu, B16 and 4T1 cells. A characterization of the PSs (absorbance measurement and gel electrophoresis) and the CL produced by Re-188 (luminescence measurement) was performed as well as a comparison of clonogenic assays with and without PSs. The methods of Yoon et al. were reproduced with a beam line at our facility to validate their results. In our studies with different concentrations of PS and considering the negative controls without PS, the statements of Yoon et al. regarding the positive effect of CL could not be confirmed. There are slight differences in survival fractions, but they are not significant when considering the differences in the controls. Gel electrophoresis showed a dominance of trioxsalen over psoralen in conclusion of single and double strand breaks in plasmid DNA, suggesting a superiority of trioxsalen as a PS (when irradiated with UVA). In addition, absorption measurements showed that these PSs do not need to be shielded from ambient light during the experiment. An observational test setup for a PDT nuclear medicine approach was found. The CL spectrum of Re-188 was measured. Fluctuating inconclusive results from clonogenic assays were found. Full article
Show Figures

Figure 1

17 pages, 872 KiB  
Review
Delivery of DNA-Based Therapeutics for Treatment of Chronic Diseases
by Carleigh Sussman, Rachel A. Liberatore and Marek M. Drozdz
Pharmaceutics 2024, 16(4), 535; https://doi.org/10.3390/pharmaceutics16040535 - 13 Apr 2024
Viewed by 738
Abstract
Gene therapy and its role in the medical field have evolved drastically in recent decades. Studies aim to define DNA-based medicine as well as encourage innovation and the further development of novel approaches. Gene therapy has been established as an alternative approach to [...] Read more.
Gene therapy and its role in the medical field have evolved drastically in recent decades. Studies aim to define DNA-based medicine as well as encourage innovation and the further development of novel approaches. Gene therapy has been established as an alternative approach to treat a variety of diseases. Its range of mechanistic applicability is wide; gene therapy has the capacity to address the symptoms of disease, the body’s ability to fight disease, and in some cases has the ability to cure disease, making it a more attractive intervention than some traditional approaches to treatment (i.e., medicine and surgery). Such versatility also suggests gene therapy has the potential to address a greater number of indications than conventional treatments. Many DNA-based therapies have shown promise in clinical trials, and several have been approved for use in humans. Whereas current treatment regimens for chronic disease often require frequent dosing, DNA-based therapies can produce robust and durable expression of therapeutic genes with fewer treatments. This benefit encourages the application of DNA-based gene therapy to manage chronic diseases, an area where improving efficiency of current treatments is urgent. Here, we provide an overview of two DNA-based gene therapies as well as their delivery methods: adeno associated virus (AAV)-based gene therapy and plasmid DNA (pDNA)-based gene therapy. We will focus on how these therapies have already been utilized to improve treatment of chronic disease, as well as how current literature supports the expansion of these therapies to treat additional chronic indications in the future. Full article
Show Figures

Figure 1

20 pages, 2693 KiB  
Article
A Novel Class of Human ADAM8 Inhibitory Antibodies for Treatment of Triple-Negative Breast Cancer
by Nora D. Mineva, Stefania Pianetti, Sonia G. Das, Srimathi Srinivasan, Nicolas M. Billiald and Gail E. Sonenshein
Pharmaceutics 2024, 16(4), 536; https://doi.org/10.3390/pharmaceutics16040536 - 13 Apr 2024
Viewed by 821
Abstract
New targeted treatments are urgently needed to improve triple-negative breast cancer (TNBC) patient survival. Previously, we identified the cell surface protein A Disintegrin And Metalloprotease 8 (ADAM8) as a driver of TNBC tumor growth and spread via its metalloproteinase and disintegrin (MP and [...] Read more.
New targeted treatments are urgently needed to improve triple-negative breast cancer (TNBC) patient survival. Previously, we identified the cell surface protein A Disintegrin And Metalloprotease 8 (ADAM8) as a driver of TNBC tumor growth and spread via its metalloproteinase and disintegrin (MP and DI) domains. In proof-of-concept studies, we demonstrated that a monoclonal antibody (mAb) that simultaneously inhibits both domains represents a promising therapeutic approach. Here, we screened a hybridoma library using a multistep selection strategy, including flow cytometry for Ab binding to native conformation protein and in vitro cell-based functional assays to isolate a novel panel of highly specific human ADAM8 dual MP and DI inhibitory mAbs, called ADPs. The screening of four top candidates for in vivo anti-cancer activity in an orthotopic MDA-MB-231 TNBC model of ADAM8-driven primary growth identified two lead mAbs, ADP2 and ADP13. Flow cytometry, hydrogen/deuterium exchange–mass spectrometry (HDX-MS) and alanine (ALA) scanning mutagenesis revealed that dual MP and DI inhibition was mediated via binding to the DI. Further testing in mice showed ADP2 and ADP13 reduce aggressive TNBC characteristics, including locoregional regrowth and metastasis, and improve survival, demonstrating strong therapeutic potential. The continued development of these mAbs into an ADAM8-targeted therapy could revolutionize TNBC treatment. Full article
(This article belongs to the Special Issue Advances in Anticancer Agent, 2nd Edition)
Show Figures

Figure 1

32 pages, 12016 KiB  
Review
Cell Membrane-Coated Biomimetic Nanoparticles in Cancer Treatment
by Shu Zhang, Xiaojuan Zhang, Huan Gao, Xiaoqin Zhang, Lidan Sun, Yueyan Huang, Jie Zhang and Baoyue Ding
Pharmaceutics 2024, 16(4), 531; https://doi.org/10.3390/pharmaceutics16040531 - 12 Apr 2024
Viewed by 810
Abstract
Nanoparticle-based drug delivery systems hold promise for cancer treatment by enhancing the solubility and stability of anti-tumor drugs. Nonetheless, the challenges of inadequate targeting and limited biocompatibility persist. In recent years, cell membrane nano-biomimetic drug delivery systems have emerged as a focal point [...] Read more.
Nanoparticle-based drug delivery systems hold promise for cancer treatment by enhancing the solubility and stability of anti-tumor drugs. Nonetheless, the challenges of inadequate targeting and limited biocompatibility persist. In recent years, cell membrane nano-biomimetic drug delivery systems have emerged as a focal point of research and development, due to their exceptional traits, including precise targeting, low toxicity, and good biocompatibility. This review outlines the categorization and advantages of cell membrane bionic nano-delivery systems, provides an introduction to preparation methods, and assesses their applications in cancer treatment, including chemotherapy, gene therapy, immunotherapy, photodynamic therapy, photothermal therapy, and combination therapy. Notably, the review delves into the challenges in the application of various cell membrane bionic nano-delivery systems and identifies opportunities for future advancement. Embracing cell membrane-coated biomimetic nanoparticles presents a novel and unparalleled avenue for personalized tumor therapy. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

24 pages, 3499 KiB  
Review
Mirk/Dyrk1B Kinase Inhibitors in Targeted Cancer Therapy
by Nikolaos Kokkorakis, Marios Zouridakis and Maria Gaitanou
Pharmaceutics 2024, 16(4), 528; https://doi.org/10.3390/pharmaceutics16040528 - 11 Apr 2024
Viewed by 827
Abstract
During the last years, there has been an increased effort in the discovery of selective and potent kinase inhibitors for targeted cancer therapy. Kinase inhibitors exhibit less toxicity compared to conventional chemotherapy, and several have entered the market. Mirk/Dyrk1B kinase is a promising [...] Read more.
During the last years, there has been an increased effort in the discovery of selective and potent kinase inhibitors for targeted cancer therapy. Kinase inhibitors exhibit less toxicity compared to conventional chemotherapy, and several have entered the market. Mirk/Dyrk1B kinase is a promising pharmacological target in cancer since it is overexpressed in many tumors, and its overexpression is correlated with patients’ poor prognosis. Mirk/Dyrk1B acts as a negative cell cycle regulator, maintaining the survival of quiescent cancer cells and conferring their resistance to chemotherapies. Many studies have demonstrated the valuable therapeutic effect of Mirk/Dyrk1B inhibitors in cancer cell lines, mouse xenografts, and patient-derived 3D-organoids, providing a perspective for entering clinical trials. Since the majority of Mirk/Dyrk1B inhibitors target the highly conserved ATP-binding site, they exhibit off-target effects with other kinases, especially with the highly similar Dyrk1A. In this review, apart from summarizing the data establishing Dyrk1B as a therapeutic target in cancer, we highlight the most potent Mirk/Dyrk1B inhibitors recently reported. We also discuss the limitations and perspectives for the structure-based design of Mirk/Dyrk1B potent and highly selective inhibitors based on the accumulated structural data of Dyrk1A and the recent crystal structure of Dyrk1B with AZ191 inhibitor. Full article
(This article belongs to the Special Issue Kinase Inhibitor for Cancer Therapy, 2nd Edition)
Show Figures

Figure 1

27 pages, 547 KiB  
Review
Progress in the Use of Hydrogels for Antioxidant Delivery in Skin Wounds
by Lidia Maeso, Pablo Edmundo Antezana, Ailen Gala Hvozda Arana, Pablo Andrés Evelson, Gorka Orive and Martín Federico Desimone
Pharmaceutics 2024, 16(4), 524; https://doi.org/10.3390/pharmaceutics16040524 - 10 Apr 2024
Viewed by 793
Abstract
The skin is the largest organ of the body, and it acts as a protective barrier against external factors. Chronic wounds affect millions of people worldwide and are associated with significant morbidity and reduced quality of life. One of the main factors involved [...] Read more.
The skin is the largest organ of the body, and it acts as a protective barrier against external factors. Chronic wounds affect millions of people worldwide and are associated with significant morbidity and reduced quality of life. One of the main factors involved in delayed wound healing is oxidative injury, which is triggered by the overproduction of reactive oxygen species. Oxidative stress has been implicated in the pathogenesis of chronic wounds, where it is known to impair wound healing by causing damage to cellular components, delaying the inflammatory phase of healing, and inhibiting the formation of new blood vessels. Thereby, the treatment of chronic wounds requires a multidisciplinary approach that addresses the underlying causes of the wound, provides optimal wound care, and promotes wound healing. Among the promising approaches to taking care of chronic wounds, antioxidants are gaining interest since they offer multiple benefits related to skin health. Therefore, in this review, we will highlight the latest advances in the use of natural polymers with antioxidants to generate tissue regeneration microenvironments for skin wound healing. Full article
(This article belongs to the Special Issue Biopolymer Materials for Wound Healing, 2nd Edition)
Show Figures

Figure 1

14 pages, 2287 KiB  
Article
Interaction of γ-Polyglutamic Acid/Polyethyleneimine/Plasmid DNA Ternary Complexes with Serum Components Plays a Crucial Role in Transfection in Mice
by Tomotaka Ko, Shintaro Fumoto, Tomoaki Kurosaki, Moe Nakashima, Hirotaka Miyamoto, Hitoshi Sasaki and Koyo Nishida
Pharmaceutics 2024, 16(4), 522; https://doi.org/10.3390/pharmaceutics16040522 - 9 Apr 2024
Viewed by 579
Abstract
Typical examples of non-viral vectors are binary complexes of plasmid DNA with cationic polymers such as polyethyleneimine (PEI). However, problems such as cytotoxicity and hemagglutination, owing to their positively charged surfaces, hinder their in vivo use. Coating binary complexes with anionic polymers, such [...] Read more.
Typical examples of non-viral vectors are binary complexes of plasmid DNA with cationic polymers such as polyethyleneimine (PEI). However, problems such as cytotoxicity and hemagglutination, owing to their positively charged surfaces, hinder their in vivo use. Coating binary complexes with anionic polymers, such as γ-polyglutamic acid (γ-PGA), can prevent cytotoxicity and hemagglutination. However, the role of interactions between these complexes and serum components in in vivo gene transfer remains unclear. In this study, we analyzed the contribution of serum components to in vivo gene transfer using PEI/plasmid DNA binary complexes and γ-PGA/PEI/plasmid DNA ternary complexes. In binary complexes, heat-labile components in the serum greatly contribute to the hepatic and splenic gene expression of the luciferase gene. In contrast, serum albumin and salts affected the hepatic and splenic gene expression in the ternary complexes. Changes in physicochemical characteristics, such as increased particle size and decreased absolute values of ζ-potential, might be involved in the enhanced gene expression. These findings would contribute to a better understanding of in vivo non-viral gene transfer using polymers, such as PEI and γ-PGA. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

10 pages, 706 KiB  
Communication
Therapeutic Aqueous Humor Concentrations of Latanoprost Attained in Rats by Administration in a Very-High-Molecular-Weight Hyaluronic Acid Eye Drop
by Kazunari Higa, Reona Kimoto, Takashi Kojima, Murat Dogru, Wolfgang G. K. Müller-Lierheim and Jun Shimazaki
Pharmaceutics 2024, 16(4), 523; https://doi.org/10.3390/pharmaceutics16040523 - 9 Apr 2024
Viewed by 554
Abstract
The temporal change in concentration of a novel medicine, Latanoprost (LP), was evaluated in the aqueous humor of rats (6–8-week-old Jcl:Wister rats) when delivered in a very-high-molecular-weight hyaluronic acid (vHiHA) eye drop. Animals were randomly assigned to three treatment groups (LP + vHiHA [...] Read more.
The temporal change in concentration of a novel medicine, Latanoprost (LP), was evaluated in the aqueous humor of rats (6–8-week-old Jcl:Wister rats) when delivered in a very-high-molecular-weight hyaluronic acid (vHiHA) eye drop. Animals were randomly assigned to three treatment groups (LP + vHiHA (LPvHiHA), commercial LP (cLP), and diluted LP (dLP)) and after instilling the eye drops, the aqueous humor (AH) was collected at 0.5, 1, 2, 4, and 6 h to measure the LP concentration using an enzyme-linked immunosorbent assay (ELISA). Although the LP concentration in the LPvHiHA eye drop formulation was 3.57 times lower than in the commercial eye drops used (cLP), the LP concentration in the AH following LPvHiHA administration reached a value close to that of cLP. The cLP was diluted to the same concentration of LP as in the LPvHiHA eye drops for the dLP group, but the LP concentration in the AH of these animals was lower than that of the LPvHiHA rats at all time points. The higher LP concentration in the AH of the LPvHiHA rats suggests that vHiHA may aid the transport of LP across the ocular surface epithelium. Full article
(This article belongs to the Special Issue Advances in Ocular Drug Delivery)
Show Figures

Figure 1

14 pages, 7480 KiB  
Article
Size Tuning of Mesoporous Silica Adjuvant for One-Shot Vaccination with Long-Term Anti-Tumor Effect
by Xiupeng Wang, Yu Sogo and Xia Li
Pharmaceutics 2024, 16(4), 516; https://doi.org/10.3390/pharmaceutics16040516 - 8 Apr 2024
Viewed by 727
Abstract
Despite recent clinical successes in cancer immunotherapy, it remains difficult to initiate a long-term anti-tumor effect. Therefore, repeated administrations of immune-activating agents are generally required in most cases. Herein, we propose an adjuvant particle size tuning strategy to initiate a long-term anti-tumor effect [...] Read more.
Despite recent clinical successes in cancer immunotherapy, it remains difficult to initiate a long-term anti-tumor effect. Therefore, repeated administrations of immune-activating agents are generally required in most cases. Herein, we propose an adjuvant particle size tuning strategy to initiate a long-term anti-tumor effect by one-shot vaccination. This strategy is based on the size-dependent immunostimulation mechanism of mesoporous silica particles. Hollow mesoporous silica (HMS) nanoparticles enhance the antigen uptake with dendritic cells around the immunization site in vivo. In contrast, hierarchically porous silica (HPS) microparticles prolong cancer antigen retention and release in vivo. The size tuning of the mesoporous silica adjuvant prepared by combining both nanoparticles and microparticles demonstrates the immunological properties of both components and has a long-term anti-tumor effect after one-shot vaccination. One-shot vaccination with HMS-HPS-ovalbumin (OVA)-Poly IC (PIC, a TLR3 agonist) increases CD4+ T cell, CD8+ T cell, and CD86+ cell populations in draining lymph nodes even 4 months after vaccination, as well as effector memory CD8+ T cell and tumor-specific tetramer+CD8+ T cell populations in splenocytes. The increases in the numbers of effector memory CD8+ T cells and tumor-specific tetramer+CD8+ T cells indicate that the one-shot vaccination with HMS-HPS-OVA-PIC achieved the longest survival time after a challenge with E.G7-OVA cells among all groups. The size tuning of the mesoporous silica adjuvant shows promise for one-shot vaccination that mimics multiple clinical vaccinations in future cancer immunoadjuvant development. This study may have important implications in the long-term vaccine design of one-shot vaccinations. Full article
(This article belongs to the Special Issue Anti-Cancer Drug Delivery Systems)
Show Figures

Figure 1

14 pages, 14092 KiB  
Article
Polydopamine-Modified Copper Coordination Mesoporous Silica Nanoparticles Loaded with Disulfiram for Synergistic Chemo-Photothermal Therapy
by Junhong Ling, Yingying Cai, Haozhan Feng, Zhen Liu and Xiao-kun Ouyang
Pharmaceutics 2024, 16(4), 512; https://doi.org/10.3390/pharmaceutics16040512 - 7 Apr 2024
Viewed by 822
Abstract
Disulfiram (DSF) degrades to diethyldithiocarbamate (DTC) in vivo and coordinates with copper ions to form CuET, which has higher antitumor activity. In this study, DSF@CuMSN-PDA nanoparticles were prepared using mesoporous silica with copper ions, DSF as a carrier, and polydopamine (PDA) as a [...] Read more.
Disulfiram (DSF) degrades to diethyldithiocarbamate (DTC) in vivo and coordinates with copper ions to form CuET, which has higher antitumor activity. In this study, DSF@CuMSN-PDA nanoparticles were prepared using mesoporous silica with copper ions, DSF as a carrier, and polydopamine (PDA) as a gate system. The nanoparticles selectively released CuET into tumor tissue by taking advantage of the tumor microenvironment, where PDA could be degraded. The release ratio reached 79.17% at pH 5.0, indicating pH-responsive drug release from the nanoparticles. The PDA-gated system provided the nanoparticles with unique photothermal conversion performance and significantly improved antitumor efficiency. In vivo, antitumor experiments showed that the designed DSF@CuMSN-PDA nanoparticles combined with near-infrared light (808 nm, 1 W/cm2) irradiation effectively inhibited tumor growth in HCT116 cells by harnessing the combined potential of chemotherapy and photothermal therapy; a synergistic effect was achieved. Taken together, these results suggest that the designed DSF@CuMSN-PDA construct can be employed as a promising candidate for combined chemo-photothermal therapy. Full article
(This article belongs to the Special Issue Anti-Cancer Drug Delivery Systems)
Show Figures

Figure 1

21 pages, 3557 KiB  
Article
Effect of Micromixer Design on Lipid Nanocarriers Manufacturing for the Delivery of Proteins and Nucleic Acids
by Enrica Chiesa, Alessandro Caimi, Marco Bellotti, Alessia Giglio, Bice Conti, Rossella Dorati, Ferdinando Auricchio and Ida Genta
Pharmaceutics 2024, 16(4), 507; https://doi.org/10.3390/pharmaceutics16040507 - 7 Apr 2024
Viewed by 792
Abstract
Lipid-based nanocarriers have emerged as helpful tools to deliver sensible biomolecules such as proteins and oligonucleotides. To have a fast and robust microfluidic-based nanoparticle synthesis method, the setup of versatile equipment should allow for the rapid transfer to scale cost-effectively while ensuring tunable, [...] Read more.
Lipid-based nanocarriers have emerged as helpful tools to deliver sensible biomolecules such as proteins and oligonucleotides. To have a fast and robust microfluidic-based nanoparticle synthesis method, the setup of versatile equipment should allow for the rapid transfer to scale cost-effectively while ensuring tunable, precise and reproducible nanoparticle attributes. The present work aims to assess the effect of different micromixer geometries on the manufacturing of lipid nanocarriers taking into account the influence on the mixing efficiency by changing the fluid–fluid interface and indeed the mass transfer. Since the geometry of the adopted micromixer varies from those already published, a Design of Experiment (DoE) was necessary to identify the operating (total flow, flow rate ratio) and formulation (lipid concentration, lipid molar ratios) parameters affecting the nanocarrier quality. The suitable application of the platform was investigated by producing neutral, stealth and cationic liposomes, using DaunoXome®, Myocet®, Onivyde® and Onpattro® as the benchmark. The effect of condensing lipid (DOTAP, 3–10–20 mol%), coating lipids (DSPE-PEG550 and DSPE-PEG2000), as well as structural lipids (DSPC, eggPC) was pointed out. A very satisfactory encapsulation efficiency, always higher than 70%, was successfully obtained for model biomolecules (myoglobin, short and long nucleic acids). Full article
(This article belongs to the Special Issue Recent Advances in Nanotechnology Therapeutics)
Show Figures

Figure 1

16 pages, 3464 KiB  
Article
Beyond One-Size-Fits-All: Tailoring Teicoplanin Regimens for Normal Renal Function Patients Using Population Pharmacokinetics and Monte Carlo Simulation
by Yong-Kyun Kim, Kyeong-Min Jo, Jae-Ha Lee, Ji-Hoon Jang, Eun-Jun Choe, Gaeun Kang, Dae-Young Zang and Dong-Hwan Lee
Pharmaceutics 2024, 16(4), 499; https://doi.org/10.3390/pharmaceutics16040499 - 5 Apr 2024
Viewed by 689
Abstract
In patients with normal renal function, significant teicoplanin dose adjustments are often necessary. This study aimed to develop a population pharmacokinetic (PK) model for teicoplanin in healthy adults and use it to recommend optimal dosage regimens for patients with normal renal function. PK [...] Read more.
In patients with normal renal function, significant teicoplanin dose adjustments are often necessary. This study aimed to develop a population pharmacokinetic (PK) model for teicoplanin in healthy adults and use it to recommend optimal dosage regimens for patients with normal renal function. PK samples were obtained from 12 subjects and analyzed using a population approach. The derived parameters informed Monte Carlo simulations for dosing recommendations. The PK profile was best described using a three-compartment model, in which the estimated glomerular filtration rate calculated via the CKD-EPI equation and adjusted for body surface area was identified as a significant covariate affecting total clearance. For pathogens with a minimum inhibitory concentration of 1 mg/L, a loading dose (LD) of 14 mg/kg administered every 12 h for four doses, followed by a maintenance dose (MD) of 16 mg/kg administered every 24 h, is recommended. These findings indicate the need for dosage adjustments, such as increasing the LD and MD or decreasing the dosing interval of MD in patients with normal renal function. Because of the long half-life of teicoplanin and the requirement for long-term administration, therapeutic drug monitoring at strategic intervals is important to avoid nephrotoxicity associated with elevated trough concentrations. Full article
Show Figures

Figure 1

29 pages, 1791 KiB  
Article
Comparative Fitting of Mathematical Models to Carvedilol Release Profiles Obtained from Hypromellose Matrix Tablets
by Tadej Ojsteršek, Franc Vrečer and Grega Hudovornik
Pharmaceutics 2024, 16(4), 498; https://doi.org/10.3390/pharmaceutics16040498 - 4 Apr 2024
Viewed by 580
Abstract
The mathematical models available in DDSolver were applied to experimental dissolution data obtained by analysing carvedilol release from hypromellose (HPMC)-based matrix tablets. Different carvedilol release profiles were generated by varying a comprehensive selection of fillers and carvedilol release modifiers in the formulation. Model [...] Read more.
The mathematical models available in DDSolver were applied to experimental dissolution data obtained by analysing carvedilol release from hypromellose (HPMC)-based matrix tablets. Different carvedilol release profiles were generated by varying a comprehensive selection of fillers and carvedilol release modifiers in the formulation. Model fitting was conducted for the entire relevant dissolution data, as determined by using a paired t-test, and independently for dissolution data up to approximately 60% of carvedilol released. The best models were selected based on the residual sum of squares (RSS) results used as a general measure of goodness of fit, along with the utilization of various criteria for visual assessment of model fit and determination of the acceptability of estimated model parameters indicating burst release or lag time concerning experimental dissolution results and previous research. In addition, a model-dependent analysis of carvedilol release mechanisms was carried out. Full article
(This article belongs to the Special Issue Feature Papers in Physical Pharmacy and Formulation)
Show Figures

Figure 1

19 pages, 3966 KiB  
Article
Membrane-Fusing Vehicles for Re-Sensitizing Transporter-Mediated Multiple-Drug Resistance in Cancer
by Sahel Vahdati and Alf Lamprecht
Pharmaceutics 2024, 16(4), 493; https://doi.org/10.3390/pharmaceutics16040493 - 2 Apr 2024
Viewed by 683
Abstract
Reversing the multiple drug resistance (MDR) arising from the overexpression of the efflux transporters often fails mainly due to the high toxicity or the poor water solubility of the inhibitors of these transporters. Here, we demonstrate the delivery of an inhibitor targeting three [...] Read more.
Reversing the multiple drug resistance (MDR) arising from the overexpression of the efflux transporters often fails mainly due to the high toxicity or the poor water solubility of the inhibitors of these transporters. Here, we demonstrate the delivery of an inhibitor targeting three ABC transporters (ABCB1, ABCC1 and ABCG2) directly to the cell membrane using membrane-fusing vehicles (MFVs). Three different transfected MDCK II cell lines, along with parental cells, were used to investigate the inhibitory effect of cyclosporine A (CsA) in solution versus direct delivery to the cell membrane. CsA-loaded MFVs successfully reversed MDR for all three investigated efflux transporters at significantly lower concentrations compared with CsA in solution. Results showed a 15-fold decrease in the IC50 value for ABCB1, a 7-fold decrease for ABCC1 and an 11-fold decrease for ABCG2. We observed binding site specificity for ABCB1 and ABCG2 transporters. Lower concentrations of empty MFVs along with CsA contribute to the inhibition of Hoechst 33342 efflux. However, higher concentrations of CsA along with the high amount of MFVs activated transport via the H-binding site. This supports the conclusion that MFVs can be useful beyond their role as delivery systems and also help to elucidate differences between these transporters and their binding sites. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

20 pages, 5222 KiB  
Article
Unraveling Drug Delivery from Cyclodextrin Polymer-Coated Breast Implants: Integrating a Unidirectional Diffusion Mathematical Model with COMSOL Simulations
by Jacobo Hernandez-Montelongo, Javiera Salazar-Araya, Elizabeth Mas-Hernández, Douglas Soares Oliveira and Juan Paulo Garcia-Sandoval
Pharmaceutics 2024, 16(4), 486; https://doi.org/10.3390/pharmaceutics16040486 - 2 Apr 2024
Viewed by 812
Abstract
Breast cancer ranks among the most commonly diagnosed cancers worldwide and bears the highest mortality rate. As an integral component of cancer treatment, mastectomy entails the complete removal of the affected breast. Typically, breast reconstruction, involving the use of silicone implants (augmentation mammaplasty), [...] Read more.
Breast cancer ranks among the most commonly diagnosed cancers worldwide and bears the highest mortality rate. As an integral component of cancer treatment, mastectomy entails the complete removal of the affected breast. Typically, breast reconstruction, involving the use of silicone implants (augmentation mammaplasty), is employed to address the aftermath of mastectomy. To mitigate postoperative risks associated with mammaplasty, such as capsular contracture or bacterial infections, the functionalization of breast implants with coatings of cyclodextrin polymers as drug delivery systems represents an excellent alternative. In this context, our work focuses on the application of a mathematical model for simulating drug release from breast implants coated with cyclodextrin polymers. The proposed model considers a unidirectional diffusion process following Fick’s second law, which was solved using the orthogonal collocation method, a numerical technique employed to approximate solutions for ordinary and partial differential equations. We conducted simulations to obtain release profiles for three therapeutic molecules: pirfenidone, used for preventing capsular contracture; rose Bengal, an anticancer agent; and the antimicrobial peptide KR-12. Furthermore, we calculated the diffusion profiles of these drugs through the cyclodextrin polymers, determining parameters related to diffusivity, solute solid–liquid partition coefficients, and the Sherwood number. Finally, integrating these parameters in COMSOL multiphysics simulations, the unidirectional diffusion mathematical model was validated. Full article
(This article belongs to the Special Issue Mathematical Modeling in Drug Delivery)
Show Figures

Figure 1

30 pages, 6228 KiB  
Article
The Impact of Paediatric Obesity on Drug Pharmacokinetics: A Virtual Clinical Trials Case Study with Amlodipine
by Khairulanwar Burhanuddin, Afzal Mohammed and Raj K. S. Badhan
Pharmaceutics 2024, 16(4), 489; https://doi.org/10.3390/pharmaceutics16040489 - 2 Apr 2024
Viewed by 887
Abstract
The incidence of paediatric obesity continues to rise worldwide and contributes to a range of diseases including cardiovascular disease. Obesity in children has been shown to impact upon the plasma concentrations of various compounds, including amlodipine. Nonetheless, information on the influence of obesity [...] Read more.
The incidence of paediatric obesity continues to rise worldwide and contributes to a range of diseases including cardiovascular disease. Obesity in children has been shown to impact upon the plasma concentrations of various compounds, including amlodipine. Nonetheless, information on the influence of obesity on amlodipine pharmacokinetics and the need for dose adjustment has not been studied previously. This study applied the physiologically based pharmacokinetic modelling and established a paediatric obesity population to assess the impact of obesity on amlodipine pharmacokinetics in children and explore the possible dose adjustments required to reach the same plasma concentration as non-obese paediatrics. The difference in predicted maximum concentration (Cmax) and area under the curve (AUC) were significant between children with and without obesity across the age group 2 to 18 years old when a fixed-dose regimen was used. On the contrary, a weight-based dose regimen showed no difference in Cmax between obese and non-obese from 2 to 9 years old. Thus, when a fixed-dose regimen is to be administered, a 1.25- to 1.5-fold increase in dose is required in obese children to achieve the same Cmax concentration as non-obese children, specifically for children aged 5 years and above. Full article
Show Figures

Figure 1

20 pages, 5181 KiB  
Article
Ionic Liquid Transdermal Patches of Two Active Ingredients Based on Semi-Ionic Hydrogen Bonding for Rheumatoid Arthritis Treatment
by Faxing Zhang, Lu Li, Xinyuan Zhang, Hongyu Yang, Yingzhen Fan, Jian Zhang, Ting Fang, Yaming Liu, Zhihao Nie and Dongkai Wang
Pharmaceutics 2024, 16(4), 480; https://doi.org/10.3390/pharmaceutics16040480 - 1 Apr 2024
Viewed by 905
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that leads to deformities and disabilities in patients. Conventional treatment focuses on delaying progression; therefore, new treatments are necessary. The present study reported a novel ionic liquid transdermal platform for efficient RA treatment, and the [...] Read more.
Rheumatoid arthritis (RA) is a chronic autoimmune disease that leads to deformities and disabilities in patients. Conventional treatment focuses on delaying progression; therefore, new treatments are necessary. The present study reported a novel ionic liquid transdermal platform for efficient RA treatment, and the underlying mechanism was elucidated using FTIR, 1H-NMR, Raman, XPS, and molecular simulations. The results showed that the reversibility of the semi-ionic hydrogen bonding facilitated high drug loading and enhanced drug permeability. Actarit’s drug loading had an approximately 11.34-times increase. The in vitro permeability of actarit and ketoprofen was improved by 5.46 and 2.39 times, respectively. And they had the same significant effect in vivo. Furthermore, through the integration of network pharmacology, Western blotting (WB), and radiology analyses, the significant osteoprotective effects of SIHDD-PSA (semi-ionic H-bond double-drug pressure-sensitive adhesive transdermal patch) were revealed through the modulation of the JAK-STAT pathway. The SIHDD-PSA significantly reduced paw swelling and inflammation in the rat model, and stimulatory properties evaluation confirmed the safety of SIHDD-PSA. In conclusion, these findings provide a novel approach for the effective treatment of RA, and the semi-ionic hydrogen bonding strategy contributes a new theoretical basis for developing TDDS. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

16 pages, 5552 KiB  
Review
Engineering Nanomedicine for Non-Viral RNA-Based Gene Therapy of Glioblastoma
by Wenya He, Ningyang Wang, Yaping Wang, Mengyao Liu, Qian Qing, Qihang Su, Yan Zou and Yang Liu
Pharmaceutics 2024, 16(4), 482; https://doi.org/10.3390/pharmaceutics16040482 - 1 Apr 2024
Viewed by 1019
Abstract
Glioblastoma multiforme (GBM) is the most common type of malignant tumor of the central nervous system, characterized by aggressiveness, genetic instability, heterogenesis, and unpredictable clinical behavior. Disappointing results from the current clinical therapeutic methods have fueled a search for new therapeutic targets and [...] Read more.
Glioblastoma multiforme (GBM) is the most common type of malignant tumor of the central nervous system, characterized by aggressiveness, genetic instability, heterogenesis, and unpredictable clinical behavior. Disappointing results from the current clinical therapeutic methods have fueled a search for new therapeutic targets and treatment modalities. GBM is characterized by various genetic alterations, and RNA-based gene therapy has raised particular attention in GBM therapy. Here, we review the recent advances in engineered non-viral nanocarriers for RNA drug delivery to treat GBM. Therapeutic strategies concerning the brain-targeted delivery of various RNA drugs involving siRNA, microRNA, mRNA, ASO, and short-length RNA and the therapeutical mechanisms of these drugs to tackle the challenges of chemo-/radiotherapy resistance, recurrence, and incurable stem cell-like tumor cells of GBM are herein outlined. We also highlight the progress, prospects, and remaining challenges of non-viral nanocarriers-mediated RNA-based gene therapy. Full article
(This article belongs to the Special Issue Nanocarriers: A Novel Strategy for Cell and Gene Delivery)
Show Figures

Figure 1

Back to TopTop