Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4690 KiB  
Article
The Application of Nanofibrous Resonant Membranes for Room Acoustics
by Klara Kalinova
Nanomaterials 2023, 13(6), 1115; https://doi.org/10.3390/nano13061115 - 21 Mar 2023
Cited by 1 | Viewed by 1276
Abstract
Solitary sound absorbing elements exist; however, their construction is massive and heavy, which largely limits their use. These elements are generally made of porous materials that serve to reduce the amplitude of the reflected sound waves. Materials based on the resonance principle (oscillating [...] Read more.
Solitary sound absorbing elements exist; however, their construction is massive and heavy, which largely limits their use. These elements are generally made of porous materials that serve to reduce the amplitude of the reflected sound waves. Materials based on the resonance principle (oscillating membranes, plates, and Helmholtz’s resonators) can also be used for sound absorption. A limitation of these elements is the absorption of a very narrow sound band to which these elements are “tuned”. For other frequencies, the absorption is very low. The aim of the solution is to achieve a high sound absorption efficiency at a very low weight. A nanofibrous membrane was used to create high sound absorption in synergy with special grids working as a cavity resonator. Prototypes of the nanofibrous resonant membrane on a grid with a thickness of 2 mm and an air gap of 50 mm already showed a high level of sound absorption (0.6–0.8) at a frequency of 300 Hz, which is a very unique result. Since acoustic elements, i.e., lighting, tiles, and ceilings, are designed for interiors, an essential part of the research is also the achievement of the lighting function and the emphasis on aesthetic design. Full article
Show Figures

Figure 1

8 pages, 513 KiB  
Article
Fine Structure Splitting of Phonon-Assisted Excitonic Transition in (PEA)2PbI4 Two-Dimensional Perovskites
by Katarzyna Posmyk, Mateusz Dyksik, Alessandro Surrente, Katarzyna Zalewska, Maciej Śmiertka, Ewelina Cybula, Watcharaphol Paritmongkol, William A. Tisdale, Paulina Plochocka and Michał Baranowski
Nanomaterials 2023, 13(6), 1119; https://doi.org/10.3390/nano13061119 - 21 Mar 2023
Cited by 5 | Viewed by 2555
Abstract
Two-dimensional van der Waals materials exhibit particularly strong excitonic effects, which causes them to be an exceptionally interesting platform for the investigation of exciton physics. A notable example is the two-dimensional Ruddlesden–Popper perovskites, where quantum and dielectric confinement together with soft, polar, and [...] Read more.
Two-dimensional van der Waals materials exhibit particularly strong excitonic effects, which causes them to be an exceptionally interesting platform for the investigation of exciton physics. A notable example is the two-dimensional Ruddlesden–Popper perovskites, where quantum and dielectric confinement together with soft, polar, and low symmetry lattice create a unique background for electron and hole interaction. Here, with the use of polarization-resolved optical spectroscopy, we have demonstrated that the simultaneous presence of tightly bound excitons, together with strong exciton–phonon coupling, allows for observing the exciton fine structure splitting of the phonon-assisted transitions of two-dimensional perovskite (PEA)2PbI4, where PEA stands for phenylethylammonium. We demonstrate that the phonon-assisted sidebands characteristic for (PEA)2PbI4 are split and linearly polarized, mimicking the characteristics of the corresponding zero-phonon lines. Interestingly, the splitting of differently polarized phonon-assisted transitions can be different from that of the zero-phonon lines. We attribute this effect to the selective coupling of linearly polarized exciton states to non-degenerate phonon modes of different symmetries resulting from the low symmetry of (PEA)2PbI4 lattice. Full article
Show Figures

Figure 1

11 pages, 2847 KiB  
Article
Enhanced Electroluminescence from a Silicon Nanocrystal/Silicon Carbide Multilayer Light-Emitting Diode
by Teng Sun, Dongke Li, Jiaming Chen, Yuhao Wang, Junnan Han, Ting Zhu, Wei Li, Jun Xu and Kunji Chen
Nanomaterials 2023, 13(6), 1109; https://doi.org/10.3390/nano13061109 - 20 Mar 2023
Cited by 2 | Viewed by 1592
Abstract
Developing high-performance Si-based light-emitting devices is the key step to realizing all-Si-based optical telecommunication. Usually, silica (SiO2) as the host matrix is used to passivate silicon nanocrystals, and a strong quantum confinement effect can be observed due to the large band [...] Read more.
Developing high-performance Si-based light-emitting devices is the key step to realizing all-Si-based optical telecommunication. Usually, silica (SiO2) as the host matrix is used to passivate silicon nanocrystals, and a strong quantum confinement effect can be observed due to the large band offset between Si and SiO2 (~8.9 eV). Here, for further development of device properties, we fabricate Si nanocrystals (NCs)/SiC multilayers and study the changes in photoelectric properties of the LEDs induced by P dopants. PL peaks centered at 500 nm, 650 nm and 800 nm can be detected, which are attributed to surface states between SiC and Si NCs, amorphous SiC and Si NCs, respectively. PL intensities are first enhanced and then decreased after introducing P dopants. It is believed that the enhancement is due to passivation of the Si dangling bonds at the surface of Si NCs, while the suppression is ascribed to enhanced Auger recombination and new defects induced by excessive P dopants. Un-doped and P-doped LEDs based on Si NCs/SiC multilayers are fabricated and the performance is enhanced greatly after doping. As fitted, emission peaks near 500 nm and 750 nm can be detected. The current density-voltage properties indicate that the carrier transport process is dominated by FN tunneling mechanisms, while the linear relationship between the integrated EL intensity and injection current illustrates that the EL mechanism is attributed to recombination of electron–hole pairs at Si NCs induced by bipolar injection. After doping, the integrated EL intensities are enhanced by about an order of magnitude, indicating that EQE is greatly improved. Full article
Show Figures

Figure 1

26 pages, 1820 KiB  
Review
Graphene-Related Nanomaterials for Biomedical Applications
by Andreea-Isabela Lazăr, Kimia Aghasoleimani, Anna Semertsidou, Jahnavi Vyas, Alin-Lucian Roșca, Denisa Ficai and Anton Ficai
Nanomaterials 2023, 13(6), 1092; https://doi.org/10.3390/nano13061092 - 17 Mar 2023
Cited by 11 | Viewed by 3707
Abstract
This paper builds on the context and recent progress on the control, reproducibility, and limitations of using graphene and graphene-related materials (GRMs) in biomedical applications. The review describes the human hazard assessment of GRMs in in vitro and in vivo studies, highlights the [...] Read more.
This paper builds on the context and recent progress on the control, reproducibility, and limitations of using graphene and graphene-related materials (GRMs) in biomedical applications. The review describes the human hazard assessment of GRMs in in vitro and in vivo studies, highlights the composition–structure–activity relationships that cause toxicity for these substances, and identifies the key parameters that determine the activation of their biological effects. GRMs are designed to offer the advantage of facilitating unique biomedical applications that impact different techniques in medicine, especially in neuroscience. Due to the increasing utilization of GRMs, there is a need to comprehensively assess the potential impact of these materials on human health. Various outcomes associated with GRMs, including biocompatibility, biodegradability, beneficial effects on cell proliferation, differentiation rates, apoptosis, necrosis, autophagy, oxidative stress, physical destruction, DNA damage, and inflammatory responses, have led to an increasing interest in these regenerative nanostructured materials. Considering the existence of graphene-related nanomaterials with different physicochemical properties, the materials are expected to exhibit unique modes of interactions with biomolecules, cells, and tissues depending on their size, chemical composition, and hydrophil-to-hydrophobe ratio. Understanding such interactions is crucial from two perspectives, namely, from the perspectives of their toxicity and biological uses. The main aim of this study is to assess and tune the diverse properties that must be considered when planning biomedical applications. These properties include flexibility, transparency, surface chemistry (hydrophil–hydrophobe ratio), thermoelectrical conductibility, loading and release capacity, and biocompatibility. Full article
(This article belongs to the Special Issue Next-Generation Nanomaterials: Preparation and Applications)
Show Figures

Figure 1

28 pages, 4539 KiB  
Review
Innovative Approaches to Semi-Transparent Perovskite Solar Cells
by Pramila Patil, Sushil S. Sangale, Sung-Nam Kwon and Seok-In Na
Nanomaterials 2023, 13(6), 1084; https://doi.org/10.3390/nano13061084 - 16 Mar 2023
Cited by 7 | Viewed by 5200
Abstract
Perovskite solar cells (PSCs) are advancing rapidly and have reached a performance comparable to that of silicon solar cells. Recently, they have been expanding into a variety of applications based on the excellent photoelectric properties of perovskite. Semi-transparent PSCs (ST-PSCs) are one promising [...] Read more.
Perovskite solar cells (PSCs) are advancing rapidly and have reached a performance comparable to that of silicon solar cells. Recently, they have been expanding into a variety of applications based on the excellent photoelectric properties of perovskite. Semi-transparent PSCs (ST-PSCs) are one promising application that utilizes the tunable transmittance of perovskite photoactive layers, which can be used in tandem solar cells (TSC) and building-integrated photovoltaics (BIPV). However, the inverse relationship between light transmittance and efficiency is a challenge in the development of ST-PSCs. To overcome these challenges, numerous studies are underway, including those on band-gap tuning, high-performance charge transport layers and electrodes, and creating island-shaped microstructures. This review provides a general and concise summary of the innovative approaches in ST-PSCs, including advances in the perovskite photoactive layer, transparent electrodes, device structures and their applications in TSC and BIPV. Furthermore, the essential requirements and challenges to be addressed to realize ST-PSCs are discussed, and the prospects of ST-PSCs are presented. Full article
Show Figures

Figure 1

10 pages, 1189 KiB  
Article
WO3 Nanorods Decorated with Very Small Amount of Pt for Effective Hydrogen Evolution Reaction
by Giacometta Mineo, Luca Bruno, Elena Bruno and Salvo Mirabella
Nanomaterials 2023, 13(6), 1071; https://doi.org/10.3390/nano13061071 - 16 Mar 2023
Viewed by 1576
Abstract
The electrochemical hydrogen evolution reaction (HER) is one of the most promising green methods for the efficient production of renewable and sustainable H2, for which platinum possesses the highest catalytic activity. Cost-effective alternatives can be obtained by reducing the Pt amount [...] Read more.
The electrochemical hydrogen evolution reaction (HER) is one of the most promising green methods for the efficient production of renewable and sustainable H2, for which platinum possesses the highest catalytic activity. Cost-effective alternatives can be obtained by reducing the Pt amount and still preserving its activity. The Pt nanoparticle decoration of suitable current collectors can be effectively realized by using transition metal oxide (TMO) nanostructures. Among them, WO3 nanorods are the most eligible option, thanks to their high stability in acidic environments, and large availability. Herein, a simple and affordable hydrothermal route is used for the synthesis of hexagonal WO3 nanorods (average length and diameter of 400 and 50 nm, respectively), whose crystal structure is modified after annealing at 400 °C for 60 min, to obtain a mixed hexagonal/monoclinic crystal structure. These nanostructures were investigated as support for the ultra-low-Pt nanoparticles (0.2–1.13 μg/cm2): decoration occurs by drop casting some drops of a Pt nanoparticle aqueous solution and the electrodes were tested for the HER in acidic environment. Pt-decorated WO3 nanorods were characterized by performing scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), Rutherford backscattering spectrometry (RBS), linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS) and chronopotentiometry. HER catalytic activity is studied as a function of the total Pt nanoparticle loading, thus obtaining an outstanding overpotential of 32 mV at 10 mA/cm2, a Tafel slope of 31 mV/dec, a turn-over frequency of 5 Hz at −15 mV, and a mass activity of 9 A/mg at 10 mA/cm2 for the sample decorated with the highest Pt amount (1.13 μg/cm2). These data show that WO3 nanorods act as excellent supports for the development of an ultra-low-Pt-amount-based cathode for efficient and low-cost electrochemical HER. Full article
(This article belongs to the Topic Hydrogen Production Processes)
Show Figures

Graphical abstract

12 pages, 7368 KiB  
Article
Additive Manufacturing and Combustion Characteristics of Polyethylene Oxide/Aluminum/Copper Oxide-Based Energetic Nanocomposites for Enhancing the Propulsion of Small Projectiles
by Ho Sung Kim and Soo Hyung Kim
Nanomaterials 2023, 13(6), 1052; https://doi.org/10.3390/nano13061052 - 15 Mar 2023
Cited by 1 | Viewed by 1637
Abstract
The application of nanoscale energetic materials (nEMs) composed of metal and oxidizer nanoparticles (NPs) in thermal engineering systems is limited by their relatively high sensitivity and complex three-dimensional (3D) formability. Polymers can be added to nEMs to lower the sensitivity and improve the [...] Read more.
The application of nanoscale energetic materials (nEMs) composed of metal and oxidizer nanoparticles (NPs) in thermal engineering systems is limited by their relatively high sensitivity and complex three-dimensional (3D) formability. Polymers can be added to nEMs to lower the sensitivity and improve the formability of 3D structures. In this study, the effect of the addition of polyethylene oxide (PEO; polymer) on the combustion characteristics of aluminum (Al; fuel)/copper oxide (CuO; oxidizer)-based nEMs is investigated. With an increase in the PEO content, the resulting PEO/nEM composites are desensitized to relatively high electrical spark discharges. However, the maximum explosion-induced pressure decreases significantly, and the combustion flame fails to propagate when the PEO content exceeds 15 wt.%. Therefore, the optimal PEO content in a nEM matrix must be accurately determined to achieve a compromise between sensitivity and reactivity. To demonstrate their potential application as composite solid propellants (CSPs), 3D-printed disks composed of PEO/nEM composites were assembled using additive manufacturing. They were cross-stacked with conventional potassium nitrate (KNO3)/sucrose (C12H22O11)-based disk-shaped CSPs in a combustion chamber of small rocket motors. Propulsion tests indicated that the specific impulse of KNSU/PEO/nEM (nEMs: 3.4 wt.%)-based CSPs was at a maximum value, which is approximately three times higher than that of KNSU CSPs without nEMs. This suggests that the addition of an optimized amount of polymer to nEMs is beneficial for various CSPs with compromised sensitivity and reactivity and excellent 3D formability, which can significantly enhance the propulsion of small projectiles. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

31 pages, 6220 KiB  
Article
Single-Walled vs. Multi-Walled Carbon Nanotubes: Influence of Physico-Chemical Properties on Toxicogenomics Responses in Mouse Lungs
by Silvia Aidee Solorio-Rodriguez, Andrew Williams, Sarah Søs Poulsen, Kristina Bram Knudsen, Keld Alstrup Jensen, Per Axel Clausen, Pernille Høgh Danielsen, Håkan Wallin, Ulla Vogel and Sabina Halappanavar
Nanomaterials 2023, 13(6), 1059; https://doi.org/10.3390/nano13061059 - 15 Mar 2023
Cited by 11 | Viewed by 2617
Abstract
Single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) are nanomaterials with one or multiple layers of carbon sheets. While it is suggested that various properties influence their toxicity, the specific mechanisms are not completely known. This study was aimed to determine if [...] Read more.
Single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) are nanomaterials with one or multiple layers of carbon sheets. While it is suggested that various properties influence their toxicity, the specific mechanisms are not completely known. This study was aimed to determine if single or multi-walled structures and surface functionalization influence pulmonary toxicity and to identify the underlying mechanisms of toxicity. Female C57BL/6J BomTac mice were exposed to a single dose of 6, 18, or 54 μg/mouse of twelve SWCNTs or MWCNTs of different properties. Neutrophil influx and DNA damage were assessed on days 1 and 28 post-exposure. Genome microarrays and various bioinformatics and statistical methods were used to identify the biological processes, pathways and functions altered post-exposure to CNTs. All CNTs were ranked for their potency to induce transcriptional perturbation using benchmark dose modelling. All CNTs induced tissue inflammation. MWCNTs were more genotoxic than SWCNTs. Transcriptomics analysis showed similar responses across CNTs at the pathway level at the high dose, which included the perturbation of inflammatory, cellular stress, metabolism, and DNA damage responses. Of all CNTs, one pristine SWCNT was found to be the most potent and potentially fibrogenic, so it should be prioritized for further toxicity testing. Full article
Show Figures

Figure 1

20 pages, 6319 KiB  
Article
Exploring the Role of Miniemulsion Nanodroplet Confinement on the Crystallization of MoO3: Morphology Control and Insight on Crystal Formation by In Situ Time-Resolved SAXS/WAXS
by Francesca Tajoli, Maria Vittoria Massagrande, Rafael Muñoz-Espí and Silvia Gross
Nanomaterials 2023, 13(6), 1046; https://doi.org/10.3390/nano13061046 - 14 Mar 2023
Cited by 1 | Viewed by 1292
Abstract
Enclosed nanoscale volumes, i.e., confined spaces, represent a fascinating playground for the controlled synthesis of inorganic materials, albeit their role in determining the synthetic outcome is currently not fully understood. Herein, we address the synthesis of MoO3 nano- and microrods with hexagonal [...] Read more.
Enclosed nanoscale volumes, i.e., confined spaces, represent a fascinating playground for the controlled synthesis of inorganic materials, albeit their role in determining the synthetic outcome is currently not fully understood. Herein, we address the synthesis of MoO3 nano- and microrods with hexagonal section in inverse miniemulsion droplets and batch conditions, evaluating the effects of spatial confinement offered by miniemulsion droplets on their crystallization. Several synthetic parameters were systematically screened and their effect on the crystal structure of h-MoO3, as well as on its size, size distribution and morphology, were investigated. Moreover, a direct insight on the crystallization pathway of MoO3 in both synthetic conditions and as a function of synthetic parameters was provided by an in situ time-resolved SAXS/WAXS study, that confirmed the role of miniemulsion confined space in altering the stepwise process of the formation of h-MoO3. Full article
Show Figures

Figure 1

15 pages, 2293 KiB  
Review
Recent Advances in Metal-Based NanoEnhancers for Particle Therapy
by Yao-Chen Chuang, Ping-Hsiu Wu, Yao-An Shen, Chia-Chun Kuo, Wei-Jun Wang, Yu-Chen Chen, Hsin-Lun Lee and Jeng-Fong Chiou
Nanomaterials 2023, 13(6), 1011; https://doi.org/10.3390/nano13061011 - 10 Mar 2023
Cited by 4 | Viewed by 2095
Abstract
Radiotherapy is one of the most common therapeutic regimens for cancer treatment. Over the past decade, proton therapy (PT) has emerged as an advanced type of radiotherapy (RT) that uses proton beams instead of conventional photon RT. Both PT and carbon-ion beam therapy [...] Read more.
Radiotherapy is one of the most common therapeutic regimens for cancer treatment. Over the past decade, proton therapy (PT) has emerged as an advanced type of radiotherapy (RT) that uses proton beams instead of conventional photon RT. Both PT and carbon-ion beam therapy (CIBT) exhibit excellent therapeutic results because of the physical characteristics of the resulting Bragg peaks, which has been exploited for cancer treatment in medical centers worldwide. Although particle therapies show significant advantages to photon RT by minimizing the radiation damage to normal tissue after the tumors, they still cause damage to normal tissue before the tumor. Since the physical mechanisms are different from particle therapy and photon RT, efforts have been made to ameliorate these effects by combining nanomaterials and particle therapies to improve tumor targeting by concentrating the radiation effects. Metallic nanoparticles (MNPs) exhibit many unique properties, such as strong X-ray absorption cross-sections and catalytic activity, and they are considered nano-radioenhancers (NREs) for RT. In this review, we systematically summarize the putative mechanisms involved in NRE-induced radioenhancement in particle therapy and the experimental results in in vitro and in vivo models. We also discuss the potential of translating preclinical metal-based NP-enhanced particle therapy studies into clinical practice using examples of several metal-based NREs, such as SPION, Abraxane, AGuIX, and NBTXR3. Furthermore, the future challenges and development of NREs for PT are presented for clinical translation. Finally, we propose a roadmap to pursue future studies to strengthen the interplay of particle therapy and nanomedicine. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Biophotonics: Prognosis and Therapeutics)
Show Figures

Figure 1

31 pages, 3572 KiB  
Review
Investigation of Soft Matter Nanomechanics by Atomic Force Microscopy and Optical Tweezers: A Comprehensive Review
by Alessandro Magazzù and Carlos Marcuello
Nanomaterials 2023, 13(6), 963; https://doi.org/10.3390/nano13060963 - 7 Mar 2023
Cited by 47 | Viewed by 4361
Abstract
Soft matter exhibits a multitude of intrinsic physico-chemical attributes. Their mechanical properties are crucial characteristics to define their performance. In this context, the rigidity of these systems under exerted load forces is covered by the field of biomechanics. Moreover, cellular transduction processes which [...] Read more.
Soft matter exhibits a multitude of intrinsic physico-chemical attributes. Their mechanical properties are crucial characteristics to define their performance. In this context, the rigidity of these systems under exerted load forces is covered by the field of biomechanics. Moreover, cellular transduction processes which are involved in health and disease conditions are significantly affected by exogenous biomechanical actions. In this framework, atomic force microscopy (AFM) and optical tweezers (OT) can play an important role to determine the biomechanical parameters of the investigated systems at the single-molecule level. This review aims to fully comprehend the interplay between mechanical forces and soft matter systems. In particular, we outline the capabilities of AFM and OT compared to other classical bulk techniques to determine nanomechanical parameters such as Young’s modulus. We also provide some recent examples of nanomechanical measurements performed using AFM and OT in hydrogels, biopolymers and cellular systems, among others. We expect the present manuscript will aid potential readers and stakeholders to fully understand the potential applications of AFM and OT to soft matter systems. Full article
Show Figures

Graphical abstract

11 pages, 2517 KiB  
Article
Clot Imaging Using Photostable Nanodiamond
by Samuel J. Francis, Marco D. Torelli, Nicholas A. Nunn, Gowthami M. Arepally and Olga A. Shenderova
Nanomaterials 2023, 13(6), 961; https://doi.org/10.3390/nano13060961 - 7 Mar 2023
Viewed by 1721
Abstract
While thrombosis is the leading cause of morbidity and mortality in the United States, an understanding of its triggers, progression, and response to anticoagulant therapy is lacking. Intravital fluorescence microscopy has advanced the study of thrombus formation by providing targeted, multi-color contrast. However, [...] Read more.
While thrombosis is the leading cause of morbidity and mortality in the United States, an understanding of its triggers, progression, and response to anticoagulant therapy is lacking. Intravital fluorescence microscopy has advanced the study of thrombus formation by providing targeted, multi-color contrast. However, photodegradation of fluorophores limits the application in longitudinal studies (e.g., clot progression and/or dissolution). Fluorescent nanodiamond (FND) is a fluorophore which utilizes intrinsic fluorescence of chromogenic centers within and protected by the diamond crystalline lattice. Recent developments in diamond processing have allowed for the controlled production of nanodiamonds emitting in green or red. Here, the use of FND to label blood clots and/or clot lysis is demonstrated and compared to commonly used organic fluorophores. Model ex vivo clots were formed with incorporated labeled fibrinogen to allow imaging. FND was shown to match the morphology of organic fluorophore labels absent of photobleaching over time. The addition of tissue plasminogen activator (tPa) allowed visualization of the clot lysis stage, which is vital to studies of both DVT and pulmonary embolism resolution. Full article
(This article belongs to the Special Issue Nanodiamond Applications: From Biomedicine to Quantum Optics)
Show Figures

Figure 1

13 pages, 2661 KiB  
Article
Novel Rare Earth (RE)-Free Nanocomposite Magnets Derived from L10-Phase Systems
by Alina Daniela Crisan and Ovidiu Crisan
Nanomaterials 2023, 13(5), 912; https://doi.org/10.3390/nano13050912 - 1 Mar 2023
Viewed by 1435
Abstract
In the quest for novel rare earth (RE)-free magnetic materials, which also exhibit other additional properties such as good corrosion resistance and potential to operate at higher temperatures, an alloy deriving from the binary FePt system, with Mo and B addition, has been [...] Read more.
In the quest for novel rare earth (RE)-free magnetic materials, which also exhibit other additional properties such as good corrosion resistance and potential to operate at higher temperatures, an alloy deriving from the binary FePt system, with Mo and B addition, has been synthesized for the first time, using the out-of-equilibrium method of rapid solidification form the melt. The alloy with the composition Fe49Pt26Mo2B23 has been subjected to thermal analysis through differential scanning calorimetry in order to detect the structural disorder – order phase transformation as well as to study the crystallization processes. For the stabilization of the formed hard magnetic phase, the sample has been annealed at 600 °C and further structurally and magnetically characterized by means of X-ray diffraction, transmission electron microscopy, 57Fe Mössbauer spectrometry as well as magnetometry experiments. It has been proven that after annealing at 600 °C the tetragonal hard magnetic L10 phase emerges via crystallization from a disordered cubic precursor and becomes the predominant phase in terms of relative abundance. Moreover, it has been revealed by quantitative analysis via Mössbauer spectroscopy that the annealed sample exhibits a complex phase structure, where the L10 hard magnetic phase is accompanied by few other soft magnetic phases, in minority abundance: the cubic A1, orthorhombic Fe2B and residual intergranular region. The magnetic parameters have been derived from 300 K hysteresis loops. It was shown that, contrary to the as-cast sample which behaves as a typical soft magnet, the annealed sample presents strong coercivity and high remanent magnetization, accompanied by a large saturation magnetization. These findings offers good insight into the potential developing of novel class of RE-free permanent magnets, based on Fe-Pt-Mo-B, where the magnetic performance emerges from the co-existence of hard and soft magnetic phases in controlled and tunable proportions, capable of finding good applicability in fields requiring good catalytic properties and strong corrosion resistance. Full article
(This article belongs to the Special Issue Novel RE-free Nanocomposite Magnets)
Show Figures

Figure 1

12 pages, 5406 KiB  
Article
Templated Synthesis of Diamond Nanopillar Arrays Using Porous Anodic Aluminium Oxide (AAO) Membranes
by Chenghao Zhang, Zhichao Liu, Chun Li, Jian Cao and Josephus G. Buijnsters
Nanomaterials 2023, 13(5), 888; https://doi.org/10.3390/nano13050888 - 27 Feb 2023
Cited by 2 | Viewed by 2286
Abstract
Diamond nanostructures are mostly produced from bulk diamond (single- or polycrystalline) by using time-consuming and/or costly subtractive manufacturing methods. In this study, we report the bottom-up synthesis of ordered diamond nanopillar arrays by using porous anodic aluminium oxide (AAO). Commercial ultrathin AAO membranes [...] Read more.
Diamond nanostructures are mostly produced from bulk diamond (single- or polycrystalline) by using time-consuming and/or costly subtractive manufacturing methods. In this study, we report the bottom-up synthesis of ordered diamond nanopillar arrays by using porous anodic aluminium oxide (AAO). Commercial ultrathin AAO membranes were adopted as the growth template in a straightforward, three-step fabrication process involving chemical vapor deposition (CVD) and the transfer and removal of the alumina foils. Two types of AAO membranes with distinct nominal pore size were employed and transferred onto the nucleation side of CVD diamond sheets. Subsequently, diamond nanopillars were grown directly on these sheets. After removal of the AAO template by chemical etching, ordered arrays of submicron and nanoscale diamond pillars with ~325 nm and ~85 nm diameters were successfully released. Full article
Show Figures

Figure 1

21 pages, 1596 KiB  
Review
In Vitro Models of Bacterial Biofilms: Innovative Tools to Improve Understanding and Treatment of Infections
by G. Crivello, L. Fracchia, G. Ciardelli, M. Boffito and C. Mattu
Nanomaterials 2023, 13(5), 904; https://doi.org/10.3390/nano13050904 - 27 Feb 2023
Cited by 8 | Viewed by 2959
Abstract
Bacterial infections are a growing concern to the health care systems. Bacteria in the human body are often found embedded in a dense 3D structure, the biofilm, which makes their eradication even more challenging. Indeed, bacteria in biofilm are protected from external hazards [...] Read more.
Bacterial infections are a growing concern to the health care systems. Bacteria in the human body are often found embedded in a dense 3D structure, the biofilm, which makes their eradication even more challenging. Indeed, bacteria in biofilm are protected from external hazards and are more prone to develop antibiotic resistance. Moreover, biofilms are highly heterogeneous, with properties dependent on the bacteria species, the anatomic localization, and the nutrient/flow conditions. Therefore, antibiotic screening and testing would strongly benefit from reliable in vitro models of bacterial biofilms. This review article summarizes the main features of biofilms, with particular focus on parameters affecting biofilm composition and mechanical properties. Moreover, a thorough overview of the in vitro biofilm models recently developed is presented, focusing on both traditional and advanced approaches. Static, dynamic, and microcosm models are described, and their main features, advantages, and disadvantages are compared and discussed. Full article
Show Figures

Figure 1

40 pages, 5561 KiB  
Review
Adaptive 2D and Pseudo-2D Systems: Molecular, Polymeric, and Colloidal Building Blocks for Tailored Complexity
by Rafał Zbonikowski, Pumza Mente, Bartłomiej Bończak and Jan Paczesny
Nanomaterials 2023, 13(5), 855; https://doi.org/10.3390/nano13050855 - 25 Feb 2023
Cited by 5 | Viewed by 3577
Abstract
Two-dimensional and pseudo-2D systems come in various forms. Membranes separating protocells from the environment were necessary for life to occur. Later, compartmentalization allowed for the development of more complex cellular structures. Nowadays, 2D materials (e.g., graphene, molybdenum disulfide) are revolutionizing the smart materials [...] Read more.
Two-dimensional and pseudo-2D systems come in various forms. Membranes separating protocells from the environment were necessary for life to occur. Later, compartmentalization allowed for the development of more complex cellular structures. Nowadays, 2D materials (e.g., graphene, molybdenum disulfide) are revolutionizing the smart materials industry. Surface engineering allows for novel functionalities, as only a limited number of bulk materials have the desired surface properties. This is realized via physical treatment (e.g., plasma treatment, rubbing), chemical modifications, thin film deposition (using both chemical and physical methods), doping and formulation of composites, or coating. However, artificial systems are usually static. Nature creates dynamic and responsive structures, which facilitates the formation of complex systems. The challenge of nanotechnology, physical chemistry, and materials science is to develop artificial adaptive systems. Dynamic 2D and pseudo-2D designs are needed for future developments of life-like materials and networked chemical systems in which the sequences of the stimuli would control the consecutive stages of the given process. This is crucial to achieving versatility, improved performance, energy efficiency, and sustainability. Here, we review the advancements in studies on adaptive, responsive, dynamic, and out-of-equilibrium 2D and pseudo-2D systems composed of molecules, polymers, and nano/microparticles. Full article
(This article belongs to the Special Issue Recent Advances in Surfaces and Interfaces of Nanofilms)
Show Figures

Figure 1

27 pages, 9680 KiB  
Article
Block Copolymer Adsorption on the Surface of Multi-Walled Carbon Nanotubes for Dispersion in N,N Dimethyl Formamide
by Irena Levin, Aurel Radulescu, Lucy Liberman and Yachin Cohen
Nanomaterials 2023, 13(5), 838; https://doi.org/10.3390/nano13050838 - 23 Feb 2023
Viewed by 1674
Abstract
This research aims to characterize the adsorption morphology of block copolymer dispersants of the styrene-block-4-vinylpyridine family (S4VP) on the surface of multi-walled carbon nanotubes (MWCNT) in a polar organic solvent, N,N-dimethyl formamide (DMF). Good, unagglomerated dispersion is important in several [...] Read more.
This research aims to characterize the adsorption morphology of block copolymer dispersants of the styrene-block-4-vinylpyridine family (S4VP) on the surface of multi-walled carbon nanotubes (MWCNT) in a polar organic solvent, N,N-dimethyl formamide (DMF). Good, unagglomerated dispersion is important in several applications such as fabricating CNT nanocomposites in a polymer film for electronic or optical devices. Small-angle neutron scattering (SANS) measurements, using the contrast variation (CV) method, are used to evaluate the density and extension of the polymer chains adsorbed on the nanotube surface, which can yield insight into the means of successful dispersion. The results show that the block copolymers adsorb onto the MWCNT surface as a continuous coverage of low polymer concentration. Poly(styrene) (PS) blocks adsorb more tightly, forming a 20 Å layer containing about 6 wt.% PS, whereas poly(4-vinylpyridine) (P4VP) blocks emanate into the solvent, forming a thicker shell (totaling 110 Å in radius) but of very dilute (<1 wt.%) polymer concentration. This indicates strong chain extension. Increasing the PS molecular weight increases the thickness of the adsorbed layer but decreases the overall polymer concentration within it. These results are relevant for the ability of dispersed CNTs to form a strong interface with matrix polymers in composites, due to the extension of the 4VP chains allowing for entanglement with matrix chains. The sparse polymer coverage of the CNT surface may provide sufficient space to form CNT-CNT contacts in processed films and composites, which are important for electrical or thermal conductivity. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

16 pages, 26430 KiB  
Article
Proton Therapy, Magnetic Nanoparticles and Hyperthermia as Combined Treatment for Pancreatic BxPC3 Tumor Cells
by Francesca Brero, Paola Calzolari, Martin Albino, Antonio Antoccia, Paolo Arosio, Francesco Berardinelli, Daniela Bettega, Mario Ciocca, Angelica Facoetti, Salvatore Gallo, Flavia Groppi, Claudia Innocenti, Anna Laurenzana, Cristina Lenardi, Silvia Locarno, Simone Manenti, Renato Marchesini, Manuel Mariani, Francesco Orsini, Emanuele Pignoli, Claudio Sangregorio, Francesca Scavone, Ivan Veronese and Alessandro Lascialfariadd Show full author list remove Hide full author list
Nanomaterials 2023, 13(5), 791; https://doi.org/10.3390/nano13050791 - 21 Feb 2023
Cited by 5 | Viewed by 1903
Abstract
We present an investigation of the effects on BxPC3 pancreatic cancer cells of proton therapy combined with hyperthermia, assisted by magnetic fluid hyperthermia performed with the use of magnetic nanoparticles. The cells’ response to the combined treatment has been evaluated by means of [...] Read more.
We present an investigation of the effects on BxPC3 pancreatic cancer cells of proton therapy combined with hyperthermia, assisted by magnetic fluid hyperthermia performed with the use of magnetic nanoparticles. The cells’ response to the combined treatment has been evaluated by means of the clonogenic survival assay and the estimation of DNA Double Strand Breaks (DSBs). The Reactive Oxygen Species (ROS) production, the tumor cell invasion and the cell cycle variations have also been studied. The experimental results have shown that the combination of proton therapy, MNPs administration and hyperthermia gives a clonogenic survival that is much smaller than the single irradiation treatment at all doses, thus suggesting a new effective combined therapy for the pancreatic tumor. Importantly, the effect of the therapies used here is synergistic. Moreover, after proton irradiation, the hyperthermia treatment was able to increase the number of DSBs, even though just at 6 h after the treatment. Noticeably, the magnetic nanoparticles’ presence induces radiosensitization effects, and hyperthermia increases the production of ROS, which contributes to cytotoxic cellular effects and to a wide variety of lesions including DNA damage. The present study indicates a new way for clinical translation of combined therapies, also in the vision of an increasing number of hospitals that will use the proton therapy technique in the near future for different kinds of radio-resistant cancers. Full article
(This article belongs to the Special Issue Functionalized Magnetic Nanomaterials)
Show Figures

Figure 1

10 pages, 37481 KiB  
Article
In Situ Observations Reveal the Five-fold Twin-Involved Growth of Gold Nanorods by Particle Attachment
by Qi Sun, Loukya Boddapati, Linan Wang, Junjie Li and Francis Leonard Deepak
Nanomaterials 2023, 13(5), 796; https://doi.org/10.3390/nano13050796 - 21 Feb 2023
Cited by 2 | Viewed by 1903
Abstract
Crystallization plays a critical role in determining crystal size, purity and morphology. Therefore, uncovering the growth dynamics of nanoparticles (NPs) atomically is important for the controllable fabrication of nanocrystals with desired geometry and properties. Herein, we conducted in situ atomic-scale observations on the [...] Read more.
Crystallization plays a critical role in determining crystal size, purity and morphology. Therefore, uncovering the growth dynamics of nanoparticles (NPs) atomically is important for the controllable fabrication of nanocrystals with desired geometry and properties. Herein, we conducted in situ atomic-scale observations on the growth of Au nanorods (NRs) by particle attachment within an aberration-corrected transmission electron microscope (AC-TEM). The results show that the attachment of spherical colloidal Au NPs with a size of about 10 nm involves the formation and growth of neck-like (NL) structures, followed by five-fold twin intermediate states and total atomic rearrangement. The statistical analyses show that the length and diameter of Au NRs can be well regulated by the number of tip-to-tip Au NPs and the size of colloidal Au NPs, respectively. The results highlight five-fold twin-involved particle attachment in spherical Au NPs with a size of 3–14 nm, and provide insights into the fabrication of Au NRs using irradiation chemistry. Full article
Show Figures

Figure 1

17 pages, 34147 KiB  
Article
Bioactive Composite Methacrylated Gellan Gum for 3D-Printed Bone Tissue-Engineered Scaffolds
by Ugo D’Amora, Alfredo Ronca, Stefania Scialla, Alessandra Soriente, Paola Manini, Jun Wei Phua, Christoph Ottenheim, Alessandro Pezzella, Giovanna Calabrese, Maria Grazia Raucci and Luigi Ambrosio
Nanomaterials 2023, 13(4), 772; https://doi.org/10.3390/nano13040772 - 19 Feb 2023
Cited by 8 | Viewed by 2042
Abstract
Gellan gum (GG) was chemically modified with methacrylic moieties to produce a photocrosslinkable biomaterial ink, hereinafter called methacrylated GG (GGMA), with improved physico-chemical properties, mechanical behavior and stability under physiological conditions. Afterwards, GGMA was functionalized by incorporating two different bioactive compounds, a naturally [...] Read more.
Gellan gum (GG) was chemically modified with methacrylic moieties to produce a photocrosslinkable biomaterial ink, hereinafter called methacrylated GG (GGMA), with improved physico-chemical properties, mechanical behavior and stability under physiological conditions. Afterwards, GGMA was functionalized by incorporating two different bioactive compounds, a naturally derived eumelanin extracted from the black soldier fly (BSF-Eumel), or hydroxyapatite nanoparticles (HAp), synthesized by the sol–gel method. Different ink formulations based on GGMA (2 and 4% (w/v)), BSF-Eumel, at a selected concentration (0.3125 mg/mL), or HAp (10 and 30% wHAp/wGGMA) were developed and processed by three-dimensional (3D) printing. All the functionalized GGMA-based ink formulations allowed obtaining 3D-printed GGMA-based scaffolds with a well-organized structure. For both bioactive signals, the scaffolds with the highest GGMA concentration (4% (w/v)) and the highest percentage of infill (45%) showed the best performances in terms of morphological and mechanical properties. Indeed, these scaffolds showed a good structural integrity over 28 days. Given the presence of negatively charged groups along the eumelanin backbone, scaffolds consisting of GGMA/BSF-Eumel demonstrated a higher stability. From a mechanical point of view, GGMA/BSF-Eumel scaffolds exhibited values of storage modulus similar to those of GGMA ones, while the inclusion of HAp at 30% (wHAp/wGGMA) led to a storage modulus of 32.5 kPa, 3.5-fold greater than neat GGMA. In vitro studies proved the capability of the bioactivated 3D-printed scaffolds to support 7F2 osteoblast cell growth and differentiation. BSF-Eumel and HAp triggered a different time-dependent physiological response in the osteoblasts. Specifically, while the ink with BSF-Eumel acted as a stimulus towards cell proliferation, reaching the highest value at 14 days, a higher expression of alkaline phosphatase activity was detected for scaffolds consisting of GGMA and HAp. The overall findings demonstrated the possible use of these biomaterial inks for 3D-printed bone tissue-engineered scaffolds. Full article
Show Figures

Graphical abstract

16 pages, 3242 KiB  
Article
Enhanced Magnetism and Anomalous Hall Transport through Two-Dimensional Tungsten Disulfide Interfaces
by Chang-Ming Hung, Diem Thi-Xuan Dang, Amit Chanda, Derick Detellem, Noha Alzahrani, Nalaka Kapuruge, Yen T. H. Pham, Mingzu Liu, Da Zhou, Humberto R. Gutierrez, Darío A. Arena, Mauricio Terrones, Sarath Witanachchi, Lilia M. Woods, Hariharan Srikanth and Manh-Huong Phan
Nanomaterials 2023, 13(4), 771; https://doi.org/10.3390/nano13040771 - 18 Feb 2023
Cited by 3 | Viewed by 2213
Abstract
The magnetic proximity effect (MPE) has recently been explored to manipulate interfacial properties of two-dimensional (2D) transition metal dichalcogenide (TMD)/ferromagnet heterostructures for use in spintronics and valleytronics. However, a full understanding of the MPE and its temperature and magnetic field evolution in these [...] Read more.
The magnetic proximity effect (MPE) has recently been explored to manipulate interfacial properties of two-dimensional (2D) transition metal dichalcogenide (TMD)/ferromagnet heterostructures for use in spintronics and valleytronics. However, a full understanding of the MPE and its temperature and magnetic field evolution in these systems is lacking. In this study, the MPE has been probed in Pt/WS2/BPIO (biphase iron oxide, Fe3O4 and α-Fe2O3) heterostructures through a comprehensive investigation of their magnetic and transport properties using magnetometry, four-probe resistivity, and anomalous Hall effect (AHE) measurements. Density functional theory (DFT) calculations are performed to complement the experimental findings. We found that the presence of monolayer WS2 flakes reduces the magnetization of BPIO and hence the total magnetization of Pt/WS2/BPIO at T > ~120 K—the Verwey transition temperature of Fe3O4 (TV). However, an enhanced magnetization is achieved at T < TV. In the latter case, a comparative analysis of the transport properties of Pt/WS2/BPIO and Pt/BPIO from AHE measurements reveals ferromagnetic coupling at the WS2/BPIO interface. Our study forms the foundation for understanding MPE-mediated interfacial properties and paves a new pathway for designing 2D TMD/magnet heterostructures for applications in spintronics, opto-spincaloritronics, and valleytronics. Full article
(This article belongs to the Special Issue Nano-Structured Thin Films: Growth, Characteristics, and Application)
Show Figures

Figure 1

16 pages, 3976 KiB  
Article
Environmentally Friendly Improvement of Plasmonic Nanostructure Functionality towards Magnetic Resonance Applications
by Miroslava Flimelová, Yury V. Ryabchikov, Jan Behrends and Nadezhda M. Bulgakova
Nanomaterials 2023, 13(4), 764; https://doi.org/10.3390/nano13040764 - 17 Feb 2023
Cited by 6 | Viewed by 1895
Abstract
Plasmonic nanostructures have attracted a broad research interest due to their application perspectives in various fields such as biosensing, catalysis, photovoltaics, and biomedicine. Their synthesis by pulsed laser ablation in pure water enables eliminating various side effects originating from chemical contamination. Another advantage [...] Read more.
Plasmonic nanostructures have attracted a broad research interest due to their application perspectives in various fields such as biosensing, catalysis, photovoltaics, and biomedicine. Their synthesis by pulsed laser ablation in pure water enables eliminating various side effects originating from chemical contamination. Another advantage of pulsed laser ablation in liquids (PLAL) is the possibility to controllably produce plasmonic nanoparticles (NPs) in combination with other plasmonic or magnetic materials, thus enhancing their functionality. However, the PLAL technique is still challenging in respect of merging metallic and semiconductor specific features in nanosized objects that could significantly broaden application areas of plasmonic nanostructures. In this work, we performed synthesis of hybrid AuSi NPs with novel modalities by ultrashort laser ablation of bulk gold in water containing silicon NPs. The Au/Si atomic ratio in the nanohybrids was finely varied from 0.5 to 3.5 when changing the initial Si NPs concentration in water from 70 µg/mL to 10 µg/mL, respectively, without requiring any complex chemical procedures. It has been found that the laser-fluence-insensitive silicon content depends on the mass of nanohybrids. A high concentration of paramagnetic defects (2.2·× 1018 spin/g) in polycrystalline plasmonic NPs has been achieved. Our findings can open further prospects for plasmonic nanostructures as contrast agents in optical and magnetic resonance imaging techniques, biosensing, and cancer theranostics. Full article
Show Figures

Figure 1

14 pages, 3730 KiB  
Article
Selected Area Deposition of High Purity Gold for Functional 3D Architectures
by John Lasseter, Philip D. Rack and Steven J. Randolph
Nanomaterials 2023, 13(4), 757; https://doi.org/10.3390/nano13040757 - 17 Feb 2023
Cited by 1 | Viewed by 1958
Abstract
Selected area deposition of high purity gold films onto nanoscale 3D architectures is highly desirable as gold is conductive, inert, plasmonically active, and can be functionalized with thiol chemistries, which are useful in many biological applications. Here, we show that high-purity gold coatings [...] Read more.
Selected area deposition of high purity gold films onto nanoscale 3D architectures is highly desirable as gold is conductive, inert, plasmonically active, and can be functionalized with thiol chemistries, which are useful in many biological applications. Here, we show that high-purity gold coatings can be selectively grown with the Me2Au (acac) precursor onto nanoscale 3D architectures via a pulsed laser pyrolytic chemical vapor deposition process. The selected area of deposition is achieved due to the high thermal resistance of the nanoscale geometries. Focused electron beam induced deposits (FEBID) and carbon nanofibers are functionalized with gold coatings, and we demonstrate the effects that laser irradiance, pulse width, and precursor pressure have on the growth rate. Furthermore, we demonstrate selected area deposition with a feature-targeting resolutions of ~100 and 5 µm, using diode lasers coupled to a multimode (915 nm) and single mode (785 nm) fiber optic, respectively. The experimental results are rationalized via finite element thermal modeling. Full article
Show Figures

Figure 1

13 pages, 3653 KiB  
Article
Portable Nanocomposite System for Wound Healing in Space
by Chiara Zagni, Andrea Antonino Scamporrino, Paolo Maria Riccobene, Giuseppe Floresta, Vincenzo Patamia, Antonio Rescifina and Sabrina Carola Carroccio
Nanomaterials 2023, 13(4), 741; https://doi.org/10.3390/nano13040741 - 15 Feb 2023
Cited by 9 | Viewed by 1436
Abstract
It is well known that skin wound healing could be severely impaired in space. In particular, the skin is the tissue at risk of injury, especially during human-crewed space missions. Here, we propose a hybrid system based on the biocompatible poly 2-hydroxyethyl methacrylate [...] Read more.
It is well known that skin wound healing could be severely impaired in space. In particular, the skin is the tissue at risk of injury, especially during human-crewed space missions. Here, we propose a hybrid system based on the biocompatible poly 2-hydroxyethyl methacrylate (pHEMA) to actively support a nanocontainer filled with the drug. Specifically, during the cryo-polymerization of HEMA, halloysite nanotubes (HNTs) embedded with thymol (Thy) were added as a component. Thy is a natural pharmaceutical ingredient used to confer wound healing properties to the material, whereas HNTs were used to entrap the Thy into the lumen to ensure a sustained release of the drug. The as-obtained material was characterized by chemical–physical methods, and tests were performed to assess its ability for a prolonged drug release. The results showed that the adopted synthetic procedure allows the formation of a super absorbent system with good swelling ability that can contain up to 5.5 mg of Thy in about 90 mg of dried sponge. Releasing tests demonstrated the excellent material’s ability to perform a slow controlled delivery of 62% of charged Thy within a week. As humans venture deeper into space, with more extended missions, limited medical capabilities, and a higher risk of skin wounds, the proposed device would be a versatile miniaturized device for skin repair in space. Full article
(This article belongs to the Special Issue Nanomaterials for Potential Uses in Extraterrestrial Environments)
Show Figures

Graphical abstract

17 pages, 5291 KiB  
Article
Ordered Hierarchical Porous Structure of PtSn/3DOMM-Al2O3 Catalyst for Promoting Propane Non-Oxidative Dehydrogenation
by Yuanqing Sun, Bohan Feng, Qian Lian, Chengshu Xie, Jing Xiong, Weiyu Song, Jian Liu and Yuechang Wei
Nanomaterials 2023, 13(4), 728; https://doi.org/10.3390/nano13040728 - 14 Feb 2023
Cited by 1 | Viewed by 1695
Abstract
Herein, the hierarchical porous catalyst of 3-dimensional ordered macro-mesoporous (3DOMM) Al2O3 supported active PtSn nanoparticles (NPs) was prepared by the combined synthesized path of evaporation-induced self-assembly with colloid crystal template (EISA-CCT) methods. The hierarchical macro-mesoporous composite structure can markedly increase [...] Read more.
Herein, the hierarchical porous catalyst of 3-dimensional ordered macro-mesoporous (3DOMM) Al2O3 supported active PtSn nanoparticles (NPs) was prepared by the combined synthesized path of evaporation-induced self-assembly with colloid crystal template (EISA-CCT) methods. The hierarchical macro-mesoporous composite structure can markedly increase the specific surface area, accommodate the diffusion of propene, and decrease the number of surface acid sites. In addition, the special surface property and pore structure of 3DOMM-Al2O3 can modify the interaction between metals and substrates, as well as stabilize the metal nanoparticle, which promotes the formation of a highly active and stable PtSn phase. The PtSn/3DOMM-Al2O3 catalyst exhibits higher productivity and stability than PtSn/Al2O3 catalysts with macropore and mesopore structures. The PtSn/3DOMM-Al2O3 catalyst displays the best catalytic performance with propylene selectivity over 95% at a propane conversion of 33.9%. The study of the ordered hierarchical porous structure of PtSn/3DOMM-Al2O3 catalysts can contribute to obtaining improved catalysts in industrial processes. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

21 pages, 8233 KiB  
Article
Fabrication of PA-PEI-MOF303(Al) by Stepwise Impregnation Layer-by-Layer Growth for Highly Efficient Removal of Ammonia
by Liang Lan, Xuanlin Yang, Kai Kang, Hua Song, Yucong Xie, Shuyuan Zhou, Yun Liang and Shupei Bai
Nanomaterials 2023, 13(4), 727; https://doi.org/10.3390/nano13040727 - 14 Feb 2023
Cited by 1 | Viewed by 1878
Abstract
NH3 is a typical alkaline gaseous pollutant widely derived from industrial production and poses great risks to humans and other biota. Metal-organic frameworks (MOFs) have excellent adsorption capacities relative to materials traditionally used to adsorb NH3. However, in practice, applications [...] Read more.
NH3 is a typical alkaline gaseous pollutant widely derived from industrial production and poses great risks to humans and other biota. Metal-organic frameworks (MOFs) have excellent adsorption capacities relative to materials traditionally used to adsorb NH3. However, in practice, applications of MOFs as adsorbents are restricted because of its powder form. We prepared a polyamide (PA) macroporous polyester substrate using an emulsion template method and modified the surface with polyethylenimine (PEI) to improve the MOF growth efficiency on the substrate. The difficulty of loading the MOF because of the fast nucleation rate inside the PA macroporous polyester substrate was solved using a stepwise impregnation layer-by-layer (LBL) growth method, and a PA-PEI-MOF303(Al) hierarchical pore composite that very efficiently adsorbed NH3 was successfully prepared. The PA-PEI-MOF303(Al) adsorption capacity for NH3 was 16.07 mmol·g−1 at 298 K and 100 kPa, and the PA-PEI-MOF303(Al) could be regenerated repeatedly under vacuum at 423 K. The NH3 adsorption mechanism was investigated by in situ Fourier transform infrared spectroscopy and by performing two-dimensional correlation analysis. Unlike for the MOF303(Al) powder, the formation of multi-site hydrogen bonds between Al–O–Al/C–OH, N–H, –OH, C=O, and NH3 in PA-PEI-MOF303(Al) was found to be an important reason for efficient NH3 adsorption. This study will provide a reference for the preparation of other MOF-polymer composites. Full article
Show Figures

Graphical abstract

13 pages, 3277 KiB  
Article
Stress Relaxation and Grain Growth Behaviors of (111)-Preferred Nanotwinned Copper during Annealing
by Jyun-Yu Lai, Dinh-Phuc Tran, Shih-Chi Yang, I-Hsin Tseng, Kai-Cheng Shie, Jihperng Leu and Chih Chen
Nanomaterials 2023, 13(4), 709; https://doi.org/10.3390/nano13040709 - 13 Feb 2023
Cited by 3 | Viewed by 2405
Abstract
Highly (111)-oriented nanotwinned Cu (nt-Cu) films were fabricated on silicon wafers for thermal-stress characterization. We tailored the microstructural features (grain scale and orientation) of the films by tuning the electroplating parameters. The films were heat-treated and the relaxation behaviors of thermal stresses in [...] Read more.
Highly (111)-oriented nanotwinned Cu (nt-Cu) films were fabricated on silicon wafers for thermal-stress characterization. We tailored the microstructural features (grain scale and orientation) of the films by tuning the electroplating parameters. The films were heat-treated and the relaxation behaviors of thermal stresses in the films were explored using a bending beam system. Focused ion beam (FIB) and electron back-scattered diffraction (EBSD) were then employed to characterize the transformations of the microstructure, grain size, and orientation degree of the films. The results indicated that the degree of (111)-preferred orientation and grain size significantly decrease with increasing the current density. The nt-Cu films with a higher degree of (111)-preferred orientation and larger grains exhibit the slower rates of stress relaxation. The film with larger grains possesses a smaller grain boundary area; thus, the grain boundary diffusion for the thermal-stress release is suppressed. In addition, the induced tensile stress in the films with larger grains is smaller leading to the difference in microstructural changes under annealing. Full article
Show Figures

Figure 1

12 pages, 7693 KiB  
Article
Transverse Magnetic Surface Plasmons in Graphene Nanoribbon Qubits: The Influence of a VO2 Substrate
by Mousa Bahrami and Panagiotis Vasilopoulos
Nanomaterials 2023, 13(4), 718; https://doi.org/10.3390/nano13040718 - 13 Feb 2023
Viewed by 1779
Abstract
We study the influence of the phase-change material VO2 on transverse magnetic (TM) surface plasmon (SP) modes in metallic arm-chair graphene nanoribbon (AGNR) qubits in the Lindhard approximation. We assess the effects of temperature as a dynamic knob for the transition from [...] Read more.
We study the influence of the phase-change material VO2 on transverse magnetic (TM) surface plasmon (SP) modes in metallic arm-chair graphene nanoribbon (AGNR) qubits in the Lindhard approximation. We assess the effects of temperature as a dynamic knob for the transition from the insulating to the metallic phase on the TM SP modes in single-band (SB) and two-band (TB) transitions. We show that a VO2 substrate leads to TM SP modes in both SB and TB transitions. In addition, we observe that the SP modes have a lower frequency than those for a substrate of constant permittivity. In addition, we study the influence of the substrate-induced band gap Δ on SP modes in TB transitions for the insulating and metallic phases of VO2. Full article
Show Figures

Figure 1

21 pages, 4090 KiB  
Article
Three-Dimensional Evaluation of the Cytotoxicity and Antibacterial Properties of Alpha Lipoic Acid-Capped Silver Nanoparticle Constructs for Oral Applications
by Dina Abdelmoneim, Gemma Porter, Warwick Duncan, Khoon Lim, Richard Easingwood, Tim Woodfield and Dawn Coates
Nanomaterials 2023, 13(4), 705; https://doi.org/10.3390/nano13040705 - 12 Feb 2023
Cited by 5 | Viewed by 2281
Abstract
There is a need to develop bifunctional scaffolds that provide antibacterial protection while encouraging host cell attachment/proliferation. This study evaluates HyStem®-C, and photo-cross-linked GelMA hydrogels for encapsulation and stabilisation of silver nanoparticles (AgNPs). We studied the behaviour of AgNPs and matrix [...] Read more.
There is a need to develop bifunctional scaffolds that provide antibacterial protection while encouraging host cell attachment/proliferation. This study evaluates HyStem®-C, and photo-cross-linked GelMA hydrogels for encapsulation and stabilisation of silver nanoparticles (AgNPs). We studied the behaviour of AgNPs and matrix interactions within both hydrogel systems. The cell viability of encapsulated human gingival fibroblasts (HGFs) was determined by Prestoblue® assay and live/dead staining. The release of AgNPs was monitored by inductively coupled plasma–mass spectroscopy. The antibacterial properties of the GelMA-AgNP constructs were determined using disc diffusion. Even distribution of AgNPs in GelMA induced a significant decrease in cell viability (p < 0.0001), whereas AgNP aggregates did not induce cytotoxicity in HyStem®-C. AgNPs doses ≥ 0.5 µg/mL in GelMA were significantly toxic to the HGFs (p < 0.0001). The release of AgNPs from GelMA after 48 h was 20% w/w for 0.1 µg/mL and 51% for 100 µg/mL of AgNPs. At ≥5 µg/mL, a significant intra-construct bactericidal effect was observed. The disc diffusion assay shows that GelMA-incorporated AgNPs were found to be effective against both Escherichia coli and Staphylococcus aureus at 50 and 100 µg/mL, respectively. Visible photo-cross-linked GelMA stably incorporated AgNPs to provide an antimicrobial regenerative construct for oral applications. Full article
(This article belongs to the Special Issue New Insights in Nanomaterials for Dental Diseases Management)
Show Figures

Figure 1

14 pages, 6024 KiB  
Article
NiCo2S4/MoS2 Nanocomposites for Long-Life High-Performance Hybrid Supercapacitors
by Le Nhu Minh Tue, Sumanta Sahoo, Ganesh Dhakal, Van Hoa Nguyen, Jintae Lee, Yong Rok Lee and Jae-Jin Shim
Nanomaterials 2023, 13(4), 689; https://doi.org/10.3390/nano13040689 - 10 Feb 2023
Cited by 5 | Viewed by 2056
Abstract
Metal sulfides (MS) and mixed metal sulfides (MTMS) have been considered potential candidates over their metal oxide/mixed metal oxide counterparts in recent years. Herein, one MTMS, i.e., NiCo2S4, was combined with 2D MS MoS2 through a single-step solvothermal [...] Read more.
Metal sulfides (MS) and mixed metal sulfides (MTMS) have been considered potential candidates over their metal oxide/mixed metal oxide counterparts in recent years. Herein, one MTMS, i.e., NiCo2S4, was combined with 2D MS MoS2 through a single-step solvothermal process with different morphologies (sheet-like and rod-like) for supercapacitor applications. The resulting electrode exhibited excellent coulombic efficiency, high specific capacitance, superior energy density, and, most importantly, ultra-high cycling stability. In particular, the electrode delivered a capacitance of 2594 F g−1 at 0.8 A g−1 after 45,000 charge/discharge cycles with a remarkable stability of 192%. Moreover, the corresponding hybrid supercapacitor device displayed an impressive coulombic efficiency of 123% after 20,000 cycles and 118% after 45,000 cycles. In addition, the device also exhibited a decent energy density of 31.9 Wh kg−1 and good cycling stability of 102% over 15,000 cycles. Full article
Show Figures

Graphical abstract

30 pages, 10470 KiB  
Review
X-ray Activated Nanoplatforms for Deep Tissue Photodynamic Therapy
by Jeffrey S. Souris, Lara Leoni, Hannah J. Zhang, Ariel Pan, Eve Tanios, Hsiu-Ming Tsai, Irina V. Balyasnikova, Marc Bissonnette and Chin-Tu Chen
Nanomaterials 2023, 13(4), 673; https://doi.org/10.3390/nano13040673 - 9 Feb 2023
Cited by 6 | Viewed by 3474
Abstract
Photodynamic therapy (PDT), the use of light to excite photosensitive molecules whose electronic relaxation drives the production of highly cytotoxic reactive oxygen species (ROS), has proven an effective means of oncotherapy. However, its application has been severely constrained to superficial tissues and those [...] Read more.
Photodynamic therapy (PDT), the use of light to excite photosensitive molecules whose electronic relaxation drives the production of highly cytotoxic reactive oxygen species (ROS), has proven an effective means of oncotherapy. However, its application has been severely constrained to superficial tissues and those readily accessed either endoscopically or laparoscopically, due to the intrinsic scattering and absorption of photons by intervening tissues. Recent advances in the design of nanoparticle-based X-ray scintillators and photosensitizers have enabled hybridization of these moieties into single nanocomposite particles. These nanoplatforms, when irradiated with diagnostic doses and energies of X-rays, produce large quantities of ROS and permit, for the first time, non-invasive deep tissue PDT of tumors with few of the therapeutic limitations or side effects of conventional PDT. In this review we examine the underlying principles and evolution of PDT: from its initial and still dominant use of light-activated, small molecule photosensitizers that passively accumulate in tumors, to its latest development of X-ray-activated, scintillator–photosensitizer hybrid nanoplatforms that actively target cancer biomarkers. Challenges and potential remedies for the clinical translation of these hybrid nanoplatforms and X-ray PDT are also presented. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Biophotonics: Prognosis and Therapeutics)
Show Figures

Figure 1

15 pages, 3367 KiB  
Article
Light Conversion upon Photoexcitation of NaBiF4:Yb3+/Ho3+/Ce3+ Nanocrystalline Particles
by Enrico Trave, Michele Back, Davide Pollon, Emmanuele Ambrosi and Leonardo Puppulin
Nanomaterials 2023, 13(4), 672; https://doi.org/10.3390/nano13040672 - 9 Feb 2023
Cited by 1 | Viewed by 1594
Abstract
NaBiF4 nanocrystalline particles were synthesized by means of a facile precipitation synthesis route to explore upconversion emission properties when doped with lanthanide ions. In particular, the incorporation of the Yb3+-Ho3+-Ce3+ triad with controlled ion concentration facilitates near-IR [...] Read more.
NaBiF4 nanocrystalline particles were synthesized by means of a facile precipitation synthesis route to explore upconversion emission properties when doped with lanthanide ions. In particular, the incorporation of the Yb3+-Ho3+-Ce3+ triad with controlled ion concentration facilitates near-IR pumping conversion into visible light, with the possibility of color emission tuning depending on Ce3+ doping amount. We observed that introducing a Ce3+ content up to 20 at.% in NaBiF4:Yb3+/Ho3+, the chromaticity progressively turns from green for the Ce3+ undoped system to red. This is due to cross-relaxation mechanisms between Ho3+ and Ce3+ ions that influence the relative efficiency of the overall upconversion pathways, as discussed on the basis of a theoretical rate equation model. Furthermore, experimental results suggest that the photoexcitation of intra-4f Ho3+ transitions with light near the UV-visible edge can promote downconverted Yb3+ near-IR emission through quantum cutting triggered by Ho3+-Yb3+ energy transfer mechanisms. The present study evidences the potentiality of the developed NaBiF4 particles for applications that exploit lanthanide-based light frequency conversion and multicolor emission tuning. Full article
Show Figures

Figure 1

10 pages, 387 KiB  
Article
Lateral Controlled Doping and Defect Engineering of Graphene by Ultra-Low-Energy Ion Implantation
by Felix Junge, Manuel Auge, Zviadi Zarkua and Hans Hofsäss
Nanomaterials 2023, 13(4), 658; https://doi.org/10.3390/nano13040658 - 8 Feb 2023
Cited by 3 | Viewed by 1785
Abstract
In this paper, the effectiveness of ultra-low-energy ion implantation as a means of defect engineering in graphene was explored through the measurement of Scanning Kelvin Probe Microscopy (SKPM) and Raman spectroscopy, with boron (B) and helium (He) ions being implanted into monolayer graphene [...] Read more.
In this paper, the effectiveness of ultra-low-energy ion implantation as a means of defect engineering in graphene was explored through the measurement of Scanning Kelvin Probe Microscopy (SKPM) and Raman spectroscopy, with boron (B) and helium (He) ions being implanted into monolayer graphene samples. We used electrostatic masks to create a doped and non-doped region in one single implantation step. For verification we measured the surface potential profile along the sample and proved the feasibility of lateral controllable doping. In another experiment, a voltage gradient was applied across the graphene layer in order to implant helium at different energies and thus perform an ion-energy-dependent investigation of the implantation damage of the graphene. For this purpose Raman measurements were performed, which show the different damage due to the various ion energies. Finally, ion implantation simulations were conducted to evaluate damage formation. Full article
(This article belongs to the Special Issue Carbon Nanotubes and Nanosheets for Sustainable Solutions)
Show Figures

Figure 1

13 pages, 2861 KiB  
Article
Highly Dispersed Pt-Incorporated Mesoporous Fe2O3 for Low-Level Sensing of Formaldehyde Gas
by Seung Jin Jeon, Kyung Hee Oh, Youngbo Choi, Ji Chan Park and Hyung Ju Park
Nanomaterials 2023, 13(4), 659; https://doi.org/10.3390/nano13040659 - 8 Feb 2023
Cited by 1 | Viewed by 1858
Abstract
Highly dispersed Pt-incorporated mesoporous Fe2O3 (Pt/m-Fe2O3) of 4 μm size is prepared through a simple hydrothermal reaction and thermal decomposition procedures. Furthermore, the formaldehyde gas-sensing properties of Pt/m-Fe2O3 are investigated. Compared with our [...] Read more.
Highly dispersed Pt-incorporated mesoporous Fe2O3 (Pt/m-Fe2O3) of 4 μm size is prepared through a simple hydrothermal reaction and thermal decomposition procedures. Furthermore, the formaldehyde gas-sensing properties of Pt/m-Fe2O3 are investigated. Compared with our previous mesoporous Fe2O3-based gas sensors, a gas sensor based on 0.2% Pt/m-Fe2O3 shows improved gas response by over 90% in detecting low-level formaldehyde gas at 50 ppb concentration, an enhanced selectivity of formaldehyde gas, and a lower degradation of sensing performance in high-humidity environments. Additionally, the gas sensor exhibits similar properties as the previous sensor, such as operating temperature (275 °C) and long-term stability. The enhancement in formaldehyde gas-sensing performance is attributed to the attractive catalytic chemical sensitization of highly dispersed Pt nanoparticles in the mesoporous Fe2O3 microcube architecture. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

24 pages, 14607 KiB  
Article
Mechanical Reinforcement of ABS with Optimized Nano Titanium Nitride Content for Material Extrusion 3D Printing
by Nectarios Vidakis, Panagiotis Mangelis, Markos Petousis, Nikolaos Mountakis, Vassilis Papadakis, Amalia Moutsopoulou and Dimitris Tsikritzis
Nanomaterials 2023, 13(4), 669; https://doi.org/10.3390/nano13040669 - 8 Feb 2023
Cited by 16 | Viewed by 2024
Abstract
Acrylonitrile Butadiene Styrene (ABS) nanocomposites were developed using Material Extrusion (MEX) Additive Manufacturing (AM) and Fused Filament Fabrication (FFF) methods. A range of mechanical tests was conducted on the produced 3D-printed structures to investigate the effect of Titanium Nitride (TiN) nanoparticles on the [...] Read more.
Acrylonitrile Butadiene Styrene (ABS) nanocomposites were developed using Material Extrusion (MEX) Additive Manufacturing (AM) and Fused Filament Fabrication (FFF) methods. A range of mechanical tests was conducted on the produced 3D-printed structures to investigate the effect of Titanium Nitride (TiN) nanoparticles on the mechanical response of thermoplastic polymers. Detailed morphological characterization of the produced filaments and 3D-printed specimens was carried out using Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). High-magnification images revealed a direct impact of the TiN concentration on the surface characteristics of the nanocomposites, indicating a strong correlation with their mechanical performance. The chemical compositions of the raw and nanocomposite materials were thoroughly investigated by conducting Raman and Energy Dispersive Spectroscopy (EDS) measurements. Most of the mechanical properties were improved with the inclusion of TiN nanoparticles with a content of 6 wt. % to reach the optimum mechanical response overall. ABS/TiN 6 wt. % exhibits remarkable increases in flexural modulus of elasticity (42.3%) and toughness (54.0%) in comparison with pure ABS. The development of ABS/TiN nanocomposites with reinforced mechanical properties is a successful example that validates the feasibility and powerful abilities of MEX 3D printing in AM. Full article
(This article belongs to the Special Issue Nanostructured Ceramics in Modern Materials Science)
Show Figures

Figure 1

17 pages, 5305 KiB  
Article
Synthesis of Fe-TiO2 and Cu-TiO2 Based Materials by Olive Leaves Biotemplating—Application to Hydrogen Production from Glycerol Photoreforming
by Juan Martín-Gómez, Susana Reca-Expósito, Francisco J. López-Tenllado, Jesús Hidalgo-Carrillo, Alberto Marinas and Francisco J. Urbano
Nanomaterials 2023, 13(4), 664; https://doi.org/10.3390/nano13040664 - 8 Feb 2023
Viewed by 1530
Abstract
Hydrogen production is mainly based on the use of fossil fuels, but currently, many alternative routes are being developed, among which the photo-reforming of oxygenated organic compounds stands out. Recently, several studies have been carried out in order to develop new techniques to [...] Read more.
Hydrogen production is mainly based on the use of fossil fuels, but currently, many alternative routes are being developed, among which the photo-reforming of oxygenated organic compounds stands out. Recently, several studies have been carried out in order to develop new techniques to create bio-inspired TiO2 structures. One of these is ‘biotemplating’, a process that replicates a biological system in an inorganic TiO2-based structure. In this study, olive by-products—olive leaves—are valorized as a biotemplate for the synthesis of new Fe-TiO2- and Cu-TiO2-based photocatalysts with the aim of improving the replication of the leaf structure and enhancing hydrogen photoproduction. In conclusion, the incorporation of iron and copper decreases the band gap and increases the energetic disorder at the band edges. Moreover, it is verified by SEM and TEM that the metals are not found forming particles but are introduced into the formed TiO2 structure. The accuracy of the internal and external structure replication is improved with the incorporation of Fe in the synthesis, while the incorporation of Cu substantially improves the production of hydrogen, which is multiplied 14 times under UV light and 6 times under sunlight, as compared to a pure TiO2 structure. Full article
Show Figures

Graphical abstract

22 pages, 2599 KiB  
Review
Luminescent Gold Nanoclusters for Bioimaging: Increasing the Ligand Complexity
by Dario Mordini, Alexandra Mavridi-Printezi, Arianna Menichetti, Andrea Cantelli, Xinke Li and Marco Montalti
Nanomaterials 2023, 13(4), 648; https://doi.org/10.3390/nano13040648 - 7 Feb 2023
Cited by 10 | Viewed by 2756
Abstract
Fluorescence, and more in general, photoluminescence (PL), presents important advantages for imaging with respect to other diagnostic techniques. In particular, detection methodologies exploiting fluorescence imaging are fast and versatile; make use of low-cost and simple instrumentations; and are taking advantage of newly developed [...] Read more.
Fluorescence, and more in general, photoluminescence (PL), presents important advantages for imaging with respect to other diagnostic techniques. In particular, detection methodologies exploiting fluorescence imaging are fast and versatile; make use of low-cost and simple instrumentations; and are taking advantage of newly developed powerful, low-cost, light-based electronic devices, such as light sources and cameras, used in huge market applications, such as civil illumination, computers, and cellular phones. Besides the aforementioned simplicity, fluorescence imaging offers a spatial and temporal resolution that can hardly be achieved with alternative methods. However, the two main limitations of fluorescence imaging for bio-application are still (i) the biological tissue transparency and autofluorescence and (ii) the biocompatibility of the contrast agents. Luminescent gold nanoclusters (AuNCs), if properly designed, combine high biocompatibility with PL in the near-infrared region (NIR), where the biological tissues exhibit higher transparency and negligible autofluorescence. However, the stabilization of these AuNCs requires the use of specific ligands that also affect their PL properties. The nature of the ligand plays a fundamental role in the development and sequential application of PL AuNCs as probes for bioimaging. Considering the importance of this, in this review, the most relevant and recent papers on AuNCs-based bioimaging are presented and discussed highlighting the different functionalities achieved by increasing the complexity of the ligand structure. Full article
(This article belongs to the Special Issue Nanobiotechnologies in Environment and Medicine)
Show Figures

Figure 1

17 pages, 7754 KiB  
Article
Performance of Cu/ZnO Nanosheets on Electrospun Al2O3 Nanofibers in CO2 Catalytic Hydrogenation to Methanol and Dimethyl Ether
by Itzhak I. Maor, Svetlana Heyte, Oren Elishav, Meirav Mann-Lahav, Joelle Thuriot-Roukos, Sébastien Paul and Gideon S. Grader
Nanomaterials 2023, 13(4), 635; https://doi.org/10.3390/nano13040635 - 5 Feb 2023
Cited by 2 | Viewed by 2212
Abstract
The synthesis of methanol and dimethyl ether (DME) from carbon dioxide (CO2) and green hydrogen (H2) offers a sustainable pathway to convert CO2 emissions into value-added products. This heterogeneous catalytic reaction often uses copper (Cu) catalysts due to [...] Read more.
The synthesis of methanol and dimethyl ether (DME) from carbon dioxide (CO2) and green hydrogen (H2) offers a sustainable pathway to convert CO2 emissions into value-added products. This heterogeneous catalytic reaction often uses copper (Cu) catalysts due to their low cost compared with their noble metal analogs. Nevertheless, improving the activity and selectivity of these Cu catalysts for these products is highly desirable. In the present study, a new architecture of Cu- and Cu/Zn-based catalysts supported on electrospun alumina nanofibers were synthesized. The catalysts were tested under various reaction conditions using high-throughput equipment to highlight the role of the hierarchical fibrous structure on the reaction activity and selectivity. The Cu or Cu/ZnO formed a unique structure of nanosheets, covering the alumina fiber surface. This exceptional morphology provides a large surface area, up to ~300 m2/g, accessible for reaction. Maximal production of methanol (~1106 gmethanolKgCu−1∙h−1) and DME (760 gDMEKgCu−1∙h−1) were obtained for catalysts containing 7% wt. Cu/Zn with a weight ratio of 2.3 Zn to Cu (at 300 °C, 50 bar). The promising results in CO2 hydrogenation to methanol and DME obtained here point out the significant advantage of nanofiber-based catalysts in heterogeneous catalysis. Full article
(This article belongs to the Special Issue Nanocatalysts for Methanation Reaction)
Show Figures

Figure 1

23 pages, 6785 KiB  
Article
Synthesis and Anti-Melanoma Activity of L-Cysteine-Coated Iron Oxide Nanoparticles Loaded with Doxorubicin
by Luiza Izabela Toderascu, Livia Elena Sima, Stefana Orobeti, Paula Ecaterina Florian, Madalina Icriverzi, Valentin-Adrian Maraloiu, Cezar Comanescu, Nicusor Iacob, Victor Kuncser, Iulia Antohe, Gianina Popescu-Pelin, George Stanciu, Petre Ionita, Cristian N. Mihailescu and Gabriel Socol
Nanomaterials 2023, 13(4), 621; https://doi.org/10.3390/nano13040621 - 4 Feb 2023
Cited by 8 | Viewed by 2629
Abstract
In this study, we report on the synthesis of L-Cysteine (L-Cys)-coated magnetic iron oxide nanoparticles (NPs) loaded with doxorubicin (Dox). The Fe3O4-L-Cys-Dox NPs were extensively characterized for their compositional and morpho-structural features using EDS, SAED, XRD, FTIR and TEM. [...] Read more.
In this study, we report on the synthesis of L-Cysteine (L-Cys)-coated magnetic iron oxide nanoparticles (NPs) loaded with doxorubicin (Dox). The Fe3O4-L-Cys-Dox NPs were extensively characterized for their compositional and morpho-structural features using EDS, SAED, XRD, FTIR and TEM. XPS, Mӧssbauer spectroscopy and SQUID measurements were also performed to determine the electronic and magnetic properties of the Fe3O4-L-Cys-Dox nanoparticles. Moreover, by means of a FO-SPR sensor, we evidenced and confirmed the binding of Dox to L-Cys. Biological tests on mouse (B16F10) and human (A375) metastatic melanoma cells evidenced the internalization of magnetic nanoparticles delivering Dox. Half maximum inhibitory concentration IC50 values of Fe3O4-L-Cys-Dox were determined for both cell lines: 4.26 µg/mL for A375 and 2.74 µg/mL for B16F10, as compared to 60.74 and 98.75 µg/mL, respectively, for unloaded controls. Incubation of cells with Fe3O4-L-Cys-Dox modulated MAPK signaling pathway activity 3 h post-treatment and produced cell cycle arrest and increased apoptosis by 48 h. We show that within the first 2 h of incubation in physiological (pH = 7.4) media, ~10–15 µM Dox/h was released from a 200 µg/mL Fe3O4-L-Cys-Dox solution, as compared to double upon incubation in citrate solution (pH = 3), which resembles acidic environment conditions. Our results highlight the potential of Fe3O4-L-Cys-Dox NPs as efficient drug delivery vehicles in melanoma therapy. Full article
(This article belongs to the Special Issue Thin Films Based on Nanocomposites II)
Show Figures

Figure 1

9 pages, 2398 KiB  
Communication
Quasi-2D Mn3Si2Te6 Nanosheet for Ultrafast Photonics
by Yan Lu, Zheng Zhou, Xuefen Kan, Zixin Yang, Haiqin Deng, Bin Liu, Tongtong Wang, Fangqi Liu, Xueyu Liu, Sicong Zhu, Qiang Yu and Jian Wu
Nanomaterials 2023, 13(3), 602; https://doi.org/10.3390/nano13030602 - 2 Feb 2023
Cited by 2 | Viewed by 2168
Abstract
The magnetic nanomaterial Mn3Si2Te6 is a promising option for spin-dependent electronic and magneto-optoelectronic devices. However, its application in nonlinear optics remains fanciful. Here, we demonstrate a pulsed Er-doped fiber laser (EDFL) based on a novel quasi-2D Mn3 [...] Read more.
The magnetic nanomaterial Mn3Si2Te6 is a promising option for spin-dependent electronic and magneto-optoelectronic devices. However, its application in nonlinear optics remains fanciful. Here, we demonstrate a pulsed Er-doped fiber laser (EDFL) based on a novel quasi-2D Mn3Si2Te6 saturable absorber (SA) with low pump power at 1.5 μm. The high-quality Mn3Si2Te6 crystals were synthesized by the self-flux method, and the ultrathin Mn3Si2Te6 nanoflakes were prepared by a simple mechanical exfoliation procedure. To the best of our knowledge, this is the first time laser pulses have been generated using quasi-2D Mn3Si2Te6. A stable pulsed laser at 1562 nm with a low threshold pump power of 60 mW was produced by integrating the Mn3Si2Te6 SA into an EDFL cavity. The maximum power of the output pulse is 783 μW. The repetition rate can vary from 24.16 to 44.44 kHz, with corresponding pulse durations of 5.64 to 3.41 µs. Our results indicate that the quasi-2D Mn3Si2Te6 is a promising material for application in ultrafast photonics. Full article
(This article belongs to the Special Issue Advance in Nanophotonics)
Show Figures

Figure 1

22 pages, 11167 KiB  
Review
Nanomaterials and Devices for Harvesting Ambient Electromagnetic Waves
by Mircea Dragoman, Martino Aldrigo, Adrian Dinescu, Dan Vasilache, Sergiu Iordanescu and Daniela Dragoman
Nanomaterials 2023, 13(3), 595; https://doi.org/10.3390/nano13030595 - 2 Feb 2023
Cited by 5 | Viewed by 2362
Abstract
This manuscript presents an overview of the implications of nanomaterials in harvesting ambient electromagnetic waves. We show that the most advanced electromagnetic harvesting devices are based on oxides with a thickness of few nanometers, carbon nanotubes, graphene, and molybdenum disulfide thanks to their [...] Read more.
This manuscript presents an overview of the implications of nanomaterials in harvesting ambient electromagnetic waves. We show that the most advanced electromagnetic harvesting devices are based on oxides with a thickness of few nanometers, carbon nanotubes, graphene, and molybdenum disulfide thanks to their unique physical properties. These tiny objects can produce in the years to come a revolution in the harvesting of energy originating from the Sun, heat, or the Earth itself. Full article
(This article belongs to the Special Issue Nanomaterials for Energy Harvesting)
Show Figures

Figure 1

22 pages, 6318 KiB  
Article
Phosphate Capture Enhancement Using Designed Iron Oxide-Based Nanostructures
by Paula Duenas Ramirez, Chaedong Lee, Rebecca Fedderwitz, Antonia R. Clavijo, Débora P. P. Barbosa, Maxime Julliot, Joana Vaz-Ramos, Dominique Begin, Stéphane Le Calvé, Ariane Zaloszyc, Philippe Choquet, Maria A. G. Soler, Damien Mertz, Peter Kofinas, Yuanzhe Piao and Sylvie Begin-Colin
Nanomaterials 2023, 13(3), 587; https://doi.org/10.3390/nano13030587 - 1 Feb 2023
Cited by 2 | Viewed by 2018
Abstract
Phosphates in high concentrations are harmful pollutants for the environment, and new and cheap solutions are currently needed for phosphate removal from polluted liquid media. Iron oxide nanoparticles show a promising capacity for removing phosphates from polluted media and can be easily separated [...] Read more.
Phosphates in high concentrations are harmful pollutants for the environment, and new and cheap solutions are currently needed for phosphate removal from polluted liquid media. Iron oxide nanoparticles show a promising capacity for removing phosphates from polluted media and can be easily separated from polluted media under an external magnetic field. However, they have to display a high surface area allowing high removal pollutant capacity while preserving their magnetic properties. In that context, the reproducible synthesis of magnetic iron oxide raspberry-shaped nanostructures (RSNs) by a modified polyol solvothermal method has been optimized, and the conditions to dope the latter with cobalt, zinc, and aluminum to improve the phosphate adsorption have been determined. These RSNs consist of oriented aggregates of iron oxide nanocrystals, providing a very high saturation magnetization and a superparamagnetic behavior that favor colloidal stability. Finally, the adsorption of phosphates as a function of pH, time, and phosphate concentration has been studied. The undoped and especially aluminum-doped RSNs were demonstrated to be very effective phosphate adsorbents, and they can be extracted from the media by applying a magnet. Full article
(This article belongs to the Special Issue Iron Oxide Nanomaterials)
Show Figures

Figure 1

11 pages, 3656 KiB  
Article
Efficient Solar Light Photocatalyst Made of Ag3PO4 Coated TiO2-SiO2 Microspheres
by Sudipto Pal, Sanosh Kunjalukkal Padmanabhan, Amruth Kaitheri, Mauro Epifani and Antonio Licciulli
Nanomaterials 2023, 13(3), 588; https://doi.org/10.3390/nano13030588 - 1 Feb 2023
Cited by 2 | Viewed by 1325
Abstract
Solar light active photocatalyst was prepared as silver phosphate (Ag3PO4) coating on titania–silica (TiO2–SiO2) microspheres. Titania–silica microsphere was obtained by spray drying TiO2–SiO2 colloidal solutions, whereas Ag3PO4 was applied [...] Read more.
Solar light active photocatalyst was prepared as silver phosphate (Ag3PO4) coating on titania–silica (TiO2–SiO2) microspheres. Titania–silica microsphere was obtained by spray drying TiO2–SiO2 colloidal solutions, whereas Ag3PO4 was applied by wet impregnation. XRD on the granules and SEM analysis show that the silver phosphate particles cover the surface of the titania–silica microspheres, and UV-visible diffuse reflectance analysis highlights that Ag3PO4/TiO2–SiO2 composites can absorb the entire visible light spectrum. BET measurements show higher specific surface area of the composite samples compared to bare Ag3PO4. Photocatalytic activity was evaluated by dye degradation tests under solar light irradiation. The prepared catalysts follow a pseudo-first-order rate law for dye degradation tests under solar light irradiation. The composite catalysts with an Ag3PO4/TiO2–SiO2 ratio of 1:1.6 wt% show better catalytic activity towards both rhodamine B and methylene blue degradation and compared with the results with uncoated TiO2–SiO2 microspheres and the benchmark commercial TiO2 (Evonik-P25) as a reference. The composite photocatalyst showed exceptional efficiency compared to its pristine counterparts and reference material. This is explained as having a higher surface area with optimum light absorption capacity. Full article
(This article belongs to the Special Issue Composite Photocatalysts Based on Nanomaterials)
Show Figures

Figure 1

13 pages, 4066 KiB  
Article
Preparation and Antibacterial Properties of a Composite Fiber Membrane Material Loaded with Cationic Antibacterial Agent by Electrospinning
by Lin Li, Chengfu Zhang, Lina Tian, Zihang Wu, Dongqing Wang and Tifeng Jiao
Nanomaterials 2023, 13(3), 583; https://doi.org/10.3390/nano13030583 - 1 Feb 2023
Cited by 7 | Viewed by 1871
Abstract
Microbial infections due to bacteria, viruses, and molds are a serious threat to both human life and the health of other organisms. To develop inexpensive, easy-to-prepare, efficient, and portable nano-antibacterial materials, as well as to explore the antibacterial prospects of cationic antibacterial agents, [...] Read more.
Microbial infections due to bacteria, viruses, and molds are a serious threat to both human life and the health of other organisms. To develop inexpensive, easy-to-prepare, efficient, and portable nano-antibacterial materials, as well as to explore the antibacterial prospects of cationic antibacterial agents, in this work, six different membrane materials were prepared by the electrostatic spinning method and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR). The materials were tested for antimicrobial properties using a modified AATCC100-200 test method. Under the most suitable spinning conditions, the doping amount of the cationic antimicrobial agent, CTAB, had the greatest influence on the antimicrobial performance. The antimicrobial performance of PCL/PEO/CS/CTAB0.4 was the highest among the prepared materials, with 83.7% effectiveness against S. aureus and 99.9% against E. coli. The antimicrobial performance was found to be stable. In our study, we determined the most suitable spinning ratio to prepare an inexpensive and efficient cationic antimicrobial agent. Biodegradable, high-antimicrobial-activity antimicrobial materials can be applied as films, and this new nanofiber material has shown great potential in wound dressings and as a mask material due to its remarkable antimicrobial efficiency. Full article
Show Figures

Figure 1

11 pages, 12024 KiB  
Article
Rapid Uniformity Analysis of Fully Printed SWCNT-Based Thin Film Transistor Arrays via Roll-to-Roll Gravure Process
by Yunhyok Choi, Younsu Jung, Reem Song, Jinhwa Park, Sajjan Parajuli, Sagar Shrestha, Gyoujin Cho and Byung-Sung Kim
Nanomaterials 2023, 13(3), 590; https://doi.org/10.3390/nano13030590 - 1 Feb 2023
Cited by 3 | Viewed by 1644
Abstract
The roll-to-roll (R2R) gravure process has the potential for manufacturing single-wall carbon nanotubes (SWCNT)-based thin film transistor (TFT) arrays on a flexible plastic substrate. A significant hurdle toward the commercialization of the R2R-printed SWCNT-TFT array is the lack of a suitable, simple, and [...] Read more.
The roll-to-roll (R2R) gravure process has the potential for manufacturing single-wall carbon nanotubes (SWCNT)-based thin film transistor (TFT) arrays on a flexible plastic substrate. A significant hurdle toward the commercialization of the R2R-printed SWCNT-TFT array is the lack of a suitable, simple, and rapid method for measuring the uniformity of printed products. We developed a probing instrument for characterizing R2R gravure printed TFT, named PICR2R-TFT, for rapidly characterizing R2R-printed SWCNT-TFT array that can present a geographical distribution profile to pinpoint the failed devices in an SWCNT-TFT array. Using the newly developed PICR2R-TFT instrument, the current–voltage characteristics of the fabricated SWCNT-TFT devices could be correlated to various R2R-printing process parameters, such as channel length, roll printing length, and printing speed. Thus, by introducing a characterization tool that is reliable and fast, one can quickly optimize the R2R gravure printing conditions to enhance product uniformity, thereby maximizing the yield of printed SWCNT-TFT arrays. Full article
(This article belongs to the Special Issue Nanomaterials for Printed Electronics and Bioelectronics)
Show Figures

Figure 1

14 pages, 14655 KiB  
Article
Magnetic Properties and Microstructure of FePt(BN, X, C) (X = Ag, Re) Films
by Jai-Lin Tsai, Chun-Yu Sun, Jhih-Hong Lin, Yi-Yuan Huang and He-Ting Tsai
Nanomaterials 2023, 13(3), 539; https://doi.org/10.3390/nano13030539 - 29 Jan 2023
Cited by 1 | Viewed by 1676
Abstract
A sputtered FePt(BN, Re, C) film, here boron nitride (BN), was compared to a reference sample FePt(BN, Ag, C). Intrinsically, these films illustrate a high anisotropy field (Hk) and perpendicular magnetocrystalline anisotropy (Ku),although the reference sample shows a higher [...] Read more.
A sputtered FePt(BN, Re, C) film, here boron nitride (BN), was compared to a reference sample FePt(BN, Ag, C). Intrinsically, these films illustrate a high anisotropy field (Hk) and perpendicular magnetocrystalline anisotropy (Ku),although the reference sample shows a higher value (Hk = 69.5 kOe, Ku = 1.74 × 107 erg/cm3) than the FePt(BN, Re, C) film (Hk = 66.9 kOe, Ku = 1.46 × 107 erg/cm3). However, the small difference in the anisotropy constant (K2/K1) ratio presents a close tendency in the angular dependence of the switching field. Extrinsically, the out-of-plane coercivity for the reference sample is 32 kOe, which is also higher than the FePt(BN, Re, C) film (Hc = 27 kOe), and both films present lower remanence (Mr(parallel)/Mr(perpendicular) = 0.08~0.12), that is, the index for perpendicular magnetic anisotropy. The higher perpendicular magnetization for both films was due to highly (001) textured FePt films, which was also evidenced by the tight rocking width of 4.1°/3.0° for (001)/(002) X-ray diffraction peaks, respectively, and high-enough ordering degree. The reference sample was measured to have a higher ordering degree (S = 0.84) than FePt(BN, Re, C) (S = 0.63). As a result, the Ag segregant shows stronger ability to promote the ordering of the FePt film; however, the FePt(BN, Re, C) film still has comparable magnetic properties without Ag doping. From the surface and elemental composition analysis, the metallic Re atoms found in the FePt lattice result in a strong spin–orbital coupling between transition metal Fe (3d electron) and heavy metals (Re, Pt) (5d electron) and we conducted high magnetocrystalline anisotropy (Ku). Above is the explanation that the lower-ordered FePt(BN, Re, C) film still has high-enough Ku and out-of-plane Hc. Regarding the microstructure, both the reference sample and FePt(BN, Re, C) show granular structure and columnar grains, and the respective average grain size and distributions are 6.60 nm (12.5%) and 11.2 nm (15.9%). The average widths of the grain boundaries and the aspect ratio of the columnar grain height are 2.05 nm, 1.00 nm, 2.35 nm, and 1.70 nm, respectively. Full article
Show Figures

Figure 1

27 pages, 5070 KiB  
Review
Nanomaterials for Molecular Detection and Analysis of Extracellular Vesicles
by Mitchell Lee Taylor, Anthony Gregory Giacalone, Kristopher Daniel Amrhein, Raymond Edward Wilson, Jr., Yongmei Wang and Xiaohua Huang
Nanomaterials 2023, 13(3), 524; https://doi.org/10.3390/nano13030524 - 28 Jan 2023
Cited by 4 | Viewed by 2618
Abstract
Extracellular vesicles (EVs) have emerged as a novel resource of biomarkers for cancer and certain other diseases. Probing EVs in body fluids has become of major interest in the past decade in the development of a new-generation liquid biopsy for cancer diagnosis and [...] Read more.
Extracellular vesicles (EVs) have emerged as a novel resource of biomarkers for cancer and certain other diseases. Probing EVs in body fluids has become of major interest in the past decade in the development of a new-generation liquid biopsy for cancer diagnosis and monitoring. However, sensitive and specific molecular detection and analysis are challenging, due to the small size of EVs, low amount of antigens on individual EVs, and the complex biofluid matrix. Nanomaterials have been widely used in the technological development of protein and nucleic acid-based EV detection and analysis, owing to the unique structure and functional properties of materials at the nanometer scale. In this review, we summarize various nanomaterial-based analytical technologies for molecular EV detection and analysis. We discuss these technologies based on the major types of nanomaterials, including plasmonic, fluorescent, magnetic, organic, carbon-based, and certain other nanostructures. For each type of nanomaterial, functional properties are briefly described, followed by the applications of the nanomaterials for EV biomarker detection, profiling, and analysis in terms of detection mechanisms. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

20 pages, 5268 KiB  
Article
Conferring Antioxidant Activity to an Antibacterial and Bioactive Titanium Surface through the Grafting of a Natural Extract
by Francesca Gamna, Seiji Yamaguchi, Andrea Cochis, Sara Ferraris, Ajay. Kumar, Lia Rimondini and Silvia Spriano
Nanomaterials 2023, 13(3), 479; https://doi.org/10.3390/nano13030479 - 25 Jan 2023
Cited by 5 | Viewed by 1659
Abstract
The main unmet medical need of bone implants is multifunctional activity, including their ability to induce rapid and physiological osseointegration, counteract bacterial biofilm formation, and prevent in situ chronic inflammation at the same time. This research starts from an already developed c.p. titanium [...] Read more.
The main unmet medical need of bone implants is multifunctional activity, including their ability to induce rapid and physiological osseointegration, counteract bacterial biofilm formation, and prevent in situ chronic inflammation at the same time. This research starts from an already developed c.p. titanium surface with proven bioactive (in vitro hydroxyl apatite precipitation) and antibacterial activities, due to a calcium titanate layer with nano- and micro-scale roughness and loaded with iodine ions. Here, antioxidant ability was added to prevent chronic inflammation by grafting polyphenols of a green tea extract onto the surface, without compromising the other functionalities of the surface. The surface was characterized before and after functionalization through XPS analysis, zeta potential titrations, ion release measurements, in vitro bioactivity tests, SEM and fluorescence microscopy, and Folin–Ciocalteu and biological tests. The presence of grafted polyphenols as a homogeneous layer was proven. The grafted polyphenols maintained their antioxidant ability and were anchored to the surface through the linking action of Ca2+ ions added to the functionalizing solution. Iodine ion release, cytocompatibility towards human mesenchymal stem cells (hMSC), and antibacterial activity were maintained even after functionalization. The antioxidant ability of the functionalized surface was effective in preserving hMSC viability in a chemically induced pro-inflammatory environment, thus showing a scavenger activity towards toxic active species responsible for inflammation. Full article
(This article belongs to the Special Issue Nanostructured Biomaterials for Tissue Repair and Anti-infection)
Show Figures

Figure 1

47 pages, 6170 KiB  
Review
The State of the Art and Challenges of In Vitro Methods for Human Hazard Assessment of Nanomaterials in the Context of Safe-by-Design
by Nienke Ruijter, Lya G. Soeteman-Hernández, Marie Carrière, Matthew Boyles, Polly McLean, Julia Catalán, Alberto Katsumiti, Joan Cabellos, Camilla Delpivo, Araceli Sánchez Jiménez, Ana Candalija, Isabel Rodríguez-Llopis, Socorro Vázquez-Campos, Flemming R. Cassee and Hedwig Braakhuis
Nanomaterials 2023, 13(3), 472; https://doi.org/10.3390/nano13030472 - 24 Jan 2023
Cited by 6 | Viewed by 3968
Abstract
The Safe-by-Design (SbD) concept aims to facilitate the development of safer materials/products, safer production, and safer use and end-of-life by performing timely SbD interventions to reduce hazard, exposure, or both. Early hazard screening is a crucial first step in this process. In this [...] Read more.
The Safe-by-Design (SbD) concept aims to facilitate the development of safer materials/products, safer production, and safer use and end-of-life by performing timely SbD interventions to reduce hazard, exposure, or both. Early hazard screening is a crucial first step in this process. In this review, for the first time, commonly used in vitro assays are evaluated for their suitability for SbD hazard testing of nanomaterials (NMs). The goal of SbD hazard testing is identifying hazard warnings in the early stages of innovation. For this purpose, assays should be simple, cost-effective, predictive, robust, and compatible. For several toxicological endpoints, there are indications that commonly used in vitro assays are able to predict hazard warnings. In addition to the evaluation of assays, this review provides insights into the effects of the choice of cell type, exposure and dispersion protocol, and the (in)accurate determination of dose delivered to cells on predictivity. Furthermore, compatibility of assays with challenging advanced materials and NMs released from nano-enabled products (NEPs) during the lifecycle is assessed, as these aspects are crucial for SbD hazard testing. To conclude, hazard screening of NMs is complex and joint efforts between innovators, scientists, and regulators are needed to further improve SbD hazard testing. Full article
(This article belongs to the Special Issue Risk Assessment of Nanomaterials Toxicity)
Show Figures

Figure 1

11 pages, 6390 KiB  
Article
Bulk Photovoltaic Current Mechanisms in All-Inorganic Perovskite Multiferroic Materials
by Jiazheng Chen, Guobin Ma, Boxiang Gong, Chaoyong Deng, Min Zhang, Kaixin Guo, Ruirui Cui, Yunkai Wu, Menglan Lv and Xu Wang
Nanomaterials 2023, 13(3), 429; https://doi.org/10.3390/nano13030429 - 20 Jan 2023
Cited by 6 | Viewed by 2090
Abstract
After the discovery of bulk photovoltaic effect more than half a century ago, ferro-electrical and magneto-optical experiments have provided insights into various related topics, revealing above bandgap open voltages and non-central symmetrical current mechanisms. However, the nature of the photon-generated carriers responses and [...] Read more.
After the discovery of bulk photovoltaic effect more than half a century ago, ferro-electrical and magneto-optical experiments have provided insights into various related topics, revealing above bandgap open voltages and non-central symmetrical current mechanisms. However, the nature of the photon-generated carriers responses and their microscopic mechanisms remain unclear. Here, all-inorganic perovskite Bi0.85Gd0.15Fe1xMnxO3 thin films were prepared by a sol-gel process and the effects of Gd and Mn co-doped bismuth ferrites on their microtopography, grain boundries, multiferroic, and optical properties were studied. We discovered a simple “proof of principle” type new method that by one-step measuring the leakage current, one can demonstrate the value of photo generated current being the sum of ballistic current and shift current, which are combined to form the so-called bulk photovoltaic current, and can be related to the prototype intrinsic properties such as magneto-optical coupling and ferroelectric polarization. This result has significant potential influence on design principles for engineering multiferroic optoelectronic devices and future photovoltaic industry development. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Perovskite Solar Cells)
Show Figures

Figure 1

Back to TopTop