energies-logo

Journal Browser

Journal Browser

Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:

Review

29 pages, 5023 KiB  
Review
Review on New-Generation Batteries Technologies: Trends and Future Directions
by Khaled Itani and Alexandre De Bernardinis
Energies 2023, 16(22), 7530; https://doi.org/10.3390/en16227530 - 11 Nov 2023
Cited by 15 | Viewed by 8779
Abstract
Battery technologies have recently undergone significant advancements in design and manufacturing to meet the performance requirements of a wide range of applications, including electromobility and stationary domains. For e-mobility, batteries are essential components in various types of electric vehicles (EVs), including battery electric [...] Read more.
Battery technologies have recently undergone significant advancements in design and manufacturing to meet the performance requirements of a wide range of applications, including electromobility and stationary domains. For e-mobility, batteries are essential components in various types of electric vehicles (EVs), including battery electric vehicles (BEVs), plug-in hybrid electric vehicles (PHEVs), and fuel cell electric vehicles (FCEVs). These EVs rely on diverse charging systems, including conventional charging, fast-charging, and vehicle-to-everything (V2X) systems. In stationary applications, batteries are increasingly being employed for the electrical management of micro/smart grids as transient buffer energy storage. Batteries are commonly used in conjunction with power electronic interfaces to adapt to the specific requirements of various applications. Furthermore, power electronic interfaces to batteries themselves have evolved technologically, resulting in more efficient, thermally efficient, compact, and robust power converter architectures. This article offers a comprehensive review of new-generation battery technologies. The topic is approached from the perspective of applications, emerging trends, and future directions. The article explores new battery technologies utilizing innovative electrode and electrolyte materials, their application domains, and technological limitations. In conclusion, a discussion and analysis are provided, synthesizing the technological evolution of batteries while highlighting new trends, directions, and prospects. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

28 pages, 2763 KiB  
Review
Quality of Service and Associated Communication Infrastructure for Electric Vehicles
by Rajeshkumar Ramraj, Ehsan Pashajavid, Sanath Alahakoon and Shantha Jayasinghe
Energies 2023, 16(20), 7170; https://doi.org/10.3390/en16207170 - 20 Oct 2023
Cited by 5 | Viewed by 1651
Abstract
Transportation electrification is pivotal for achieving energy security and emission reduction goals. Electric vehicles (EVs) are at the forefront of this transition, driving the development of new EV technologies and infrastructure. As this trend gains momentum, it becomes essential to enhance the quality [...] Read more.
Transportation electrification is pivotal for achieving energy security and emission reduction goals. Electric vehicles (EVs) are at the forefront of this transition, driving the development of new EV technologies and infrastructure. As this trend gains momentum, it becomes essential to enhance the quality of service (QoS) of EVs to encourage their widespread adoption. This paper has been structured with two primary aims to effectively address the above timely technological needs. Firstly, it comprehensively reviews the various QoS factors that influence EVs’ performance and the user experience. Delving into these factors provides valuable insights into how the QoS can be improved, thereby fostering the increased use of EVs on our roads. In addition to the QoS, this paper also explores recent advancements in communication technologies vital for facilitating in-formation exchanges between EVs and charging stations. Efficient communication systems are crucial for optimizing EV operations and enhancing user experiences. This paper presents expert-level technical details in an easily understandable manner, making it a valuable resource for researchers dedicated to improving the QoS of EV communication systems, who are tirelessly working towards a cleaner, more efficient future in transportation. It consolidates the current knowledge in the field and presents the latest discoveries and developments, offering practical insights for enhancing the QoS in electric transportation. A QoS parameter reference map, a detailed classification of QoS parameters, and a classification of EV communication technology references are some of the key contributions of this review paper. In doing so, this paper contributes to the broader objectives of promoting transportation electrification, enhancing energy security, and reducing emissions. Full article
(This article belongs to the Special Issue Electric Vehicle Charging: Social and Technical Issues)
Show Figures

Figure 1

15 pages, 437 KiB  
Review
Anomaly Detection in Power System State Estimation: Review and New Directions
by Austin Cooper, Arturo Bretas and Sean Meyn
Energies 2023, 16(18), 6678; https://doi.org/10.3390/en16186678 - 18 Sep 2023
Cited by 2 | Viewed by 2191
Abstract
Foundational and state-of-the-art anomaly-detection methods through power system state estimation are reviewed. Traditional components for bad data detection, such as chi-square testing, residual-based methods, and hypothesis testing, are discussed to explain the motivations for recent anomaly-detection methods given the increasing complexity of power [...] Read more.
Foundational and state-of-the-art anomaly-detection methods through power system state estimation are reviewed. Traditional components for bad data detection, such as chi-square testing, residual-based methods, and hypothesis testing, are discussed to explain the motivations for recent anomaly-detection methods given the increasing complexity of power grids, energy management systems, and cyber-threats. In particular, state estimation anomaly detection based on data-driven quickest-change detection and artificial intelligence are discussed, and directions for research are suggested with particular emphasis on considerations of the future smart grid. Full article
(This article belongs to the Special Issue Climate Changes and the Impacts on Power and Energy Systems)
Show Figures

Figure 1

32 pages, 14330 KiB  
Review
A Review of Flywheel Energy Storage System Technologies
by Kai Xu, Youguang Guo, Gang Lei and Jianguo Zhu
Energies 2023, 16(18), 6462; https://doi.org/10.3390/en16186462 - 7 Sep 2023
Cited by 14 | Viewed by 8007
Abstract
The operation of the electricity network has grown more complex due to the increased adoption of renewable energy resources, such as wind and solar power. Using energy storage technology can improve the stability and quality of the power grid. One such technology is [...] Read more.
The operation of the electricity network has grown more complex due to the increased adoption of renewable energy resources, such as wind and solar power. Using energy storage technology can improve the stability and quality of the power grid. One such technology is flywheel energy storage systems (FESSs). Compared with other energy storage systems, FESSs offer numerous advantages, including a long lifespan, exceptional efficiency, high power density, and minimal environmental impact. This article comprehensively reviews the key components of FESSs, including flywheel rotors, motor types, bearing support technologies, and power electronic converter technologies. It also presents the diverse applications of FESSs in different scenarios. The progress of state-of-the-art research is discussed, emphasizing the use of artificial intelligence methods such as machine learning, digital twins, and data-driven techniques for system simulation, fault prediction, and life-assessment research. The article also addresses the challenges related to current research and the application of FESSs. It concludes by summarizing future directions and trends in FESS research, offering valuable information for further advancement and improvement in this field. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

33 pages, 2788 KiB  
Review
From Lab to Fab: Development and Deployment of Direct Air Capture of CO2
by Vahid Barahimi, Monica Ho and Eric Croiset
Energies 2023, 16(17), 6385; https://doi.org/10.3390/en16176385 - 3 Sep 2023
Cited by 3 | Viewed by 6437
Abstract
Direct Air Capture (DAC) is a promising technology to fight climate change by capturing carbon dioxide (CO2) from the air. For DAC to be a negative emissions technology, the captured CO2 must be removed permanently, but can also be used [...] Read more.
Direct Air Capture (DAC) is a promising technology to fight climate change by capturing carbon dioxide (CO2) from the air. For DAC to be a negative emissions technology, the captured CO2 must be removed permanently, but can also be used as a net-zero technology to produce sustainable chemicals, fuels or other materials. This review presents a comprehensive survey of recent advancements, challenges, and potential applications of DAC technology, with an emphasis on the recent rapid increase in the number of DAC developers, the majority of them being founded in the past 4 years. Through pilot projects and recent commercial deployments, several DAC companies have made significant advances and demonstrated their scalability. Cost and energy efficiency remain significant impediments to the wide deployment of DAC. Integration with emission-free energy sources and utilization of waste heat are being researched to boost the total energy efficiency of DAC systems. Further research of electrochemical technologies for regeneration or direct capture are needed, as well as the development of new, modified, or hybrid adsorbents for improved capture efficiencies. Moreover, favorable regulations and financial incentives are crucial for enhancing the viability of DAC projects and will need to substantially increase if Paris Agreement goals are to be achieved. Full article
(This article belongs to the Collection Renewable Energy and Energy Storage Systems)
Show Figures

Figure 1

23 pages, 5045 KiB  
Review
Enhancing Energy Efficiency and Building Performance through BEMS-BIM Integration
by Maria Kozlovska, Stefan Petkanic, Frantisek Vranay and Dominik Vranay
Energies 2023, 16(17), 6327; https://doi.org/10.3390/en16176327 - 31 Aug 2023
Cited by 5 | Viewed by 5079
Abstract
This paper presents a comprehensive analysis of the potential benefits and feasibility of integrating Building Energy Management Systems (BEMSs) with Building Information Modeling (BIM) in, but not limited to, the construction and building management sectors. By examining advantages, challenges, and real-world case studies, [...] Read more.
This paper presents a comprehensive analysis of the potential benefits and feasibility of integrating Building Energy Management Systems (BEMSs) with Building Information Modeling (BIM) in, but not limited to, the construction and building management sectors. By examining advantages, challenges, and real-world case studies, this study offers valuable insights into the impact of BEMS-BIM integration on building operations. The research methodology includes a literature review and bibliometric analysis to understand the subject domain and identify prevalent keywords. Additionally, case studies demonstrate the effectiveness of BEMS-BIM integration in real-world scenarios. This study investigates the possibilities and challenges of BIM to the BEMS methodology for energy-efficient industrial buildings, emphasizing the importance of addressing uncertainties and enhancing software interoperability. This research highlights the potential of BEMS-BIM integration to revolutionize building performance, enhance sustainability, and contribute to a greener and more efficient future for the construction and building management industries. Full article
(This article belongs to the Special Issue Energy Efficiency of the Buildings II)
Show Figures

Figure 1

19 pages, 3515 KiB  
Review
The Role of the Energy Use in Buildings in Front of Climate Change: Reviewing a System’s Challenging Future
by George Ekonomou and Angeliki N. Menegaki
Energies 2023, 16(17), 6308; https://doi.org/10.3390/en16176308 - 30 Aug 2023
Cited by 4 | Viewed by 1508
Abstract
Energy keeps the global economy alive, while also being extensively exposed to various climate change impacts. In this context, severe business competition (e.g., the building sector) and the unwise use of natural resources and ecosystem services (e.g., fossil fuel energy sources) seem to [...] Read more.
Energy keeps the global economy alive, while also being extensively exposed to various climate change impacts. In this context, severe business competition (e.g., the building sector) and the unwise use of natural resources and ecosystem services (e.g., fossil fuel energy sources) seem to sharpen the relevant effects of climate change. Indicatively, contemporary issues at the interface of building energy performance and environmental quality levels include consequences from global warming, the increasing release of carbon dioxide to peak electrical loads, power grids, and building planning, and energy demand and supply issues. In light of such concerns, the present review paper attempts to disclose the multifaceted and multidisciplinary character of building energy use at the interface of the economy, the environment, and society against climate change. This review highlights energy efficiency concepts, production, distribution, consumption patterns, and relevant technological improvements. Interestingly, the reviewed contributions in the relevant literature reveal the need and necessity to alter the energy mix and relevant energy use issues. These include developments in climate-proof and effective systems regarding climate change impacts and shocks. Practical implications indicate that the sustainable development goals for clean energy and climate action should be followed if we wish to bring a sustainable future closer and faster to our reality. Full article
(This article belongs to the Special Issue Climate Changes and the Impacts on Power and Energy Systems)
Show Figures

Figure 1

30 pages, 2522 KiB  
Review
Comprehensive Review and Analysis of Glazing Systems towards Nearly Zero-Energy Buildings: Energy Performance, Thermal Comfort, Cost-Effectiveness, and Environmental Impact Perspectives
by Saman Abolghasemi Moghaddam, Catarina Serra, Manuel Gameiro da Silva and Nuno Simões
Energies 2023, 16(17), 6283; https://doi.org/10.3390/en16176283 - 29 Aug 2023
Cited by 6 | Viewed by 2798
Abstract
The global interest in nearly zero-energy buildings (NZEBs) has led to their establishment as mandatory building objectives in Europe for all new constructions starting in 2021. The principles outlined in the Energy Performance of Building Directive (EPBD) emphasize the significance of reducing energy [...] Read more.
The global interest in nearly zero-energy buildings (NZEBs) has led to their establishment as mandatory building objectives in Europe for all new constructions starting in 2021. The principles outlined in the Energy Performance of Building Directive (EPBD) emphasize the significance of reducing energy demand through various energy efficiency measures to achieve NZEB status. Among these measures, the utilization of high-performance glazing systems plays a crucial role in ensuring natural light, ventilation, favorable solar gain, aesthetics, and positive psychological effects in buildings, while maintaining high energy performance and thermal comfort without burdening the budget or harming the environment. The use of increasingly larger glazing areas makes this topic of great relevance. Nevertheless, numerous studies frequently overlook certain crucial aspects of glazing systems in their assessments. This review study aims to assess different glazing solutions based on four critical perspectives called “EThCE”: Energy performance, thermal comfort, cost-effectiveness, and environmental impact, considering their interrelationships. Furthermore, the importance of adopting a comprehensive approach for selecting the optimal glazing solution for NZEBs is discussed. Additionally, the relationship between glazing systems and climate change is taken into account. Ultimately, the authors propose a comprehensive approach, including all the influential factors, to assist designers and homeowners in making informed decisions regarding glazing system selection for new NZEBs or NZEB retrofits in different situations. Full article
(This article belongs to the Special Issue Energy Efficiency of the Buildings II)
Show Figures

Figure 1

29 pages, 5672 KiB  
Review
Green Hydrogen: Resources Consumption, Technological Maturity, and Regulatory Framework
by Jesús Rey, Francisca Segura and José Manuel Andújar
Energies 2023, 16(17), 6222; https://doi.org/10.3390/en16176222 - 27 Aug 2023
Cited by 10 | Viewed by 3344
Abstract
Current climate crisis makes the need for reducing carbon emissions more than evident. For this reason, renewable energy sources are expected to play a fundamental role. However, these sources are not controllable, but depend on the weather conditions. Therefore, green hydrogen (hydrogen produced [...] Read more.
Current climate crisis makes the need for reducing carbon emissions more than evident. For this reason, renewable energy sources are expected to play a fundamental role. However, these sources are not controllable, but depend on the weather conditions. Therefore, green hydrogen (hydrogen produced from water electrolysis using renewable energies) is emerging as the key energy carrier to solve this problem. Although different properties of hydrogen have been widely studied, some key aspects such as the water and energy footprint, as well as the technological development and the regulatory framework of green hydrogen in different parts of the world have not been analysed in depth. This work performs a data-driven analysis of these three pillars: water and energy footprint, technological maturity, and regulatory framework of green hydrogen technology. Results will allow the evaluation of green hydrogen deployment, both the current situation and expectations. Regarding the water footprint, this is lower than that of other fossil fuels and competitive with other types of hydrogen, while the energy footprint is higher than that of other fuels. Additionally, results show that technological and regulatory framework for hydrogen is not fully developed and there is a great inequality in green hydrogen legislation in different regions of the world. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

19 pages, 2296 KiB  
Review
Comprehensive Review of Liquid Air Energy Storage (LAES) Technologies
by Ayah Marwan Rabi, Jovana Radulovic and James M. Buick
Energies 2023, 16(17), 6216; https://doi.org/10.3390/en16176216 - 27 Aug 2023
Cited by 5 | Viewed by 5634
Abstract
In recent years, liquid air energy storage (LAES) has gained prominence as an alternative to existing large-scale electrical energy storage solutions such as compressed air (CAES) and pumped hydro energy storage (PHES), especially in the context of medium-to-long-term storage. LAES offers a high [...] Read more.
In recent years, liquid air energy storage (LAES) has gained prominence as an alternative to existing large-scale electrical energy storage solutions such as compressed air (CAES) and pumped hydro energy storage (PHES), especially in the context of medium-to-long-term storage. LAES offers a high volumetric energy density, surpassing the geographical constraints that hinder current mature energy storage technologies. The basic principle of LAES involves liquefying and storing air to be utilized later for electricity generation. Although the liquefaction of air has been studied for many years, the concept of using LAES “cryogenics” as an energy storage method was initially proposed in 1977 and has recently gained renewed attention. With the growing need for alternative energy storage methods, researchers have increasingly explored the potential of cryogenic media, leading to the development of the first LAES pilot plant and a growing body of research on LAES systems. However, one notable drawback of LAES is its relatively low round-trip efficiency, estimated to be around 50–60% for large-scale systems. However, due to its thermo-mechanical nature, LAES offers versatility and can be easily integrated with other thermal energy systems or energy sources across a wide range of applications. Most of the existing literature on LAES focuses on thermodynamic and economic analyses, examining various LAES configurations, and there is a clear lack of experimental studies in this field. This paper aims to conduct a comprehensive review of LAES technology, with a focus on the performance enhancement of these systems. Future perspectives indicate that hybrid LAES solutions, incorporating efficient waste energy recovery sections, hold the most promise for enhancing the tech-no-economic performance of standalone LAES systems. Full article
(This article belongs to the Special Issue Advances in Thermal Energy Storage and Applications)
Show Figures

Figure 1

27 pages, 6070 KiB  
Review
PEM Fuel Cell Applications in Road Transport
by Antonio Nicolò Mancino, Carla Menale, Francesco Vellucci, Manlio Pasquali and Roberto Bubbico
Energies 2023, 16(17), 6129; https://doi.org/10.3390/en16176129 - 23 Aug 2023
Cited by 9 | Viewed by 4919
Abstract
Fuel cell electric vehicles represent a possible solution to meet the objectives of the energy transition currently underway, which sees the replacement of combustion vehicles with low environmental impact vehicles. For this reason, this market is expected to markedly grow in the coming [...] Read more.
Fuel cell electric vehicles represent a possible solution to meet the objectives of the energy transition currently underway, which sees the replacement of combustion vehicles with low environmental impact vehicles. For this reason, this market is expected to markedly grow in the coming years. Currently, the most suitable fuel cell technology for both light and heavy transport applications is the Proton Exchange Membrane fuel cell. This review provides a comprehensive description of the state of the art of fuel cell electric vehicles at different levels: vehicle configuration, fuel cell stack, and all the necessary operation systems. The current advantages and limits of the mentioned technology are highlighted, referring to recent studies aimed at optimizing the efficiency of the system and providing future perspectives. Full article
(This article belongs to the Special Issue Advances in Energy Storage Systems for Renewable Energy)
Show Figures

Figure 1

20 pages, 1009 KiB  
Review
Quantifying Global Greenhouse Gas Emissions in Human Deaths to Guide Energy Policy
by Joshua M. Pearce and Richard Parncutt
Energies 2023, 16(16), 6074; https://doi.org/10.3390/en16166074 - 19 Aug 2023
Cited by 12 | Viewed by 62481
Abstract
When attempting to quantify future harms caused by carbon emissions and to set appropriate energy policies, it has been argued that the most important metric is the number of human deaths caused by climate change. Several studies have attempted to overcome the uncertainties [...] Read more.
When attempting to quantify future harms caused by carbon emissions and to set appropriate energy policies, it has been argued that the most important metric is the number of human deaths caused by climate change. Several studies have attempted to overcome the uncertainties associated with such forecasting. In this article, approaches to estimating future human death tolls from climate change relevant at any scale or location are compared and synthesized, and implications for energy policy are considered. Several studies are consistent with the “1000-ton rule,” according to which a future person is killed every time 1000 tons of fossil carbon are burned (order-of-magnitude estimate). If warming reaches or exceeds 2 °C this century, mainly richer humans will be responsible for killing roughly 1 billion mainly poorer humans through anthropogenic global warming, which is comparable with involuntary or negligent manslaughter. On this basis, relatively aggressive energy policies are summarized that would enable immediate and substantive decreases in carbon emissions. The limitations to such calculations are outlined and future work is recommended to accelerate the decarbonization of the global economy while minimizing the number of sacrificed human lives. Full article
(This article belongs to the Special Issue The Future of Energy Policy)
Show Figures

Figure 1

19 pages, 5510 KiB  
Review
A Review on Dry Deposition Techniques: Pathways to Enhanced Perovskite Solar Cells
by Jae-Keun Hwang, Seok-Hyun Jeong, Donghwan Kim, Hae-Seok Lee and Yoonmook Kang
Energies 2023, 16(16), 5977; https://doi.org/10.3390/en16165977 - 14 Aug 2023
Cited by 1 | Viewed by 2532
Abstract
This review discusses the use of evaporation, chemical vapor deposition, and sputtering as the three main dry deposition techniques currently available for fabricating perovskite solar cells. We outline the distinct advantages that each method offers in terms of film quality, control, and scalability. [...] Read more.
This review discusses the use of evaporation, chemical vapor deposition, and sputtering as the three main dry deposition techniques currently available for fabricating perovskite solar cells. We outline the distinct advantages that each method offers in terms of film quality, control, and scalability. Additionally, recent advancements in process optimization and the integration of dry deposition with other fabrication techniques are highlighted. Thus, this review provides valuable insights into the potential of dry deposition processes to produce high-performance perovskite solar cells and aids researchers and industry professionals in selecting the most suitable technique for the fabrication of efficient and stable devices. Full article
(This article belongs to the Special Issue Advanced Technologies of Solar Cells)
Show Figures

Figure 1

25 pages, 4587 KiB  
Review
Design, Integration, and Control of Organic Rankine Cycles with Thermal Energy Storage and Two-Phase Expansion System Utilizing Intermittent and Fluctuating Heat Sources—A Review
by Attila R. Imre, Sindu Daniarta, Przemysław Błasiak and Piotr Kolasiński
Energies 2023, 16(16), 5948; https://doi.org/10.3390/en16165948 - 11 Aug 2023
Cited by 5 | Viewed by 1791
Abstract
In order to lessen reliance on fossil fuels, a rise in interest in the utilization of fluctuating and intermittent heat sources derived from renewable energy (such as solar thermal, ocean thermal, and geothermal) and waste heat has been observed. These heat sources could [...] Read more.
In order to lessen reliance on fossil fuels, a rise in interest in the utilization of fluctuating and intermittent heat sources derived from renewable energy (such as solar thermal, ocean thermal, and geothermal) and waste heat has been observed. These heat sources could be used to generate electricity at relatively low and medium temperatures, for example, through the organic Rankine cycle (ORC). In some case studies, various approaches have been developed to deal with and design ORCs in the desired operating condition utilizing suitable working fluids. This article aims to review some designs and integrated systems of ORC with thermal energy storage (TES) and a two-phase expansion system focusing on the utilization of medium- and low-temperature heat sources in which some subcritical ORCs are presented. Moreover, several possible control systems (both conventional and advanced ones) of ORC with TES and a two-phase expansion system are reported and compared. At the end of this article, the possible future developments of design and control systems are discussed to describe advanced ORC for utilizing low-grade heat sources. This study aims to provide researchers and engineers with an insight into the challenges involved in this process, making industrialization of ORC technology more extensive, in particular when combined with TES and a two-phase expansion system. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

19 pages, 4238 KiB  
Review
Photovoltaic-Assisted Photo(electro)catalytic Hydrogen Production: A Review
by Mohamad Fakhrul Ridhwan Samsudin
Energies 2023, 16(15), 5743; https://doi.org/10.3390/en16155743 - 1 Aug 2023
Cited by 1 | Viewed by 1658
Abstract
The idea of supporting the Sustainable Development Goals (SDGs) has inspired researchers around the world to explore more environmentally friendly energy generation and production methods, especially those related to solar and hydrogen energy. Among the various available sustainable energy technologies, photo(electro)catalytic hydrogen production [...] Read more.
The idea of supporting the Sustainable Development Goals (SDGs) has inspired researchers around the world to explore more environmentally friendly energy generation and production methods, especially those related to solar and hydrogen energy. Among the various available sustainable energy technologies, photo(electro)catalytic hydrogen production has been competitively explored, benefiting from its versatile platform to utilize solar energy for green hydrogen production. Nevertheless, the bottleneck of this photo(electro)catalytic system lies within its high voltage required for water electrolysis (>1.23 V), which affects the economic prospects of this sustainable technology. In this regard, coupling the photo(electro)catalytic system with a solar-powered photovoltaic (PV) system (PV-PEC) to unleash the fascinating properties and readiness of this system has heightened attention among the scientific community. In this context, this review begins by elucidating the basic principles of PV-PEC systems, followed by an exploration of various types of solar PV technology and the different types of semiconductors used as photocatalysts in the PEC system. Subsequently, the main challenges faced by the PV-PEC system are presented, covering areas such as efficiency, stability, and cost-effectiveness. Finally, this review delves into recent research related to PV-PEC systems, discussing the advancements and breakthroughs in this promising technology. Furthermore, this review provides a forecast for the future prospects of the PV-PEC system, highlighting the potential for its continued development and widespread implementation as a key player in sustainable hydrogen production. Full article
(This article belongs to the Special Issue Energies: Advances in Sustainable PV/Wind Power System)
Show Figures

Figure 1

30 pages, 5871 KiB  
Review
A Review on Analysis Methods and Research Status of Hysteresis Motor
by Bo Gao, Yuan Cheng, Tianxu Zhao, Haodong Sun and Shumei Cui
Energies 2023, 16(15), 5715; https://doi.org/10.3390/en16155715 - 31 Jul 2023
Cited by 4 | Viewed by 5516
Abstract
A hysteresis motor produces output torque through the hysteresis effect of magnetic materials. It has the advantages of a simple structure, high-speed operation, high temperature resistance, low noise and self-starting capability. It can be applied to some special occasions requiring high speed and [...] Read more.
A hysteresis motor produces output torque through the hysteresis effect of magnetic materials. It has the advantages of a simple structure, high-speed operation, high temperature resistance, low noise and self-starting capability. It can be applied to some special occasions requiring high speed and high stationarity. However, its disadvantage is low torque density, low efficiency and low power factor. The permanent magnet hysteresis motor is a compromise of the characteristics of permanent magnet motor and hysteresis motor, and it can be self-starting in the case of having a torque density comparable to that of a permanent magnet motor. In addition, there are some new structures of hysteresis motors, which open up the direction for innovative applications. Due to the complexity of magnetic properties, the calculation methods and dynamic models of hysteresis motors and permanent magnet hysteresis motors are special and also depend on the research of hysteresis materials and hysteresis models. This paper starts from the principle and classification of the hysteresis motor, and different structures and the corresponding analysis methods are reviewed. The motors with new structures and new methods are emphasized, the innovation and contribution of existing research are summarized, and the development trend of hysteresis motors is described. Full article
(This article belongs to the Topic Future Generation Electric Machines and Drives)
Show Figures

Figure 1

35 pages, 3476 KiB  
Review
A Practical Review to Support the Implementation of Smart Solutions within Neighbourhood Building Stock
by Simone Ferrari, Milad Zoghi, Giancarlo Paganin and Giuliano Dall’O’
Energies 2023, 16(15), 5701; https://doi.org/10.3390/en16155701 - 30 Jul 2023
Cited by 2 | Viewed by 2510
Abstract
The construction industry has witnessed an increase in the use of digital tools and smart solutions, particularly in the realm of building energy automation. While realising the potential benefits of smart cities, a broader scope of smart initiatives is required to support the [...] Read more.
The construction industry has witnessed an increase in the use of digital tools and smart solutions, particularly in the realm of building energy automation. While realising the potential benefits of smart cities, a broader scope of smart initiatives is required to support the transition from smart buildings towards smart neighbourhoods, which are considered critical urban development units. To support the interplay of smart solutions between buildings and neighbourhoods, this study aimed to collect and review all the smart solutions presented in existing scientific articles, the technical literature, and realised European projects. These solutions were classified into two main sections, buildings and neighbourhoods, which were investigated through five domains: building-energy-related uses, renewable energy sources, water, waste, and open space management. The quantitative outcomes demonstrated the potential benefits of implementing smart solutions in areas ranging from buildings to neighbourhoods. Moreover, this research concluded that the true enhancement of energy conservation goes beyond the building’s energy components and can be genuinely achieved by integrating intelligent neighbourhood elements owing to their strong interdependencies. Future research should assess the effectiveness of these solutions in resource conservation. Full article
(This article belongs to the Special Issue Energy Efficiency of the Buildings II)
Show Figures

Figure 1

19 pages, 2125 KiB  
Review
Open Innovation for the Construction Sector: Concept Overview and Test Bed Development to Boost Energy-Efficient Solutions
by Graziano Salvalai, Marta Maria Sesana, Paolo Dell’Oro and Diletta Brutti
Energies 2023, 16(14), 5522; https://doi.org/10.3390/en16145522 - 21 Jul 2023
Cited by 3 | Viewed by 2265
Abstract
Open innovation has recently emerged as an important concept in both academic research and industrial practice, and it is now also becoming increasingly important in the public policy field due to the innovation challenges in different domains, such as climate change, sustainability, and [...] Read more.
Open innovation has recently emerged as an important concept in both academic research and industrial practice, and it is now also becoming increasingly important in the public policy field due to the innovation challenges in different domains, such as climate change, sustainability, and growth to name a few, but only in some value chains (i.e., automotive, manufacturing, aerospace). According to a report by McKinsey and Co., the construction industry lags behind others in adopting innovations; in fact, less than 1% of the construction industry’s revenue goes back into technology research and development. This work focuses on the current debate on the underdeveloped application of the open innovation (OI) approach to the construction sector. Namely, the foundational question is whether the OI model can be the answer to boosting innovation for the decarbonization of buildings. The research goal is to go a step further by analyzing its internal effectiveness, focusing on introducing and defining the Open Innovation Test Bed (OITB) concept. The study provides a systematic and bibliometric literature review of OI starting from a critical analysis of the concept definition and the evolution of the paradigm from the initial application to the first declination for the construction sector. All the steps analyzed allowed us to make an overall and comprehensive review of the OI concept, which is usually applied to other sectors, considering the ecosystem as the most effective declination of the OI paradigm for OITB development for building envelope solutions, thus providing answers to the two objectives identified in the introduction. Finally, the limitations of prior OI studies and the challenges for the OITB new construction paradigm are discussed, and we make recommendations for future opportunities and approach development to tackle and boost energy-efficient envelope solutions for the construction industries. Full article
(This article belongs to the Special Issue Energy Efficiency of the Buildings II)
Show Figures

Figure 1

23 pages, 5726 KiB  
Review
A Comprehensive Review of Distributed MPPT for Grid-Tied PV Systems at the Sub-Module Level
by Yousef Alharbi, Ahmed Darwish and Xiandong Ma
Energies 2023, 16(14), 5468; https://doi.org/10.3390/en16145468 - 19 Jul 2023
Cited by 7 | Viewed by 2769
Abstract
Energy crises and the growth of the energy demand have increased the interest in utilizing unconventional power sources. Thus, renewable energy sources have become a topic of interest to mitigate rising energy concerns and cope with increased electricity demand. With remarkable merits including [...] Read more.
Energy crises and the growth of the energy demand have increased the interest in utilizing unconventional power sources. Thus, renewable energy sources have become a topic of interest to mitigate rising energy concerns and cope with increased electricity demand. With remarkable merits including cleanness and abundance, photovoltaic (PV) solar energy systems are a key to solving these issues. The employed inverters should effectively utilize the maximum available power from the PV solar system and transfer this power to the utility grid without posing any further limitations. However, the unequal power generation of different PV systems caused by partial shading (PS) and other PV panel degradation factors leads to a reduction in generation capacity. One of the relatively new solutions to mitigate the mismatch concerns between the PV modules and sub-modules is to extract the maximum power of each sub-module individually. The main objective of this paper is to present a comprehensive review of such PV grid-connected inverters topologies associated with sub-module connection and control. It will classify the PV grid-tied inverters in accordance with the level where the maximum power point tracking (MPPT) system is implemented. A special focus has been placed on sub-module microinverters (MI) in terms of circuit topologies, conversion efficiency, and controller design. This paper provides a comprehensive analysis of employing the distributed MPPT (DMPPT) approach to maximize the power generation of PV systems by mitigating the mismatch issues inside the PV module. The circuit topology, PV system configuration, and MPPT algorithms used for applying DMPPT solutions in PV SMs are discussed in detail in this study. Full article
(This article belongs to the Collection Renewable Energy and Energy Storage Systems)
Show Figures

Figure 1

30 pages, 3099 KiB  
Review
A Review of State-of-the-Art and Short-Term Forecasting Models for Solar PV Power Generation
by Wen-Chang Tsai, Chia-Sheng Tu, Chih-Ming Hong and Whei-Min Lin
Energies 2023, 16(14), 5436; https://doi.org/10.3390/en16145436 - 17 Jul 2023
Cited by 14 | Viewed by 4485
Abstract
Accurately predicting the power produced during solar power generation can greatly reduce the impact of the randomness and volatility of power generation on the stability of the power grid system, which is beneficial for its balanced operation and optimized dispatch and reduces operating [...] Read more.
Accurately predicting the power produced during solar power generation can greatly reduce the impact of the randomness and volatility of power generation on the stability of the power grid system, which is beneficial for its balanced operation and optimized dispatch and reduces operating costs. Solar PV power generation depends on the weather conditions, such as temperature, relative humidity, rainfall (precipitation), global solar radiation, wind speed, etc., and it is prone to large fluctuations under different weather conditions. Its power generation is characterized by randomness, volatility, and intermittency. Recently, the demand for further investigation into the uncertainty of short-term solar PV power generation prediction and its effective use in many applications in renewable energy sources has increased. In order to improve the predictive accuracy of the output power of solar PV power generation and develop a precise predictive model, the authors used predictive algorithms for the output power of a solar PV power generation system. Moreover, since short-term solar PV power forecasting is an important aspect of optimizing the operation and control of renewable energy systems and electricity markets, this review focuses on the predictive models of solar PV power generation, which can be verified in the daily planning and operation of a smart grid system. In addition, the predictive methods identified in the reviewed literature are classified according to the input data source, and the case studies and examples proposed are analyzed in detail. The contributions, advantages, and disadvantages of the predictive probabilistic methods are compared. Finally, future studies on short-term solar PV power forecasting are proposed. Full article
Show Figures

Figure 1

25 pages, 1199 KiB  
Review
The Risks and Challenges of Electric Vehicle Integration into Smart Cities
by Oluwagbenga Apata, Pitshou N. Bokoro and Gulshan Sharma
Energies 2023, 16(14), 5274; https://doi.org/10.3390/en16145274 - 10 Jul 2023
Cited by 17 | Viewed by 5706
Abstract
The integration of electric vehicles (EVs) into smart cities presents a promising opportunity for reducing greenhouse gas emissions and enhancing urban sustainability. However, there are significant risks and challenges associated with the integration of EVs into smart cities, which must be carefully considered. [...] Read more.
The integration of electric vehicles (EVs) into smart cities presents a promising opportunity for reducing greenhouse gas emissions and enhancing urban sustainability. However, there are significant risks and challenges associated with the integration of EVs into smart cities, which must be carefully considered. Though there are various reviews available on the challenges of integrating EVs into smart cities, the majority of these are focused on technical challenges, thereby ignoring other important challenges that may arise from such integration. This paper therefore provides a comprehensive overview of the risks and challenges associated with the integration of EVs into smart cities in one research paper. The different challenges associated with the integration of EVs into smart cities have been identified and categorized into four groups, namely: technical, economic, social, and environmental, while also discussing the associated risks of EV integration into smart cities. The paper concludes by highlighting the need for a holistic approach to EV integration into smart cities that considers these challenges and risks. It also identifies possible future trends and outlooks to address these challenges and promote the successful integration of EVs into smart cities. Overall, this paper provides valuable insights for policymakers, city planners, and researchers working towards sustainable urban transportation systems. Full article
(This article belongs to the Special Issue Application and Management of Smart Energy for Smart Cities)
Show Figures

Figure 1

36 pages, 17194 KiB  
Review
A Review on the Cost Analysis of Hydrogen Gas Storage Tanks for Fuel Cell Vehicles
by Hyun Kyu Shin and Sung Kyu Ha
Energies 2023, 16(13), 5233; https://doi.org/10.3390/en16135233 - 7 Jul 2023
Cited by 20 | Viewed by 18971
Abstract
The most practical way of storing hydrogen gas for fuel cell vehicles is to use a composite overwrapped pressure vessel. Depending on the driving distance range and power requirement of the vehicles, there can be various operational pressure and volume capacity of the [...] Read more.
The most practical way of storing hydrogen gas for fuel cell vehicles is to use a composite overwrapped pressure vessel. Depending on the driving distance range and power requirement of the vehicles, there can be various operational pressure and volume capacity of the tanks, ranging from passenger vehicles to heavy-duty trucks. The current commercial hydrogen storage method for vehicles involves storing compressed hydrogen gas in high-pressure tanks at pressures of 700 bar for passenger vehicles and 350 bar to 700 bar for heavy-duty trucks. In particular, hydrogen is stored in rapidly refillable onboard tanks, meeting the driving range needs of heavy-duty applications, such as regional and line-haul trucking. One of the most important factors for fuel cell vehicles to be successful is their cost-effectiveness. So, in this review, the cost analysis including the process analysis, raw materials, and manufacturing processes is reviewed. It aims to contribute to the optimization of both the cost and performance of compressed hydrogen storage tanks for various applications. Full article
(This article belongs to the Special Issue Advances in Hydrogen Energy III)
Show Figures

Figure 1

29 pages, 7015 KiB  
Review
A Review of Sensor Applications in Electric Vehicle Thermal Management Systems
by Anyu Cheng, Yi Xin, Hang Wu, Lixin Yang and Banghuai Deng
Energies 2023, 16(13), 5139; https://doi.org/10.3390/en16135139 - 3 Jul 2023
Cited by 3 | Viewed by 5034
Abstract
With the rapid development of the automotive industry, the application of sensors is of great importance in maintaining the reliability of electric vehicles and ensuring the safe operation of electric vehicles. Faced with the increasing data of thermal management system condition monitoring, sensor [...] Read more.
With the rapid development of the automotive industry, the application of sensors is of great importance in maintaining the reliability of electric vehicles and ensuring the safe operation of electric vehicles. Faced with the increasing data of thermal management system condition monitoring, sensor detection is widely used in the monitoring of electric vehicle thermal management system. In recent years, a large number of related studies and contributions to the literature have been published. Although a number of reviews have summarized this, these reviews lack an overview of the issues and methods raised in these studies. This paper reviews recent sensor applications for electric vehicle thermal management systems. Currently, battery internal sensors, battery external sensors and related multi-sensor fusion, traditional motor sensors, positionless motor sensors, and component-level sensors of air conditioning systems are the main application sensors in the field of thermal management systems. This article introduces the basic principles of each type of sensor, reviews the relevant applications of various thermal management modules, and summarizes the usage characteristics of each type of sensor. The main problems faced by the existing research on the application of thermal management system-based sensors, such as the detection accuracy of traditional sensors and the detection stability of advanced sensors, are summarized, and the solutions proposed by the existing research are also summarized. Finally, some future research directions, trends, and hotspots are outlined. It is hoped that this review can help readers to understand the problems and existing solutions for thermal-management-system-based sensor applications, and to conduct related research more effectively. Full article
(This article belongs to the Special Issue Advancements in New Energy Vehicle Technology)
Show Figures

Figure 1

35 pages, 17452 KiB  
Review
Combustion Chemistry of Unsaturated Hydrocarbons Mixed with NOx: A Review with a Focus on Their Interactions
by Ruoyue Tang and Song Cheng
Energies 2023, 16(13), 4967; https://doi.org/10.3390/en16134967 - 26 Jun 2023
Viewed by 4836
Abstract
Unsaturated hydrocarbons are major components of transportation fuels, combustion intermediates, and unburnt exhaust emissions. Conversely, NOx species are minor species present in the residual and exhaust gases of gasoline-fueled engines and gas turbines. Their co-existence in transportation engines is quite common, particularly [...] Read more.
Unsaturated hydrocarbons are major components of transportation fuels, combustion intermediates, and unburnt exhaust emissions. Conversely, NOx species are minor species present in the residual and exhaust gases of gasoline-fueled engines and gas turbines. Their co-existence in transportation engines is quite common, particularly with exhaust gas recirculation, which can greatly influence engine combustion characteristics. Therefore, this paper presents a review on the combustion chemistry of unsaturated hydrocarbons and NOx mixtures, with a focus on their chemical kinetic interactions. First, a comprehensive overview of fundamental combustion experiments is provided, covering mixtures of C2–C5 unsaturated/oxygenated species (namely alkenes, alkynes, dienes, alcohols, ethers, ketones, and furans) and three major NOx species (namely NO, NO2, and N2O), as well as reactors including jet-stirred reactors, flow reactors, burners, shock tubes, and rapid compression machines. Then, two widely adopted nitrogen chemistry models are evaluated in conjunction with a core chemistry model (i.e., NUIGMech1.1) via detailed chemical kinetic modeling, and the model similarities and differences across broad temperature ranges are highlighted. Thereafter, the unique interconversions between the three major NOx species are presented. In particular, the controversy regarding the pathways governing NO and NO2 conversion is discussed. Following this, the key direct interaction reactions between unsaturated species and NOx species are overviewed. Finally, the distinguishing features of the combustion chemistry for unsaturated hydrocarbon and NOx mixtures are summarized, and recommendations for future research on this topic are highlighted. Full article
(This article belongs to the Special Issue Low-Carbon/Carbon-Free Fuels and Advanced Combustion Strategies)
Show Figures

Figure 1

33 pages, 6186 KiB  
Review
Electrochemically Structured Copper Current Collectors for Application in Energy Conversion and Storage: A Review
by Mario Kurniawan and Svetlozar Ivanov
Energies 2023, 16(13), 4933; https://doi.org/10.3390/en16134933 - 25 Jun 2023
Cited by 5 | Viewed by 1879
Abstract
Copper current collectors (Cu CCs) impact the production technology and performance of many electrochemical devices by their unique properties and reliable operation. The efficiency of the related processes and the operation of the electrochemical devices could be significantly improved by optimization of the [...] Read more.
Copper current collectors (Cu CCs) impact the production technology and performance of many electrochemical devices by their unique properties and reliable operation. The efficiency of the related processes and the operation of the electrochemical devices could be significantly improved by optimization of the Cu CCs. Metallic Cu plays an important role in electrochemical energy storage and electrocatalysis, primarily as a conducting substrate on which the chemical processes take place. Li nucleation and growth can be influenced by the current collector by modulating the local current density and Li ion transport. For example, the commonly used planar Cu CC does not perform satisfactorily; therefore, a high number of different modifications of Cu CCs have been proposed and reported in the literature for minimizing the local current density, hindering Li dendrite formation, and improving the Coulombic efficiency. Here, we provide an updated critical overview of the basic strategies of 3D Cu CC structuring, methodologies for analyzing these structures, and approaches for effective control over their most relevant properties. These methods are described in the context of their practical usefulness and applicability in an effort to aid in their easy implementation by research groups and private companies with established traditions in electrochemistry and plating technology. Furthermore, the current overview could be helpful for specialists with experience in associated fields of knowledge such as materials engineering and surface finishing, where electrochemical methods are frequently applied. Motivated by the importance of the final application of Cu CCs in energy storage devices, this review additionally discusses the relationship between CC properties and the functional parameters of the already-implemented electrodes. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

31 pages, 749 KiB  
Review
Challenges of Application of Green Ammonia as Fuel in Onshore Transportation
by Maciej Chorowski, Michał Lepszy, Krystian Machaj, Ziemowit Malecha, Dominika Porwisiak, Paweł Porwisiak, Zbigniew Rogala and Michał Stanclik
Energies 2023, 16(13), 4898; https://doi.org/10.3390/en16134898 - 23 Jun 2023
Cited by 12 | Viewed by 3968
Abstract
The main purpose of the article is to present a comprehensive and critical review of the challenges and risks associated with the use of green ammonia as an alternative fuel in land transport. The review is motivated by the clear trend toward phasing [...] Read more.
The main purpose of the article is to present a comprehensive and critical review of the challenges and risks associated with the use of green ammonia as an alternative fuel in land transport. The review is motivated by the clear trend toward phasing out fossil fuel vehicles and replacing them with emission-free alternatives. Topics covered include safety aspects such as safety of powering of vehicles, the production of green ammonia, the use of ammonia in the context of various fuel solutions (combustion engines and fuel cell engines), and the discussion of ammonia-powered vehicles in the context of air pollution. The paper offers new insights into identifying the challenges and obstacles that may arise in the case of the massive use of green ammonia as a fuel for land transport. In addition, the review presents the latest information on the technological readiness of the necessary infrastructure for the production, transport, storage, and utilization of green ammonia in internal combustion or electric engines. Full article
(This article belongs to the Special Issue Challenges of Transition to a Net-Zero Emissions Energy System)
Show Figures

Figure 1

23 pages, 4348 KiB  
Review
Enhancing the Levelized Cost of Hydrogen with the Usage of the Byproduct Oxygen in a Wastewater Treatment Plant
by Franziska Hönig, Ganesh Deepak Rupakula, Diana Duque-Gonzalez, Matthias Ebert and Ulrich Blum
Energies 2023, 16(12), 4829; https://doi.org/10.3390/en16124829 - 20 Jun 2023
Cited by 5 | Viewed by 2808
Abstract
In order to harmonizFranziska Hönige the supply and demand of green energy, new future-proof technologies are needed. Here, hydrogen plays a key role. Within the current framework conditions, the production of green hydrogen is not yet economically viable. The use of the oxygen [...] Read more.
In order to harmonizFranziska Hönige the supply and demand of green energy, new future-proof technologies are needed. Here, hydrogen plays a key role. Within the current framework conditions, the production of green hydrogen is not yet economically viable. The use of the oxygen produced and the possible increase in efficiency associated with it mostly remain unconsidered. The aim is to demonstrate that the economic efficiency of a power-to-gas (PtG) project can be increased by using the byproduct oxygen. In this research project, a water electrolyzer connected to grid is powered to supply hydrogen to a hydrogen refueling station. By utilizing the byproduct oxygen from water electrolysis for a wastewater treatment plant (WWTP), it is shown that the net present value (NPV) of the project can be improved by up to 13% compared to the initial scenario. If a photovoltaic (PV) system is used in addition to grid electricity for higher green hydrogen production, the NPV can be further improved by up to 58%. The levelized cost of hydrogen (LCOH) is calculated for different scenarios with and without oxygen configuration. A sensitivity analysis is then performed to find important parameters. Full article
(This article belongs to the Special Issue Hydrogen in the Energy Transition: From Production to End-Use)
Show Figures

Figure 1

19 pages, 316 KiB  
Review
Exploring the Impact of Economic Growth on the Environment: An Overview of Trends and Developments
by George Ekonomou and George Halkos
Energies 2023, 16(11), 4497; https://doi.org/10.3390/en16114497 - 2 Jun 2023
Cited by 10 | Viewed by 4904
Abstract
In our modern world, energy keeps the global economy running, and economic growth concerns are profoundly interrelated with environmental quality issues. Interestingly, scientists engage with empirical research to identify the impacts and causalities at the interface of economic activities, energy supply, and demand. [...] Read more.
In our modern world, energy keeps the global economy running, and economic growth concerns are profoundly interrelated with environmental quality issues. Interestingly, scientists engage with empirical research to identify the impacts and causalities at the interface of economic activities, energy supply, and demand. The importance of the present study lies in a discussion of all contemporary research efforts bridging two strands of empirical literature in environmental economics: developments in energy growth nexus discussion and the environmental Kuznets curve. Furthermore, it highlights the inclusion of untested explanatory variables and the impacts on environmental degradation levels. In the context of the EKC hypothesis, the most popular indicators are greenhouse gas emissions (GHGs) and carbon dioxide emissions in conceptualizing environmental degradation. A review of relevant empirical studies disclosed additional research opportunities that can consider currently untested and less visible proxies of economic growth. For both strands in the literature, results differ based on the group of countries investigated, the econometric models adopted, the format of data, e.g., time series or panel analyses, the time frames due to data availability, and the proxies used to conceptualize energy, environmental degradation, and economic growth. Practical implications indicate that environmental degradation can be avoided or significantly limited within sustainable economic growth to reduce carbon dioxide emissions and increase the use of renewables in the energy mix. Furthermore, one particular implication is the concept of energy efficiency to reduce relevant demand to produce the same outcome or task. Full article
21 pages, 2012 KiB  
Review
Integrated Demand Response Programs in Energy Hubs: A Review of Applications, Classifications, Models and Future Directions
by Innocent Kamwa, Leila Bagherzadeh and Atieh Delavari
Energies 2023, 16(11), 4443; https://doi.org/10.3390/en16114443 - 31 May 2023
Cited by 8 | Viewed by 1816
Abstract
In the traditional power system, customers respond to their primary electricity consumption pattern based on price or incentive to take additional advantages. By developing energy hubs (EHs) where electricity, heat, natural gas and other forms of energy are coupled together, all types of [...] Read more.
In the traditional power system, customers respond to their primary electricity consumption pattern based on price or incentive to take additional advantages. By developing energy hubs (EHs) where electricity, heat, natural gas and other forms of energy are coupled together, all types of energy customers, even the inelastic loads, can participate in the demand response (DR) program. This novel vision has led to the concept of “integrated demand response (IDR)”. IDR programs (IDRPs) in EHs involve coordinating multiple DR activities across different energy systems, such as buildings, industrial complexes and transportation networks. The main purpose of IDR is so that multi-energy users can respond not only by shifting or reducing their energy consumption from the demand side, but also by changing the type of energy consumed in response to the dispatching center. The integration of IDRPs in EHs can help to reduce energy costs, improve grid stability and increase the penetration of renewable energy sources (RES) in the power system. Moreover, by synchronizing DR activities across different energy systems, IDRPs can provide additional benefits, such as improved energy efficiency, reduced greenhouse gas emissions and increased resilience to power outages and other disruptions. In this paper, we provide an overview of the IDRP across EH areas, encompassing different aspects of it. First, the nature behind IDRP and its basic concept is introduced. Then, a categorization of fundamental principles within the IDRP is undertaken. Furthermore, modelling formulation and optimization techniques of IDRP in EHs are conducted. In addition to the IDRP content and model, this article deals with the research performed in this field from different perspectives. Finally, the advantages and prospect challenges of IDRPs are discussed. Full article
Show Figures

Figure 1

23 pages, 4220 KiB  
Review
Comprehensive Review on Thin Film Homojunction Solar Cells: Technologies, Progress and Challenges
by Omar M. Saif, Yasmine Elogail, Tarek M. Abdolkader, Ahmed Shaker, Abdelhalim Zekry, Mohamed Abouelatta, Marwa S. Salem and Mostafa Fedawy
Energies 2023, 16(11), 4402; https://doi.org/10.3390/en16114402 - 30 May 2023
Cited by 7 | Viewed by 2260
Abstract
With the aim of achieving high efficiency, cost-effectiveness, and reliability of solar cells, several technologies have been studied. Recently, emerging materials have appeared to replace Si-based cells, seeking economic fabrication of solar cells. Thin-film solar cells (TFSCs) are considered strong candidates for this [...] Read more.
With the aim of achieving high efficiency, cost-effectiveness, and reliability of solar cells, several technologies have been studied. Recently, emerging materials have appeared to replace Si-based cells, seeking economic fabrication of solar cells. Thin-film solar cells (TFSCs) are considered strong candidates for this mission, specifically perovskite-based solar cells, reporting competitive power convergence efficiencies reaching up to 25.7%. Substantial efforts have been invested in experimental and research work to surpass the Si-based cells performance. Simulation analysis is a major tool in achieving this target by detecting design problems and providing possible solutions. Usually, a TFSC adopts p-i-n heterojunction architecture by employing carrier transport materials along with the absorber material in order to extract the photogenerated electrons and holes by realizing a built-in electric field. Eventually, this dependency of conventional heterojunction TFSCs on carrier transport layers results in cost-ineffective cells and increases the possibility of device instability and interface problems. Thus, the design of p-n homojunction TFSCs is highly desirable as an essential direction of structural innovation to realize efficient solar cell operation. In this review, a summary of the fundamentals of TFSC materials, recent design and technology progress, and methodologies for improving the device performance using experimental research studies will be discussed. Further, simulation analysis will be provided by demonstrating the latest research work outcomes, highlighting the major achievements and the most common challenges facing thin film homojunction solar cell structures and the methods to improve them. Full article
(This article belongs to the Special Issue Modeling and Simulation of Solar Cells)
Show Figures

Figure 1

20 pages, 746 KiB  
Review
Review on Separation Processes of End-of-Life Silicon Photovoltaic Modules
by Jongwon Ko, Kyunghwan Kim, Ji Woo Sohn, Hongjun Jang, Hae-Seok Lee, Donghwan Kim and Yoonmook Kang
Energies 2023, 16(11), 4327; https://doi.org/10.3390/en16114327 - 25 May 2023
Cited by 8 | Viewed by 4223
Abstract
Solar energy has gained prominence because of the increasing global attention received by renewable energies. This shift can be attributed to advancements and innovations in solar cell technology, which include developments of various photovoltaic materials, such as thin film and tandem solar cells, [...] Read more.
Solar energy has gained prominence because of the increasing global attention received by renewable energies. This shift can be attributed to advancements and innovations in solar cell technology, which include developments of various photovoltaic materials, such as thin film and tandem solar cells, in addition to silicon-based solar cells. The latter is the most widely commercialized type of solar cell because of its exceptional durability, long-term stability, and high photoconversion efficiency; consequently, the demand for Si solar cells has been consistently increasing. PV modules are designed for an operation lifespan of 25–30 years, which has led to a gradual increase in the number of end-of-life PV modules. The appropriate management of both end-of-life and prematurely failed PV modules is critical for the recovery and separation of valuable and hazardous materials. Effective methods for end-of-life PV waste management are necessary to minimize their environmental impact and facilitate transition to a more sustainable and circular economy. This paper offers a comprehensive overview of the separation processes for silicon PV modules and summarizes the attempts to design easily recyclable modules for sustainable solar module development. Based on the studies summarized in this paper, suggestions are provided for future research. Full article
(This article belongs to the Topic Sustainable Environmental Technologies)
Show Figures

Figure 1

26 pages, 6195 KiB  
Review
Recent Advances in the Study of In Situ Combustion for Enhanced Oil Recovery
by Andrey V. Minakov, Victoria D. Meshkova, Dmitry Viktorovich Guzey and Maksim I. Pryazhnikov
Energies 2023, 16(11), 4266; https://doi.org/10.3390/en16114266 - 23 May 2023
Cited by 7 | Viewed by 2535
Abstract
Global estimates for our remaining capacity to exploit developed oil fields indicate that the currently recoverable oil (light oil) will last for approximately 50 years. This necessitates the development of viscous and superviscous oil fields, which will further compensate for the loss of [...] Read more.
Global estimates for our remaining capacity to exploit developed oil fields indicate that the currently recoverable oil (light oil) will last for approximately 50 years. This necessitates the development of viscous and superviscous oil fields, which will further compensate for the loss of easily produced oil. In situ combustion is the most promising production method, which allows for increased oil recovery from a reservoir. This being the case, this study provides an overview of global trends regarding the research and implementation of the method under consideration, in order to promote understanding of its applicability and effectiveness. The background to the development of the method is discussed in detail, illustrating the growing interest of researchers in its study. Cases of both successful as well as inefficient implementations of this method in real oil fields are considered. The main focus of the article is to investigate the influence of the parent rock and catalysts on the combustion process, as this is a new and actively developing area in the study of enhanced oil recovery using in situ combustion. Geological surveys, in addition to experimental and numerical studies, are considered to be the main methods that are used to investigate processes during in situ combustion. The analysis that we carried out led us to understand that the processes which occur during the combustion of heavy oil are practically unpredictable and, therefore, poorly understood. The specificity of the oil composition under consideration depends on the field, which can lead to a change in the required temperature regimes for its production. This indicates that there exists multiple specific applications for the method under consideration, each requiring additional full studies into both the fractional composition of oil and its reservoirs. The article also considers various technologies for implementing the in situ combustion method, such as ND-ISC, THAITM, COSH, CAGD, and SAGD. However, the literature review has shown that none of the technologies presented is widely used, due to the lack of an evidence base for their successful application in the field. Moreover, it should be noted that this method has no limits associated with the oil occurrence depth. This technology can be implemented in thin reservoirs, as well as in flooded, clayey, sandy, and carbonate reservoirs. The review we have presented can be considered as a guide for further research into the development of global solutions for using the proposed method. Full article
(This article belongs to the Special Issue Enhanced Oil Recovery Processes Evaluation, Design and Implementation)
Show Figures

Figure 1

34 pages, 54704 KiB  
Review
A Comprehensive Review and Analytical Comparison of Non-Isolated DC-DC Converters for Fuel Cell Applications
by Furqan A. Abbas, Thealfaqar A. Abdul-Jabbar, Adel A. Obed, Anton Kersten, Manuel Kuder and Thomas Weyh
Energies 2023, 16(8), 3493; https://doi.org/10.3390/en16083493 - 17 Apr 2023
Cited by 5 | Viewed by 2430
Abstract
The use of renewable energy sources such as solar photovoltaic, wind, and fuel cells is becoming increasingly prevalent due to a combination of environmental concerns and technological advancements, as well as decreasing production costs. Power electronics DC-DC converters play a key role in [...] Read more.
The use of renewable energy sources such as solar photovoltaic, wind, and fuel cells is becoming increasingly prevalent due to a combination of environmental concerns and technological advancements, as well as decreasing production costs. Power electronics DC-DC converters play a key role in various applications, including hybrid energy systems, hybrid vehicles, aerospace, satellite systems, and portable electronic devices. These converters are used to convert power from renewable sources to meet the demands of the load, improving the dynamic and steady-state performance of green generation systems. This study presents a comparison of the most commonly used non-isolated DC-DC converters for fuel cell applications. The important factors considered in the comparison include voltage gain ratio, voltage switch stress, voltage ripple, efficiency, cost, and ease of implementation. Based on the comparison results, the converters have been grouped according to voltage level applications, with low voltage applications being best served by converters such as DBC, DuBC, TLBC, 2-IBC, 1st M-IBC, PSOL, SEPIC, and 1st M-SEPIC owing to their lower cost, smaller size, and reduced switch stress. Medium voltage applications are best suited to converters such as TBC, 1st M-TLBC, 2nd M-TLBC, 4-IBC, 1st M-IBC, 2nd M-IBC, 1st M-PSOL, 2nd M-PSOL, 1st M-SEPIC, and 2nd M-SEPIC, which offer higher efficiency. Finally, high voltage applications are best served by converters such as TBC, 1st M-TBC, 2nd M-IBC, 3rd M-IBC, 3rd M-PSOL, 4th M-PSOL, 2nd M-SEPIC, 3rd M-SEPIC, and 4th M-SEPIC. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

25 pages, 2523 KiB  
Review
Critical Review on Community-Shared Solar—Advantages, Challenges, and Future Directions
by Nima Narjabadifam, Javanshir Fouladvand and Mustafa Gül
Energies 2023, 16(8), 3412; https://doi.org/10.3390/en16083412 - 13 Apr 2023
Cited by 9 | Viewed by 3211
Abstract
In the last few years, many innovative solutions have been presented to address the climate change crisis. One of the innovative solutions is the participation of community members in the collective production of solar electricity instead of individual production. The current study aims [...] Read more.
In the last few years, many innovative solutions have been presented to address the climate change crisis. One of the innovative solutions is the participation of community members in the collective production of solar electricity instead of individual production. The current study aims to provide a critical literature review of the collective production of solar electricity, which is called “community-shared solar” (CSS). Sixty-seven peer-reviewed publications were selected based on the setting up of a combination of related keywords. To analyze the concept of CSS in the existing literature, a multi-level perspective (MLP) framework was used to observe the CSS innovation at the niche, regime, and landscape levels. Four aspects, including the technical, economic, socio-political, and regulatory and institutional, were considered to evaluate those three levels. The results revealed that in the technical and economic aspects, CSS has reached maturity and internal momentum that can take it to the next levels. However, a lack of attention to the socio-political aspect and the regulatory and institutional aspect, in particular, is the potential barrier to the emergence of CSS and its potential position as a leading energy system. Full article
Show Figures

Figure 1

23 pages, 3152 KiB  
Review
Identification of Optimal Binders for Torrefied Biomass Pellets
by James W. Butler, William Skrivan and Samira Lotfi
Energies 2023, 16(8), 3390; https://doi.org/10.3390/en16083390 - 12 Apr 2023
Cited by 10 | Viewed by 4375
Abstract
The pretreatment of biomass through torrefaction is an effective means of improving the fuel quality of woody biomass and its suitability for use in existing facilities burning thermal coal. Densification of torrefied biomass produces a fuel of similar energy density, moisture content, and [...] Read more.
The pretreatment of biomass through torrefaction is an effective means of improving the fuel quality of woody biomass and its suitability for use in existing facilities burning thermal coal. Densification of torrefied biomass produces a fuel of similar energy density, moisture content, and fixed carbon content to low-grade coals. Additionally, if the torrefaction conditions are optimized, the produced torrefied pellet will be resistant to weathering and biological degradation, allowing for outdoor storage and transport in a manner similar to coal. In untreated biomass, lignin is the primary binding agent for biomass pellets and is activated by the heat and pressures of the pellet extrusion process. The thermal degradation of lignin during torrefaction reduces its binding ability, resulting in pellets of low durability not suitable for transportation. The use of a binding agent can increase the durability of torrefied pellets/briquettes through a number of different binding mechanisms depending on the binder used. This study gives a review of granular binding mechanisms, as they apply to torrefied biomass and assesses a variety of organic and inorganic binding agents, ranking them on their applicability to torrefied pellets based on a number of criteria, including durability, hydrophobicity, and cost. The best binders were found to be solid lignin by-product derived from pulp and paper processing, biomass tar derived from biomass pyrolysis, tall oil pitch, and lime. Full article
(This article belongs to the Special Issue Biomass and Waste as Feedstocks for Biofuel Production)
Show Figures

Figure 1

22 pages, 2291 KiB  
Review
Review of Policies for Indonesia’s Electricity Sector Transition and Qualitative Evaluation of Impacts and Influences Using a Conceptual Dynamic Model
by Teuku Naraski Zahari and Benjamin C. McLellan
Energies 2023, 16(8), 3406; https://doi.org/10.3390/en16083406 - 12 Apr 2023
Cited by 3 | Viewed by 2239
Abstract
Indonesia’s final energy demand is projected to increase by 70% in the next decade, with electricity expected to account for 32%. The increasing electricity demand poses a potential threat to national emissions reduction targets since fossil fuels generated 86% of the electricity in [...] Read more.
Indonesia’s final energy demand is projected to increase by 70% in the next decade, with electricity expected to account for 32%. The increasing electricity demand poses a potential threat to national emissions reduction targets since fossil fuels generated 86% of the electricity in 2018, associated to 50% of the national CO2 emissions. Indonesia plans to reduce its CO2 emissions by 29% by increasing the total electricity generated from renewables, using a set of market-based and regulatory policies. However, economic, social, and environmental issues may arise from the widespread adoption of renewable energy. This study explores the economic, social, and environmental effects of renewable energy policies in the electricity sector. Our work presents an advance over previous studies that attempted to understand the electricity sector energy transition from a system perspective by exploring the structural feedback between it and economic, energy, and environmental systems. This enables the assessment of different energy policies using more macro indicators, which further emphasize the novelty of our work. A combination of system dynamics modelling and a policy analysis framework was applied to explore these issues. Our study proposes a dynamic hypothesis that the price of energy increases over time, in the absence of substitution, becoming a limiting factor in the transition to renewables in the electricity sector. The fiscal budget was found to be a bottleneck for renewable energy adoption in the electricity sector in Indonesia. We found that a fossil fuel depletion premium could be a potential supporting policy to enable the smooth phasing-out of fossil fuels and support a sustainable energy transition. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

24 pages, 22866 KiB  
Review
A Systematic Review of Syngas Bioconversion to Value-Added Products from 2012 to 2022
by Marta Pacheco, Patrícia Moura and Carla Silva
Energies 2023, 16(7), 3241; https://doi.org/10.3390/en16073241 - 4 Apr 2023
Cited by 8 | Viewed by 4789
Abstract
Synthesis gas (syngas) fermentation is a biological carbon fixation process through which carboxydotrophic acetogenic bacteria convert CO, CO2, and H2 into platform chemicals. To obtain an accurate overview of the syngas fermentation research and innovation from 2012 to 2022, a [...] Read more.
Synthesis gas (syngas) fermentation is a biological carbon fixation process through which carboxydotrophic acetogenic bacteria convert CO, CO2, and H2 into platform chemicals. To obtain an accurate overview of the syngas fermentation research and innovation from 2012 to 2022, a systematic search was performed on Web of Science and The Lens, focusing on academic publications and patents that were published or granted during this period. Overall, the research focus was centered on process optimization, the genetic manipulation of microorganisms, and bioreactor design, in order to increase the plethora of fermentation products and expand their possible applications. Most of the published research was initially funded and developed in the United States of America. However, over the years, European countries have become the major contributors to syngas fermentation research, followed by China. Syngas fermentation seems to be developing at “two-speeds”, with a small number of companies controlling the technology that is needed for large-scale applications, while academia still focuses on low technology readiness level (TRL) research. This systematic review also showed that the fermentation of raw syngas, the effects of syngas impurities on acetogen viability and product distribution, and the process integration of gasification and fermentation are currently underdeveloped research topics, in which an investment is needed to achieve technological breakthroughs. Full article
(This article belongs to the Topic Carbon Capture Science & Technology (CCST))
Show Figures

Figure 1

28 pages, 3186 KiB  
Review
A Critical Review of Polymer Electrolyte Membrane Fuel Cell Systems for Automotive Applications: Components, Materials, and Comparative Assessment
by Rolando Pedicini, Marcello Romagnoli and Paolo E. Santangelo
Energies 2023, 16(7), 3111; https://doi.org/10.3390/en16073111 - 29 Mar 2023
Cited by 9 | Viewed by 3687
Abstract
The development of innovative technologies based on employing green energy carriers, such as hydrogen, is becoming high in demand, especially in the automotive sector, as a result of the challenges associated with sustainable mobility. In the present review, a detailed overview of the [...] Read more.
The development of innovative technologies based on employing green energy carriers, such as hydrogen, is becoming high in demand, especially in the automotive sector, as a result of the challenges associated with sustainable mobility. In the present review, a detailed overview of the entire hydrogen supply chain is proposed, spanning from its production to storage and final use in cars. Notably, the main focus is on Polymer Electrolyte Membrane Fuel Cells (PEMFC) as the fuel-cell type most typically used in fuel cell electric vehicles. The analysis also includes a cost assessment of the various systems involved; specifically, the materials commonly employed to manufacture fuel cells, stacks, and hydrogen storage systems are considered, emphasizing the strengths and weaknesses of the selected strategies, together with assessing the solutions to current problems. Moreover, as a sought-after parallelism, a comparison is also proposed and discussed between traditional diesel or gasoline cars, battery-powered electric cars, and fuel cell electric cars, thus highlighting the advantages and main drawbacks of the propulsion systems currently available on the market. Full article
(This article belongs to the Special Issue Advanced Manufacturing of Fuel Cells and Fuel-Cell Components)
Show Figures

Figure 1

26 pages, 3181 KiB  
Review
Energy Transition and the Economy: A Review Article
by Talat S. Genc and Stephen Kosempel
Energies 2023, 16(7), 2965; https://doi.org/10.3390/en16072965 - 24 Mar 2023
Cited by 17 | Viewed by 6830
Abstract
The global energy sector is in a period of transition, during which time it is expected that renewable and low-carbon energy sources, such as wind and solar, will replace traditional fossil fuels, including oil, gas, and coal. The energy transition is happening not [...] Read more.
The global energy sector is in a period of transition, during which time it is expected that renewable and low-carbon energy sources, such as wind and solar, will replace traditional fossil fuels, including oil, gas, and coal. The energy transition is happening not only to limit the environmental impact of fossil fuel production and consumption but also to ensure energy security, reliability, access, affordability, and sustainability. The importance of the energy transition has been amplified by recent events, notably the Russian-Ukraine conflict. Economic, financial, and trade sanctions against Russia, and in particular its oil and gas industry, have forced countries to find new suppliers in the short term, but also to investigate new and more sustainable sources to guarantee long-term energy security. Given the importance of energy, it is perhaps not unexpected that there is a considerable body of recent academic literature, particularly over the last 4–5 years, studying what industries, consumers, governments, and markets can do to help bring about a faster energy transition. In this paper, we provide a review of the literature that pertains to the economic aspects of the energy transition. While our initial search of the literature is targeted at uncovering all relevant articles on the subject, we focus most of our discussion on the most influential articles in prominent journals and articles published in this journal—Energies. This review is intended to help identify active topics and potential research gaps and provide future direction, so we hope it will prove useful to the readers and authors interested in this topic. Full article
(This article belongs to the Special Issue Public Policies and Development of Renewable Energy)
Show Figures

Figure 1

29 pages, 3698 KiB  
Review
The Role of Carbonate Formation during CO2 Hydrogenation over MgO-Supported Catalysts: A Review on Methane and Methanol Synthesis
by Kamonrat Suksumrit, Sascha Kleiber and Susanne Lux
Energies 2023, 16(7), 2973; https://doi.org/10.3390/en16072973 - 24 Mar 2023
Cited by 5 | Viewed by 4815
Abstract
Methane and methanol are promising products for CO2 hydrogenation for carbon capture and utilization concepts. In the search for effective, robust, easy-to-manufacture and stable catalysts, supported metal-based catalysts have proven advantageous. Whereas nickel for methane synthesis and copper for methanol synthesis stand [...] Read more.
Methane and methanol are promising products for CO2 hydrogenation for carbon capture and utilization concepts. In the search for effective, robust, easy-to-manufacture and stable catalysts, supported metal-based catalysts have proven advantageous. Whereas nickel for methane synthesis and copper for methanol synthesis stand out as efficient and cost-effective catalytically active metals, the best choice of support material is still a matter of ongoing debate. This review discusses the potential of the alkaline earth metal oxide MgO as support material for CO2 hydrogenation catalysts. Due to its basicity, it gives access to bifunctional catalysts as it shows pronounced CO2 adsorption capacity. Whereas carbonate formation seems to be beneficial in CO2 methanation, it may even have an adverse effect in methanol synthesis from CO2. Full article
(This article belongs to the Special Issue Advances in Carbon Capture and Utilization)
Show Figures

Figure 1

31 pages, 8173 KiB  
Review
Hydrogen Refueling Process: Theory, Modeling, and In-Force Applications
by Matteo Genovese, Viviana Cigolotti, Elio Jannelli and Petronilla Fragiacomo
Energies 2023, 16(6), 2890; https://doi.org/10.3390/en16062890 - 21 Mar 2023
Cited by 19 | Viewed by 7588
Abstract
Among the alternative fuels enabling the energy transition, hydrogen-based transportation is a sustainable and efficient choice. It finds application both in light-duty and heavy-duty mobility. However, hydrogen gas has unique qualities that must be taken into account when employed in such vehicles: high-pressure [...] Read more.
Among the alternative fuels enabling the energy transition, hydrogen-based transportation is a sustainable and efficient choice. It finds application both in light-duty and heavy-duty mobility. However, hydrogen gas has unique qualities that must be taken into account when employed in such vehicles: high-pressure levels up to 900 bar, storage in composite tanks with a temperature limit of 85 °C, and a negative Joule–Thomson coefficient throughout a wide range of operational parameters. Moreover, to perform a refueling procedure that is closer to the driver’s expectations, a fast process that requires pre-cooling the gas to −40 °C is necessary. The purpose of this work is to examine the major phenomena that occur during the hydrogen refueling process by analyzing the relevant theory and existing modeling methodologies. Full article
(This article belongs to the Special Issue Advances in Hydrogen Energy Ⅱ)
Show Figures

Figure 1

20 pages, 3663 KiB  
Review
Opaque Coloured Building Integrated Photovoltaic (BIPV): A Review of Models and Simulation Frameworks for Performance Optimisation
by Martina Pelle, Francesco Causone, Laura Maturi and David Moser
Energies 2023, 16(4), 1991; https://doi.org/10.3390/en16041991 - 17 Feb 2023
Cited by 6 | Viewed by 2663
Abstract
Coloured building integrated photovoltaics (BIPVs) may contribute to meeting the decarbonisation targets of European and other countries. Nevertheless, their market uptake has been hindered by a lack of social acceptance, technical issues, and low economic profitability. Being able to assess in advance the [...] Read more.
Coloured building integrated photovoltaics (BIPVs) may contribute to meeting the decarbonisation targets of European and other countries. Nevertheless, their market uptake has been hindered by a lack of social acceptance, technical issues, and low economic profitability. Being able to assess in advance the influence of the coloured layers on a module’s power generation may help reduce the need for prototyping, thereby allowing optimisation of the product performance by reducing the time and costs of customised manufacturing. Therefore, this review aims at investigating the available literature on models and techniques used for assessing the influence of coloured layers on power generation in customised BIPV products. Existing models in the literature use two main approaches: (i) detailed optical modelling of the layers in the module’s stack, including coloured layers, and (ii) mathematical elaboration of the final product’s measured characteristics. Combining the two approaches can provide improved future models, which can accurately assess every single layer in the module’s stack starting from measured parameters obtained with simpler equipment and procedures. Full article
Show Figures

Figure 1

21 pages, 7810 KiB  
Review
Frequency Range of UHF PD Measurements in Power Transformers
by Stefan Tenbohlen, Chandra Prakash Beura, Wojciech Sikorski, Ricardo Albarracín Sánchez, Bruno Albuquerque de Castro, Michael Beltle, Pascal Fehlmann, Martin Judd, Falk Werner and Martin Siegel
Energies 2023, 16(3), 1395; https://doi.org/10.3390/en16031395 - 30 Jan 2023
Cited by 21 | Viewed by 3795
Abstract
Although partial discharge (PD) measurement is a well-accepted technology to assess the quality of the insulation system of power transformers, there are still uncertainties about which frequency range PDs radiate and which frequency range should be evaluated in a measurement. This paper discusses [...] Read more.
Although partial discharge (PD) measurement is a well-accepted technology to assess the quality of the insulation system of power transformers, there are still uncertainties about which frequency range PDs radiate and which frequency range should be evaluated in a measurement. This paper discusses both a UHF PD frequency range obtained from studies investigating laboratory experiments and a frequency range from numerous practical use cases with online and on-site measurements. The literature review reveals a frequency spectrum of ultrahigh-frequency (UHF) PD measurements in the range of 200 MHz to 1 GHz for most publications. Newer publications extend this range from 3 to 6 GHz. The use cases present UHF PD measurements at transformers with power ratings up to 1000 MVA to determine frequency ranges which are considered effective for practical applications. The “common” frequency range, where measurements from all use cases provide signal power, is from approximately 400 MHz to 900 MHz, but it is noted that the individual frequency range, as well as the peak UHF signal power, strongly varies from case to case. We conclude from the discussed laboratory experiments and practical observations that UHF PD measurements in power transformers using either valve or window antennas, according to Cigré, are feasible methods to detect PD. Full article
(This article belongs to the Special Issue Design and Optimization of Power Transformer Diagnostics)
Show Figures

Figure 1

10 pages, 2183 KiB  
Review
Crystalline Silicon (c-Si)-Based Tunnel Oxide Passivated Contact (TOPCon) Solar Cells: A Review
by Hayat Ullah, Stanislaw Czapp, Seweryn Szultka, Hanan Tariq, Usama Bin Qasim and Hassan Imran
Energies 2023, 16(2), 715; https://doi.org/10.3390/en16020715 - 7 Jan 2023
Cited by 9 | Viewed by 5373
Abstract
Contact selectivity is a key parameter for enhancing and improving the power conversion efficiency (PCE) of crystalline silicon (c-Si)-based solar cells. Carrier selective contacts (CSC) are the key technology which has the potential to achieve a higher PCE for c-Si-based solar cells closer [...] Read more.
Contact selectivity is a key parameter for enhancing and improving the power conversion efficiency (PCE) of crystalline silicon (c-Si)-based solar cells. Carrier selective contacts (CSC) are the key technology which has the potential to achieve a higher PCE for c-Si-based solar cells closer to their theoretical efficiency limit. A recent and state-of-the-art approach in this domain is the tunnel oxide passivated contact (TOPCon) approach, which is completely different from the existing classical heterojunction solar cells. The main and core element of this contact is the tunnel oxide, and its main role is to cut back the minority carrier recombination at the interface. A state-of-the-art n-type c-Si-based TOPCon solar cell featuring a passivated rear contact was experimentally analyzed, and the highest PCE record of ~25.7% was achieved. It has a high fill factor (FF) of ~83.3%. These reported results prove that the highest efficiency potential is that of the passivated full area rear contact structures and it is more efficient than that of the partial rear contact (PRC) structures. In this paper, a review is presented which considers the key characteristics of TOPCon solar cells, i.e., minority carrier recombination, contact resistance, and surface passivation. Additionally, practical challenges and key issues related to TOPCon solar cells are also highlighted. Finally, the focus turns to the characteristics of TOPCon solar cells, which offer an improved and better understanding of doping layers and tunnel oxide along with their mutual and combined effect on the overall performance of TOPCon solar cells. Full article
Show Figures

Figure 1

26 pages, 2058 KiB  
Review
A Comprehensive Review on Techno-Economic Analysis and Optimal Sizing of Hybrid Renewable Energy Sources with Energy Storage Systems
by Takele Ferede Agajie, Ahmed Ali, Armand Fopah-Lele, Isaac Amoussou, Baseem Khan, Carmen Lilí Rodríguez Velasco and Emmanuel Tanyi
Energies 2023, 16(2), 642; https://doi.org/10.3390/en16020642 - 5 Jan 2023
Cited by 35 | Viewed by 5855
Abstract
Renewable energy solutions are appropriate for on-grid and off-grid applications, acting as a supporter for the utility network or rural locations without the need to develop or extend costly and difficult grid infrastructure. As a result, hybrid renewable energy sources have become a [...] Read more.
Renewable energy solutions are appropriate for on-grid and off-grid applications, acting as a supporter for the utility network or rural locations without the need to develop or extend costly and difficult grid infrastructure. As a result, hybrid renewable energy sources have become a popular option for grid-connected or standalone systems. This paper examines hybrid renewable energy power production systems with a focus on energy sustainability, reliability due to irregularities, techno-economic feasibility, and being environmentally friendly. In attaining a reliable, clean, and cost-effective system, sizing optimal hybrid renewable energy sources (HRES) is a crucial challenge. The presenters went further to outline the best sizing approach that can be used in HRES, taking into consideration the key components, parameters, methods, and data. Moreover, the goal functions, constraints from design, system components, optimization software tools, and meta-heuristic algorithm methodologies were highlighted for the available studies in this timely synopsis of the state of the art. Additionally, current issues resulting from scaling HRES were also identified and discussed. The latest trends and advances in planning problems were thoroughly addressed. Finally, this paper provides suggestions for further research into the appropriate component sizing in HRES. Full article
(This article belongs to the Special Issue Challenges of Renewable Energy in Developing Countries)
Show Figures

Figure 1

25 pages, 5934 KiB  
Review
A Comprehensive Review of Machine-Integrated Electric Vehicle Chargers
by Uvais Mustafa, Rishad Ahmed, Alan Watson, Patrick Wheeler, Naseer Ahmed and Parmjeet Dahele
Energies 2023, 16(1), 129; https://doi.org/10.3390/en16010129 - 22 Dec 2022
Cited by 7 | Viewed by 4981
Abstract
Electric Vehicles are becoming increasingly popular due to their environment friendly operation. As the demand for electric vehicles increases, it has become quite important to explore their charging strategies. Since charging and traction do not normally occur simultaneously and the power electronics converters [...] Read more.
Electric Vehicles are becoming increasingly popular due to their environment friendly operation. As the demand for electric vehicles increases, it has become quite important to explore their charging strategies. Since charging and traction do not normally occur simultaneously and the power electronics converters for both operations have some similarities, the practice of integrating both charging and traction systems is becoming popular. These types of chargers are termed ‘Integrated Chargers’. The aim of this paper is to review the available literature on the integrated chargers and present a critical analysis of the pros and cons of different integrated charging architectures. Integrated chargers for electric vehicles with three-phase permanent magnet synchronous machines, multi-phase machines and switched reluctance machines were compared. The challenges with the published integrated chargers and the future aspect of the work were been discussed. Full article
(This article belongs to the Topic Advanced Electric Vehicle Technology)
Show Figures

Figure 1

30 pages, 623 KiB  
Review
Optimal Location and Sizing of Distributed Generators and Energy Storage Systems in Microgrids: A Review
by Luis Fernando Grisales-Noreña, Bonie Johana Restrepo-Cuestas, Brandon Cortés-Caicedo, Jhon Montano, Andrés Alfonso Rosales-Muñoz and Marco Rivera
Energies 2023, 16(1), 106; https://doi.org/10.3390/en16010106 - 22 Dec 2022
Cited by 17 | Viewed by 3253
Abstract
This article reviews the main methodologies employed for the optimal location, sizing, and operation of Distributed Generators (DGs) and Energy Storage Systems (ESSs) in electrical networks. For such purpose, we first analyzed the devices that comprise a microgrid (MG) in an environment with [...] Read more.
This article reviews the main methodologies employed for the optimal location, sizing, and operation of Distributed Generators (DGs) and Energy Storage Systems (ESSs) in electrical networks. For such purpose, we first analyzed the devices that comprise a microgrid (MG) in an environment with Distributed Energy Resources (DERs) and their modes of operation. Following that, we examined the planning and operation of each DER considered in this study (DGs and ESSs). Finally, we addressed the joint integration of DGs and ESSs into MGs. From this literature review, we were able to identify both the objective functions and constraints that are most commonly used to formulate the problem of the optimal integration and operation of DGs and ESSs in MGs. Moreover, this review allowed us to identify the methodologies that have been employed for such integration, as well as the current needs in the field. With this information, the purpose is to develop new mathematical formulations and approaches for the optimal integration and operation of DERs into MGs that provide financial and operational benefits. Full article
(This article belongs to the Special Issue Renewable Energy Management System and Power Electronic Converters)
Show Figures

Figure 1

31 pages, 13576 KiB  
Review
Intelligent SOX Estimation for Automotive Battery Management Systems: State-of-the-Art Deep Learning Approaches, Open Issues, and Future Research Opportunities
by Molla Shahadat Hossain Lipu, Tahia F. Karim, Shaheer Ansari, Md. Sazal Miah, Md. Siddikur Rahman, Sheikh T. Meraj, Rajvikram Madurai Elavarasan and Raghavendra Rajan Vijayaraghavan
Energies 2023, 16(1), 23; https://doi.org/10.3390/en16010023 - 20 Dec 2022
Cited by 13 | Viewed by 5956
Abstract
Real-time battery SOX estimation including the state of charge (SOC), state of energy (SOE), and state of health (SOH) is the crucial evaluation indicator to assess the performance of automotive battery management systems (BMSs). Recently, intelligent models in terms of deep learning (DL) [...] Read more.
Real-time battery SOX estimation including the state of charge (SOC), state of energy (SOE), and state of health (SOH) is the crucial evaluation indicator to assess the performance of automotive battery management systems (BMSs). Recently, intelligent models in terms of deep learning (DL) have received massive attention in electric vehicle (EV) BMS applications due to their improved generalization performance and strong computation capability to work under different conditions. However, estimation of accurate and robust SOC, SOH, and SOE in real-time is challenging since they are internal battery parameters and depend on the battery’s materials, chemical reactions, and aging as well as environmental temperature settings. Therefore, the goal of this review is to present a comprehensive explanation of various DL approaches for battery SOX estimation, highlighting features, configurations, datasets, battery chemistries, targets, results, and contributions. Various DL methods are critically discussed, outlining advantages, disadvantages, and research gaps. In addition, various open challenges, issues, and concerns are investigated to identify existing concerns, limitations, and challenges. Finally, future suggestions and guidelines are delivered toward accurate and robust SOX estimation for sustainable operation and management in EV operation. Full article
Show Figures

Figure 1

24 pages, 8951 KiB  
Review
Review of Current State-of-the-Art Research on Photovoltaic Soiling, Anti-Reflective Coating, and Solar Roads Deployment Supported by a Pilot Experiment on a PV Road
by Sharmarke Hassan and Mahmoud Dhimish
Energies 2022, 15(24), 9620; https://doi.org/10.3390/en15249620 - 19 Dec 2022
Cited by 6 | Viewed by 3077
Abstract
The objective of this review paper is to provide an overview of the current state-of-the-art in solar road deployment, including the availability of anti-reflection and anti-soiling coating materials for photovoltaic (PV) technology. Solar roads are built using embedded PV panels that convert sunlight [...] Read more.
The objective of this review paper is to provide an overview of the current state-of-the-art in solar road deployment, including the availability of anti-reflection and anti-soiling coating materials for photovoltaic (PV) technology. Solar roads are built using embedded PV panels that convert sunlight into electricity, which can be stored for later use. Prototypes of solar roads have been tested on various continents, but the lack of suitable PV materials has limited their effectiveness compared to conventional PV systems. By analyzing the existing literature on solar roads and PV materials, including anti-reflection and anti-soiling coatings, we aim to identify gaps in knowledge and propose an action plan to improve the resiliency, durability, and reliability of PV panels in solar road applications. This will enable the deployment of solar roads as a clean, renewable energy source. Full article
Show Figures

Figure 1

16 pages, 5361 KiB  
Review
Recent Advances in the Preparation and Performance of Porous Titanium-Based Anode Materials for Sodium-Ion Batteries
by Athinarayanan Balasankar, Sathya Elango Arthiya, Subramaniyan Ramasundaram, Paramasivam Sumathi, Selvaraj Arokiyaraj, Taehwan Oh, Kanakaraj Aruchamy, Ganesan Sriram and Mahaveer D. Kurkuri
Energies 2022, 15(24), 9495; https://doi.org/10.3390/en15249495 - 14 Dec 2022
Cited by 15 | Viewed by 2385
Abstract
Sodium-ion batteries (SIBs) are among the most cost-effective and environmentally benign electrical energy storage devices required to match the needs of commercialized stationary and automotive applications. Because of its excellent chemical characteristics, infinite abundance, and low cost, the SIB is an excellent technology [...] Read more.
Sodium-ion batteries (SIBs) are among the most cost-effective and environmentally benign electrical energy storage devices required to match the needs of commercialized stationary and automotive applications. Because of its excellent chemical characteristics, infinite abundance, and low cost, the SIB is an excellent technology for grid energy storage compared with others. When used as anodes, titanium compounds based on the Ti4+/Ti3+ redox couple have a potential of typically 0.5–1.0 V, which is far from the potential of dangerous sodium plating (0.0–0.1 V). This ensures the operational safety of large-scale SIBs. Low lattice strain, usually associated with Ti-based materials, is also helpful for the longevity of the cycling of SIBs. Numerous Ti-based anode materials are being developed for use in SIBs. In particular, due to adequate electrode–electrolyte interaction and rapid charge transportation, hierarchical porous (HP) Ti-based anode materials were reported as having high specific capacity, current density, and cycling stability. HPTi-based anode materials for SIBs have the potential to be used in automobiles and portable, flexible, and wearable electronic devices. This review addresses recent developments in HPTiO2-based SIBs and their preparation, properties, performance, and challenges. Full article
(This article belongs to the Section D2: Electrochem: Batteries, Fuel Cells, Capacitors)
Show Figures

Figure 1

Back to TopTop