Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4850 KiB  
Article
Sensitivity of the Photosynthetic Apparatus in Maize and Sorghum under Different Drought Levels
by Martin Stefanov, Georgi Rashkov, Preslava Borisova and Emilia Apostolova
Plants 2023, 12(9), 1863; https://doi.org/10.3390/plants12091863 - 30 Apr 2023
Cited by 10 | Viewed by 1786
Abstract
Drought is one of the main environmental stress factors affecting plant growth and yield. The impact of different PEG concentrations on the photosynthetic performance of maize (Zea mays L. Mayflower) and sorghum (Sorghum bicolor L. Foehn) was investigated. The activity of [...] Read more.
Drought is one of the main environmental stress factors affecting plant growth and yield. The impact of different PEG concentrations on the photosynthetic performance of maize (Zea mays L. Mayflower) and sorghum (Sorghum bicolor L. Foehn) was investigated. The activity of the photosynthetic apparatus was assessed using chlorophyll fluorescence (PAM and JIP test) and photooxidation of P700. The data revealed that water deficiency decreased the photochemical quenching (qP), the ratio of photochemical to nonphotochemical processes (Fv/Fo), the effective quantum yield of the photochemical energy conversion in PSII (ΦPSII), the rate of the electron transport (ETR), and the performance indexes PItotal and PIABS, as the impact was stronger in sorghum than in maize and depended on drought level. The PSI photochemistry (P700 photooxidation) in sorghum was inhibited after the application of all studied drought levels, while in maize, it was registered only after treatment with higher PEG concentrations (30% and 40%). Enhanced regulated energy losses (ΦNPQ) and activation of the state transition under drought were also observed in maize, while in sorghum, an increase mainly in nonregulated energy losses (ΦNO). A decrease in pigment content and relative water content and an increase in membrane damage were also registered after PEG treatment. The experimental results showed better drought tolerance of maize than sorghum. This study provides new information about the role of regulated energy losses and state transition for the protection of the photosynthetic apparatus under drought and might be a practical approach to the determination of the drought tolerance of plants. Full article
(This article belongs to the Special Issue Adaptive Mechanisms of Plants to Biotic or Abiotic Stresses)
Show Figures

Figure 1

14 pages, 2305 KiB  
Article
Synergistic Action of Biosynthesized Silver Nanoparticles and Culture Supernatant of Bacillus amyloliquefacience against the Soft Rot Pathogen Dickeya dadantii
by Afsana Hossain, Jinyan Luo, Md. Arshad Ali, Rongyao Chai, Muhammad Shahid, Temoor Ahmed, Mohamed M. Hassan, Roqayah H. Kadi, Qianli An, Bin Li and Yanli Wang
Plants 2023, 12(9), 1817; https://doi.org/10.3390/plants12091817 - 28 Apr 2023
Cited by 4 | Viewed by 2055
Abstract
Nanomaterials are increasingly being used for crop growth, especially as a new paradigm for plant disease management. Among the other nanomaterials, silver nanoparticles (AgNPs) draw a great deal of attention because of their unique features and multiple usages. Rapid expansion in nanotechnology and [...] Read more.
Nanomaterials are increasingly being used for crop growth, especially as a new paradigm for plant disease management. Among the other nanomaterials, silver nanoparticles (AgNPs) draw a great deal of attention because of their unique features and multiple usages. Rapid expansion in nanotechnology and utilization of AgNPs in a large range of areas resulted in the substantial release of these nanoparticles into the soil and water environment, causing concern for the safety of ecosystems and phytosanitary. In an attempt to find an effective control measure for sweet potato soft rot disease, the pathogen Dickeya dadantii was exposed to AgNPs, the cell-free culture supernatant (CFCS) of Bacillus amyloliquefaciens alone, and both in combination. AgNPs were synthesized using CFCS of Bacillus amyloliquefaciens strain A3. The green synthesized AgNPs exhibited a characteristic surface plasmon resonance peak at 410–420 nm. Electron microscopy and X-ray diffraction spectroscopy determined the nanocrystalline nature and 20–100 nm diameters of AgNPs. Release of metal Ag+ ion from biosynthesized AgNPs increases with time. AgNPs and CFCS of B. amyloliquefaciens alone exhibited antibacterial activity against the growth, biofilm formation, swimming motility, and virulence of strain A3. The antibacterial activities elevated with the elevation in AgNPs and CFCS concentration. Similar antibacterial activities against D. dadantii were obtained with AgNPs at 50 µg·mL−1, 50% CFCS alone, and the combination of AgNPs at 12 µg·mL−1 and 12% CFCS of B. amyloliquefaciens. In planta experiments indicated that all the treatments reduced D. dadantii infection and increased plant growth. These findings suggest that AgNPs along with CFCS of B. amyloliquefaciens can be applied to minimize this bacterial disease by controlling pathogen-contaminated sweet potato tuber with minimum Ag nano-pollutant in the environment. Full article
(This article belongs to the Special Issue Pathogenesis and Disease Control in Crops)
Show Figures

Figure 1

35 pages, 2281 KiB  
Review
A Scoping Review of Genus Viscum: Biological and Chemical Aspects of Alcoholic Extracts
by Michelle Nonato de Oliveira Melo, João Vitor da Costa Batista, Evelyn Maribel Condori Peñaloza, Adriana Passos Oliveira, Rafael Garrett, Stephan Baumgartner and Carla Holandino
Plants 2023, 12(9), 1811; https://doi.org/10.3390/plants12091811 - 28 Apr 2023
Cited by 5 | Viewed by 2042
Abstract
The genus Viscum comprises a large number of semi-parasitic shrubs popularly known as Mistletoe. The Viscum species grow in many countries of Europe, Africa and Asia with different popular uses in ornamentation, foods and medicine. Many studies about Viscum have been done over [...] Read more.
The genus Viscum comprises a large number of semi-parasitic shrubs popularly known as Mistletoe. The Viscum species grow in many countries of Europe, Africa and Asia with different popular uses in ornamentation, foods and medicine. Many studies about Viscum have been done over the last years focusing on biological activities and chemical composition of the aqueous extracts, mainly related to anthroposophical medicines. However, it is known that non-aqueous preparations, as alcoholic extracts, have demonstrated different biological activities that are species—and host tree—dependent. Considering the potential of these alcoholic extracts, a scoping review was conducted using data from three online databases: PubMed, Scopus and Embase. Inclusion criteria consisted of the in vitro, in vivo, ex vivo, clinical and chemical studies of alcoholic extracts from Viscum species. The present review summarized 124 original publications about fourteen Viscum species. Viscum album, Viscum articulatum and Viscum coloratum were the main studied species. Alcoholic extracts demonstrated hypotensive, anticancer, antimicrobial, analgesic and anti-inflammatory capabilities, among other biological activities. Flavonoids, phenolic acids and terpenoids represented 48%, 24% and 11% of the total identified compounds, respectively. This review contributes to the knowledge of alcoholic preparations of the Viscum species and points out the lack of clinical studies concerning these different extracts. Full article
Show Figures

Graphical abstract

19 pages, 2331 KiB  
Article
Transcriptomic Analysis on the Peel of UV-B-Exposed Peach Fruit Reveals an Upregulation of Phenolic- and UVR8-Related Pathways
by Marco Santin, Samuel Simoni, Alberto Vangelisti, Tommaso Giordani, Andrea Cavallini, Alessia Mannucci, Annamaria Ranieri and Antonella Castagna
Plants 2023, 12(9), 1818; https://doi.org/10.3390/plants12091818 - 28 Apr 2023
Cited by 5 | Viewed by 1396
Abstract
UV-B treatment deeply influences plant physiology and biochemistry, especially by activating the expression of responsive genes involved in UV-B acclimation through a UV-B-specific perception mechanism. Although the UV-B-related molecular responses have been widely studied in Arabidopsis, relatively few research reports deepen the [...] Read more.
UV-B treatment deeply influences plant physiology and biochemistry, especially by activating the expression of responsive genes involved in UV-B acclimation through a UV-B-specific perception mechanism. Although the UV-B-related molecular responses have been widely studied in Arabidopsis, relatively few research reports deepen the knowledge on the influence of post-harvest UV-B treatment on fruit. In this work, a transcriptomic approach is adopted to investigate the transcriptional modifications occurring in the peel of UV-B-treated peach (Prunus persica L., cv Fairtime) fruit after harvest. Our analysis reveals a higher gene regulation after 1 h from the irradiation (88% of the differentially expressed genes—DEGs), compared to 3 h recovery. The overexpression of genes encoding phenylalanine ammonia-lyase (PAL), chalcone syntase (CHS), chalcone isomerase (CHI), and flavonol synthase (FLS) revealed a strong activation of the phenylpropanoid pathway, resulting in the later increase in the concentration of specific flavonoid classes, e.g., anthocyanins, flavones, dihydroflavonols, and flavanones, 36 h after the treatment. Upregulation of UVR8-related genes (HY5, COP1, and RUP) suggests that UV-B-triggered activation of the UVR8 pathway occurs also in post-harvest peach fruit. In addition, a regulation of genes involved in the cell-wall dismantling process (PME) is observed. In conclusion, post-harvest UV-B exposure deeply affects the transcriptome of the peach peel, promoting the activation of genes implicated in the biosynthesis of phenolics, likely via UVR8. Thus, our results might pave the way to a possible use of post-harvest UV-B treatments to enhance the content of health-promoting compounds in peach fruits and extending the knowledge of the UVR8 gene network. Full article
Show Figures

Figure 1

26 pages, 4699 KiB  
Article
Characterization of Purple Carrot Germplasm for Antioxidant Capacity and Root Concentration of Anthocyanins, Phenolics, and Carotenoids
by María Belén Pérez, Sofía Carvajal, Vanesa Beretta, Florencia Bannoud, María Florencia Fangio, Federico Berli, Ariel Fontana, María Victoria Salomón, Roxana Gonzalez, Lucia Valerga, Jorgelina C. Altamirano, Mehtap Yildiz, Massimo Iorizzo, Philipp W. Simon and Pablo F. Cavagnaro
Plants 2023, 12(9), 1796; https://doi.org/10.3390/plants12091796 - 27 Apr 2023
Cited by 8 | Viewed by 2281
Abstract
The present study characterized a genetically and phenotypically diverse collection of 27 purple and two non-purple (one orange and one yellow) carrot accessions for concentration of root anthocyanins, phenolics, and carotenoids, and antioxidant capacity estimated by four different methods (ORAC, DPPH, ABTS, FRAP), [...] Read more.
The present study characterized a genetically and phenotypically diverse collection of 27 purple and two non-purple (one orange and one yellow) carrot accessions for concentration of root anthocyanins, phenolics, and carotenoids, and antioxidant capacity estimated by four different methods (ORAC, DPPH, ABTS, FRAP), in a partially replicated experimental design comprising data from two growing seasons (2018 and 2019). Broad and significant (p < 0.0001) variation was found among the accessions for all the traits. Acylated anthocyanins (AA) predominated over non-acylated anthocyanins (NAA) in all the accessions and years analyzed, with AA accounting for 55.5–100% of the total anthocyanin content (TAC). Anthocyanins acylated with ferulic acid and coumaric acid were the most abundant carrot anthocyanins. In general, black or solid purple carrots had the greatest TAC and total phenolic content (TPC), and the strongest antioxidant capacities, measured by all methods. Antioxidant capacity, estimated by all methods, was significantly, positively, and moderately-to-strongly correlated with the content of all individual anthocyanins pigments, TAC, and TPC, in both years (r = 0.59–0.90, p < 0.0001), but not with the carotenoid pigments lutein and β-carotene; suggesting that anthocyanins and other phenolics, but not carotenoids, are major contributors of the antioxidant capacity in purple carrots. We identified accessions with high concentration of chemically stable AA, with potential value for the production of food dyes, and accessions with relatively high content of bioavailable NAA that can be selected for increased nutraceutical value (e.g., for fresh consumption). Full article
(This article belongs to the Special Issue Qualitative and Quantitative Changes in Plant Metabolite Contents)
Show Figures

Figure 1

16 pages, 1723 KiB  
Article
Chemical Composition and Biological Activity of Salvia officinalis L. Essential Oil
by Zvonimir Jažo, Mateo Glumac, Vlatka Paštar, Sanida Bektić, Mila Radan and Ivana Carev
Plants 2023, 12(9), 1794; https://doi.org/10.3390/plants12091794 - 27 Apr 2023
Cited by 5 | Viewed by 2751
Abstract
In our study, we investigated the chemical composition and cytotoxic activity of essential oils isolated from Dalmatian sage (Salvia officinalis L.) collected along the Adriatic coast of Croatia. Scanning electron microscopy (SEM) was used to examine the morphology of the stem and [...] Read more.
In our study, we investigated the chemical composition and cytotoxic activity of essential oils isolated from Dalmatian sage (Salvia officinalis L.) collected along the Adriatic coast of Croatia. Scanning electron microscopy (SEM) was used to examine the morphology of the stem and leaf surfaces. Essential oil excretory glands were detected on both the leaves and stem surfaces. The essential oils were isolated by hydrodistillation, and their chemical composition was determined by gas chromatography and mass spectrometry (GC-MS). Sage essential oils were mixtures of terpene compounds, among which the most common were: α- and β-thujone, camphor, and 1,8-cineol. Cytotoxic activity was tested using MTS assay on multiple cell lines: normal and immortalized fibroblasts (HF77FA and HDF-Tert), immortalized lung line (BEAS-2B), and breast adenocarcinoma (MDA-MB-231). The growth of treated cells was determined relative to control conditions without treatment. The immortalized lung line was the least resistant to the activity of the essential oils, whereas immortalized fibroblasts were the most resistant. Statistical analysis has connected the cytotoxic effect and chemical composition of the studied essential oils. To the best of our knowledge, this work is the first testing of the cytotoxic activity of S. officinalis EO’s on the BEAS-2B, HF77FA, and HDF-Tert cell lines. The presented data on essential oil chemical composition and cytotoxic effect on 4 types of human cells supports pharmacotherapeutic potential this plant is known to have. Full article
Show Figures

Figure 1

24 pages, 3556 KiB  
Article
Agronomic Investigation of Spray Dispersion of Metal-Based Nanoparticles on Sunflowers in Real-World Environments
by Dávid Ernst, Marek Kolenčík, Martin Šebesta, Ľuba Ďurišová, Hana Ďúranová, Samuel Kšiňan, Ramakanth Illa, Ivo Safarik, Ivan Černý, Gabriela Kratošová, Veronika Žitniak Čurná, Jana Ivanič Porhajašová, Mária Babošová, Huan Feng, Edmund Dobročka, Marek Bujdoš, Kristyna Zelena Pospiskova, Shadma Afzal, Nand K. Singh, Sasikumar Swamiappan and Elena Aydınadd Show full author list remove Hide full author list
Plants 2023, 12(9), 1789; https://doi.org/10.3390/plants12091789 - 27 Apr 2023
Cited by 4 | Viewed by 1814
Abstract
In environmental and agronomic settings, even minor imbalances can trigger a range of unpredicted responses. Despite the widespread use of metal-based nanoparticles (NPs) and new bio-nanofertilizers, their impact on crop production is absent in the literature. Therefore, our research is focused on the [...] Read more.
In environmental and agronomic settings, even minor imbalances can trigger a range of unpredicted responses. Despite the widespread use of metal-based nanoparticles (NPs) and new bio-nanofertilizers, their impact on crop production is absent in the literature. Therefore, our research is focused on the agronomic effect of spray application of gold nanoparticles anchored to SiO2 mesoporous silica (AuSi-NPs), zinc oxide nanoparticles (ZnO-NPs), and iron oxide nanoparticles (Fe3O4-NPs) on sunflowers under real-world environments. Our findings revealed that the biosynthetically prepared AuSi-NPs and ZnO-NPs were highly effective in enhancing sunflower seasonal physiology, e.g., the value of the NDVI index increased from 0.012 to 0.025 after AuSi-NPs application. The distribution of leaf trichomes improved and the grain yield increased from 2.47 t ha−1 to 3.29 t ha−1 after ZnO-NPs application. AuSi-NPs treatment resulted in a higher content of essential linoleic acid (54.37%) when compared to the NPs-free control (51.57%), which had a higher determined oleic acid. No NPs or residual translocated metals were detected in the fully ripe sunflower seeds, except for slightly higher silica content after the AuSi-NPs treatment. Additionally, AuSi-NPs and NPs-free control showed wide insect biodiversity while ZnO-NPs treatment had the lowest value of phosphorus as anti-nutrient. Contradictory but insignificant effect on physiology, yield, and insect biodiversity was observed in Fe3O4-NPs treatment. Therefore, further studies are needed to fully understand the long-term environmental and agricultural sustainability of NPs applications. Full article
(This article belongs to the Special Issue Use of Nanomaterials in Agriculture 2.0)
Show Figures

Figure 1

16 pages, 1308 KiB  
Article
Development of In Vitro Anther Culture for Doubled Haploid Plant Production in Indica Rice (Oryza sativa L.) Genotypes
by Csaba Lantos, Mihály Jancsó, Árpád Székely, Tímea Szalóki, Shoba Venkatanagappa and János Pauk
Plants 2023, 12(9), 1774; https://doi.org/10.3390/plants12091774 - 26 Apr 2023
Cited by 5 | Viewed by 1700
Abstract
Anther culture is an efficient biotechnological tool in modern plant breeding programs to produce new varieties and parental lines in hybrid seed productions. However, some bottlenecks—low induction rate, genotype dependency, albinism—restrict the widespread utilization of in vitro anther culture in rice breeding, especially [...] Read more.
Anther culture is an efficient biotechnological tool in modern plant breeding programs to produce new varieties and parental lines in hybrid seed productions. However, some bottlenecks—low induction rate, genotype dependency, albinism—restrict the widespread utilization of in vitro anther culture in rice breeding, especially in Oryza sativa ssp. indica (indica) genotypes, while an improved efficient protocol can shorten the process of breeding. Three different induction media (N6NDK, N6NDZ, Ali-1) and four plant regeneration media (mMSNBK1, MSNBK3, MSNBKZ1, MSNBKZ2) were tested with five indica rice genotypes to increase the efficiency of in vitro androgenesis (number of calli and regenerated green plantlets). The production of calli was more efficient on the N6NDK medium with an average 88.26 calli/100 anthers and N6NDZ medium with an average of 103.88 calli/100 anthers as compared to Ali-1 with an average of 6.96 calli/100 anthers. The production of green plantlets was greater when calli was produced on N6NDK medium (2.15 green plantlets/100 anthers) compared when produced on to N6NDZ medium (1.18 green plantlets/100 anthers). Highest green plantlets production (4.7 green plantlets/100 anthers) was achieved when mMSNBK1 plant regeneration medium was used on calli produced utilizing N6NDK induction medium. In the best overall treatment (N6NDK induction medium and mMSNBK1 plant regeneration medium), four tested genotypes produced green plantlets. However, the genotype influenced the efficiency, and the green plantlets production ranged from 0.4 green plantlets/100 anthers to 8.4 green plantlets/100 anthers. The ploidy level of 106 acclimatized indica rice plantlets were characterized with flow cytometric analyses to calculate the percentage of spontaneous chromosome doubling. Altogether, 48 haploid-, 55 diploid-, 2 tetraploid- and 1 mixoploid plantlets were identified among the regenerant plantlets, and the spontaneous chromosome doubling percentage was 51.89%. Utilization of DH plants have been integrated as a routine method in the Hungarian rice breeding program. The tetraploid lines can be explored for their potential to offer new scopes for rice research and breeding directions in the future. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

14 pages, 351 KiB  
Article
Study of Cannabis Oils Obtained from Three Varieties of C. sativa and by Two Different Extraction Methods: Phytochemical Characterization and Biological Activities
by Sebastián Pino, Luis Espinoza, Carlos Jara-Gutiérrez, Joan Villena, Andrés F. Olea and Katy Díaz
Plants 2023, 12(9), 1772; https://doi.org/10.3390/plants12091772 - 26 Apr 2023
Cited by 4 | Viewed by 2408
Abstract
Currently, much effort is being placed into obtaining extracts and/or essential oils from Cannabis sativa L. for specific therapeutic purposes or pharmacological compositions. These potential applications depend mainly on the phytochemical composition of the oils, which in turn are determined by the type [...] Read more.
Currently, much effort is being placed into obtaining extracts and/or essential oils from Cannabis sativa L. for specific therapeutic purposes or pharmacological compositions. These potential applications depend mainly on the phytochemical composition of the oils, which in turn are determined by the type of C. sativa and the extraction method used to obtain the oils. In this work, we have evaluated the contents of secondary metabolites, delta-9-tetrahydrocannabinol (THC), and cannabidiol (CBD), in addition to the total phenolic, flavonoids, and anthraquinone content in oils obtained using solid–liquid extraction (SLE) and supercritical fluid extraction (SCF). Different varieties of C. sativa were chosen by using the ratio of THC to CBD concentrations. Additionally, antioxidant, antifungal and anticancer activities on different cancer cell lines were evaluated in vitro. The results indicate that oils extracted by SLE, with high contents of CBD, flavonoids, and phenolic compounds, exhibit a high antioxidant capacity and induce a high decrease in the cell viability of the tested breast cancer cell line (MCF-7). The observed biological activities are attributed to the entourage effect, in which CBD, phenols and flavonoids play a key role. Therefore, it is concluded that the right selection of C. sativa variety and the solvent for SLE extraction method could be used to obtain the optimal oil composition to develop a natural anticancer agent. Full article
20 pages, 368 KiB  
Review
Recommendations for the Assessment of Potential Environmental Effects of Genome-Editing Applications in Plants in the EU
by Michael F. Eckerstorfer, Marion Dolezel, Margret Engelhard, Valeria Giovannelli, Marcin Grabowski, Andreas Heissenberger, Matteo Lener, Wolfram Reichenbecher, Samson Simon, Giovanni Staiano, Anne Gabrielle Wüst Saucy, Jan Zünd and Christoph Lüthi
Plants 2023, 12(9), 1764; https://doi.org/10.3390/plants12091764 - 25 Apr 2023
Cited by 5 | Viewed by 2661
Abstract
The current initiative of the European Commission (EC) concerning plants produced using certain new genomic techniques, in particular, targeted mutagenesis and cisgenesis, underlines that a high level of protection for human and animal health and the environment needs to be maintained when using [...] Read more.
The current initiative of the European Commission (EC) concerning plants produced using certain new genomic techniques, in particular, targeted mutagenesis and cisgenesis, underlines that a high level of protection for human and animal health and the environment needs to be maintained when using such applications. The current EU biosafety regulation framework ensures a high level of protection with a mandatory environmental risk assessment (ERA) of genetically modified (GM) products prior to the authorization of individual GMOs for environmental release or marketing. However, the guidance available from the European Food Safety Authority (EFSA) for conducting such an ERA is not specific enough regarding the techniques under discussion and needs to be further developed to support the policy goals towards ERA, i.e., a case-by-case assessment approach proportionate to the respective risks, currently put forward by the EC. This review identifies important elements for the case-by-case approach for the ERA that need to be taken into account in the framework for a risk-oriented regulatory approach. We also discuss that the comparison of genome-edited plants with plants developed using conventional breeding methods should be conducted at the level of a scientific case-by-case assessment of individual applications rather than at a general, technology-based level. Our considerations aim to support the development of further specific guidance for the ERA of genome-edited plants. Full article
(This article belongs to the Special Issue Potential Unintended Effects of Genetic Technologies in Plants)
25 pages, 1822 KiB  
Review
Aroma Components in Horticultural Crops: Chemical Diversity and Usage of Metabolic Engineering for Industrial Applications
by Farhat Abbas, Yiwei Zhou, Dylan O’Neill Rothenberg, Intikhab Alam, Yanguo Ke and Hui-Cong Wang
Plants 2023, 12(9), 1748; https://doi.org/10.3390/plants12091748 - 24 Apr 2023
Cited by 11 | Viewed by 3955
Abstract
Plants produce an incredible variety of volatile organic compounds (VOCs) that assist the interactions with their environment, such as attracting pollinating insects and seed dispersers and defense against herbivores, pathogens, and parasites. Furthermore, VOCs have a significant economic impact on crop quality, as [...] Read more.
Plants produce an incredible variety of volatile organic compounds (VOCs) that assist the interactions with their environment, such as attracting pollinating insects and seed dispersers and defense against herbivores, pathogens, and parasites. Furthermore, VOCs have a significant economic impact on crop quality, as well as the beverage, food, perfume, cosmetics and pharmaceuticals industries. These VOCs are mainly classified as terpenoids, benzenoids/phenylpropanes, and fatty acid derivates. Fruits and vegetables are rich in minerals, vitamins, antioxidants, and dietary fiber, while aroma compounds play a major role in flavor and quality management of these horticultural commodities. Subtle shifts in aroma compounds can dramatically alter the flavor and texture of fruits and vegetables, altering their consumer appeal. Rapid innovations in -omics techniques have led to the isolation of genes encoding enzymes involved in the biosynthesis of several volatiles, which has aided to our comprehension of the regulatory molecular pathways involved in VOC production. The present review focuses on the significance of aroma volatiles to the flavor and aroma profile of horticultural crops and addresses the industrial applications of plant-derived volatile terpenoids, particularly in food and beverages, pharmaceuticals, cosmetics, and biofuel industries. Additionally, the methodological constraints and complexities that limit the transition from gene selection to host organisms and from laboratories to practical implementation are discussed, along with metabolic engineering’s potential for enhancing terpenoids volatile production at the industrial level. Full article
(This article belongs to the Special Issue Plant Volatile Organic Compounds: Revealing the Hidden Interactions)
Show Figures

Figure 1

20 pages, 2768 KiB  
Article
New Data on Native and Alien Vascular Flora of Sicily (Italy): New Findings and Updates
by Salvatore Cambria, Dario Azzaro, Orazio Caldarella, Michele Aleo, Giuseppe Bazan, Riccardo Guarino, Giancarlo Torre, Antonia Egidia Cristaudo, Vincenzo Ilardi, Alfonso La Rosa, Valentina Lucia Astrid Laface, Fabio Luchino, Francesco Mascia, Pietro Minissale, Saverio Sciandrello, Luca Tosetto and Gianmarco Tavilla
Plants 2023, 12(9), 1743; https://doi.org/10.3390/plants12091743 - 23 Apr 2023
Cited by 7 | Viewed by 2232
Abstract
In this paper, based on fieldwork and herbaria surveys, new data concerning the presence of 32 native and alien vascular species for Sicily (Italy) are provided. Among the native species, the occurrence of the following taxa is reported for the first time or [...] Read more.
In this paper, based on fieldwork and herbaria surveys, new data concerning the presence of 32 native and alien vascular species for Sicily (Italy) are provided. Among the native species, the occurrence of the following taxa is reported for the first time or confirmed after many decades of non-observation: Aira multiculmis, Arum maculatum, Carex flacca subsp. flacca, Mentha longifolia, Oxybasis chenopodioides, Najas minor and Xiphion junceum. Furthermore, we document the presence of three native species (Cornus mas, Juncus foliosus and Limonium avei) that, despite being repeatedly observed in Sicily and reported in the literature, are inexplicably omitted by the most recent authoritative checklists regarding the flora of Italy. Finally, fifteen alien species new to Sicily (including one new to Europe, i.e., Pyrus betulifolia) are reported and seven poorly documented allochthonous taxa are confirmed for the island, and for two of them, a status change is proposed. These new or confirmed records allow us to better define the European and national distribution of the targeted taxa and offer new insights on the native and alien flora of Sicily. Full article
(This article belongs to the Special Issue Ecology and Management of Invasive Plants)
Show Figures

Figure 1

15 pages, 2484 KiB  
Article
Effects of Graphene Oxide on the Growth and Photosynthesis of the Emergent Plant Iris pseudacorus
by Zixin Zhou, Jiaxin Li, Cui Li, Qiang Guo, Xincun Hou, Chunqiao Zhao, Yu Wang, Chuansheng Chen and Qinghai Wang
Plants 2023, 12(9), 1738; https://doi.org/10.3390/plants12091738 - 23 Apr 2023
Cited by 7 | Viewed by 1716
Abstract
The extensive applications of graphene oxide (GO) inevitably lead to entry into the natural aquatic environment. However, information on its toxicity to emergent plants is still lacking. In this study, an emergent plant, Iris pseudacorus, was exposed to GO (1, 20, 80, and [...] Read more.
The extensive applications of graphene oxide (GO) inevitably lead to entry into the natural aquatic environment. However, information on its toxicity to emergent plants is still lacking. In this study, an emergent plant, Iris pseudacorus, was exposed to GO (1, 20, 80, and 140 mg·L−1) under hydroponic conditions for 15 weeks. Changes in plant growth were assessed by analyzing plant biomass and photosynthetic pigment contents; the photosynthesis response was verified by measuring chlorophyll a fluorescence; and the nutrient levels of the plant were evaluated. Results showed that GO at 20–140 mg·L−1 significantly increased plant dry weight by 37–84% and photosynthetic pigment contents by 26–178%, and 80 mg·L−1 was the optimal concentration. PSII activity, adjustment capacities of electron transport in PSII, the grouping or energetic connectivity between PSII units, light energy conversion efficiency, photosynthesis performance indexes (by 11–51%), and contents of several nutrient elements (N, Fe, and Cu) were increased by 49–69%, 34–84%, and 11–38%, respectively. These findings indicate that GO can enhance plant growth by promoting plant photosynthesis performance and improving plant nutrient levels, and has great application potential in promoting the growth and development of this emergent plant as a phytoremediation agent. Full article
Show Figures

Figure 1

17 pages, 2274 KiB  
Article
Efficacy of Biological Control Agents and Resistance Inducer for Control of Mal Secco Disease
by Giuseppa Rosaria Leonardi, Giancarlo Polizzi, Alessandro Vitale and Dalia Aiello
Plants 2023, 12(9), 1735; https://doi.org/10.3390/plants12091735 - 22 Apr 2023
Cited by 5 | Viewed by 1476
Abstract
Mal secco, caused by Plenodomus tracheiphilus, is an economically important fungal vascular disease in citrus-growing countries of the Mediterranean basin. Preventing fungal infections usually requires a high number of copper treatments but European legislation imposes the minimization of their accumulation in soil. In [...] Read more.
Mal secco, caused by Plenodomus tracheiphilus, is an economically important fungal vascular disease in citrus-growing countries of the Mediterranean basin. Preventing fungal infections usually requires a high number of copper treatments but European legislation imposes the minimization of their accumulation in soil. In our study, biological control agents (BCAs) and a plant resistance inducer (PRI), tested in four different experiments on citrus seedlings under controlled conditions, have resulted in promising strategies to control mal secco disease. Foliar (Experiment I) and soil (Experiment II) applications of two formulations of Bacillus amyloliquefaciens strain D747 (Amylo-X® LC and Amylo-X® WG) provided similar performances in reducing the disease amount (incidence and symptoms severity) over time compared to the untreated control, whereas copper hydroxide (Kocide Opti®) used as standard was the most effective treatment over time. In the third experiment, Pythium oligandrum strain M1 (Polyversum®) and Trichoderma asperellum strain ICC012 + Trichoderma gamsii strain ICC080 (Remedier®) were able to reduce disease incidence and symptoms severity compared to the untreated control. Remedier® provided the best performances in reducing the disease amount, whereas the Polyversum® application was the least effective treatment over time. The effectiveness of the Trichoderma spp. formulation in reducing P. tracheiphilus infections did not significantly differ from the standard copper compound (Kocide Opti®). Comprehensively, in the last experiment (IV), acibenzolar-S-methyl (ASM) alone and in mixture with metalaxyl-M proved as effective as B. amyloliquefaciens strain FZB24, with no dose–response relationships observed. These findings provide important insight for the integrated management of mal secco disease. Full article
(This article belongs to the Special Issue Citrus Fungal and Oomycete Diseases)
Show Figures

Figure 1

22 pages, 1724 KiB  
Article
Sideritis scardica Extracts Demonstrate Neuroprotective Activity against Aβ25–35 Toxicity
by Antonis Ververis, Kristia Ioannou, Sotiris Kyriakou, Niki Violaki, Mihalis I. Panayiotidis, Michael Plioukas and Kyproula Christodoulou
Plants 2023, 12(8), 1716; https://doi.org/10.3390/plants12081716 - 20 Apr 2023
Cited by 6 | Viewed by 2330
Abstract
Alzheimer’s disease (AD) is the most prevalent neurodegenerative condition, primarily affecting seniors. Despite the significant time and money spent over the past few decades, no therapy has been developed yet. In recent years, the research has focused on ameliorating the cytotoxic amyloid beta [...] Read more.
Alzheimer’s disease (AD) is the most prevalent neurodegenerative condition, primarily affecting seniors. Despite the significant time and money spent over the past few decades, no therapy has been developed yet. In recent years, the research has focused on ameliorating the cytotoxic amyloid beta (Aβ) peptide aggregates and the increased elevated oxidative stress, two interconnected main AD hallmarks. Medicinal plants constitute a large pool for identifying bioactive compounds or mixtures with a therapeutic effect. Sideritis scardica (SS) has been previously characterized as neuroprotective toward AD. We investigated this ability of SS by generating eight distinct solvent fractions, which were chemically characterized and assessed for their antioxidant and neuroprotective potential. The majority of the fractions were rich in phenolics and flavonoids, and all except one showed significant antioxidant activity. Additionally, four SS extracts partly rescued the viability in Aβ25–35-treated SH-SY5Y human neuroblastoma cells, with the initial aqueous extract being the most potent and demonstrating similar activity in retinoic-acid-differentiated cells as well. These extracts were rich in neuroprotective substances, such as apigenin, myricetin-3-galactoside, and ellagic acid. Our findings indicate that specific SS mixtures can benefit the pharmaceutical industry to develop herbal drugs and functional food products that may alleviate AD. Full article
(This article belongs to the Special Issue Medicinal Plant Extracts)
Show Figures

Figure 1

23 pages, 1225 KiB  
Article
The Impact of Heavy Metal Accumulation on Some Physiological Parameters in Silphium perfoliatum L. Plants Grown in Hydroponic Systems
by Radu Liviu Sumalan, Vlad Nescu, Adina Berbecea, Renata Maria Sumalan, Manuela Crisan, Petru Negrea and Sorin Ciulca
Plants 2023, 12(8), 1718; https://doi.org/10.3390/plants12081718 - 20 Apr 2023
Cited by 7 | Viewed by 2565
Abstract
Heavy metals like cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn), resulting from anthropogenic activities, are elements with high persistence in nature, being able to accumulate in soils, water, and plants with significant impact to human and animal health. This study investigates [...] Read more.
Heavy metals like cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn), resulting from anthropogenic activities, are elements with high persistence in nature, being able to accumulate in soils, water, and plants with significant impact to human and animal health. This study investigates the phytoremediation capacity of Silphium perfoliatum L. as a specific heavy metal hyperaccumulator and the effects of Cu, Zn, Cd, and Pb on some physiological and biochemical indices by growing plants under floating hydroponic systems in nutrient solutions under the presence of heavy metals. One-year-old plants of S. perfoliatum grown for 20 days in Hoagland solution with the addition of (ppm) Cu-400, Zn-1200, Cd-20, Pb-400, and Cu+Zn+Cd+Pb (400/1200/20/400) were investigated with respect to the control. The level of phytoremediation, manifested by the ability of heavy metal absorption and accumulation, was assessed. In addition, the impact of stress on the proline content, photosynthetic pigments, and enzymatic activity, as being key components of metabolism, was determined. The obtained results revealed a good absorption and selective accumulation capacity of S. perfoliatum plants for the studied heavy metals. Therefore, Cu and Zn mainly accumulate in the stems, Cd in the roots and stems, while Pb mainly accumulates in the roots. The proline tended to increase under stress conditions, depending on the pollutant and its concentration, with higher values in leaves and stems under the associated stress of the four metals and individually for Pb and Cd. In addition, the enzymatic activity recorded different values depending on the plant organ, its type, and the metal concentration on its substrate. The obtained results indicate a strong correlation between the metal type, concentration, and the mechanisms of absorption/accumulation of S. perfoliatum species, as well as the specific reactions of metabolic response. Full article
(This article belongs to the Special Issue Phytomonitoring and Phytoremediation of Environmental Pollutants)
Show Figures

Graphical abstract

12 pages, 1271 KiB  
Article
Green Extracts and UPLC-TQS-MS/MS Profiling of Flavonoids from Mexican Oregano (Lippia graveolens) Using Natural Deep Eutectic Solvents/Ultrasound-Assisted and Supercritical Fluids
by Manuel de Jesús Bernal-Millán, Miriam del Carmen Carrasco-Portugal, J. Basilio Heredia, Pedro de Jesús Bastidas-Bastidas, Erick Paul Gutiérrez-Grijalva, Josefina León-Félix and Miguel Ángel Angulo-Escalante
Plants 2023, 12(8), 1692; https://doi.org/10.3390/plants12081692 - 18 Apr 2023
Cited by 7 | Viewed by 1628
Abstract
Mexican oregano (Lippia graveolens) is an important source of bioactive compounds, such as flavonoids. These have presented different therapeutic properties, including antioxidant and anti-inflammatory; however, their functionality is related to the quantity and type of compounds, and these characteristics depend on [...] Read more.
Mexican oregano (Lippia graveolens) is an important source of bioactive compounds, such as flavonoids. These have presented different therapeutic properties, including antioxidant and anti-inflammatory; however, their functionality is related to the quantity and type of compounds, and these characteristics depend on the extraction method used. This study aimed to compare different extraction procedures to identify and quantify flavonoids from oregano (Lippia graveolens). Emerging and conventional technologies include maceration with methanol and water, and ultrasound-assisted extraction (UAE) using deep eutectic solvents (DES) such as choline chloride-ethylene glycol, choline chloride-glycerol, and choline chloride-lactic acid. Supercritical fluid extraction using CO2 as a solvent was also studied. Six different extracts were obtained and the total reducing capacity, total flavonoid content, and antioxidant capacity by ABTS•+, DPPH, FRAP, and ORAC were evaluated. In addition, flavonoids were identified and quantified by UPLC-TQS-MS/MS. Results showed that UAE-DES had the best extraction effect and antioxidant capacity using colorimetric methods. However, maceration-methanol was superior in compound content, and highlighting naringenin and phloridzin were the major compounds. In addition, this extract was microencapsulated by spray drying, which provided a protection feature of their antioxidant potential. Oregano extracts are rich in flavonoids and the microcapsules present promising results for future research. Full article
(This article belongs to the Special Issue Bioactive Compounds in Plants: Store House of Modern Drugs)
Show Figures

Graphical abstract

17 pages, 3394 KiB  
Article
Colletotrichum Species Associated with Anthracnose in Salix babylonica in China
by Mengyu Zhang, Dewei Li, Yuanzhi Si, Yue Ju and Lihua Zhu
Plants 2023, 12(8), 1679; https://doi.org/10.3390/plants12081679 - 17 Apr 2023
Cited by 6 | Viewed by 2079
Abstract
Salix babylonica L. is a popular ornamental tree species in China and widely cultivated in Asia, Europe, and North America. Anthracnose in S. babylonica poses a serious threat to its growth and reduces its medicinal properties. In 2021, a total of 55 Colletotrichum [...] Read more.
Salix babylonica L. is a popular ornamental tree species in China and widely cultivated in Asia, Europe, and North America. Anthracnose in S. babylonica poses a serious threat to its growth and reduces its medicinal properties. In 2021, a total of 55 Colletotrichum isolates were isolated from symptomatic leaves in three provinces in China. Phylogenetic analyses using six loci (ITS, ACT, CHS-1, TUB2, CAL, and GAPDH) and a morphological characterization of the 55 isolates showed that they belonged to four species of Colletotrichum, including C. aenigma, C. fructicola, C. gloeosporioides s.s., and C. siamense. Among them, C. siamense was the dominant species, and C. gloeosporioides s.s. was occasionally discovered from the host tissues. Pathogenicity tests revealed that all the isolates of the aforementioned species were pathogenic to the host, and there were significant differences in pathogenicity or virulence among these isolates. The information on the diversity of Colletotrichum spp. that causes S. babylonica anthracnose in China is new. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

18 pages, 1324 KiB  
Review
LED Lighting to Produce High-Quality Ornamental Plants
by Alice Trivellini, Stefania Toscano, Daniela Romano and Antonio Ferrante
Plants 2023, 12(8), 1667; https://doi.org/10.3390/plants12081667 - 16 Apr 2023
Cited by 10 | Viewed by 4161
Abstract
The flexibility of LED technology, in terms of energy efficiency, robustness, compactness, long lifetime, and low heat emission, as well as its applications as a sole source or supplemental lighting system, offers interesting potential, giving the ornamental industry an edge over traditional production [...] Read more.
The flexibility of LED technology, in terms of energy efficiency, robustness, compactness, long lifetime, and low heat emission, as well as its applications as a sole source or supplemental lighting system, offers interesting potential, giving the ornamental industry an edge over traditional production practices. Light is a fundamental environmental factor that provides energy for plants through photosynthesis, but it also acts as a signal and coordinates multifaceted plant-growth and development processes. With manipulations of light quality affecting specific plant traits such as flowering, plant architecture, and pigmentation, the focus has been placed on the ability to precisely manage the light growing environment, proving to be an effective tool to produce tailored plants according to market request. Applying lighting technology grants growers several productive advantages, such as planned production (early flowering, continuous production, and predictable yield), improved plant habitus (rooting and height), regulated leaf and flower color, and overall improved quality attributes of commodities. Potential LED benefits to the floriculture industry are not limited to the aesthetic and economic value of the product obtained; LED technology also represents a solid, sustainable option for reducing agrochemical (plant-growth regulators and pesticides) and energy inputs (power energy). Full article
(This article belongs to the Special Issue The Effects of LED Light Spectra and Intensities on Plant Growth 2.0)
Show Figures

Figure 1

14 pages, 2768 KiB  
Article
Variations in Total Protein and Amino Acids in the Sequenced Sorghum Mutant Library
by Adil Khan, Nasir Ali Khan, Scott R. Bean, Junping Chen, Zhanguo Xin and Yinping Jiao
Plants 2023, 12(8), 1662; https://doi.org/10.3390/plants12081662 - 15 Apr 2023
Cited by 5 | Viewed by 1666
Abstract
Sorghum (Sorghum bicolor) is the fifth most important cereal crop worldwide; however, its utilization in food products can be limited due to reduced nutritional quality related to amino acid composition and protein digestibility in cooked products. Low essential amino acid levels [...] Read more.
Sorghum (Sorghum bicolor) is the fifth most important cereal crop worldwide; however, its utilization in food products can be limited due to reduced nutritional quality related to amino acid composition and protein digestibility in cooked products. Low essential amino acid levels and digestibility are influenced by the composition of the sorghum seed storage proteins, kafirins. In this study, we report a core collection of 206 sorghum mutant lines with altered seed storage proteins. Wet lab chemistry analysis was conducted to evaluate the total protein content and 23 amino acids, including 19 protein-bound and 4 non-protein amino acids. We identified mutant lines with diverse compositions of essential and non-essential amino acids. The highest total protein content in these lines was almost double that of the wild-type (BTx623). The mutants identified in this study can be used as a genetic resource to improve the sorghum grain quality and determine the molecular mechanisms underlying the biosynthesis of storage protein and starch in sorghum seeds. Full article
Show Figures

Figure 1

14 pages, 2696 KiB  
Article
SDG26 Is Involved in Trichome Control in Arabidopsis thaliana: Affecting Phytohormones and Adjusting Accumulation of H3K27me3 on Genes Related to Trichome Growth and Development
by Jing Zeng, Lanpeng Yang, Minyu Tian, Xiang Xie, Chunlin Liu and Ying Ruan
Plants 2023, 12(8), 1651; https://doi.org/10.3390/plants12081651 - 14 Apr 2023
Cited by 4 | Viewed by 1764
Abstract
Plant trichomes formed by specialized epidermal cells play a role in protecting plants from biotic and abiotic stresses and can also influence the economic and ornamental value of plant products. Therefore, further studies on the molecular mechanisms of plant trichome growth and development [...] Read more.
Plant trichomes formed by specialized epidermal cells play a role in protecting plants from biotic and abiotic stresses and can also influence the economic and ornamental value of plant products. Therefore, further studies on the molecular mechanisms of plant trichome growth and development are important for understanding trichome formation and agricultural production. SET Domain Group 26 (SDG26) is a histone lysine methyltransferase. Currently, the molecular mechanism by which SDG26 regulates the growth and development of Arabidopsis leaf trichomes is still unclear. We found that the mutant of Arabidopsis (sdg26) possessed more trichomes on its rosette leaves compared to the wild type (Col-0), and the trichome density per unit area of sdg26 is significantly higher than that of Col-0. The content of cytokinins and jasmonic acid was higher in sdg26 than in Col-0, while the content of salicylic acid was lower in sdg26 than in Col-0, which is conducive to trichome growth. By measuring the expression levels of trichome-related genes, we found that the expression of genes that positively regulate trichome growth and development were up-regulated, while the negatively regulated genes were down-regulated in sdg26. Through chromatin immunoprecipitation sequencing (ChIP-seq) analysis, we found that SDG26 can directly regulate the expression of genes related to trichome growth and development such as ZFP1, ZFP5, ZFP6, GL3, MYB23, MYC1, TT8, GL1, GIS2, IPT1, IPT3, and IPT5 by increasing the accumulation of H3K27me3 on these genes, which further affects the growth and development of trichomes. This study reveals the mechanism by which SDG26 affects the growth and development of trichomes through histone methylation. The current study provides a theoretical basis for studying the molecular mechanism of histone methylation in regulating leaf trichome growth and development and perhaps guiding the development of new crop varieties. Full article
Show Figures

Figure 1

29 pages, 511 KiB  
Review
Phytoremediation as an Effective Remedy for Removing Trace Elements from Ecosystems
by Agnieszka Mocek-Płóciniak, Justyna Mencel, Wiktor Zakrzewski and Szymon Roszkowski
Plants 2023, 12(8), 1653; https://doi.org/10.3390/plants12081653 - 14 Apr 2023
Cited by 20 | Viewed by 6196
Abstract
The pollution of soil by trace elements is a global problem. Conventional methods of soil remediation are often inapplicable, so it is necessary to search intensively for innovative and environment-friendly techniques for cleaning up ecosystems, such as phytoremediation. Basic research methods, their strengths [...] Read more.
The pollution of soil by trace elements is a global problem. Conventional methods of soil remediation are often inapplicable, so it is necessary to search intensively for innovative and environment-friendly techniques for cleaning up ecosystems, such as phytoremediation. Basic research methods, their strengths and weaknesses, and the effects of microorganisms on metallophytes and plant endophytes resistant to trace elements (TEs) were summarised and described in this manuscript. Prospectively, bio-combined phytoremediation with microorganisms appears to be an ideal, economically viable and environmentally sound solution. The novelty of the work is the description of the potential of “green roofs” to contribute to the capture and accumulation of many metal-bearing and suspended dust and other toxic compounds resulting from anthropopressure. Attention was drawn to the great potential of using phytoremediation on less contaminated soils located along traffic routes and urban parks and green spaces. It also focused on the supportive treatments for phytoremediation using genetic engineering, sorbents, phytohormones, microbiota, microalgae or nanoparticles and highlighted the important role of energy crops in phytoremediation. Perceptions of phytoremediation on different continents are also presented, and new international perspectives are presented. Further development of phytoremediation requires much more funding and increased interdisciplinary research in this direction. Full article
(This article belongs to the Special Issue Phytoremediation and Plant Morphophysiology in Contaminated Areas)
24 pages, 4921 KiB  
Article
Transcriptomics and Metabolomics Analysis Provides Insight into Leaf Color and Photosynthesis Variation of the Yellow-Green Leaf Mutant of Hami Melon (Cucumis melo L.)
by Hongwei Han, Yuan Zhou, Huifang Liu, Xianjun Chen, Qiang Wang, Hongmei Zhuang, Xiaoxia Sun, Qihua Ling, Huijun Zhang, Baike Wang, Juan Wang, Yaping Tang, Hao Wang and Huiying Liu
Plants 2023, 12(8), 1623; https://doi.org/10.3390/plants12081623 - 12 Apr 2023
Cited by 4 | Viewed by 2057
Abstract
Leaf color mutants are ideal materials for studying the regulatory mechanism of chloroplast development and photosynthesis. We isolated a cucumis melo spontaneous mutant (MT), which showed yellow-green leaf phenotype in the whole growing period and could be inherited stably. We compared its leaves [...] Read more.
Leaf color mutants are ideal materials for studying the regulatory mechanism of chloroplast development and photosynthesis. We isolated a cucumis melo spontaneous mutant (MT), which showed yellow-green leaf phenotype in the whole growing period and could be inherited stably. We compared its leaves with the wild type (WT) in terms of cytology, physiology, transcriptome and metabolism. The results showed that the thylakoid grana lamellae of MT were loosely arranged and fewer in number than WT. Physiological experiments also showed that MT had less chlorophyll content and more accumulation of reactive oxygen species (ROS) than WT. Furthermore, the activity of several key enzymes in C4 photosynthetic carbon assimilation pathway was more enhanced in MT than WT. Transcriptomic and metabolomic analyses showed that differential expression genes and differentially accumulated metabolites in MT were mainly co-enriched in the pathways related to photosystem-antenna proteins, central carbon metabolism, glutathione metabolism, phenylpropanoid biosynthesis and flavonoid metabolism. We also analyzed several key proteins in photosynthesis and chloroplast transport by Western blot. In summary, the results may provide a new insight into the understanding of how plants respond to the impaired photosynthesis by regulating chloroplast development and photosynthetic carbon assimilation pathways. Full article
Show Figures

Figure 1

20 pages, 1956 KiB  
Article
Evaluation of the Fruit Quality and Phytochemical Compounds in Peach and Nectarine Cultivars
by Raffaella Petruccelli, Alessandra Bonetti, Leonardo Ciaccheri, Francesca Ieri, Tommaso Ganino and Cecilia Faraloni
Plants 2023, 12(8), 1618; https://doi.org/10.3390/plants12081618 - 12 Apr 2023
Cited by 12 | Viewed by 2761
Abstract
Qualitative traits and chemical properties of 32 peach cultivars (yellow flesh and white flesh fruits) and 52 nectarine cultivars (yellow flesh and white flesh fruits) of different pomological characteristics is performed, and the correlation between cultivars and chemical characteristics is analyzed. Yellow nectarines [...] Read more.
Qualitative traits and chemical properties of 32 peach cultivars (yellow flesh and white flesh fruits) and 52 nectarine cultivars (yellow flesh and white flesh fruits) of different pomological characteristics is performed, and the correlation between cultivars and chemical characteristics is analyzed. Yellow nectarines have a higher variability in soluble solids concentration (SSC) and titratable acidity (TA) values. Evaluation of color parameters (a*, b*, L*) shows a significant interaction between pulp color (white vs. yellow) and types (peaches vs. nectarines) of fruit. The difference between yellow and white fruits is stronger in nectarines than in peaches. Sucrose is the main sugar detected in peach fruits, with a percentage content of 78.37% and 76.70% of the total sugar content in yellow and white peaches, respectively, and 78.29% and 78.12% in yellow and white nectarines, respectively. Variability is found among cultivars for the chemical compounds analyzed. The yellow flesh has higher amounts of total carotenoids and TPC, while white-flesh fruits present an average antioxidant value higher than yellow-flesh fruits. No significant correlation is found for polyphenol content and DPPH, while an interaction (p < 0.005) between neochlorogenic acid content and peaches and nectarines is evidenced, with a neochlorogenic acid content higher in nectarines than in peaches. Full article
(This article belongs to the Special Issue Antioxidant Activity of Plant Extracts)
Show Figures

Figure 1

11 pages, 7735 KiB  
Article
Effects of OsRCA Overexpression on Rubisco Activation State and Photosynthesis in Maize
by Yujiao Feng, Hao Wu, Huanhuan Liu, Yonghui He and Zhitong Yin
Plants 2023, 12(8), 1614; https://doi.org/10.3390/plants12081614 - 11 Apr 2023
Cited by 4 | Viewed by 1718
Abstract
Ribulose–1,5–bisphosphate carboxylase/oxygenase (Rubisco) is the rate–limiting enzyme for photosynthesis. Rubisco activase (RCA) can regulate the Rubisco activation state, influencing Rubisco activity and photosynthetic rate. We obtained transgenic maize plants that overproduced rice RCA (OsRCAOE) and evaluated photosynthesis in these plants [...] Read more.
Ribulose–1,5–bisphosphate carboxylase/oxygenase (Rubisco) is the rate–limiting enzyme for photosynthesis. Rubisco activase (RCA) can regulate the Rubisco activation state, influencing Rubisco activity and photosynthetic rate. We obtained transgenic maize plants that overproduced rice RCA (OsRCAOE) and evaluated photosynthesis in these plants by measuring gas exchange, energy conversion efficiencies in photosystem (PS) I and PSII, and Rubisco activity and activation state. The OsRCAOE lines showed significantly higher initial Rubisco activity and activation state, net photosynthetic rate, and PSII photochemical quantum yield than wild–type plants. These results suggest that OsRCA overexpression can promote maize photosynthesis by increasing the Rubisco activation state. Full article
Show Figures

Figure 1

17 pages, 6011 KiB  
Article
Active vs. Passive Thermal Imaging for Helping the Early Detection of Soil-Borne Rot Diseases on Wild Rocket [Diplotaxis tenuifolia (L.) D.C.]
by Massimo Rippa, Andrea Pasqualini, Rossella Curcio, Pasquale Mormile and Catello Pane
Plants 2023, 12(8), 1615; https://doi.org/10.3390/plants12081615 - 11 Apr 2023
Cited by 5 | Viewed by 1680
Abstract
Cultivation of wild rocket [Diplotaxis tenuifolia (L.) D.C.] as a baby-leaf vegetable for the high-convenience food chain is constantly growing due to its nutritional and taste qualities. As is well known, these crops are particularly exposed to soil-borne fungal diseases and need [...] Read more.
Cultivation of wild rocket [Diplotaxis tenuifolia (L.) D.C.] as a baby-leaf vegetable for the high-convenience food chain is constantly growing due to its nutritional and taste qualities. As is well known, these crops are particularly exposed to soil-borne fungal diseases and need to be effectively protected. At present, wild rocket disease management is performed by using permitted synthetic fungicides or through the application of agro-ecological and biological methods that must be optimized. In this regard, the implementation of innovative digital-based technologies, such as infrared thermography (IT), as supporting systems to decision-making processes is welcome. In this work, leaves belonging to wild rocket plants inoculated with the soil-borne pathogens Rhizoctonia solani Kühn and Sclerotinia sclerotiorum (Lib.) de Bary were analyzed and monitored by both active and passive thermographic methods and compared with visual detection. A comparison between the thermal analysis carried out in both medium (MWIR)- and long (LWIR)-wave infrared was made and discussed. The results achieved highlight how the monitoring based on the use of IT is promising for carrying out an early detection of the rot diseases induced by the investigated pathogens, allowing their detection in 3–6 days before the canopy is completely wilted. Active thermal imaging has the potential to detect early soil-borne rotting diseases. Full article
Show Figures

Figure 1

16 pages, 1806 KiB  
Article
Effects of Exogenous Sodium Nitroprusside Spraying on Physiological Characteristics of Soybean Leaves at the Flowering Stage under Drought Stress
by Zhipeng Qu, Yumei Tian, Xinyu Zhou, Xiaomei Li, Qi Zhou, Xiyue Wang and Shoukun Dong
Plants 2023, 12(8), 1598; https://doi.org/10.3390/plants12081598 - 10 Apr 2023
Cited by 4 | Viewed by 1429
Abstract
Nitric oxide (NO) plays a significant role in plant drought resistance. However, the effects of the exogenous application of NO to crops under drought stress vary within and among species. In this study, we explored the influence of exogenous sodium nitroprusside (SNP) on [...] Read more.
Nitric oxide (NO) plays a significant role in plant drought resistance. However, the effects of the exogenous application of NO to crops under drought stress vary within and among species. In this study, we explored the influence of exogenous sodium nitroprusside (SNP) on the drought resistance of soybean leaves in the full flowering stage using two varieties: drought-tolerant HN44 and non-drought-tolerant HN65. Spraying SNP on soybean leaves at the full flowering period under drought stress improved the NO content in soybean leaves. The activities of nitrite reductase (NiR) and nitrate reductase (NR) in leaves were affected by NO inhibition. The activity of antioxidant enzymes in leaves increased with the extension of SNP application time. Contents of osmomodulatory substances, including proline (Pro), soluble sugar (SS), and soluble protein (SP) increased gradually with the extension of SNP application time. The malondialdehyde (MDA) content decreased as the NO content increased, thus reducing membrane system damage. Overall, spraying SNP reduced damage and improved the ability of soybean to cope with drought. This study explored the physiological changes of SNP soybean under drought stress and provided theoretical basis for improving drought-resistant cultivation of soybean. Full article
(This article belongs to the Special Issue Regulation of Plant Responses to Heat and Drought Stress)
Show Figures

Figure 1

16 pages, 3595 KiB  
Article
Antitumor and Antioxidant Activities of In Vitro Cultivated and Wild-Growing Clinopodium vulgare L. Plants
by Maria Petrova, Lyudmila Dimitrova, Margarita Dimitrova, Petko Denev, Desislava Teneva, Ani Georgieva, Polina Petkova-Kirova, Maria Lazarova and Krasimira Tasheva
Plants 2023, 12(8), 1591; https://doi.org/10.3390/plants12081591 - 9 Apr 2023
Cited by 5 | Viewed by 2330
Abstract
Clinopodium vulgare L. is a valuable medicinal plant used for its anti-inflammatory, antibacterial and wound-healing properties. The present study describes an efficient protocol for the micropropagation of C. vulgare and compares, for the first time, the chemical content and composition and antitumor and [...] Read more.
Clinopodium vulgare L. is a valuable medicinal plant used for its anti-inflammatory, antibacterial and wound-healing properties. The present study describes an efficient protocol for the micropropagation of C. vulgare and compares, for the first time, the chemical content and composition and antitumor and antioxidant activities of extracts from in vitro cultivated and wild-growing plants. The best nutrient medium was found to be Murashige and Skoog (MS) supplemented with 1 mg/L BAP and 0.1 IBA mg/L, yielding on average 6.9 shoots per nodal segment. Flower aqueous extracts from in vitro plants had higher total polyphenol content (29,927.6 ± 592.1 mg/100 g vs. 27,292.8 ± 85.3 mg/100 g) and ORAC antioxidant activity (7281.3 ± 82.9 µmol TE/g vs. 7246.3 ± 62.4 µmol TE/g) compared to the flowers of wild plants. HPLC detected qualitative and quantitative differences in phenolic constituents between the in vitro cultivated and wild-growing plants’ extracts. Rosmarinic acid was the major phenolic constituent, being accumulated mainly in leaves, while neochlorogenic acid was a major compound in the flowers of cultivated plants. Catechin was found only in cultivated plants, but not in wild plants or cultivated plants’ stems. Aqueous extracts of both cultivated and wild plants showed significant in vitro antitumor activity against human HeLa (cervical adenocarcinoma), HT-29 (colorectal adenocarcinoma) and MCF-7 (breast cancer) cell lines. The best cytotoxic activity against most of the cancer cell lines, combined with the least detrimental effects on a non-tumor human keratinocyte cell line (HaCaT), was shown by the leaf (250 µg/mL) and flower (500 µg/mL) extracts of cultivated plants, making cultivated plants a valuable source of bioactive compounds and a suitable candidate for anticancer therapy. Full article
(This article belongs to the Special Issue Production of Secondary Metabolites In Vitro)
Show Figures

Figure 1

25 pages, 8577 KiB  
Article
Morphological and Physiological Indicators and Transcriptome Analyses Reveal the Mechanism of Selenium Multilevel Mitigation of Cadmium Damage in Brassica juncea
by Linling Li, Shiyan Wang, Shuai Wu, Shen Rao, Li Li, Shuiyuan Cheng and Hua Cheng
Plants 2023, 12(8), 1583; https://doi.org/10.3390/plants12081583 - 7 Apr 2023
Cited by 4 | Viewed by 1751
Abstract
Cadmium (Cd) is a common agricultural soil pollutant, which does serious harm to the environment and the human body. In this study, Brassica juncea was treated with different concentrations of CdCl2 and Na2SeO3. Then, physiological indexes and transcriptome [...] Read more.
Cadmium (Cd) is a common agricultural soil pollutant, which does serious harm to the environment and the human body. In this study, Brassica juncea was treated with different concentrations of CdCl2 and Na2SeO3. Then, physiological indexes and transcriptome were measured to reveal the mechanisms by which Se reduces the inhibition and toxicity of Cd in B. juncea. The results showed that Se alleviated the inhibitive Cd effects on seedling biomass, root length, and chlorophyll, and promoted the adsorption of Cd by pectin and lignin in the root cell wall (CW). Se also alleviated the oxidative stress induced by Cd, and reduced the content of MDA in cells. As a result, SeCys and SeMet alleviated the transport of Cd to the shoots. Transcriptome data showed that the bivalent cation transporter MPP and ABCC subfamily participated in the separation of Cd in vacuoles, CAL1 was related to the chelation of Cd in the cytoplasm of cells, and ZIP transporter 4 reduced the transport of Cd to the shoots. These results indicated that Se alleviated the damage of Cd in plants and decreased its transport to the shoots by improving the antioxidant system, enhancing the ability of the CW to adsorb Cd, reducing the activity of Cd transporters, and chelating Cd. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

16 pages, 2432 KiB  
Article
Essential Oil of Lavandula officinalis: Chemical Composition and Antibacterial Activities
by Khaoula Diass, Mohammed Merzouki, Kaoutar Elfazazi, Hanane Azzouzi, Allal Challioui, Khalil Azzaoui, Belkheir Hammouti, Rachid Touzani, Flore Depeint, Alicia Ayerdi Gotor and Larbi Rhazi
Plants 2023, 12(7), 1571; https://doi.org/10.3390/plants12071571 - 6 Apr 2023
Cited by 12 | Viewed by 4622
Abstract
The purpose of this study was to determine the chemical composition of the essential oil of Lavandula officinalis from Morocco using the GC-MS technique and assess the antibacterial effects against seven pathogenic bacteria strains isolated from the food origins of Salmonella infantis, [...] Read more.
The purpose of this study was to determine the chemical composition of the essential oil of Lavandula officinalis from Morocco using the GC-MS technique and assess the antibacterial effects against seven pathogenic bacteria strains isolated from the food origins of Salmonella infantis, Salmonella kentucky, Salmonella newport, three serotypes of Escherichia coli (O114H8K11, O127K88ac, O127H40K11) and Klebsiella. Tests of sensitivity were carried out on a solid surface using the Disc Diffusion Method. Results showed that E. coli and S.newport were sensitive to Lavandula officinalis essential oil. Minimum inhibitory concentrations (MIC) were determined using the method of agar dilution. The antibacterial results showed that four strains (three serotypes of E. coli, and S. newport) were remarkedly sensitive to Lavandula officinalis essential oil, giving MIC values of 88.7 µg/mL and 177.5 µg/mL. The molecular docking of the main oil products with the E. coli target protein 1VLY, showed that eucalyptol and linalyl acetate bind efficiently with the active site of the target protein. In particular, eucalyptol showed a higher activity than gentamicin used as positive control with a binding energy of −5.72 kcal/mol and −5.55 kcal/mol, respectively. Full article
(This article belongs to the Special Issue Antimicrobial Activity of Natural Compounds)
Show Figures

Figure 1

17 pages, 1082 KiB  
Review
Shade-Induced Leaf Senescence in Plants
by Zhuang Li, Tao Zhao, Jun Liu, Hongyu Li and Bin Liu
Plants 2023, 12(7), 1550; https://doi.org/10.3390/plants12071550 - 4 Apr 2023
Cited by 6 | Viewed by 2738
Abstract
Leaf senescence is a vital developmental process that involves the orderly breakdown of macromolecules to transfer nutrients from mature leaves to emerging and reproductive organs. This process is essential for a plant’s overall fitness. Multiple internal and external factors, such as leaf age, [...] Read more.
Leaf senescence is a vital developmental process that involves the orderly breakdown of macromolecules to transfer nutrients from mature leaves to emerging and reproductive organs. This process is essential for a plant’s overall fitness. Multiple internal and external factors, such as leaf age, plant hormones, stresses, and light environment, regulate the onset and progression of leaf senescence. When plants grow close to each other or are shaded, it results in significant alterations in light quantity and quality, such as a decrease in photosynthetically active radiation (PAR), a drop in red/far-red light ratios, and a reduction in blue light fluence rate, which triggers premature leaf senescence. Recently, studies have identified various components involved in light, phytohormone, and other signaling pathways that regulate the leaf senescence process in response to shade. This review summarizes the current knowledge on the molecular mechanisms that control leaf senescence induced by shade. Full article
Show Figures

Figure 1

15 pages, 4575 KiB  
Article
Plant Growth and Soil Water Content Changes under Different Inter-Row Soil Management Methods in a Sloping Vineyard
by Ágota Horel and Tibor Zsigmond
Plants 2023, 12(7), 1549; https://doi.org/10.3390/plants12071549 - 4 Apr 2023
Cited by 6 | Viewed by 2984
Abstract
The main objective of this study was to investigate soil–plant–water interactions based on field measurements of plant reflectance and soil water content (SWC) in different inter-row managed sloping vineyards. The following three different soil management applications were studied: tilled (T), cover crops (CC), [...] Read more.
The main objective of this study was to investigate soil–plant–water interactions based on field measurements of plant reflectance and soil water content (SWC) in different inter-row managed sloping vineyards. The following three different soil management applications were studied: tilled (T), cover crops (CC), and permanent grass (NT) inter-rows. We measured SWCs within the row and between rows of vines. Each investigated row utilized 7 to 10 measurement points along the slope. Topsoil SWC and temperature, leaf NDVI and chlorophyll concentrations and leaf area index (LAI) were measured every two weeks over the vegetation period (May to November) using handheld instruments. We found that management method and slope position can significantly affect the soil’s physical and chemical properties, such as clay or soil organic carbon contents. Cover crops in the inter-row significantly reduced average SWC. The in-row average topsoil SWCs and temperatures were lower in all study sites compared to the values measured in between rows. Significantly higher SWCs were observed for the upper points compared to the lower ones for CC and T treatments (58.0 and 60.9%, respectively), while the opposite was noted for NT. Grassed inter-row grapevines had significantly lower leaf chlorophyll content than the other inter-row managed sites (p < 0.001). The highest average leaf chlorophyll contents were observed in the T vineyard (16.89 CCI). Based on slope positions, the most distinguishable difference was observed for the CC: 27.7% higher chlorophyll values were observed at the top of the slope compared to the grapevine leaves at the bottom of the slope (p < 0.01). The leaf NDVI values were not as profoundly influenced by slope position in the vineyard as the chlorophyll values were. For overall LAI values, the T treatment had significantly lower values compared to NT and CC (p < 0.001). Moderate correlations were observed between NDVI and LAI and soil nitrogen and carbon content. In general, we found that both inter-row management and slope position can significantly influence soil parameters and affect plant growth, and consequently can accelerate plant stress under sub-optimal environmental conditions such as prolonged drought. Full article
(This article belongs to the Special Issue Soil-Plant-Water System and Interactions)
Show Figures

Figure 1

14 pages, 7530 KiB  
Article
Fingerprinting of Plum (Prunus domestica) Genotypes in Lithuania Using SSR Markers
by Raminta Antanynienė, Jūratė Bronė Šikšnianienė, Vidmantas Stanys and Birutė Frercks
Plants 2023, 12(7), 1538; https://doi.org/10.3390/plants12071538 - 3 Apr 2023
Cited by 4 | Viewed by 1429
Abstract
This study’s aim was to evaluate the genetic diversity of European plum (Prunus domestica) cultivars and hybrids in Lithuania using SSR markers. In total, 107 plum genotypes (including 68 European plum cultivars and 39 hybrids) from the genetic resources collection of [...] Read more.
This study’s aim was to evaluate the genetic diversity of European plum (Prunus domestica) cultivars and hybrids in Lithuania using SSR markers. In total, 107 plum genotypes (including 68 European plum cultivars and 39 hybrids) from the genetic resources collection of the Institute of Horticulture of the Lithuanian Research Centre for Agriculture and Forestry (LRCAF IH) were evaluated using nine microsatellite markers (SSRs) previously published and suggested by the European Cooperative Programme for Plant Genetic Resources (ECPGR). Up to six alleles per locus with each primer pair were generated for some genotypes due to the hexaploidy of plums. The number of alleles in each primer ranged from 18 to 30, with an average of 24.33. The highest number of alleles was generated with the PacA33 primer pair (30). The most informative primer, according to the PIC value, was BPPCT007. Sixty-two unique alleles (representing 39.5% of all polymorphic alleles) have been detected in the plum germplasm developed in Lithuania. According to UPGMA cluster analysis, 58 European plum genotypes were separated into eight groups without any relation to fruit color or shape. By genetic diversity (UPGMA) and structure (Bayesian) analysis, European plum hybrids were grouped into clusters according to their pedigree. Full article
Show Figures

Figure 1

17 pages, 9431 KiB  
Article
Bioinformatics and Expression Analysis of the Chitinase Genes in Strawberry (Fragaria vesca) and Functional Study of FvChi-14
by Tiannan He, Jianshuai Fan, Gaozhen Jiao, Yuhan Liu, Qimeng Zhang, Ning Luo, Bilal Ahmad, Qingxi Chen and Zhifeng Wen
Plants 2023, 12(7), 1543; https://doi.org/10.3390/plants12071543 - 3 Apr 2023
Cited by 4 | Viewed by 1981
Abstract
Plant chitinases (EC 3.2.1.14) are pathogenesis-related (PR) proteins and are well studied in many plant species. However, little is known about the genomic organization and expression of chitinase genes in strawberries (Fragaria vesca). Here, 23 FvChi genes were identified in the [...] Read more.
Plant chitinases (EC 3.2.1.14) are pathogenesis-related (PR) proteins and are well studied in many plant species. However, little is known about the genomic organization and expression of chitinase genes in strawberries (Fragaria vesca). Here, 23 FvChi genes were identified in the genome of strawberry (F. vesca) and divided into GH18 and GH19 subfamilies based on phylogenetic relationships. A detailed bioinformatics analysis of the FvChi genes was performed, including gene physicochemical properties, chromosomal location, exon–intron distribution, domain arrangement, and subcellular localization. Twenty-two FvChi genes showed upregulation after Colletotrichum gloeosporioides infection. Following the exogenous application of SA, FvChi-3, 4, and 5 showed significant changes in expression. The ectopic expression of FvChi-14 in Arabidopsis thaliana increased resistance to C. higginsianum via controlling the SA and JA signaling pathway genes (AtPR1, AtICS1, AtPDF1.2, and AtLOX3). The FvChi-14 protein location was predicted in the cell wall or extracellular matrix. We speculate that FvChi-14 is involved in disease resistance by regulating the SA and JA signaling pathways. The findings of this study provide a theoretical reference for the functional studies of FvChi genes and new candidates for strawberry stress resistance breeding programs. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

15 pages, 2562 KiB  
Article
Micropropagation of Endemic Endangered Taxa of the Italian Flora: Adenostyles alpina subsp. macrocephala (Asteraceae), as a Case Study
by Valeria Gianguzzi, Giulio Barone, Emilio Di Gristina, Francesco Sottile and Gianniantonio Domina
Plants 2023, 12(7), 1530; https://doi.org/10.3390/plants12071530 - 1 Apr 2023
Cited by 4 | Viewed by 1566
Abstract
The conservation of endangered, rare, and endemic plant species is based on in situ and ex situ conservation strategies. When in situ conservation alone is not sufficient to guarantee the survival of the species, ex situ techniques are adopted in support. This study [...] Read more.
The conservation of endangered, rare, and endemic plant species is based on in situ and ex situ conservation strategies. When in situ conservation alone is not sufficient to guarantee the survival of the species, ex situ techniques are adopted in support. This study aimed to develop an efficient micropropagation protocol for Adenostyles by evaluating the effect of different plant growth regulators on leaf explants. Adenostyles alpina subsp. macrocephala (Asterace) is a perennial herbaceous plant endemic to Calabria (Southern Italy). The genus Adenostyles includes three species confined to the mountains of the Mediterranean and southern Europe. For callus induction, media supplemented with different concentrations of Benzylaminopurine (BAP) (0.5, 1, 2, and 3 mg L−1), Naphthaleneacetic Acid (NAA) (1 mg L−1), and 2,4-Dichlorophenoxyacetic Acid (2,4-D) (1 mg L−1) were tested. Shoot regeneration and proliferation were obtained in media supplemented with BAP (1, 2, and 3 mg L−1) and NAA (1 mg L−1). Root induction was obtained in media supplemented with IBA (0.25, 0.50, and 1 mg L−1) and NAA (0.25, 0.50, and 1 mg L−1). Statistically significant differences in callus induction and shoot regeneration were observed between the various media tested. The medium containing Murashige and Skoog (MS) supplemented with 3 mg L−1 of BAP and 1 mg L−1 of NAA showed the highest percentage of callus induction and increased shoot regeneration. The regenerated shoots showed more effective root induction in the hormone-free MS medium and in the presence of Indole-3-Butyric Acid (IBA) at concentrations of 0.25, 0.50, and 1 mg L−1. These results can be used as a basis for the preparation of a micropropagation protocol for different taxa of Adenostyles, as well as other species of Asteraceae specialized to the Mediterranean mountain habitat. Full article
(This article belongs to the Special Issue Micropropagation and Cryopreservation of Plants)
Show Figures

Figure 1

45 pages, 2749 KiB  
Review
Physicochemical, Nutritional, and Medicinal Properties of Opuntia ficus-indica (L.) Mill. and Its Main Agro-Industrial Use: A Review
by Mariana Martins, Maria H. Ribeiro and Cristina M. M. Almeida
Plants 2023, 12(7), 1512; https://doi.org/10.3390/plants12071512 - 30 Mar 2023
Cited by 16 | Viewed by 6836
Abstract
The cactus, Opuntia ficus-indica (L.) Mill. (OFI) belongs to the Cactaceae family, which contains about 130 genera and nearly 1600 species. This review aims to evaluate this plant from several perspectives, namely, botanic, physicochemical, nutritional, and medicinal properties, as well as agro-industrial use. [...] Read more.
The cactus, Opuntia ficus-indica (L.) Mill. (OFI) belongs to the Cactaceae family, which contains about 130 genera and nearly 1600 species. This review aims to evaluate this plant from several perspectives, namely, botanic, physicochemical, nutritional, and medicinal properties, as well as agro-industrial use. The botanical aspects and morphological characteristics of OFI enable genetic variability, ecological adaptation, and broad geographic distribution. Due to its physicochemical and nutritional composition, it has several medicinal properties appropriate (or suitable) for several industries, such as pharmaceutical, food, and cosmetics. Its fruit, the prickly pear (PP), has potential agro-industrial expansion through the application of different conservation and transformation methods, making it possible to obtain a variety of products. The PP is a source of several nutrients and is an effective system to produce varied foods, which have several advantages from a nutritional, sensory, economic, and shelf-life point of view. Full article
(This article belongs to the Special Issue Plant Nutrition Volume II)
Show Figures

Figure 1

23 pages, 4219 KiB  
Article
Physiological and Morphological Responses of Blackberry Seedlings to Different Nitrogen Forms
by Yongkang Duan, Haiyan Yang, Hao Yang, Zhiwen Wei, Jilu Che, Wenlong Wu, Lianfei Lyu and Weilin Li
Plants 2023, 12(7), 1480; https://doi.org/10.3390/plants12071480 - 28 Mar 2023
Cited by 9 | Viewed by 2650
Abstract
Blackberries are an emerging third-generation fruit that are popular in Europe, and specific nitrogen (N) supply is an important factor affecting their growth and development. To study the optimal N fertilizer for blackberry seedlings, no N (CK), nitrate (NO3)–N, ammonium [...] Read more.
Blackberries are an emerging third-generation fruit that are popular in Europe, and specific nitrogen (N) supply is an important factor affecting their growth and development. To study the optimal N fertilizer for blackberry seedlings, no N (CK), nitrate (NO3)–N, ammonium (NH4+)–N and urea were applied to one-year-old ‘Ningzhi 4’ blackberry plants at a key growth period (from May to August) to explore the effects of different N forms on the physiological characteristics. Correlation and principal component analysis were used to determine the relationships between various indexes. Ammonium (NH4+) or urea-fed plants had a better growth state, showed a greater plant height, biomass, SPAD values and enhanced antioxidant enzyme activities and photosynthesis. In addition, NH4+ was beneficial to the accumulation of sugars and amino acids in leaves and roots, and promoted the transport of auxin and cytokinin to leaves. NO3 significantly inhibited root growth and increased the contents of active oxygen, malondialdehyde and antioxidants in roots. Correlation and principal component analysis showed that growth and dry matter accumulation were closely related to the antioxidant system, photosynthetic characteristics, amino acids and hormone content. Our study provides a new idea for N regulation mechanism of blackberry and proposes a scientific fertilization strategy. Full article
(This article belongs to the Special Issue Role of Nitrogen in Plant Growth and Development)
Show Figures

Figure 1

13 pages, 2038 KiB  
Article
Conventional vs. Microwave-Assisted Hydrodistillation: Influence on the Chemistry of Sea Fennel Essential Oil and Its By-Products
by Olivera Politeo, Marijana Popović, Maja Veršić Bratinčević, Petra Koceić, Tonka Ninčević Runjić and Ivana Generalić Mekinić
Plants 2023, 12(7), 1466; https://doi.org/10.3390/plants12071466 - 27 Mar 2023
Cited by 10 | Viewed by 1469
Abstract
The main objectives of this study were to investigate the effects of the applied essential oil (EO) isolation method, conventional hydro-distillation (HD), and microwave-assisted hydro-distillation (MHD) on the chemical profile of sea fennel (Crithmum maritimum L.) essential oil and to investigate the [...] Read more.
The main objectives of this study were to investigate the effects of the applied essential oil (EO) isolation method, conventional hydro-distillation (HD), and microwave-assisted hydro-distillation (MHD) on the chemical profile of sea fennel (Crithmum maritimum L.) essential oil and to investigate the main constituents present in the liquid by-products of EOs isolation (hydrolate and residual wastewater). Headspace-solid phase microextraction (HS-SPME) was used to isolate hydrolate components, while gas chromatography coupled with mass spectrometry (GC-MS) was used to detect and analyse the chemical constituents of the essential oils and hydrolates. The phenolic composition of the wastewater extracts was analysed by high performance liquid chromatography (HPLC). The EO obtained by MHD had a higher yield of limonene and sabinene. The chemical composition of the hydrolates differed from the EO compositions. The content of terpinen-4-ol in the MHD hydrolate was higher, while several compounds were detected in relatively high proportions only in the HD hydrolate. MHD also resulted in a higher phenolic content of the wastewater, where an increase in the concentration of chlorogenic acid was also observed. It can be concluded that the isolation method had a great influence on the profile of sea fennel EOs, especially on their corresponding hydrolates and residual wastewater extracts. Due to their valuable chemical composition, these by-products can be a cost-effective source of bioactive compounds that have great potential for use in various industries. Full article
(This article belongs to the Special Issue Biosynthesis, Function, and Application of Plant Volatiles II)
Show Figures

Figure 1

23 pages, 51792 KiB  
Article
Green Synthesis of Iron Oxide (Hematite) Nanoparticles and Their Influence on Sorghum bicolor Growth under Drought Stress
by Nzumbululo Ndou, Tessia Rakgotho, Mulisa Nkuna, Ibrahima Zan Doumbia, Takalani Mulaudzi and Rachel Fanelwa Ajayi
Plants 2023, 12(7), 1425; https://doi.org/10.3390/plants12071425 - 23 Mar 2023
Cited by 9 | Viewed by 3506
Abstract
Drought is a major abiotic stress that confronts plant growth and productivity, thus compromising food security. Plants use physiological and biochemical mechanisms to cope with drought stress, but at the expense of growth. Green-synthesized nanoparticles (NPs) have gained great attention in agriculture due [...] Read more.
Drought is a major abiotic stress that confronts plant growth and productivity, thus compromising food security. Plants use physiological and biochemical mechanisms to cope with drought stress, but at the expense of growth. Green-synthesized nanoparticles (NPs) have gained great attention in agriculture due to their environmental friendliness and affordability while serving as potential biofertilizers. This study investigates the role of hematite (αFe2O3) NPs, synthesized from Aspalathus linearis (rooibos), to improve Sorghum bicolor growth under drought stress. About 18 nm, spherical, and highly agglomerated hematite (αFe2O3) NPs were obtained. Sorghum seeds were primed with 5, 10, and 15 mg/L αFe2O3 NPs, and, after seven days of germination, the seedlings were transferred into potting soil, cultivated for fourteen days, and were subsequently water deprived (WD) for a further seven days. A reduction in plant height (78%), fresh (FW; 35%) and dry (DW; 36%) weights, and chlorophyll (chl) content ((total chl (81%), chla (135%), and chlb (1827%)) was observed in WD plants, and this correlated with low nutrients (Mg, Si, P, and K) and alteration in the anatomic structure (epidermis and vascular bundle tissues). Oxidative damage was observed as deep blue (O2●−) and brown (H2O2) spots on the leaves of WD plants, in addition to a 25% and 40% increase in oxidative stress markers (H2O2 and MDA) and osmolytes (proline and total soluble sugars), respectively. Seed priming with 10 mg/L αFe2O3 NPs improved plant height (70%), FW (56%), DW (34%), total Chl (104%), chla (160%) and chlb (1936%), anatomic structure, and nutrient distribution. Priming with 10 mg/L αFe2O3 NPs also protected sorghum plants from drought-induced oxidative damage by reducing ROS formation and osmolytes accumulation and prevented biomolecule degradation. The study concludes that green synthesized hematite NPs positively influenced sorghum growth and prevented oxidative damage of biomolecules by improving nutrient uptake and osmoregulation under drought stress. Full article
Show Figures

Figure 1

14 pages, 2680 KiB  
Article
Development and the Effect of Weather and Mineral Fertilization on Grain Yield and Stability of Winter Wheat following Alfalfa—Analysis of Long-Term Field Trial
by Lukáš Hlisnikovský, Ladislav Menšík and Eva Kunzová
Plants 2023, 12(6), 1392; https://doi.org/10.3390/plants12061392 - 21 Mar 2023
Cited by 8 | Viewed by 1390
Abstract
Within the framework of a long-term experiment, established in 1955, we evaluated the development and effects of weather and mineral fertilization (Control, NPK1, NPK2, NPK3, NPK4) on the yield and stability of winter wheat following alfalfa. In total, 19 seasons were analysed. The [...] Read more.
Within the framework of a long-term experiment, established in 1955, we evaluated the development and effects of weather and mineral fertilization (Control, NPK1, NPK2, NPK3, NPK4) on the yield and stability of winter wheat following alfalfa. In total, 19 seasons were analysed. The weather changed considerably at the experimental site. Significant increases in minimal, mean, and maximal temperatures were dated to the period 1987–1988, while precipitation remained the same to this day (insignificantly increasing trend by 0.5 mm per annum). Rising temperatures in November, May, and July positively affected wheat grain yield, especially in treatments with higher N doses. No relationship between yield and precipitation was recorded. Highest inter-annual yield variability was recorded in Control and NPK4 treatments. Although minerally fertilized treatments provided slightly higher yields, the difference between Control and NPK treatments was insignificant. According to the linear-plateau response model, the recommended dose of 44 kg ha−1 N corresponds with yield of 7.4 t ha−1, while Control provides an average yield of 6.8 t ha−1. The application of higher doses did not lead to significant grain yield increase. Alfalfa as a preceding crop reduces the need of N fertilization and contributes to sustainable conventional agriculture, however, its share in crop rotations is decreasing both in the Czech Republic and in Europe. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

15 pages, 4369 KiB  
Article
Chlorophyll Fluorescence Imaging for Early Detection of Drought and Heat Stress in Strawberry Plants
by Muhammad Akbar Andi Arief, Hangi Kim, Hary Kurniawan, Andri Prima Nugroho, Taehyun Kim and Byoung-Kwan Cho
Plants 2023, 12(6), 1387; https://doi.org/10.3390/plants12061387 - 21 Mar 2023
Cited by 11 | Viewed by 5409
Abstract
The efficiency of photosynthesis in strawberry plants is measured to maintain the quality and quantity of strawberries produced. The latest method used to measure the photosynthetic status of plants is chlorophyll fluorescence imaging (CFI), which has the advantage of obtaining plant spatiotemporal data [...] Read more.
The efficiency of photosynthesis in strawberry plants is measured to maintain the quality and quantity of strawberries produced. The latest method used to measure the photosynthetic status of plants is chlorophyll fluorescence imaging (CFI), which has the advantage of obtaining plant spatiotemporal data non-destructively. This study developed a CFI system to measure the maximum quantum efficiency of photochemistry (Fv/Fm). The main components of this system include a chamber for plants to adapt to dark environments, blue LED light sources to excite the chlorophyll in plants, and a monochrome camera with a lens filter attached to capture the emission spectra. In this study, 120 pots of strawberry plants were cultivated for 15 days and divided into four treatment groups: control, drought stress, heat stress, and a combination of drought and heat stress, resulting in Fv/Fm values of 0.802 ± 0.0036, 0.780 ± 0.0026, 0.768 ± 0.0023, and 0.749 ± 0.0099, respectively. A strong correlation was found between the developed system and a chlorophyll meter (r = 0.75). These results prove that the developed CFI system can accurately capture the spatial and temporal dynamics resulting from the response of strawberry plants to abiotic stresses. Full article
Show Figures

Figure 1

29 pages, 574 KiB  
Review
Cowpea Constraints and Breeding in Europe
by Efstathia Lazaridi and Penelope J. Bebeli
Plants 2023, 12(6), 1339; https://doi.org/10.3390/plants12061339 - 16 Mar 2023
Cited by 6 | Viewed by 3025
Abstract
Cowpea (Vigna unguiculata (L.) Walp.) is a legume with a constant rate of cultivation in Southern European countries. Consumer demand for cowpea worldwide is rising due to its nutritional content, while Europe is constantly attempting to reduce the deficit in the production [...] Read more.
Cowpea (Vigna unguiculata (L.) Walp.) is a legume with a constant rate of cultivation in Southern European countries. Consumer demand for cowpea worldwide is rising due to its nutritional content, while Europe is constantly attempting to reduce the deficit in the production of pulses and invest in new, healthy food market products. Although the climatic conditions that prevail in Europe are not so harsh in terms of heat and drought as in the tropical climates where cowpea is mainly cultivated, cowpea confronts with a plethora of abiotic and biotic stresses and yield-limiting factors in Southern European countries. In this paper, we summarize the main constraints for cowpea cultivation in Europe and the breeding methods that have been or can be used. A special mention is made of the availability plant genetic resources (PGRs) and their potential for breeding purposes, aiming to promote more sustainable cropping systems as climatic shifts become more frequent and fiercer, and environmental degradation expands worldwide. Full article
(This article belongs to the Special Issue Breeding and Cultivation Management of Legumes)
24 pages, 5823 KiB  
Article
Chemical Composition and Biological Activities of Essential Oils from Origanum vulgare Genotypes Belonging to the Carvacrol and Thymol Chemotypes
by Paola Zinno, Barbara Guantario, Gabriele Lombardi, Giulia Ranaldi, Alberto Finamore, Sofia Allegra, Michele Massimo Mammano, Giancarlo Fascella, Antonio Raffo and Marianna Roselli
Plants 2023, 12(6), 1344; https://doi.org/10.3390/plants12061344 - 16 Mar 2023
Cited by 9 | Viewed by 2367
Abstract
The remarkable biological activities of oregano essential oils (EOs) have recently prompted a host of studies aimed at exploring their potential innovative applications in the food and pharmaceutical industries. The chemical composition and biological activities of EOs from two Origanum vulgare genotypes, widely [...] Read more.
The remarkable biological activities of oregano essential oils (EOs) have recently prompted a host of studies aimed at exploring their potential innovative applications in the food and pharmaceutical industries. The chemical composition and biological activities of EOs from two Origanum vulgare genotypes, widely cultivated in Sicily and not previously studied for their biological properties, were characterized. Plants of the two genotypes, belonging to the carvacrol (CAR) and thymol (THY) chemotypes and grown in different cultivation environments, were considered for this study. The chemical profiles, including the determination of enantiomeric distribution, of the EOs, obtained by hydrodistillation from dried leaves and flowers, were investigated by GC–MS. Biological activity was evaluated as antimicrobial properties against different pathogen indicator strains, while intestinal barrier integrity, reduction in pathogen adhesion and anti-inflammatory actions were assayed in the intestinal Caco-2 cell line. The chemical profile of the CAR genotype was less complex and characterized by higher levels of the most active compound, i.e., carvacrol, when compared to the THY genotype. The enantiomeric distribution of chiral constituents did not vary across genotypes, while being markedly different from that observed in Origanum vulgare genotypes from other geographical origins. In general, all EOs showed high antimicrobial activity, both in vitro and in a food matrix challenge test. Representative EOs from the two genotypes resulted not altering epithelial monolayer sealing only for concentrations lower than 0.02%, were able to reduce the adhesion of selected pathogens, but did not exert relevant anti-inflammatory effects. These results suggest their potential use as control agents against a wide spectrum of foodborne pathogens. Full article
(This article belongs to the Special Issue Plant Essential Oil with Biological Activity II)
Show Figures

Graphical abstract

19 pages, 6413 KiB  
Article
Metabolic Profiling of Primary and Secondary Metabolites in Kohlrabi (Brassica oleracea var. gongylodes) Sprouts Exposed to Different Light-Emitting Diodes
by Ramaraj Sathasivam, Sang Un Park, Jae Kwang Kim, Young Jin Park, Min Cheol Kim, Bao Van Nguyen and Sook Young Lee
Plants 2023, 12(6), 1296; https://doi.org/10.3390/plants12061296 - 13 Mar 2023
Cited by 10 | Viewed by 1997
Abstract
Light-emitting diode (LED) technology is one of the most important light sources in the plant industry for enhancing growth and specific metabolites in plants. In this study, we analyzed the growth, primary and secondary metabolites of 10 days old kohlrabi (Brassica oleracea [...] Read more.
Light-emitting diode (LED) technology is one of the most important light sources in the plant industry for enhancing growth and specific metabolites in plants. In this study, we analyzed the growth, primary and secondary metabolites of 10 days old kohlrabi (Brassica oleracea var. gongylodes) sprouts exposed to different LED light conditions. The results showed that the highest fresh weight was achieved under red LED light, whereas the highest shoot and root lengths were recorded below the blue LED light. Furthermore, high-performance liquid chromatography (HPLC) analysis revealed the presence of 13 phenylpropanoid compounds, 8 glucosinolates (GSLs), and 5 different carotenoids. The phenylpropanoid and GSL contents were highest under blue LED light. In contrast, the carotenoid content was found to be maximum beneath white LED light. Principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) of the 71 identified metabolites using HPLC and gas chromatography–time-of-flight mass spectrometry (GC-TOF-MS) showed a clear separation, indicating that different LEDs exhibited variation in the accumulation of primary and secondary metabolites. A heat map and hierarchical clustering analysis revealed that blue LED light accumulated the highest amount of primary and secondary metabolites. Overall, our results demonstrate that exposure of kohlrabi sprouts to blue LED light is the most suitable condition for the highest growth and is effective in increasing the phenylpropanoid and GSL content, whereas white light might be used to enhance carotenoid compounds in kohlrabi sprouts. Full article
(This article belongs to the Special Issue The Effects of LED Light Spectra and Intensities on Plant Growth 2.0)
Show Figures

Figure 1

20 pages, 1907 KiB  
Article
Water and Nutrient Recovery for Cucumber Hydroponic Cultivation in Simultaneous Biological Treatment of Urine and Grey Water
by Anna Wdowikowska, Małgorzata Reda, Katarzyna Kabała, Piotr Chohura, Anna Jurga, Kamil Janiak and Małgorzata Janicka
Plants 2023, 12(6), 1286; https://doi.org/10.3390/plants12061286 - 12 Mar 2023
Cited by 6 | Viewed by 2763
Abstract
Water and nutrient deficiencies in soil are becoming a serious threat to crop production. Therefore, usable water and nutrient recovery from wastewater, such as urine and grey water, should be considered. In this work, we showed the possibility of using grey water and [...] Read more.
Water and nutrient deficiencies in soil are becoming a serious threat to crop production. Therefore, usable water and nutrient recovery from wastewater, such as urine and grey water, should be considered. In this work, we showed the possibility of using grey water and urine after processing in an aerobic reactor with activated sludge in which the nitrification process takes place. The resulting liquid (nitrified urine and grey water, NUG) contains three potential factors that can adversely affect plant growth in a hydroponic system: anionic surfactants, nutrient deficits, and salinity. After dilution and supplementation with small amounts of macro- and micro-elements, NUG was suitable for cucumber cultivation. Plant growth on this modified medium (enriched nitrified urine and grey water, NUGE) was similar to that of plants cultivated on Hoagland solution (HS) and reference commercial fertilizer (RCF). The modified medium (NUGE) contained a significant amount of sodium (Na) ions. Therefore, typical effects of salt stress were observed in cucumber plants, including reduced chlorophyll levels, slightly weaker photosynthesis parameters, increased H2O2 levels, lipid peroxidation, ascorbate peroxidase (APX) activity, and proline content in the leaves. In addition, reduced protein levels were observed in plants treated with recycled medium. At the same time, lower nitrate content in tissues was found, which may have resulted from their intensive use by nitrate reductase (NR), the activity of which significantly increased. Although cucumber is a glycophyte, it grew very well in this recycled medium. Interestingly, salt stress and possibly anionic surfactants promoted flower formation, which in turn could positively affect plant yield. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

12 pages, 1493 KiB  
Article
Accumulation of Toxic Arsenic by Cherry Radish Tuber (Raphanus sativus var. sativus Pers.) and Its Physiological, Metabolic and Anatomical Stress Responses
by Daniela Pavlíková, Milan Pavlík, Veronika Zemanová, Milan Novák, Petr Doležal, Petre I. Dobrev, Václav Motyka and Kamil Kraus
Plants 2023, 12(6), 1257; https://doi.org/10.3390/plants12061257 - 10 Mar 2023
Cited by 7 | Viewed by 1431
Abstract
In a pot experiment, cherry radish (Raphanus sativus var. sativus Pers. ‘Viola’) was cultivated under two levels of As soil contamination—20 and 100 mg/kg. The increasing As content in tubers with increasing soil contamination led to changes in free amino acids (AAs) [...] Read more.
In a pot experiment, cherry radish (Raphanus sativus var. sativus Pers. ‘Viola’) was cultivated under two levels of As soil contamination—20 and 100 mg/kg. The increasing As content in tubers with increasing soil contamination led to changes in free amino acids (AAs) and phytohormone metabolism and antioxidative metabolites. Changes were mainly observed under conditions of high As contamination (As100). The content of indole-3-acetic acid in tubers varied under different levels of As stress, but As100 contamination led to an increase in its bacterial precursor indole-3-acetamide. A decrease in cis-zeatin-9-riboside-5′-monophosphate content and an increase in jasmonic acid content were found in this treatment. The free AA content in tubers was also reduced. The main free AAs were determined to be transport AAs (glutamate—Glu, aspartate, glutamine—Gln, asparagine) with the main portion being Gln. The Glu/Gln ratio—a significant indicator of primary N assimilation in plants—decreased under the As100 treatment condition. A decrease in antioxidative metabolite content—namely that of ascorbic acid and anthocyanins—was observed in this experiment. A decline in anthocyanin content is related to a decrease in aromatic AA content which is crucial for secondary metabolite production. The changes in tubers caused by As contamination were reflected in anatomical changes in the radish tubers and roots. Full article
Show Figures

Graphical abstract

26 pages, 2310 KiB  
Review
Medicinal Uses of the Fabaceae Family in Zimbabwe: A Review
by Alfred Maroyi
Plants 2023, 12(6), 1255; https://doi.org/10.3390/plants12061255 - 10 Mar 2023
Cited by 13 | Viewed by 4855
Abstract
The current study is aimed at providing a systematic review of the ethnomedicinal, phytochemical and pharmacological properties of Fabaceae species used as sources of traditional medicinies in Zimbabwe. Fabaceae is one of the well-known plant families of ethnopharmacological importance. Of the approximately 665 [...] Read more.
The current study is aimed at providing a systematic review of the ethnomedicinal, phytochemical and pharmacological properties of Fabaceae species used as sources of traditional medicinies in Zimbabwe. Fabaceae is one of the well-known plant families of ethnopharmacological importance. Of the approximately 665 species of the Fabaceae family occurring in Zimbabwe, about 101 are used for medicinal purposes. Many communities in the country, mainly in peri-urban, rural and marginalized areas with limited access to healthcare facilities, rely on traditional medicines as their primary healthcare. The study reviewed research studies undertaken on Zimbabwe’s Fabaceae species during 1959 to 2022. Information was gathered from literature sourced from Google Scholar, Science Direct, Scopus, PubMed, books, dissertations, theses and scientific reports. This study showed that 101 species are traditionally used to manage human and animal diseases in Zimbabwe. The genera with the highest number of medicinal uses are Indigofera, Senna, Albizia, Rhynchosia and Vachellia. Species of these genera are used as traditional medicines against 134 medical conditions, mainly gastrointestinal conditions, female reproductive conditions, respiratory conditions and sexually transmitted infections. Shrubs (39.0%), trees (37.0%) and herbs (18.0%) are the primary sources of traditional medicines, while roots (80.2%), leaves (36.6%), bark (27.7%) and fruits (8.9%) are the most widely used plant parts. Many of Zimbabwe’s Fabaceae species used as sources of traditional medicines have been assessed for their phytochemical and pharmacological properties, corroborating their medicinal uses. However, there is a need to unravel the therapeutic potential of the family through further ethnopharmacological research focusing on toxicological studies, in vitro and in vivo models, biochemical assays and pharmacokinetic studies. Full article
(This article belongs to the Special Issue Phytochemistry and Pharmacological Properties of Medicinal Plants)
Show Figures

Figure 1

43 pages, 3229 KiB  
Review
A Comprehensive Review on Cannabis sativa Ethnobotany, Phytochemistry, Molecular Docking and Biological Activities
by Sohaib Hourfane, Hicham Mechqoq, Abdellah Yassine Bekkali, João Miguel Rocha and Noureddine El Aouad
Plants 2023, 12(6), 1245; https://doi.org/10.3390/plants12061245 - 9 Mar 2023
Cited by 17 | Viewed by 8630
Abstract
For more than a century, Cannabis was considered a narcotic and has been banned by lawmakers all over the world. In recent years, interest in this plant has increased due to its therapeutic potential, in addition to a very interesting chemical composition, characterized [...] Read more.
For more than a century, Cannabis was considered a narcotic and has been banned by lawmakers all over the world. In recent years, interest in this plant has increased due to its therapeutic potential, in addition to a very interesting chemical composition, characterized by the presence of an atypical family of molecules known as phytocannabinoids. With this emerging interest, it is very important to take stock of what research has been conducted so far on the chemistry and biology of Cannabis sativa. The aim of this review is to describe the traditional uses, chemical composition and biological activities of different parts of this plant, as well as the molecular docking studies. Information was collected from electronic databases, namely SciFinder, ScienceDirect, PubMed and Web of Science. Cannabis is mainly popular for its recreational use, but it is also traditionally used as remedy for the treatment of several diseases, including diabetes, digestive, circulatory, genital, nervous, urinary, skin and respiratory diseases. These biological proprieties are mainly due to the presence of bioactive metabolites represented by more than 550 different molecules. Molecular docking simulations proved the presence of affinities between Cannabis compounds and several enzymes responsible for anti-inflammatory, antidiabetic, antiepileptic and anticancer activities. Several biological activities have been evaluated on the metabolites of Cannabis sativa, and these works have shown the presence of antioxidant, antibacterial, anticoagulant, antifungal, anti-aflatoxigenic, insecticidal, anti-inflammatory, anticancer, neuroprotective and dermocosmetic activities. This paper presents the up-to-date reported investigations and opens many reflections and further research perspectives. Full article
(This article belongs to the Special Issue Biological and Chemical Activity of Metabolites of Medicinal Plants)
Show Figures

Figure 1

21 pages, 624 KiB  
Review
Agronomical Practices and Management for Commercial Cultivation of Portulaca oleracea as a Crop: A Review
by Angel Carrascosa, Jose Antonio Pascual, Margarita Ros, Spyridon A. Petropoulos and Maria del Mar Alguacil
Plants 2023, 12(6), 1246; https://doi.org/10.3390/plants12061246 - 9 Mar 2023
Cited by 12 | Viewed by 2836
Abstract
Soil is an essential resource, and its degradation is challenging modern agriculture, while its impact is expected to increase in the near future. One of the strategies to address this issue is to incorporate new alternative crops able to tolerate arduous conditions, as [...] Read more.
Soil is an essential resource, and its degradation is challenging modern agriculture, while its impact is expected to increase in the near future. One of the strategies to address this issue is to incorporate new alternative crops able to tolerate arduous conditions, as well as for the use of sustainable agricultural practices in order to recover and/or improve soil health. Additionally, the increasing market for new functional/healthy natural foods promotes the search for potential alternative crop species with promising bioactive compounds content. For this purpose, wild edible plants are a key option because they have already been consumed for hundreds of years in traditional gastronomy and there is well-established evidence of their health-promoting effects. Moreover, since they are not a cultivated species, they are able to grow under natural conditions without human intervention. Among them, common purslane is an interesting wild edible species and a good candidate for integration in commercial farming systems. With worldwide spread, it is able to tolerate drought, salinity and heat stress and is already used in traditional dishes, while it is highly appreciated for its high nutritional value due to its bioactive compound content, especially omega-3 fatty acids. In this review, we aim to present the breeding and cultivation practices of purslane, as well as the effects of abiotic stressors on yield and chemical composition of the edible parts. Finally, we present information that helps to optimize purslane cultivation and facilitate its management in degraded soils for their exploitation in the existing farming systems. Full article
Show Figures

Figure 1

34 pages, 4238 KiB  
Review
Water Content of Plant Tissues: So Simple That Almost Forgotten?
by Gederts Ievinsh
Plants 2023, 12(6), 1238; https://doi.org/10.3390/plants12061238 - 8 Mar 2023
Cited by 13 | Viewed by 8924
Abstract
The aim of the present review was to reconsider basic information about various functional aspects related to plant water content and provide evidence that the usefulness of measuring absolute water content in plant sciences is undervalued. First, general questions about water status in [...] Read more.
The aim of the present review was to reconsider basic information about various functional aspects related to plant water content and provide evidence that the usefulness of measuring absolute water content in plant sciences is undervalued. First, general questions about water status in plants as well as methods for determining water content and their associated problems were discussed. After a brief overview of the structural organization of water in plant tissues, attention was paid to the water content of different parts of plants. Looking at the influence of environmental factors on plant water status, the differences caused by air humidity, mineral supply, biotic effects, salinity, and specific life forms (clonal and succulent plants) were analyzed. Finally, it was concluded that the expression of absolute water content on a dry biomass basis makes easily noticeable functional sense, but the physiological meaning and ecological significance of the drastic differences in plant water content need to be further elucidated. Full article
(This article belongs to the Collection Feature Papers in Plant Physiology and Metabolism)
Show Figures

Graphical abstract

Back to TopTop