Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1851 KiB  
Review
Regulation of Flowering Time by Environmental Factors in Plants
by Zion Lee, Sohyun Kim, Su Jeong Choi, Eui Joung, Moonhyuk Kwon, Hee Jin Park and Jae Sung Shim
Plants 2023, 12(21), 3680; https://doi.org/10.3390/plants12213680 - 25 Oct 2023
Cited by 6 | Viewed by 4159
Abstract
The timing of floral transition is determined by both endogenous molecular pathways and external environmental conditions. Among these environmental conditions, photoperiod acts as a cue to regulate the timing of flowering in response to seasonal changes. Additionally, it has become clear that various [...] Read more.
The timing of floral transition is determined by both endogenous molecular pathways and external environmental conditions. Among these environmental conditions, photoperiod acts as a cue to regulate the timing of flowering in response to seasonal changes. Additionally, it has become clear that various environmental factors also control the timing of floral transition. Environmental factor acts as either a positive or negative signal to modulate the timing of flowering, thereby establishing the optimal flowering time to maximize the reproductive success of plants. This review aims to summarize the effects of environmental factors such as photoperiod, light intensity, temperature changes, vernalization, drought, and salinity on the regulation of flowering time in plants, as well as to further explain the molecular mechanisms that link environmental factors to the internal flowering time regulation pathway. Full article
Show Figures

Figure 1

24 pages, 1657 KiB  
Review
Role of Epigenetic Factors in Response to Stress and Establishment of Somatic Memory of Stress Exposure in Plants
by Igor Kovalchuk
Plants 2023, 12(21), 3667; https://doi.org/10.3390/plants12213667 - 24 Oct 2023
Cited by 1 | Viewed by 2148
Abstract
All species are well adapted to their environment. Stress causes a magnitude of biochemical and molecular responses in plants, leading to physiological or pathological changes. The response to various stresses is genetically predetermined, but is also controlled on the epigenetic level. Most plants [...] Read more.
All species are well adapted to their environment. Stress causes a magnitude of biochemical and molecular responses in plants, leading to physiological or pathological changes. The response to various stresses is genetically predetermined, but is also controlled on the epigenetic level. Most plants are adapted to their environments through generations of exposure to all elements. Many plant species have the capacity to acclimate or adapt to certain stresses using the mechanism of priming. In most cases, priming is a somatic response allowing plants to deal with the same or similar stress more efficiently, with fewer resources diverted from growth and development. Priming likely relies on multiple mechanisms, but the differential expression of non-coding RNAs, changes in DNA methylation, histone modifications, and nucleosome repositioning play a crucial role. Specifically, we emphasize the role of BRM/CHR17, BRU1, FGT1, HFSA2, and H2A.Z proteins as positive regulators, and CAF-1, MOM1, DDM1, and SGS3 as potential negative regulators of somatic stress memory. In this review, we will discuss the role of epigenetic factors in response to stress, priming, and the somatic memory of stress exposures. Full article
(This article belongs to the Special Issue Plant Signaling, Behavior and Communication, Volume 2)
Show Figures

Figure 1

23 pages, 5880 KiB  
Article
Development and Evaluation of Zinc and Iron Nanoparticles Functionalized with Plant Growth-Promoting Rhizobacteria (PGPR) and Microalgae for Their Application as Bio-Nanofertilizers
by Carlos Esteban Guardiola-Márquez, Edgar R. López-Mena, M. Eugenia Segura-Jiménez, Isaac Gutierrez-Marmolejo, Manuel A. Flores-Matzumiya, Shirley Mora-Godínez, Carmen Hernández-Brenes and Daniel A. Jacobo-Velázquez
Plants 2023, 12(20), 3657; https://doi.org/10.3390/plants12203657 - 23 Oct 2023
Cited by 9 | Viewed by 3882
Abstract
Micronutrient deficiencies are widespread and growing global concerns. Nanoscale nutrients present higher absorption rates and improved nutrient availability and nutrient use efficiency. Co-application of nanofertilizers (NFs) with biological agents or organic compounds increases NF biocompatibility, stability, and efficacy. This study aimed to develop [...] Read more.
Micronutrient deficiencies are widespread and growing global concerns. Nanoscale nutrients present higher absorption rates and improved nutrient availability and nutrient use efficiency. Co-application of nanofertilizers (NFs) with biological agents or organic compounds increases NF biocompatibility, stability, and efficacy. This study aimed to develop and evaluate zinc and iron bio-nanofertilizers formulated with plant growth-promoting rhizobacteria (PGPR) and microalgae. Nanoparticles (NPs) were synthesized with the co-precipitation method and functionalized with Pseudomonas species and Spirulina platensis preparation. NPs were characterized and evaluated on seed germination, soil microbial growth, and early plant response under seedbed conditions. NPs corresponded to zinc oxide (ZnO; 77 nm) and maghemite (γ-Fe2O3; 68 nm). Functionalized nanoparticles showed larger sizes, around 145–233 nm. The seedling vigor index of tomato and maize was significantly increased (32.9–46.1%) by bacteria-functionalized ZnO- and γ-Fe2O3-NPs at 75 ppm. NFs at 250 and 75 ppm significantly increased bacterial growth. NFs also improved early plant growth by increasing plant height (14–44%), leaf diameter (22–47%), and fresh weight (46–119%) in broccoli and radish, which were mainly influenced by bacteria capped ZnO- and γ-Fe2O3-NPs at 250 ppm. Beneficial effects on plant growth can be attributed to the synergistic interaction of the biological components and the zinc and iron NPs in the bio-nanofertilizers. Full article
Show Figures

Graphical abstract

20 pages, 4301 KiB  
Article
Aureobasidium pullulans Treatment Mitigates Drought Stress in Abies koreana via Rhizosphere Microbiome Modulation
by Mohamed Mannaa, Gil Han, Hyejung Jung, Jungwook Park, Jin-Cheol Kim, Ae Ran Park and Young-Su Seo
Plants 2023, 12(20), 3653; https://doi.org/10.3390/plants12203653 - 23 Oct 2023
Cited by 2 | Viewed by 2929
Abstract
The Korean fir tree Abies koreana, an endangered species in Korea, faces threats primarily from climate change-induced stress and drought. This study proposed a sustainable method to enhance A. koreana drought tolerance using a black yeast-like fungus identified as Aureobasidium pullulans (AK10). [...] Read more.
The Korean fir tree Abies koreana, an endangered species in Korea, faces threats primarily from climate change-induced stress and drought. This study proposed a sustainable method to enhance A. koreana drought tolerance using a black yeast-like fungus identified as Aureobasidium pullulans (AK10). The 16S/ITS metabarcoding analysis assessed the impact of drought and AK10 treatment on the seedlings’ rhizosphere microbiome. Results revealed a profound drought influence on the microbiome, particularly affecting fungal mycobiota. Drought-stressed seedlings exhibited elevated Agaricaceae levels, opportunistic fungi generally associated with decomposition. AK10 treatment significantly mitigated this proliferation and increased the relative abundance of beneficial fungi like Cystofilobasidium and Mortierella, known biocontrol agents and phosphate solubilizers. A notable reduction in the phytopathogenic Fusarium levels was observed with AK10, alongside an increase in beneficial bacteria, including Azospirillum and Nitrospirillum. Furthermore, the conducted correlation analysis shed light on microbial interrelationships within the rhizosphere, elucidating potential co-associations and antagonisms. Taken together, the isolated A. pullulans AK10 identified in this study serves as a potential biostimulant, enhancing the drought tolerance in A. koreana through beneficial alterations in the rhizosphere microbiome. This approach presents a promising strategy for the conservation of this endangered species. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

29 pages, 1311 KiB  
Review
Uncovering the Role of Hormones in Enhancing Antioxidant Defense Systems in Stressed Tomato (Solanum lycopersicum) Plants
by Paola Hernández-Carranza, Raúl Avila-Sosa, Obdulia Vera-López, Addí R. Navarro-Cruz, Héctor Ruíz-Espinosa, Irving I. Ruiz-López and Carlos E. Ochoa-Velasco
Plants 2023, 12(20), 3648; https://doi.org/10.3390/plants12203648 - 23 Oct 2023
Cited by 2 | Viewed by 2232
Abstract
Tomato is one of the most important fruits worldwide. It is widely consumed due to its sensory and nutritional attributes. However, like many other industrial crops, it is affected by biotic and abiotic stress factors, reducing its metabolic and physiological processes. Tomato plants [...] Read more.
Tomato is one of the most important fruits worldwide. It is widely consumed due to its sensory and nutritional attributes. However, like many other industrial crops, it is affected by biotic and abiotic stress factors, reducing its metabolic and physiological processes. Tomato plants possess different mechanisms of stress responses in which hormones have a pivotal role. They are responsible for a complex signaling network, where the antioxidant system (enzymatic and non-enzymatic antioxidants) is crucial for avoiding the excessive damage caused by stress factors. In this sense, it seems that hormones such as ethylene, auxins, brassinosteroids, and salicylic, jasmonic, abscisic, and gibberellic acids, play important roles in increasing antioxidant system and reducing oxidative damage caused by different stressors. Although several studies have been conducted on the stress factors, hormones, and primary metabolites of tomato plants, the effect of endogenous and/or exogenous hormones on the secondary metabolism is still poorly studied, which is paramount for tomato growing management and secondary metabolites production. Thus, this review offers an updated overview of both endogenous biosynthesis and exogenous hormone application in the antioxidant system of tomato plants as a response to biotic and abiotic stress factors. Full article
Show Figures

Figure 1

25 pages, 12513 KiB  
Article
Drought Sensitivity of Spring Wheat Cultivars Shapes Rhizosphere Microbial Community Patterns in Response to Drought
by Jing Fang, Gongfu Shi, Shuli Wei, Jie Ma, Xiangqian Zhang, Jianguo Wang, Liyu Chen, Ying Liu, Xiaoqing Zhao and Zhanyuan Lu
Plants 2023, 12(20), 3650; https://doi.org/10.3390/plants12203650 - 23 Oct 2023
Cited by 4 | Viewed by 1695
Abstract
Drought is the most important natural disaster affecting crop growth and development. Crop rhizosphere microorganisms can affect crop growth and development, enhance the effective utilization of nutrients, and resist adversity and hazards. In this paper, six spring wheat varieties were used as research [...] Read more.
Drought is the most important natural disaster affecting crop growth and development. Crop rhizosphere microorganisms can affect crop growth and development, enhance the effective utilization of nutrients, and resist adversity and hazards. In this paper, six spring wheat varieties were used as research material in the dry farming area of the western foot of the Greater Khingan Mountains, and two kinds of water control treatments were carried out: dry shed rain prevention (DT) and regulated water replenishment (CK). Phenotypic traits, including physiological and biochemical indices, drought resistance gene expression, soil enzyme activity, soil nutrient content, and the responses of potential functional bacteria and fungi under drought stress, were systematically analyzed. The results showed that compared with the control (CK), the leaf wilting, drooping, and yellowing of six spring wheat varieties were enhanced under drought (DT) treatment. The plant height, fresh weight (FW), dry weight (DW), net photosynthetic rate (Pn) and stomatal conductance (Gs), soil total nitrogen (TN), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), microbial biomass phosphorus (MBP), organic carbon (SOC), and soil alkaline phosphatase (S-ALP) contents were significantly decreased, among which, FW, Gs and MBC decreased by more than 7.84%, 17.43% and 11.31%, respectively. By contrast, the soil total phosphorus (TP), total potassium (TK), and soil catalase (S-CAT) contents were significantly increased (p < 0.05). TaWdreb2 and TaBADHb genes were highly expressed in T.D40, T.L36, and T.L33 and were expressed at low levels in T.N2, T.B12, and T.F5. Among them, the relative expression of the TaWdreb2 gene in T.L36 was significantly increased by 2.683 times compared with CK. Soil TN and TP are the most sensitive to drought stress and can be used as the characteristic values of drought stress. Based on this, a drought-tolerant variety (T.L36) and a drought-sensitive variety (T.B12) were selected to further analyze the changes in rhizosphere microorganisms. Drought treatment and cultivar differences significantly affected the composition of the rhizosphere microbial community. Drought caused a decrease in the complexity of the rhizosphere microbial network, and the structure of bacteria was more complex than that of fungi. The Shannon index and network modular number of bacteria in these varieties (T.L36) increased, with rich small-world network properties. Actinobacteria, Chloroflexi, Firmicutes, Basidiomycota, and Ascomycota were the dominant bacteria under drought treatment. The beneficial bacteria Bacillus, Penicillium, and Blastococcus were enriched in the rhizosphere of T.L36. Brevibacillus and Glycomyce were enriched in the rhizosphere of T.B12. In general, drought can inhibit the growth and development of spring wheat, and spring wheat can resist drought hazards by regulating the expression of drought-related genes, regulating physiological metabolites, and enriching beneficial microorganisms. Full article
Show Figures

Figure 1

21 pages, 19271 KiB  
Article
Morphological Characterization of Cannabis sativa L. Throughout Its Complete Life Cycle
by Mohsen Hesami, Marco Pepe and Andrew Maxwell Phineas Jones
Plants 2023, 12(20), 3646; https://doi.org/10.3390/plants12203646 - 22 Oct 2023
Cited by 7 | Viewed by 10049
Abstract
This study extensively characterizes the morphological characteristics, including the leaf morphology, plant structure, flower development, and trichome features throughout the entire life cycle of Cannabis sativa L. cv. White Widow. The developmental responses to photoperiodic variations were investigated from germination to mature plant [...] Read more.
This study extensively characterizes the morphological characteristics, including the leaf morphology, plant structure, flower development, and trichome features throughout the entire life cycle of Cannabis sativa L. cv. White Widow. The developmental responses to photoperiodic variations were investigated from germination to mature plant senescence. The leaf morphology showed a progression of complexity, beginning with serrations in the 1st true leaves, until the emergence of nine leaflets in the 6th true leaves, followed by a distinct shift to eight, then seven leaflets with the 14th and 15th true leaves, respectively. Thereafter, the leaf complexity decreased, culminating in the emergence of a single leaflet from the 25th node. The leaf area peaked with the 12th leaves, which coincided with a change from opposite to alternate phyllotaxy. The stipule development at nodes 5 and 6 signified the vegetative phase, followed by bract and solitary flower development emerging in nodes 7–12, signifying the reproductive phase. The subsequent induction of short-day photoperiod triggered the formation of apical inflorescence. Mature flowers displayed abundant glandular trichomes on perigonal bracts, with stigma color changing from whitish-yellow to reddish-brown. A pronounced increase in trichome density was evident, particularly on the abaxial bract surface, following the onset of flowering. The trichomes exhibited simultaneous growth in stalk length and glandular head diameter and pronounced shifts in color. Hermaphroditism occurred well after the general harvest date. This comprehensive study documents the intricate photoperiod-driven morphological changes throughout the complete lifecycle of Cannabis sativa L. cv. White Widow. The developmental responses characterized provide valuable insights for industrial and research applications. Full article
(This article belongs to the Special Issue Cannabis sativa: Advances in Biology and Cultivation)
Show Figures

Figure 1

20 pages, 5176 KiB  
Article
Edible Fruits from the Ecuadorian Amazon: Ethnobotany, Physicochemical Characteristics, and Bioactive Components
by Maritza Sánchez-Capa, Mireia Corell González and Carlos Mestanza-Ramón
Plants 2023, 12(20), 3635; https://doi.org/10.3390/plants12203635 - 21 Oct 2023
Cited by 4 | Viewed by 2923
Abstract
In the Ecuadorian Amazon region, there are various types of edible fruits that have distinct qualities and benefits. Understanding the uses, properties, and functions of these fruits is important for researching products that are only available in local markets. This review aims to [...] Read more.
In the Ecuadorian Amazon region, there are various types of edible fruits that have distinct qualities and benefits. Understanding the uses, properties, and functions of these fruits is important for researching products that are only available in local markets. This review aims to gather and summarize the existing scientific literature on the ethnobotany, physicochemical composition, and bioactive compounds of these native fruits to highlight the potential of the region’s underutilized biodiversity. A systematic review was carried out following the PRISMA methodology, utilizing databases such as Web of Science, Scopus, Pubmed, Redalyc, and SciELO up to August 2023. The research identified 55 edible fruits from the Ecuadorian Amazon and reported their ethnobotanical information. The most common uses were fresh fruit consumption, preparation of typical food, and medicine. Additionally, nine native edible fruits were described for their physicochemical characteristics and bioactive components: Aphandra natalia (Balslev and Henderson) Barfod; Eugenia stipitate McVaugh; Gustavia macarenensis Philipson; Mauritia flexuosa L.f; Myrciaria dubia (Kunth) McVaugh; Oenocarpus bataua Mart; Plukenetia volubilis L.; Pouteria caimito (Ruiz and Pav.) Radlk.; and Solanum quitoense Lam. The analyzed Amazonian fruits contained bioactive compounds such as total polyphenols, flavonoids, carotenoids, and anthocyanins. This information highlights their potential as functional foods and the need for further research on underutilized crops. Full article
(This article belongs to the Special Issue Medicinal Plants and Natural Products in South America)
Show Figures

Figure 1

24 pages, 1538 KiB  
Review
Unlocking the Multifaceted Mechanisms of Bud Outgrowth: Advances in Understanding Shoot Branching
by Yundong Yuan, Said Khourchi, Shujia Li, Yanfang Du and Pierre Delaplace
Plants 2023, 12(20), 3628; https://doi.org/10.3390/plants12203628 - 20 Oct 2023
Cited by 9 | Viewed by 2721
Abstract
Shoot branching is a complex and tightly regulated developmental process that is essential for determining plant architecture and crop yields. The outgrowth of tiller buds is a crucial step in shoot branching, and it is influenced by a variety of internal and external [...] Read more.
Shoot branching is a complex and tightly regulated developmental process that is essential for determining plant architecture and crop yields. The outgrowth of tiller buds is a crucial step in shoot branching, and it is influenced by a variety of internal and external cues. This review provides an extensive overview of the genetic, plant hormonal, and environmental factors that regulate shoot branching in several plant species, including rice, Arabidopsis, tomato, and wheat. We especially highlight the central role of TEOSINTE BRANCHED 1 (TB1), a key gene in orchestrating bud outgrowth. In addition, we discuss how the phytohormones cytokinins, strigolactones, and auxin interact to regulate tillering/branching. We also shed light on the involvement of sugar, an integral component of plant development, which can impact bud outgrowth in both trophic and signaling ways. Finally, we emphasize the substantial influence of environmental factors, such as light, temperature, water availability, biotic stresses, and nutrients, on shoot branching. In summary, this review offers a comprehensive evaluation of the multifaced regulatory mechanisms that underpin shoot branching and highlights the adaptable nature of plants to survive and persist in fluctuating environmental conditions. Full article
(This article belongs to the Special Issue Research on Plant Genomics and Breeding 2023)
Show Figures

Figure 1

32 pages, 2466 KiB  
Review
The Past, Present, and Future of Wheat Dwarf Virus Management—A Review
by Anne-Kathrin Pfrieme, Torsten Will, Klaus Pillen and Andreas Stahl
Plants 2023, 12(20), 3633; https://doi.org/10.3390/plants12203633 - 20 Oct 2023
Cited by 3 | Viewed by 2414
Abstract
Wheat dwarf disease (WDD) is an important disease of monocotyledonous species, including economically important cereals. The causative pathogen, wheat dwarf virus (WDV), is persistently transmitted mainly by the leafhopper Psammotettix alienus and can lead to high yield losses. Due to climate change, the [...] Read more.
Wheat dwarf disease (WDD) is an important disease of monocotyledonous species, including economically important cereals. The causative pathogen, wheat dwarf virus (WDV), is persistently transmitted mainly by the leafhopper Psammotettix alienus and can lead to high yield losses. Due to climate change, the periods of vector activity increased, and the vectors have spread to new habitats, leading to an increased importance of WDV in large parts of Europe. In the light of integrated pest management, cultivation practices and the use of resistant/tolerant host plants are currently the only effective methods to control WDV. However, knowledge of the pathosystem and epidemiology of WDD is limited, and the few known sources of genetic tolerance indicate that further research is needed. Considering the economic importance of WDD and its likely increasing relevance in the coming decades, this study provides a comprehensive compilation of knowledge on the most important aspects with information on the causal virus, its vector, symptoms, host range, and control strategies. In addition, the current status of genetic and breeding efforts to control and manage this disease in wheat will be discussed, as this is crucial to effectively manage the disease under changing environmental conditions and minimize impending yield losses. Full article
(This article belongs to the Special Issue Genetic Basis of Yield and Yield Stability in Major Crops)
Show Figures

Figure 1

16 pages, 5901 KiB  
Article
Metabolic Responses to Manganese Toxicity in Soybean Roots and Leaves
by Yanyan Wang, Jianyu Li, Yuhu Pan, Jingye Chen and Ying Liu
Plants 2023, 12(20), 3615; https://doi.org/10.3390/plants12203615 - 19 Oct 2023
Cited by 7 | Viewed by 1902
Abstract
Soybean is one of the most crucial beans in the world. Although Mn (manganese) is a kind of important nutritive element helpful to plant growth and health, excess Mn is harmful to crops. Nevertheless, the effect of Mn toxicity on soybean roots and [...] Read more.
Soybean is one of the most crucial beans in the world. Although Mn (manganese) is a kind of important nutritive element helpful to plant growth and health, excess Mn is harmful to crops. Nevertheless, the effect of Mn toxicity on soybean roots and leaves metabolism is still not clear. To explore this, water culture experiments were conducted on the development, activity of enzyme, and metabolic process of soybeans under varying levels of Mn treatment (5 and 100 μM). Compared with the control, the soybeans under Mn stress showed inhibited growth and development. Moreover, the activity of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), and the soluble protein content in leaves and roots of soybean were all increased. However, soluble sugar and proline contents in soybean roots and leaves showed the opposite trend. In addition, the Mg (magnesium) and Fe (iron) ion contents in soybean leaves significantly decreased, and the Mn ion content greatly increased. In roots, the Mn and Fe ion content increased, whereas the Mg ion content decreased. Furthermore, the metabolomic analysis based on nontargeted liquid chromatography–mass spectrometry identified 136 and 164 differential metabolites (DMs) that responded to Mn toxicity in roots and leaves of soybean, respectively. These DMs might participate in five different primary metabolic pathways in soybean leaves and roots, suggesting that soybean leaves and roots demonstrate different kinds of reactions in response to Mn toxicity. These findings indicate that Mn toxicity will result in enzymes activity being changed and the metabolic pathway being seriously affected, hence inhibiting the development of soybean. Full article
(This article belongs to the Special Issue Crop Breeding: Molecular Genetics and Genomics)
Show Figures

Graphical abstract

19 pages, 4790 KiB  
Article
Albocycline Is the Main Bioactive Antifungal Compound Produced by Streptomyces sp. OR6 against Verticillium dahliae
by Carla Calvo-Peña, Rebeca Cobos, José María Sánchez-López, Ana Ibañez and Juan José R. Coque
Plants 2023, 12(20), 3612; https://doi.org/10.3390/plants12203612 - 18 Oct 2023
Cited by 4 | Viewed by 1287
Abstract
Verticillium wilt is a soil-borne fungal disease that affects olive trees (Olea europaea) and poses a serious threat to their cultivation. The causal agent of this disease is Verticillium dahliae, a pathogen that is difficult to control with conventional methods. [...] Read more.
Verticillium wilt is a soil-borne fungal disease that affects olive trees (Olea europaea) and poses a serious threat to their cultivation. The causal agent of this disease is Verticillium dahliae, a pathogen that is difficult to control with conventional methods. Therefore, there is a need to explore alternative strategies for the management of Verticillium wilt. In this study, we aimed to isolate and characterize actinobacteria from the rhizosphere of olive trees that could act as potential biocontrol agents against V. dahliae. We selected a Streptomyces sp. OR6 strain based on its in vitro antifungal activity and its ability to suppress the pathogen growth in soil samples. We identified the main active compound produced by this strain as albocycline, a macrolide polyketide with known antibacterial properties and some antifungal activity. Albocycline was able to efficiently suppress the germination of conidiospores. To our knowledge, this is the first report of albocycline as an effective agent against V. dahliae. Our results suggest that Streptomyces sp. OR6, or other albocycline-producing strains, could be used as a promising tool for the biological control of Verticillium wilt. Full article
(This article belongs to the Special Issue Novel Biocontrol Tools and Resources for Plant Protection)
Show Figures

Figure 1

24 pages, 1492 KiB  
Review
New Perspective for Macroalgae-Based Animal Feeding in the Context of Challenging Sustainable Food Production
by Georgia M. González-Meza, Joel H. Elizondo-Luevano, Sara P. Cuellar-Bermudez, Juan Eduardo Sosa-Hernández, Hafiz M. N. Iqbal, Elda M. Melchor-Martínez and Roberto Parra-Saldívar
Plants 2023, 12(20), 3609; https://doi.org/10.3390/plants12203609 - 18 Oct 2023
Cited by 4 | Viewed by 2276
Abstract
Food production is facing challenging times due to the pandemic, and climate change. With production expected to double by 2050, there is a need for a new paradigm in sustainable animal feed supply. Seaweeds offer a highly valuable opportunity in this regard. Seaweeds [...] Read more.
Food production is facing challenging times due to the pandemic, and climate change. With production expected to double by 2050, there is a need for a new paradigm in sustainable animal feed supply. Seaweeds offer a highly valuable opportunity in this regard. Seaweeds are classified into three categories: brown (Phaeophyceae), red (Rhodophyceae), and green (Chlorophyceae). While they have traditionally been used in aquafeed, their demand in the feed market is growing, parallelly increasing according to the food demand. Additionally, seaweeds are being promoted for their nutritional benefits, which contribute to the health, growth, and performance of animals intended for human consumption. Moreover, seaweeds contain biologically active compounds such as polyunsaturated fatty acids, antioxidants (polyphenols), and pigments (chlorophylls and carotenoids), which possess beneficial properties, including antibacterial, antifungal, antiviral, antioxidant, and anti-inflammatory effects and act as prebiotics. This review offers a new perspective on the valorization of macroalgae biomass due to their nutritional profile and bioactive components, which have the potential to play a crucial role in animal growth and making possible new sources of healthy food ingredients. Full article
(This article belongs to the Special Issue Bioactive Compounds from Marine Plants and Related Sources)
Show Figures

Figure 1

16 pages, 2946 KiB  
Article
Extrafloral Nectary-Bearing Plants Recover Ant Association Benefits Faster and More Effectively after Frost-Fire Events Than Frost
by Gabriela Fraga Porto, José Henrique Pezzonia and Kleber Del-Claro
Plants 2023, 12(20), 3592; https://doi.org/10.3390/plants12203592 - 17 Oct 2023
Viewed by 3289
Abstract
The Cerrado confronts threats such as fire and frost due to natural or human-induced factors. These disturbances trigger attribute changes that impact biodiversity. Given escalating climate extremes, understanding the effects of these phenomena on ecological relationships is crucial for biodiversity conservation. To understand [...] Read more.
The Cerrado confronts threats such as fire and frost due to natural or human-induced factors. These disturbances trigger attribute changes that impact biodiversity. Given escalating climate extremes, understanding the effects of these phenomena on ecological relationships is crucial for biodiversity conservation. To understand how fire and frost affect interactions and influence biological communities in the Cerrado, our study aimed to comprehend the effects of these two disturbances on extrafloral nectar (EFN)-bearing plants (Ouratea spectabilis, Ochnaceae) and their interactions. Our main hypothesis was that plants affected by fire would grow again more quickly than those affected only by frost due to the better adaptation of Cerrado flora to fire. The results showed that fire accelerated the regrowth of O. spectabilis. Regrowth in plants with EFNs attracted ants that proved to be efficient in removing herbivores, significantly reducing foliar herbivory rates in this species, when compared to the species without EFNs, or when ant access was prevented through experimental manipulation. Post-disturbance ant and herbivore populations were low, with frost leading to greater reductions. Ant richness and diversity are higher where frost precedes fire, suggesting that fire restores Cerrado ecological interactions better than frost, with less impact on plants, ants, and herbivores. Full article
Show Figures

Graphical abstract

17 pages, 1840 KiB  
Review
Polyphenols from Mediterranean Plants: Biological Activities for Skin Photoprotection in Atopic Dermatitis, Psoriasis, and Chronic Urticaria
by Eleonora Di Salvo, Sebastiano Gangemi, Claudia Genovese, Nicola Cicero and Marco Casciaro
Plants 2023, 12(20), 3579; https://doi.org/10.3390/plants12203579 - 15 Oct 2023
Cited by 11 | Viewed by 2960
Abstract
Polyphenols are a diverse class of natural compounds that are widely distributed in various fruits, vegetables, and herbs. They possess antioxidant and anti-inflammatory properties and bring benefits in the prevention and treatment of various diseases. Studies suggested that polyphenols may improve cardiovascular health [...] Read more.
Polyphenols are a diverse class of natural compounds that are widely distributed in various fruits, vegetables, and herbs. They possess antioxidant and anti-inflammatory properties and bring benefits in the prevention and treatment of various diseases. Studies suggested that polyphenols may improve cardiovascular health and may have neuroprotective effects. The Mediterranean region is a vast area. Although the territory encompasses a wide variety of cultures and dietary patterns, there are some commonalities in terms of the plant-based foods and their polyphenol content. Such polyphenols have been studied for their potential photoprotective effects on the skin. We focused on nutraceutical effects of Mediterranean plants in skin photoprotection in atopic dermatitis, psoriasis, and chronic urticaria. Results highlight the importance of exploring natural compounds for therapeutic purposes. The wide variety of polyphenols found in different foods and plants allows for a diverse range of pharmacological effects. The Mediterranean diet, rich in polyphenol-containing foods, is associated with a lower incidence of various chronic diseases, including dermatological conditions. While more research is needed to fully understand the mechanisms of action and optimal dosing of polyphenols, there is initial evidence to support their potential use as adjunctive therapy for atopic dermatitis, psoriasis, and chronic urticaria. Full article
Show Figures

Graphical abstract

16 pages, 2721 KiB  
Article
Relationship between Species Diversity and Community Stability in Degraded Alpine Meadows during Bare Patch Succession
by Yandi She, Xilai Li, Chengyi Li, Pengnian Yang, Zihan Song and Jing Zhang
Plants 2023, 12(20), 3582; https://doi.org/10.3390/plants12203582 - 15 Oct 2023
Cited by 2 | Viewed by 2636
Abstract
Plant diversity plays an important role in maintaining the stability of ecosystem functioning. Based on field surveys and indoor analyses, this study investigated the relationship between species diversity and community stability at different stages of bare patch succession in degraded alpine meadow ecosystems. [...] Read more.
Plant diversity plays an important role in maintaining the stability of ecosystem functioning. Based on field surveys and indoor analyses, this study investigated the relationship between species diversity and community stability at different stages of bare patch succession in degraded alpine meadow ecosystems. Results show that: (1) Using the ICV (the Inverse of the Coefficient of Variation) method to analyze changes in plant community stability, community stability was generally ranked as follows: Long-term recovered patches > Healthy alpine meadow > Degraded alpine meadow > Short-term recovered patch > Bare Patches. (2) Using factor analysis to construct an evaluation system, the stability ranking based on species diversity was as follows: Healthy alpine meadow > Long-term recovered patches > Degraded alpine meadow > Short-term recovered patches > Bare Patches. (3) The community stability index was significantly positively correlated with vegetation coverage, height, biomass, species richness, Shannon–Wiener diversity index, species evenness, and Simpson’s diversity index (p < 0.05). Therefore, a positive correlation exists between plant diversity and community stability, such that plant communities with a higher species diversity tend to be more stable. To maintain the plant diversity and community stability of alpine meadow ecosystems, it is necessary to consider the characteristics of grassland plant composition and community structure, as well as their influencing factors, and promote the positive succession process of grasslands. Full article
(This article belongs to the Special Issue Grassland Ecosystems and Their Management)
Show Figures

Figure 1

19 pages, 870 KiB  
Review
Plants of the Rubiaceae Family with Effect on Metabolic Syndrome: Constituents, Pharmacology, and Molecular Targets
by Fabiola González-Castelazo, Luis E. Soria-Jasso, Ivan Torre-Villalvazo, Raquel Cariño-Cortés, Víctor M. Muñoz-Pérez, Mario I. Ortiz and Eduardo Fernández-Martínez
Plants 2023, 12(20), 3583; https://doi.org/10.3390/plants12203583 - 15 Oct 2023
Cited by 5 | Viewed by 3606
Abstract
Metabolic syndrome (MetS) predisposes individuals to chronic non-communicable diseases (NCDs) like type 2 diabetes (T2D), non-alcoholic fatty liver disease, atherosclerosis, and cardiovascular disorders caused by systemic inflammation, intestinal dysbiosis, and diminished antioxidant ability, leading to oxidative stress and compromised insulin sensitivity across vital [...] Read more.
Metabolic syndrome (MetS) predisposes individuals to chronic non-communicable diseases (NCDs) like type 2 diabetes (T2D), non-alcoholic fatty liver disease, atherosclerosis, and cardiovascular disorders caused by systemic inflammation, intestinal dysbiosis, and diminished antioxidant ability, leading to oxidative stress and compromised insulin sensitivity across vital organs. NCDs present a global health challenge characterized by lengthy and costly pharmacological treatments. Complementary and alternative medicine using herbal therapies has gained popularity. Approximately 350,000 plant species are considered medicinal, with 80% of the world’s population opting for traditional remedies; however, only 21,000 plants are scientifically confirmed by the WHO. The Rubiaceae family is promissory for preventing and treating MetS and associated NCDs due to its rich content of metabolites renowned for their antioxidative, anti-inflammatory, and metabolic regulatory properties. These compounds influence transcription factors and mitigate chronic low-grade inflammation, liver lipotoxicity, oxidative stress, and insulin resistance, making them a cost-effective non-pharmacological approach for MetS prevention and treatment. This review aims to collect and update data that validate the traditional uses of the Rubiaceae family for treating MetS and associated NCDs from experimental models and human subjects, highlighting the mechanisms through which their extracts and metabolites modulate glucose and lipid metabolism at the molecular, biochemical, and physiological levels. Full article
(This article belongs to the Special Issue Relevance of Plant Phytochemicals in the Promotion of Human Health)
Show Figures

Figure 1

24 pages, 9200 KiB  
Article
Morphological Characteristics, Ultrastructure, and Chemical Constituents of the Endotesta in Ginkgo (Ginkgo biloba L.)
by Fangdi Li, Ganping Liu, Linying Zhao, Xiaoge Gao, Zhuolong Shen, Fuliang Cao and Qirong Guo
Plants 2023, 12(20), 3560; https://doi.org/10.3390/plants12203560 - 13 Oct 2023
Cited by 1 | Viewed by 2974
Abstract
Ginkgo biloba L. is a tree species of significant economic and ecological importance. Prior studies of the Ginkgo biloba seed coat have predominantly focused on the sarcotesta and sclerotesta, with less attention paid to the endotesta. In this study, the development and formation [...] Read more.
Ginkgo biloba L. is a tree species of significant economic and ecological importance. Prior studies of the Ginkgo biloba seed coat have predominantly focused on the sarcotesta and sclerotesta, with less attention paid to the endotesta. In this study, the development and formation of Ginkgo endotesta were examined using light microscopy and transmission electron microscopy. The structural properties of the mature endotesta were analyzed using micro-CT imaging and scanning electron microscopy. The results indicate that the endotesta possess a membranous structure primarily originating from the inner bead peridium, a segment of bead core tissue, and the macrospore membrane. The endotesta from the middle constriction line to the chalazal end comprises a single layer with a greyish-white papery structure. In contrast, the endotesta was divided into two inner and two outer layers, from the middle constriction line to the micropylar end. The outer endosperm adheres closely to the sclerotesta, while the inner endosperm adheres to the seed kernel. The surface of the endotesta was irregularly raised, with thicker wax at the chalazal end, whereas the micropylar end demonstrated similar characteristics with thinner wax and tumor layers. The endotesta contained 17 amino acids, 18 fatty acids, 10 trace elements, and 7 vitamins. Overall, its nutritional value was relatively well balanced. Full article
(This article belongs to the Special Issue Phytomorphology, Anatomy and Ultrastructure)
Show Figures

Figure 1

18 pages, 4416 KiB  
Article
Unraveling the Guardians of Growth: A Comprehensive Analysis of the Aux/IAA and ARF Gene Families in Populus simonii
by Kewei Cai, Qiushuang Zhao, Jinwang Zhang, Hongtao Yuan, Hanxi Li, Lu Han, Xuebo Li, Kailong Li, Tingbo Jiang and Xiyang Zhao
Plants 2023, 12(20), 3566; https://doi.org/10.3390/plants12203566 - 13 Oct 2023
Cited by 4 | Viewed by 1315
Abstract
The auxin/indole-3-acetic acid (Aux/IAA) and auxin response factor (ARF) genes are two crucial gene families in the plant auxin signaling pathway. Nonetheless, there is limited knowledge regarding the Aux/IAA and ARF gene families in Populus simonii. In this [...] Read more.
The auxin/indole-3-acetic acid (Aux/IAA) and auxin response factor (ARF) genes are two crucial gene families in the plant auxin signaling pathway. Nonetheless, there is limited knowledge regarding the Aux/IAA and ARF gene families in Populus simonii. In this study, we first identified 33 putative PsIAAs and 35 PsARFs in the Populus simonii genome. Analysis of chromosomal location showed that the PsIAAs and PsARFs were distributed unevenly across 17 chromosomes, with the greatest abundance observed on chromosomes 2. Furthermore, based on the homology of PsIAAs and PsARFs, two phylogenetic trees were constructed, classifying 33 PsIAAs and 35 PsARFs into three subgroups each. Five pairs of PsIAA genes were identified as the outcome of tandem duplication, but no tandem repeat gene pairs were found in the PsARF family. The expression profiling of PsIAAs and PsARFs revealed that several genes exhibited upregulation in different tissues and under various stress conditions, indicating their potential key roles in plant development and stress responses. The variance in expression patterns of specific PsIAAs and PsARFs was corroborated through RT-qPCR analysis. Most importantly, we instituted that the PsIAA7 gene, functioning as a central hub, exhibits interactions with numerous Aux/IAA and ARF proteins. Furthermore, subcellular localization findings indicate that PsIAA7 functions as a protein localized within the nucleus. To conclude, the in-depth analysis provided in this study will contribute significantly to advancing our knowledge of the roles played by PsIAA and PsARF families in both the development of P. simonii tissue and its responses to stress. The insights gained will serve as a valuable asset for further inquiries into the biological functions of these gene families. Full article
(This article belongs to the Special Issue Transcription Factors Associated with Plant Growth and Senescence)
Show Figures

Figure 1

17 pages, 3603 KiB  
Article
Impacts of Climate Changes on Geographic Distribution of Primula filchnerae, an Endangered Herb in China
by Xin Jiang, Wan-Jing Liu, Yan-Zhao Zhu, Yu-Ting Cao, Xiu-Min Yang, Yao Geng, Fu-Jiao Zhang, Rui-Qi Sun, Rui-Wen Jia, Chun-Li Yan, Yang-Yan Zhang and Zhong-Hu Li
Plants 2023, 12(20), 3561; https://doi.org/10.3390/plants12203561 - 13 Oct 2023
Cited by 7 | Viewed by 1575
Abstract
Primula filchnerae, an endangered plant endemic to China, has drawn people’s attention in recent years due to its ornamental value in flower. It was rarely recorded since being described in 1902, but it was rediscovered in 2009 and is now known from [...] Read more.
Primula filchnerae, an endangered plant endemic to China, has drawn people’s attention in recent years due to its ornamental value in flower. It was rarely recorded since being described in 1902, but it was rediscovered in 2009 and is now known from a limited number of sites located in Hubei and Shaanxi Provinces. Since the species is still poorly known, a number of unanswered questions arise related to it: How has P. filchnerae responded to past climate change and how might it respond in the future? Why was P. filchmerae so rarely collected during the past century? We assembled geographic coordinates for P. filchnerae through the field surveys and website searches, and then used a maximum entropy model (MaxEnt) to simulate its potential suitable distribution in six periods with varied carbon emission levels by combining bioclimatic and environmental factors. MaxEnt showed that Min Temperature of the Coldest Month (bio6) and Precipitation of the Coldest Quarter (bio19) affected P. filchnerae’s distribution most, with an aggregate contribution >60% and suitable ranges above −5 °C and below 40 mm, respectively. We also analyzed potential habitat distribution in various periods with differing impacts of climate change compared to today’s suitable habitats, and in most cases, Shaanxi and Sichuan remained the most stable areas and with possible expansion to the north under various carbon emission scenarios, but the 2050s SSP5-8.5 scenario may be an exception. Moreover, we used MaxEnt to evaluate population shifts, with various scenarios indicating that geometric center would be concentrated in Sichuan Province in China. Finally, conservation strategies are suggested, including the creation of protected areas, long-term monitoring, raising public awareness of plant conservation, situ conservation measures, assisted migration, and species introduction. This study demonstrates how P. filchnerae may have adapted to changes in different periods and provides a scientific basis for germplasm conservation and management. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

16 pages, 2741 KiB  
Review
Impacts of Micro(nano)plastics on Terrestrial Plants: Germination, Growth, and Litter
by Xiaodong Li, Rongyu Wang, Wei Dai, Yaning Luan and Jing Li
Plants 2023, 12(20), 3554; https://doi.org/10.3390/plants12203554 - 12 Oct 2023
Cited by 6 | Viewed by 3675
Abstract
Micro(nano)plastics (MNP) are pervasive in various environmental media and pose a global environmental pollution issue, particularly in terrestrial ecosystems, where they exert a significant impact on plant growth and development. This paper builds upon prior research to analyze and consolidate the effects of [...] Read more.
Micro(nano)plastics (MNP) are pervasive in various environmental media and pose a global environmental pollution issue, particularly in terrestrial ecosystems, where they exert a significant impact on plant growth and development. This paper builds upon prior research to analyze and consolidate the effects of MNP on soil properties, seed germination, plant growth, and litter decomposition. The objective is to elucidate the environmental behavior of MNP and their mechanisms of influence on the plant life cycle. The unique physicochemical and electrical properties of MNP enable them to modify soil structure, water retention capacity, and pH. They can potentially act as “electron shuttles” or disrupt natural “electron shuttles” in litter decomposition, thereby interfering with nutrient transport and availability in the soil. Furthermore, MNP can physically obstruct nutrient and water channels within plants, impacting nutrient and water absorption. Once infiltrating plant tissues, MNP can form eco-coronas with plant proteins. Together with MNP adsorbed on the plant’s surface and within its tissues, they disrupt normal physiological processes, leading to changes in photosynthesis, biomass, cellular toxicity, genetics, nutrient uptake, and gene expression. These changes, in turn, influence seed germination and plant growth and development. As a burgeoning research field, future studies should delve deeper into various aspects of these changes, such as elucidating the pathways and mechanisms through which MNP enter plant tissues, assessing their intensity and mechanisms of toxicity on different plant species, and exploring the relationship between micro(nano)plastics and “electron shuttles”. These endeavors will contribute to establishing a more comprehensive theoretical framework for understanding the environmental behavior of MNP and their impact on plants. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

23 pages, 2242 KiB  
Article
Assessment of Growth, Yield, and Nutrient Uptake of Mediterranean Tomato Landraces in Response to Salinity Stress
by Theodora Ntanasi, Ioannis Karavidas, Georgios Zioviris, Ioannis Ziogas, Melini Karaolani, Dimitrios Fortis, Miquel À. Conesa, Andrea Schubert, Dimitrios Savvas and Georgia Ntatsi
Plants 2023, 12(20), 3551; https://doi.org/10.3390/plants12203551 - 12 Oct 2023
Cited by 9 | Viewed by 1878
Abstract
Salinity is a major stress factor that compromises vegetable production in semi-arid climates such as the Mediterranean. The accumulation of salts in the soil can be attributed to limited water availability, which can be exacerbated by changes in rainfall patterns and rising temperatures. [...] Read more.
Salinity is a major stress factor that compromises vegetable production in semi-arid climates such as the Mediterranean. The accumulation of salts in the soil can be attributed to limited water availability, which can be exacerbated by changes in rainfall patterns and rising temperatures. These factors can alter soil moisture levels and evaporation rates, ultimately leading to an increase in soil salinity, and, concomitantly, the extent to which crop yield is affected by salinity stress is considered cultivar-dependent. In contrast to tomato hybrids, tomato landraces often exhibit greater genetic diversity and resilience to environmental stresses, constituting valuable resources for breeding programs seeking to introduce new tolerance mechanisms. Therefore, in the present study, we investigated the effects of mild salinity stress on the growth, yield, and nutritional status of sixteen Mediterranean tomato landraces of all size types that had been pre-selected as salinity tolerant in previous screening trials. The experiment was carried out in the greenhouse facilities of the Laboratory of Vegetable Production at the Agricultural University of Athens. To induce salinity stress, plants were grown hydroponically and irrigated with a nutrient solution containing NaCl at a concentration that could maintain the NaCl level in the root zone at 30 mM, while the non-salt-treated plants were irrigated with a nutrient solution containing 0.5 mM NaCl. Various plant growth parameters, including dry matter content and fruit yield (measured by the number and weight of fruits per plant), were evaluated to assess the impact of salinity stress. In addition, the nutritional status of the plants was assessed by determining the concentrations of macro- and micronutrients in the leaves, roots, and fruit of the plants. The key results of this study reveal that cherry-type tomato landraces exhibit the highest tolerance to salinity stress, as the landraces ‘Cherry-INRAE (1)’, ‘Cherry-INRAE (3)’, and ‘Cherry-INRAE (4)’ did not experience a decrease in yield when exposed to salinity stress. However, larger landraces such as ‘de Ramellet’ also exhibit mechanisms conferring tolerance to salinity, as their yield was not compromised by the stress applied. The identified tolerant and resistant varieties could potentially be used in breeding programs to develop new varieties and hybrids that are better adapted to salinity-affected environments. The identification and utilization of tomato varieties that are adapted to salinity stress is an important strategy for promoting agriculture sustainability, particularly in semi-arid regions where salinity stress is a major challenge. Full article
(This article belongs to the Topic Plants Nutrients)
Show Figures

Figure 1

18 pages, 1972 KiB  
Review
Effects of Climate Change and Drought Tolerance on Maize Growth
by Kyung-Hee Kim and Byung-Moo Lee
Plants 2023, 12(20), 3548; https://doi.org/10.3390/plants12203548 - 12 Oct 2023
Cited by 14 | Viewed by 5458
Abstract
Climate change is affecting all regions of the world with different climates, and the scale of damage is increasing due to the occurrence of various natural disasters. In particular, maize production is highly affected by abnormal climate events such as heat waves and [...] Read more.
Climate change is affecting all regions of the world with different climates, and the scale of damage is increasing due to the occurrence of various natural disasters. In particular, maize production is highly affected by abnormal climate events such as heat waves and droughts. Increasing temperatures can accelerate growth and shorten the growing season, potentially reducing productivity. Additionally, enhanced temperatures during the ripening period can accelerate the process, reducing crop yields. In addition, drought stress due to water deficit can greatly affect seedling formation, early plant growth, photosynthesis, reproductive growth, and yield, so proper water management is critical to maize growth. Maize, in particular, is tall and broad-leaved, so extreme drought stress at planting can cause leaves to curl and stunt growth. It is important to understand that severe drought can have a detrimental effect on the growth and reproduction of maize. In addition, high temperatures caused by drought stress can inhibit the induction of flowering in male flowers and cause factors that interfere with pollen development. It is therefore important to increase the productivity of all food crops, including maize, while maintaining them in the face of persistent drought caused by climate change. This requires a strategy to develop genetically modified crops and drought-tolerant maize that can effectively respond to climate change. The aim of this paper is to investigate the effects of climate change and drought tolerance on maize growth. We also reviewed molecular breeding techniques to develop drought-tolerant maize varieties in response to climate change. Full article
(This article belongs to the Special Issue Plant Stress Physiology and Molecular Biology)
Show Figures

Figure 1

20 pages, 2027 KiB  
Review
Arnica montana L.: Doesn’t Origin Matter?
by Thomas J. Schmidt
Plants 2023, 12(20), 3532; https://doi.org/10.3390/plants12203532 - 11 Oct 2023
Cited by 2 | Viewed by 2600
Abstract
Arnica montana L. (Asteraceae) has a long and successful tradition in Europe as herbal medicine. Arnica flowers (i.e., the flowerheads of Arnica montana) are monographed in the European Pharmacopoeia (Ph. Eur.), and a European Union herbal monograph exists, in which its use [...] Read more.
Arnica montana L. (Asteraceae) has a long and successful tradition in Europe as herbal medicine. Arnica flowers (i.e., the flowerheads of Arnica montana) are monographed in the European Pharmacopoeia (Ph. Eur.), and a European Union herbal monograph exists, in which its use as traditional herbal medicine is recommended. According to this monograph, Arnica flowers (Arnicae flos Ph. Eur.) and preparations thereof may be used topically to treat blunt injuries and traumas, inflammations and rheumatic muscle and joint complaints. The main bioactive constituents are sesquiterpene lactones (STLs) of the helenanolide type. Among these, a variety of esters of helenalin and 11α,13-dihydrohelenalin with low-molecular-weight carboxylic acids, namely, acetic, isobutyric, methacrylic, methylbutyric as well as tiglic acid, represent the main constituents, in addition to small amounts of the unesterified parent STLs. A plethora of reports exist on the pharmacological activities of these STLs, and it appears unquestioned that they represent the main active principles responsible for the herbal drug’s efficacy. It has been known for a long time, however, that considerable differences in the STL pattern occur between A. montana flowers from plants growing in middle or Eastern Europe with some originating from the Iberic peninsula. In the former, Helenalin esters usually predominate, whereas the latter contains almost exclusively 11α,13-Dihydrohelenalin derivatives. Differences in pharmacological potency, on the other hand, have been reported for the two subtypes of Arnica-STLs in various instances. At the same time, it has been previously proposed that one should distinguish between two subspecies of A. montana, subsp. montana occurring mainly in Central and Eastern Europe and subsp. atlantica in the southwestern range of the species distribution, i.e., on the Iberian Peninsula. The question hence arises whether or not the geographic origin of Arnica montana flowers is of any relevance for the medicinal use of the herbal drug and the pharmaceutical quality, efficacy and safety of its products and whether the chemical/pharmacological differences should not be recognized in pharmacopoeia monographs. The present review attempts to answer these questions based on a summary of the current state of botanical, phytochemical and pharmacological evidence. Full article
(This article belongs to the Special Issue Phytochemistry of Aromatic and Medicinal Plants)
Show Figures

Figure 1

13 pages, 1613 KiB  
Article
Effects of Magnesium Imbalance on Root Growth and Nutrient Absorption in Different Genotypes of Vegetable Crops
by Shuai Qu, Huixia Li, Xueke Zhang, Jingbo Gao, Rui Ma, Ling Ma and Jing Ma
Plants 2023, 12(20), 3518; https://doi.org/10.3390/plants12203518 - 10 Oct 2023
Cited by 4 | Viewed by 2353
Abstract
Magnesium (Mg) plays a crucial role in crop growth, but how Mg supply level affects root growth and nutrient absorption in vegetable crops with different genotypes has not been sufficiently investigated. In this study, the responses of tomato (Solanum lycopersicum L.) and [...] Read more.
Magnesium (Mg) plays a crucial role in crop growth, but how Mg supply level affects root growth and nutrient absorption in vegetable crops with different genotypes has not been sufficiently investigated. In this study, the responses of tomato (Solanum lycopersicum L.) and cucumber (Cucumis sativus L.) crops to different levels of Mg supply were explored. Four levels of Mg treatment (i.e., 0.2, 1.0, 2.0, 3.0 mmol/L) were applied under hydroponic conditions, denoted as Mg0.2, Mg1, Mg2, and Mg3, respectively. The results showed that with increasing Mg levels, the plant biomass, root growth, and nutrient accumulation in both vegetable crops all increased until reaching their maximum values under the Mg2 treatment and then decreased. The total biomass per tomato plant of Mg2 treatment was 30.9%, 14.0%, and 14.0% higher than that of Mg0.2, Mg1, and Mg3 treatments, respectively, and greater increases were observed in cucumber plant biomass (by 54.3%, 17.4%, and 19.9%, respectively). Compared with the Mg0.2 treatment, the potassium (K) and calcium (Ca) contents in various plant parts of both crops remarkably decreased under the Mg3 treatment. This change was accompanied by prominently increased Mg contents in various plant parts and para-hydroxybenzoic acid and oxalic acid contents in root exudates. Irrespective of Mg level, plant biomass, root growth, nutrient accumulation, and root exudation of organic acids were all higher in tomato plants than in cucumber plants. Our findings indicate that excessive Mg supply promotes the roots to exude phenolic acids and hinders the plants from absorbing K and Ca in different genotypes of vegetable crops despite no effect on Mg absorption. A nutritional deficiency of Mg stimulates root exudation of organic acids and increases the types of exuded organic acids, which could facilitate plant adaption to Mg stress. In terms of root growth and nutrient absorption, tomato plants outperform cucumber plants under low and medium Mg levels, but the latter crop is more tolerant to Mg excess. Full article
(This article belongs to the Special Issue Advances in Plant Nutrition and Novel Fertilizers)
Show Figures

Figure 1

25 pages, 3966 KiB  
Review
The Glycine-Rich RNA-Binding Protein Is a Vital Post-Transcriptional Regulator in Crops
by Ke Cheng, Chunjiao Zhang, Yao Lu, Jinyan Li, Hui Tang, Liqun Ma and Hongliang Zhu
Plants 2023, 12(19), 3504; https://doi.org/10.3390/plants12193504 - 9 Oct 2023
Cited by 5 | Viewed by 2295
Abstract
Glycine-rich RNA binding proteins (GR-RBPs), a branch of RNA binding proteins (RBPs), play integral roles in regulating various aspects of RNA metabolism regulation, such as RNA processing, transport, localization, translation, and stability, and ultimately regulate gene expression and cell fate. However, our current [...] Read more.
Glycine-rich RNA binding proteins (GR-RBPs), a branch of RNA binding proteins (RBPs), play integral roles in regulating various aspects of RNA metabolism regulation, such as RNA processing, transport, localization, translation, and stability, and ultimately regulate gene expression and cell fate. However, our current understanding of GR-RBPs has predominantly been centered on Arabidopsis thaliana, a model plant for investigating plant growth and development. Nonetheless, an increasing body of literature has emerged in recent years, shedding light on the presence and functions of GRPs in diverse crop species. In this review, we not only delineate the distinctive structural domains of plant GR-RBPs but also elucidate several contemporary mechanisms of GR-RBPs in the post-transcriptional regulation of RNA. These mechanisms encompass intricate processes, including RNA alternative splicing, polyadenylation, miRNA biogenesis, phase separation, and RNA translation. Furthermore, we offer an exhaustive synthesis of the diverse roles that GR-RBPs fulfill within crop plants. Our overarching objective is to provide researchers and practitioners in the field of agricultural genetics with valuable insights that may inform and guide the application of plant genetic engineering for enhanced crop development and sustainable agriculture. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

17 pages, 5471 KiB  
Article
Transcriptome and Metabolome Provide Insights into Fruit Ripening of Cherry Tomato (Solanum lycopersicum var. cerasiforme)
by Feng Pan, Qianrong Zhang, Haisheng Zhu, Junming Li and Qingfang Wen
Plants 2023, 12(19), 3505; https://doi.org/10.3390/plants12193505 - 9 Oct 2023
Cited by 3 | Viewed by 1708
Abstract
Insights into flavor formation during fruit ripening can guide the development of breeding strategies that balance consumer and producer needs. Cherry tomatoes possess a distinctive taste, yet research on quality formation is limited. Here, metabolomic and transcriptomic analyses were conducted on different ripening [...] Read more.
Insights into flavor formation during fruit ripening can guide the development of breeding strategies that balance consumer and producer needs. Cherry tomatoes possess a distinctive taste, yet research on quality formation is limited. Here, metabolomic and transcriptomic analyses were conducted on different ripening stages. The results revealed differentially accumulated metabolites during fruit ripening, providing candidate metabolites related to flavor. Interestingly, several key flavor-related metabolites already reached a steady level at the mature green stage. Transcriptomic analysis revealed that the expression levels of the majority of genes tended to stabilize after the pink stage. Enrichment analysis demonstrated that changes in metabolic and biosynthetic pathways were evident throughout the entire process of fruit ripening. Compared to disease resistance and fruit color genes, genes related to flavor and firmness may have a broader impact on the accumulation of metabolites. Furthermore, we discovered the interconversion patterns between glutamic acid and glutamine, as well as the biosynthesis patterns of flavonoids. These findings contribute to our understanding of fruit quality formation mechanisms and support breeding programs aimed at improving fruit quality traits. Full article
(This article belongs to the Special Issue Tomato Fruit Traits and Breeding)
Show Figures

Figure 1

16 pages, 3928 KiB  
Article
MsYSL6, A Metal Transporter Gene of Alfalfa, Increases Iron Accumulation and Benefits Cadmium Resistance
by Miao Zhang, Meng-Han Chang, Hong Li, Yong-Jun Shu, Yan Bai, Jing-Yun Gao, Jing-Xuan Zhu, Xiao-Yu Dong, Dong-Lin Guo and Chang-Hong Guo
Plants 2023, 12(19), 3485; https://doi.org/10.3390/plants12193485 - 5 Oct 2023
Cited by 3 | Viewed by 1642
Abstract
Iron (Fe) is necessary for plant growth and development. The mechanism of uptake and translocation in Cadmium (Cd) is similar to iron, which shares iron transporters. Yellow stripe-like transporter (YSL) plays a pivotal role in transporting iron and other metal ions in plants. [...] Read more.
Iron (Fe) is necessary for plant growth and development. The mechanism of uptake and translocation in Cadmium (Cd) is similar to iron, which shares iron transporters. Yellow stripe-like transporter (YSL) plays a pivotal role in transporting iron and other metal ions in plants. In this study, MsYSL6 and its promoter were cloned from leguminous forage alfalfa. The transient expression of MsYSL6-GFP indicated that MsYSL6 was localized to the plasma membrane and cytoplasm. The expression of MsYSL6 was induced in alfalfa by iron deficiency and Cd stress, which was further proved by GUS activity driven by the MsYSL6 promoter. To further identify the function of MsYSL6, it was heterologously overexpressed in tobacco. MsYSL6-overexpressed tobacco showed better growth and less oxidative damage than WT under Cd stress. MsYSL6 overexpression elevated Fe and Cd contents and induced a relatively high Fe translocation rate in tobacco under Cd stress. The results suggest that MsYSL6 might have a dual function in the absorption of Fe and Cd, playing a role in the competitive absorption between Fe and Cd. MsYSL6 might be a regulatory factor in plants to counter Cd stress. This study provides a novel gene for application in heavy metal enrichment or phytoremediation and new insights into plant tolerance to toxic metals. Full article
(This article belongs to the Special Issue Biochemical Interactions of Iron Nutrition in Plants)
Show Figures

Figure 1

13 pages, 1334 KiB  
Article
Accumulation of Nutrients and the Relation between Fruit, Grain, and Husk of Coffee Robusta Cultivated in Brazilian Amazon
by Raquel Schmidt, Cleidson Alves da Silva, Larícia Olária Emerick Silva, Marcelo Curitiba Espindula, Weverton Pereira Rodrigues, Henrique Duarte Vieira, Marcelo Antonio Tomaz and Fábio Luiz Partelli
Plants 2023, 12(19), 3476; https://doi.org/10.3390/plants12193476 - 4 Oct 2023
Cited by 6 | Viewed by 1451
Abstract
Coffee genotypes cultivated in the Amazonian region have been gaining increasing prominence in Brazilian plantations. This study aimed to quantify nutrient accumulation in the fruits, grains, and husks of Robusta coffee genotypes cultivated in the Brazilian Amazon and estimate genetic diversity. The experiment [...] Read more.
Coffee genotypes cultivated in the Amazonian region have been gaining increasing prominence in Brazilian plantations. This study aimed to quantify nutrient accumulation in the fruits, grains, and husks of Robusta coffee genotypes cultivated in the Brazilian Amazon and estimate genetic diversity. The experiment was conducted in Alta Floresta D’Oeste—Rondônia, Brazil. To assess nutrient accumulation, fresh fruits were collected. These were dried, processed, separated into grains and husks, and subjected to chemical analysis. Nutrient accumulation in fruits, grains, and husks, as well as the grain/husk ratio, underwent analysis of variance through the F-test (p < 0.01. For each evaluated trait, the experimental coefficient of 337 variation (CVe), genetic coefficient of variation (CVg), and genotypic determination coefficient (H2) were also estimated. Variability was observed among Robusta coffee genotypes, with VP06, AS4, and AS10 being the most dissimilar. LB080 had the lowest dry fruit weight and the lowest percentage of grains in relation to husks. ZD156 accumulated more K in the grains, while VP06 and AS10 were the genotypes that accumulated more nutrients in the husks. Nutrients N, K, Ca, and P are accumulated in larger quantities, necessitating the calibration of mineral fertilization dosages and distribution. Full article
(This article belongs to the Special Issue Coffee Breeding and Stress Biology)
Show Figures

Figure 1

31 pages, 7768 KiB  
Article
Wild-Grown Romanian Helleborus purpurascens Approach to Novel Chitosan Phyto-Nanocarriers—Metabolite Profile and Antioxidant Properties
by Adina-Elena Segneanu, Gabriela Vlase, Titus Vlase, Crina Andreea Sicoe, Maria Viorica Ciocalteu, Dumitru Daniel Herea, Ovidiu-Florin Ghirlea, Ioan Grozescu and Valentin Nanescu
Plants 2023, 12(19), 3479; https://doi.org/10.3390/plants12193479 - 4 Oct 2023
Cited by 5 | Viewed by 1631
Abstract
The current nanomedicinal approach combines medicinal plants and nanotechnology to create new scaffolds with enhanced bioavailability, biodistribution and controlled release. In an innovative approach to herb encapsulation in nanosized chitosan matrices, wild-grown Romanian Helleborus purpurascens was used to prepare two new chitosan nanocarriers. [...] Read more.
The current nanomedicinal approach combines medicinal plants and nanotechnology to create new scaffolds with enhanced bioavailability, biodistribution and controlled release. In an innovative approach to herb encapsulation in nanosized chitosan matrices, wild-grown Romanian Helleborus purpurascens was used to prepare two new chitosan nanocarriers. The first carrier preparation involved the nanoencapsulation of hellebore in chitosan. The second carrier emerged from two distinct stages: hellebore-AgNPs phyto-carrier system succeeded by nanoencapsulation in chitosan. The morphostructural characteristics and thermal behavior of these newly prepared nanocarriers were examined using FT-IR, XRD, DLS, SEM, EDS and thermogravimetric analyses. In addition, the encapsulation yield, encapsulation efficiency and encapsulation contents were investigated. The antioxidant activity was estimated using four in vitro, noncompetitive methods: total phenolic assay; 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay; phosphomolybdate (i.e., total antioxidant capacity); and iron(III)-phenanthroline antioxidant assay. Moreover, this study reports the first low-molecular-weight metabolite profile of wild-grown Romanian Helleborus purpurascens Waldst. & Kit. A total of one hundred and five secondary metabolites were identified in the mass spectra (MS)-positive mode from fourteen secondary metabolite categories (alkaloids, butenolides, bufadienolides, phytoecdysteroids, amino acids and peptides, terpenoids, fatty acids, flavonoids, phenolic acids, sterols, glycosides, carbohydrates, nucleosides and miscellaneous). The collective results suggest the potential application is a promising new antioxidant vehicle candidate in tumor therapeutic strategy. Full article
(This article belongs to the Special Issue Spectra Analysis and Plants Research 2.0)
Show Figures

Figure 1

13 pages, 4485 KiB  
Article
Effect of Soil Environment on Species Diversity of Desert Plant Communities
by Jie Sun, Nai’ang Wang and Zhenmin Niu
Plants 2023, 12(19), 3465; https://doi.org/10.3390/plants12193465 - 2 Oct 2023
Cited by 5 | Viewed by 1948
Abstract
Desert ecosystems possess an astonishing biodiversity and are rich in endangered species. This study investigated characteristics of species diversity and soil environmental factors in three major deserts of China’s Alxa Plateau. The Alxa Desert included 183 plant species belonging to 109 genera and [...] Read more.
Desert ecosystems possess an astonishing biodiversity and are rich in endangered species. This study investigated characteristics of species diversity and soil environmental factors in three major deserts of China’s Alxa Plateau. The Alxa Desert included 183 plant species belonging to 109 genera and 35 families. The highest numbers of plant species belonged to the Compositae, Gramineae, and Chenopodiaceae families. The research area belongs to the semi-shrub and small semi-shrub deserts in temperate deserts. Species diversity was low, with the Shannon–Wiener index (H′) of shrub-herb = shrub > herb > tree. The Pielou evenness index (E) of shrub herb vegetation was the lowest, indicating more enriched species and fewer sparse species in the community, and that these types of vegetation had the characteristics of rich and obviously dominant species. Redundancy analysis (RDA) and correlations between the comprehensive plant community biodiversity index and soil factors indicated that soil-available phosphorus (NP), organic matter (SOM), and electrical conductivity (EC) had significant impacts on community species diversity. The herbaceous shrub community exhibited the highest H′, Simpson index (D), species richness index (S), soil moisture (SW), and soil nutrients. Planting Calligonum mongolicum, Ephedra membranacea, Artemisia annua, and Phragmites australis to form a typical desert shrub community for community diversity protection is recommended to effectively protect and restore desert ecosystems. Full article
Show Figures

Figure 1

18 pages, 2915 KiB  
Article
Aridity Gradients Shape Intraspecific Variability of Morphological Traits in Native Ceratonia siliqua L. of Morocco
by Jalal Kassout, Younes Hmimsa, Salama El Fatehi, Khalil Kadaoui, Mhammad Houssni, Soufian Chakkour, Abdelouahab Sahli, Mohamad Ali El Chami, David Ariza-Mateos, Guillermo Palacios-Rodríguez, Rafael M. Navarro-Cerrillo and Mohamed Ater
Plants 2023, 12(19), 3447; https://doi.org/10.3390/plants12193447 - 30 Sep 2023
Cited by 8 | Viewed by 1317
Abstract
The carob tree (Ceratonia siliqua L.) is a significant fruit tree in the Mediterranean region with cultural, biological, and ecological importance. Despite its importance, intraspecific trait variability (ITV) in carob trees has been largely overlooked in previous studies. Understanding ITV and its [...] Read more.
The carob tree (Ceratonia siliqua L.) is a significant fruit tree in the Mediterranean region with cultural, biological, and ecological importance. Despite its importance, intraspecific trait variability (ITV) in carob trees has been largely overlooked in previous studies. Understanding ITV and its relationship with environmental conditions is crucial for conservation and breeding programs. In this study, we investigated the variability of carob pod and seed-related traits across different ecological scales in 25 studied populations in Morocco. Significant differences in morphological traits were observed between carob populations at various ecological levels, and pod-related traits exhibited greater variability than seed traits. Correlation analysis revealed strong associations between carob morphological traits and environmental conditions, with altitude and aridity index playing an influential role. The aridity gradient was strongly related to changes in pod size, seed number, and size, as well as seed yield. Our findings highlight an important ITV reaching 45% at the intra-population level, 36.5% at the inter-geographic level, and 30% at the inter-population level. Overall, this study contributes valuable insights into the ecology and adaptation of carob trees, emphasizing the importance of considering intraspecific variability when studying this remarkable species. This knowledge is critical for addressing the challenges posed by climate change and human activities on the long-term survival and ecological functioning of carob populations. Full article
(This article belongs to the Special Issue Mediterranean Plants II)
Show Figures

Figure 1

17 pages, 9687 KiB  
Article
An Approach for Plant Leaf Image Segmentation Based on YOLOV8 and the Improved DEEPLABV3+
by Tingting Yang, Suyin Zhou, Aijun Xu, Junhua Ye and Jianxin Yin
Plants 2023, 12(19), 3438; https://doi.org/10.3390/plants12193438 - 29 Sep 2023
Cited by 13 | Viewed by 5414
Abstract
Accurate plant leaf image segmentation provides an effective basis for automatic leaf area estimation, species identification, and plant disease and pest monitoring. In this paper, based on our previous publicly available leaf dataset, an approach that fuses YOLOv8 and improved DeepLabv3+ is proposed [...] Read more.
Accurate plant leaf image segmentation provides an effective basis for automatic leaf area estimation, species identification, and plant disease and pest monitoring. In this paper, based on our previous publicly available leaf dataset, an approach that fuses YOLOv8 and improved DeepLabv3+ is proposed for precise image segmentation of individual leaves. First, the leaf object detection algorithm-based YOLOv8 was introduced to reduce the interference of backgrounds on the second stage leaf segmentation task. Then, an improved DeepLabv3+ leaf segmentation method was proposed to more efficiently capture bar leaves and slender petioles. Densely connected atrous spatial pyramid pooling (DenseASPP) was used to replace the ASPP module, and the strip pooling (SP) strategy was simultaneously inserted, which enabled the backbone network to effectively capture long distance dependencies. The experimental results show that our proposed method, which combines YOLOv8 and the improved DeepLabv3+, achieves a 90.8% mean intersection over the union (mIoU) value for leaf segmentation on our public leaf dataset. When compared with the fully convolutional neural network (FCN), lite-reduced atrous spatial pyramid pooling (LR-ASPP), pyramid scene parsing network (PSPnet), U-Net, DeepLabv3, and DeepLabv3+, the proposed method improves the mIoU of leaves by 8.2, 8.4, 3.7, 4.6, 4.4, and 2.5 percentage points, respectively. Experimental results show that the performance of our method is significantly improved compared with the classical segmentation methods. The proposed method can thus effectively support the development of smart agroforestry. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

24 pages, 27698 KiB  
Article
Chemometric Analysis for the Prediction of Biochemical Compounds in Leaves Using UV-VIS-NIR-SWIR Hyperspectroscopy
by Renan Falcioni, João Vitor Ferreira Gonçalves, Karym Mayara de Oliveira, Caio Almeida de Oliveira, Amanda Silveira Reis, Luis Guilherme Teixeira Crusiol, Renato Herrig Furlanetto, Werner Camargos Antunes, Everson Cezar, Roney Berti de Oliveira, Marcelo Luiz Chicati, José Alexandre M. Demattê and Marcos Rafael Nanni
Plants 2023, 12(19), 3424; https://doi.org/10.3390/plants12193424 - 28 Sep 2023
Cited by 5 | Viewed by 1692
Abstract
Reflectance hyperspectroscopy is recognised for its potential to elucidate biochemical changes, thereby enhancing the understanding of plant biochemistry. This study used the UV-VIS-NIR-SWIR spectral range to identify the different biochemical constituents in Hibiscus and Geranium plants. Hyperspectral vegetation indices (HVIs), principal component analysis [...] Read more.
Reflectance hyperspectroscopy is recognised for its potential to elucidate biochemical changes, thereby enhancing the understanding of plant biochemistry. This study used the UV-VIS-NIR-SWIR spectral range to identify the different biochemical constituents in Hibiscus and Geranium plants. Hyperspectral vegetation indices (HVIs), principal component analysis (PCA), and correlation matrices provided in-depth insights into spectral differences. Through the application of advanced algorithms—such as PLS, VIP, iPLS-VIP, GA, RF, and CARS—the most responsive wavelengths were discerned. PLSR models consistently achieved R2 values above 0.75, presenting noteworthy predictions of 0.86 for DPPH and 0.89 for lignin. The red-edge and SWIR bands displayed strong associations with pivotal plant pigments and structural molecules, thus expanding the perspectives on leaf spectral dynamics. These findings highlight the efficacy of spectroscopy coupled with multivariate analysis in evaluating the management of biochemical compounds. A technique was introduced to measure the photosynthetic pigments and structural compounds via hyperspectroscopy across UV-VIS-NIR-SWIR, underpinned by rapid multivariate PLSR. Collectively, our results underscore the burgeoning potential of hyperspectroscopy in precision agriculture. This indicates a promising paradigm shift in plant phenotyping and biochemical evaluation. Full article
(This article belongs to the Special Issue Integration of Spectroscopic and Photosynthetic Analyses in Plants)
Show Figures

Figure 1

11 pages, 1657 KiB  
Article
A Novel Method for Stimulating Cannabis sativa L. Male Flowers from Female Plants
by Luke C. Owen, David H. Suchoff and Hsuan Chen
Plants 2023, 12(19), 3371; https://doi.org/10.3390/plants12193371 - 25 Sep 2023
Cited by 4 | Viewed by 3021
Abstract
Female hemp plants are desired in floral hemp operations due to their higher cannabinoid contents. To produce feminized seeds, a critical step of inducing fertile male flowers on female plants is performed. In feminized seed production, freshly mixed STS (silver thiosulfate + sodium [...] Read more.
Female hemp plants are desired in floral hemp operations due to their higher cannabinoid contents. To produce feminized seeds, a critical step of inducing fertile male flowers on female plants is performed. In feminized seed production, freshly mixed STS (silver thiosulfate + sodium thiosulfate) is applied to female plants as an ethylene inhibitor to induce male flowers. However, the short-shelf stability of the STS buffer can cause difficulty in the application and inconsistent results. Alternative methods with improved accessibility and stable buffers will be beneficial for the hemp industry and hemp breeders. A commercially available floriculture product, Chrysal ALESCO®, contains silver nitrate, the same active ingredient as STS but with increased shelf stability. This study compares Chrysal ALESCO® to the traditional STS standard methods for male flower induction on female plants and their pollen quality. The two treatments were applied to six female hemp accessions with three replicates investigated, and the male flower counts and pollen quality were compared. No statistically significant difference was discovered in their male flower counts; the STS-treated plant produced an average of 478.18 male flowers, and the Chrysal ALESCO®-treated plant produced an average of 498.24 male flowers per plant. Fluorescein diacetate (FDA) and acetocarmine stains were used to investigate the pollen quality (non-aborted rate) of two chosen genotypes. FDA-stained pollen of Chrysal ALESCO® showed a significantly higher non-aborted rate than the pollen of traditional STS-treated plants (p < 0.001); however, only a marginally higher non-aborted rate was discovered by acetocarmine staining (p = 0.0892). In summary, Chrysal ALESCO® performed equally to traditional STS treatment at male flower counts and better or equally in pollen quality. With better shelf stability and easy application, ALESCO® can be a viable alternative option for stimulating male flowers on female hemp plants. Full article
(This article belongs to the Special Issue Cannabis sativa: Advances in Biology and Cultivation)
Show Figures

Figure 1

35 pages, 11749 KiB  
Review
Citrus Pruning in the Mediterranean Climate: A Review
by Pedro Matias, Isabel Barrote, Gonçalo Azinheira, Alberto Continella and Amílcar Duarte
Plants 2023, 12(19), 3360; https://doi.org/10.3390/plants12193360 - 22 Sep 2023
Cited by 9 | Viewed by 3452
Abstract
Pruning is a common practice in citrus for various reasons. These include controlling and shaping the canopy; improving phytosanitary health, productivity, and fruit quality; and facilitating operations such as harvesting and phytosanitary treatments. Because pruning is an expensive operation, its need is sometimes [...] Read more.
Pruning is a common practice in citrus for various reasons. These include controlling and shaping the canopy; improving phytosanitary health, productivity, and fruit quality; and facilitating operations such as harvesting and phytosanitary treatments. Because pruning is an expensive operation, its need is sometimes questioned. However, it has been proven to be particularly important in Mediterranean citriculture, which is oriented towards producing fruits for a high-quality demanding fresh market. Herein, we summarize and explain the pruning techniques used in Mediterranean citriculture and refer to the main purposes of each pruning type, considering citrus morphology and physiology. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

16 pages, 3870 KiB  
Article
Segmentation and Phenotype Calculation of Rapeseed Pods Based on YOLO v8 and Mask R-Convolution Neural Networks
by Nan Wang, Hongbo Liu, Yicheng Li, Weijun Zhou and Mingquan Ding
Plants 2023, 12(18), 3328; https://doi.org/10.3390/plants12183328 - 20 Sep 2023
Cited by 17 | Viewed by 4481
Abstract
Rapeseed is a significant oil crop, and the size and length of its pods affect its productivity. However, manually counting the number of rapeseed pods and measuring the length, width, and area of the pod takes time and effort, especially when there are [...] Read more.
Rapeseed is a significant oil crop, and the size and length of its pods affect its productivity. However, manually counting the number of rapeseed pods and measuring the length, width, and area of the pod takes time and effort, especially when there are hundreds of rapeseed resources to be assessed. This work created two state-of-the-art deep learning-based methods to identify rapeseed pods and related pod attributes, which are then implemented in rapeseed pots to improve the accuracy of the rapeseed yield estimate. One of these methods is YOLO v8, and the other is the two-stage model Mask R-CNN based on the framework Detectron2. The YOLO v8n model and the Mask R-CNN model with a Resnet101 backbone in Detectron2 both achieve precision rates exceeding 90%. The recognition results demonstrated that both models perform well when graphic images of rapeseed pods are segmented. In light of this, we developed a coin-based approach for estimating the size of rapeseed pods and tested it on a test dataset made up of nine different species of Brassica napus and one of Brassica campestris L. The correlation coefficients between manual measurement and machine vision measurement of length and width were calculated using statistical methods. The length regression coefficient of both methods was 0.991, and the width regression coefficient was 0.989. In conclusion, for the first time, we utilized deep learning techniques to identify the characteristics of rapeseed pods while concurrently establishing a dataset for rapeseed pods. Our suggested approaches were successful in segmenting and counting rapeseed pods precisely. Our approach offers breeders an effective strategy for digitally analyzing phenotypes and automating the identification and screening process, not only in rapeseed germplasm resources but also in leguminous plants, like soybeans that possess pods. Full article
Show Figures

Figure 1

27 pages, 1706 KiB  
Review
Exploring Carob (Ceratonia siliqua L.): A Comprehensive Assessment of Its Characteristics, Ethnomedicinal Uses, Phytochemical Aspects, and Pharmacological Activities
by Widad Dahmani, Nabia Elaouni, Abdelhadi Abousalim, Zachée Louis Evariste Akissi, Abdelkhaleq Legssyer, Abderrahim Ziyyat and Sevser Sahpaz
Plants 2023, 12(18), 3303; https://doi.org/10.3390/plants12183303 - 18 Sep 2023
Cited by 10 | Viewed by 5526
Abstract
The carob tree (Ceratonia siliqua L.) is currently considered one of the most valuable fruit and forest trees in various fields and sectors of activity. It is a versatile plant, belonging to the Fabaceae family. It is widely used in traditional medicine [...] Read more.
The carob tree (Ceratonia siliqua L.) is currently considered one of the most valuable fruit and forest trees in various fields and sectors of activity. It is a versatile plant, belonging to the Fabaceae family. It is widely used in traditional medicine to treat many diseases such as diabetes, hypertension, and gastrointestinal disorders, given that all its parts (leaves, flowers, pods, seeds, wood, bark, and roots) are useful and hold value in many areas. Its importance has increased significantly in recent years. Originating from the Middle East, it is recognized for its ecological and industrial significance. Previous studies conducted on Ceratonia siliqua L. have revealed the presence of several compounds, including polyphenols, flavonoids, carbohydrates, minerals, and proteins. The carob tree demonstrates antihypertensive, antidepressant, anti-obesity, and antihyperglycemic activities. This plant is known for its medicinal and therapeutic virtues. Moreover, it is particularly interesting to consider the pharmacological activities of the major phytochemical compounds present in the different extracts of this plant, such as phenolic acids, for example, coumaric and gallic acids, as well as flavonoids such as kaempferol and quercetin. Therefore, this review aims to analyze some aspects of this plant, especially the taxonomy, cytogeography, traditional uses, phytochemical constituents, and pharmacological activities of Ceratonia siliqua L., in addition to its biological properties. Full article
(This article belongs to the Special Issue Medicinal Plants and Their Marker Compounds)
Show Figures

Figure 1

25 pages, 7911 KiB  
Article
Identification and Characterization of Beneficial Soil Microbial Strains for the Formulation of Biofertilizers Based on Native Plant Growth-Promoting Microorganisms Isolated from Northern Mexico
by Carlos Esteban Guardiola-Márquez, María Teresa Santos-Ramírez, Melina Lizeth Figueroa-Montes, Eric Oswaldo Valencia-de los Cobos, Iván Jesús Stamatis-Félix, Diego E. Navarro-López and Daniel A. Jacobo-Velázquez
Plants 2023, 12(18), 3262; https://doi.org/10.3390/plants12183262 - 13 Sep 2023
Cited by 3 | Viewed by 3095
Abstract
Plant growth-promoting microorganisms (PGPM) benefit plant health by enhancing plant nutrient-use efficiency and protecting plants against biotic and abiotic stresses. This study aimed to isolate and characterize autochthonous PGPM from important agri-food crops and nonagricultural plants to formulate biofertilizers. Native microorganisms were isolated [...] Read more.
Plant growth-promoting microorganisms (PGPM) benefit plant health by enhancing plant nutrient-use efficiency and protecting plants against biotic and abiotic stresses. This study aimed to isolate and characterize autochthonous PGPM from important agri-food crops and nonagricultural plants to formulate biofertilizers. Native microorganisms were isolated and evaluated for PGP traits (K, P, and Zn solubilization, N2-fixation, NH3-, IAA and siderophore production, and antifungal activity against Fusarium oxysporum). Isolates were tested on radish and broccoli seedlings, evaluating 19 individual isolates and 12 microbial consortia. Potential bacteria were identified through DNA sequencing. In total, 798 bacteria and 209 fungi were isolated. Isolates showed higher mineral solubilization activity than other mechanisms; 399 bacteria and 156 fungi presented mineral solubilization. Bacteria were relevant for nitrogen fixation, siderophore, IAA (29–176 mg/L), and ammonia production, while fungi for Fusarium growth inhibition (40–69%). Twenty-four bacteria and eighteen fungi were selected for their PGP traits. Bacteria had significantly (ANOVA, p < 0.05) better effects on plants than fungi; treatments improved plant height (23.06–51.32%), leaf diameter (25.43–82.91%), and fresh weight (54.18–85.45%) in both crops. Most potential species belonged to Pseudomonas, Pantoea, Serratia, and Rahnella genera. This work validated a high-throughput approach to screening hundreds of rhizospheric microorganisms with PGP potential isolated from rhizospheric samples. Full article
Show Figures

Figure 1

19 pages, 6594 KiB  
Article
Effects of Salt Stress on Grain Yield and Quality Parameters in Rice Cultivars with Differing Salt Tolerance
by Zhikang Li, Tianyang Zhou, Kuanyu Zhu, Weilu Wang, Weiyang Zhang, Hao Zhang, Lijun Liu, Zujian Zhang, Zhiqin Wang, Baoxiang Wang, Dayong Xu, Junfei Gu and Jianchang Yang
Plants 2023, 12(18), 3243; https://doi.org/10.3390/plants12183243 - 12 Sep 2023
Cited by 10 | Viewed by 2643
Abstract
Rice yield and grain quality are highly sensitive to salinity stress. Salt-tolerant/susceptible rice cultivars respond to salinity differently. To explore the variation in grain yield and quality to moderate/severe salinity stress, five rice cultivars differing in degrees of salt tolerance, including three salt-tolerant [...] Read more.
Rice yield and grain quality are highly sensitive to salinity stress. Salt-tolerant/susceptible rice cultivars respond to salinity differently. To explore the variation in grain yield and quality to moderate/severe salinity stress, five rice cultivars differing in degrees of salt tolerance, including three salt-tolerant rice cultivars (Lianjian 5, Lianjian 6, and Lianjian 7) and two salt-susceptible rice cultivars (Wuyunjing 30 and Lianjing 7) were examined. Grain yield was significantly decreased under salinity stress, while the extent of yield loss was lesser in salt-tolerant rice cultivars due to the relatively higher grain filling ratio and grain weight. The milling quality continued to increase with increasing levels. There were genotypic differences in the responses of appearance quality to mild salinity. The appearance quality was first increased and then decreased with increasing levels of salinity stress in salt-tolerant rice but continued to decrease in salt-susceptible rice. Under severe salinity stress, the protein accumulation was increased and the starch content was decreased; the content of short branched-chain of amylopectin was decreased; the crystallinity and stability of the starch were increased, and the gelatinization temperature was increased. These changes resulted in the deterioration of cooking and eating quality of rice under severe salinity-stressed environments. However, salt-tolerant and salt-susceptible rice cultivars responded differently to moderate salinity stress in cooking and eating quality and in the physicochemical properties of the starch. For salt-tolerant rice cultivars, the chain length of amylopectin was decreased, the degrees of order of the starch structure were decreased, and pasting properties and thermal properties were increased significantly, whereas for salt-susceptible rice cultivars, cooking and eating quality was deteriorated under moderate salinity stress. In conclusion, the selection of salt-tolerant rice cultivars can effectively maintain the rice production at a relatively high level while simultaneously enhancing grain quality in moderate salinity-stressed environments. Our results demonstrate specific salinity responses among the rice genotypes and the planting of salt-tolerant rice under moderate soil salinity is a solution to ensure rice production in China. Full article
(This article belongs to the Special Issue Cereal Crop Breeding)
Show Figures

Figure 1

25 pages, 2741 KiB  
Review
Rowanberry—A Source of Bioactive Compounds and Their Biopharmaceutical Properties
by Ofelia Marioara Arvinte, Lăcrimioara Senila, Anca Becze and Sonia Amariei
Plants 2023, 12(18), 3225; https://doi.org/10.3390/plants12183225 - 11 Sep 2023
Cited by 8 | Viewed by 2345
Abstract
After a period of intense development in the synthesis pharmaceutical industry, plants are making a comeback in the public focus as remedies or therapeutic adjuvants and in disease prevention and ensuring the wellbeing and equilibrium of the human body. Plants are being recommended [...] Read more.
After a period of intense development in the synthesis pharmaceutical industry, plants are making a comeback in the public focus as remedies or therapeutic adjuvants and in disease prevention and ensuring the wellbeing and equilibrium of the human body. Plants are being recommended more and more in alimentation, in their natural form, or as extracts, supplements or functional aliments. People, in general, are in search of new sources of nutrients and phytochemicals. As a result, scientific research turns to lesser known and used plants, among them being rowanberries, a species of fruit very rich in nutrients and underused due to their bitter astringent taste and a lack of knowledge regarding the beneficial effects of these fruit. Rowan fruits (rowanberries) are a rich source of vitamins, polysaccharides, organic acids and minerals. They are also a source of natural polyphenols, which are often correlated with the prevention and treatment of modern world diseases. This article presents the existing data regarding the chemical composition, active principles and biopharmaceutical properties of rowan fruits and the different opportunities for their usage. Full article
(This article belongs to the Collection Feature Review Papers in Phytochemistry)
Show Figures

Graphical abstract

16 pages, 3152 KiB  
Article
Effects of Common Biochar and Acid-Modified Biochar on Growth and Quality of Spinach in Coastal Saline Soils
by Juan Wang, Danyi Shi, Chengzhen Huang, Biyu Zhai and Shaoyuan Feng
Plants 2023, 12(18), 3232; https://doi.org/10.3390/plants12183232 - 11 Sep 2023
Cited by 7 | Viewed by 1669
Abstract
The rational development and efficient utilization of saline soils can alleviate the problem of insufficient arable land faced by agricultural production in China. A prominent problem is improving soil salt and water conditions for promoting land resources’ productivity in coastal areas. Biochar is [...] Read more.
The rational development and efficient utilization of saline soils can alleviate the problem of insufficient arable land faced by agricultural production in China. A prominent problem is improving soil salt and water conditions for promoting land resources’ productivity in coastal areas. Biochar is widely used for soil improvement, as it has remarkable properties. A pot experiment was conducted to study the effects of two kinds of biochar (common biochar and acid-modified biochar) with three addition rates (2%, 4%, and 8%) on the growth, yield, photosynthetic characteristics, and quality of spinach. The results revealed that 2% and 4% common biochar increased the plant height, stem diameter, and leaf area index, effectively improving the yield of spinach and water productivity, while 8% common biochar was detrimental to the growth of spinach to some extent. Acid-modified biochar significantly benefited the growth and increased the water productivity of spinach, ensuring high yields, while also improved quality. Similarly, acid-modified biochar was less effective at high additions than at low-to-medium additions. The integrated biological response version 2 (IBRV2) values under acid-modified biochar treatments were all significantly higher than those under common biochar, but there is no significant difference among three treatments in the same biochar group, which suggested a pronounced amelioration in spinach growth within saline-alkali soil upon the incorporation of acid-modified biochar. Overall, applying acid-modified biochar at the rate of 4% exhibited enormous potential for increasing the yield and quality of spinach in saline soils. Full article
Show Figures

Figure 1

23 pages, 27887 KiB  
Article
MFBP-UNet: A Network for Pear Leaf Disease Segmentation in Natural Agricultural Environments
by Haoyu Wang, Jie Ding, Sifan He, Cheng Feng, Cheng Zhang, Guohua Fan, Yunzhi Wu and Youhua Zhang
Plants 2023, 12(18), 3209; https://doi.org/10.3390/plants12183209 - 8 Sep 2023
Cited by 10 | Viewed by 2157
Abstract
The accurate prevention and control of pear tree diseases, especially the precise segmentation of leaf diseases, poses a serious challenge to fruit farmers globally. Given the possibility of disease areas being minute with ambiguous boundaries, accurate segmentation becomes difficult. In this study, we [...] Read more.
The accurate prevention and control of pear tree diseases, especially the precise segmentation of leaf diseases, poses a serious challenge to fruit farmers globally. Given the possibility of disease areas being minute with ambiguous boundaries, accurate segmentation becomes difficult. In this study, we propose a pear leaf disease segmentation model named MFBP-UNet. It is based on the UNet network architecture and integrates a Multi-scale Feature Extraction (MFE) module and a Tokenized Multilayer Perceptron (BATok-MLP) module with dynamic sparse attention. The MFE enhances the extraction of detail and semantic features, while the BATok-MLP successfully fuses regional and global attention, striking an effective balance in the extraction capabilities of both global and local information. Additionally, we pioneered the use of a diffusion model for data augmentation. By integrating and analyzing different augmentation methods, we further improved the model’s training accuracy and robustness. Experimental results reveal that, compared to other segmentation networks, MFBP-UNet shows a significant improvement across all performance metrics. Specifically, MFBP-UNet achieves scores of 86.15%, 93.53%, 90.89%, and 0.922 on MIoU, MP, MPA, and Dice metrics, marking respective improvements of 5.75%, 5.79%, 1.08%, and 0.074 over the UNet model. These results demonstrate the MFBP-UNet model’s superior performance and generalization capabilities in pear leaf disease segmentation and its inherent potential to address analogous challenges in natural environment segmentation tasks. Full article
(This article belongs to the Collection Application of AI in Plants)
Show Figures

Figure 1

17 pages, 2815 KiB  
Review
Pitaya as a New Alternative Crop for Iberian Peninsula: Biology and Edaphoclimatic Requirements
by Ana Rita Trindade, Paulo Paiva, Vander Lacerda, Natália Marques, Luís Neto and Amílcar Duarte
Plants 2023, 12(18), 3212; https://doi.org/10.3390/plants12183212 - 8 Sep 2023
Cited by 6 | Viewed by 5955
Abstract
Pitaya is one of the fruit species whose demand has increased in recent years due to the numerous health benefits and lucrative price of the fruit and its by-products. In Europe, the Iberian Peninsula and other Mediterranean countries are the ones with favorable [...] Read more.
Pitaya is one of the fruit species whose demand has increased in recent years due to the numerous health benefits and lucrative price of the fruit and its by-products. In Europe, the Iberian Peninsula and other Mediterranean countries are the ones with favorable climatic conditions for its cultivation. This document describes much of the history of pitaya in the Iberian Peninsula and the difficulties related to its cultivation. A bibliographical survey was carried out on the culture of pitaya in the world, focusing on the edaphoclimatic requirements, and on the possibility of this becoming a consolidated crop in the Iberian Peninsula. The relatively low water requirement of pitaya makes this crop sustainable among crops that require irrigation. In addition, we provide a perspective for use and research of this emerging crop. There has been an exponential growth of scientific publications on pitaya in the last decade; however, much more needs to be researched to know how to increase productivity as well as the sensory quality of fruits in different regions. This sustainable crop is a good option to diversify fruit production in the Iberian Peninsula. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

13 pages, 1284 KiB  
Article
Biodegradable Mulching Film vs. Traditional Polyethylene: Effects on Yield and Quality of San Marzano Tomato Fruits
by Ida Di Mola, Eugenio Cozzolino, Lucia Ottaiano, Riccardo Riccardi, Patrizia Spigno, Milena Petriccione, Nunzio Fiorentino, Massimo Fagnano and Mauro Mori
Plants 2023, 12(18), 3203; https://doi.org/10.3390/plants12183203 - 7 Sep 2023
Cited by 9 | Viewed by 1380
Abstract
Mulching is a common practice for improving crop yield and obtaining an out-of-season production, but when made using plastic materials it can bring environmental problems due to the management and the disposal of films at the end of the cropping seasons. To increase [...] Read more.
Mulching is a common practice for improving crop yield and obtaining an out-of-season production, but when made using plastic materials it can bring environmental problems due to the management and the disposal of films at the end of the cropping seasons. To increase the sustainability of this practice, recently, mulching films made with biodegradable organic materials have become more widely used. Our aim was to evaluate the effect of a biodegradable mulching film on yield and qualitative traits of the San Marzano tomato fruits over two years (2014 and 2015). Two different types of mulching were tested: (i) black biodegradable film (MB12) and (ii) black low-density polyethylene (LDPE) were compared to bare soil (BS). Both mulching films elicited a 25% increase in yield, mainly due to the significantly higher number of fruits per square meter, compared to BS. Both mulching films also elicited a 9.9% increase in total soluble solids and a 57% increase in carotenoid content, while firmness showed the highest value in BS fruits. MB12 determined the highest value of the Hunter color ratio a/b of tomato fruits, followed by LDPE, while the lowest value was recorded in BS fruits. Both mulching films elicited an increase of 9.6%, 26.0%, and 11.7% for flavonoids, polyphenols, and AsA, respectively. In 2014, the MB12 degradation started at 71 days after transplant (DAT); in 2015, at 104 DAT. Therefore, replacing polyethylene with biodegradable film would seem to be an agronomically efficient and environmentally sustainable practice. Full article
Show Figures

Figure 1

20 pages, 3317 KiB  
Review
Advancing the Conservation and Utilization of Barley Genetic Resources: Insights into Germplasm Management and Breeding for Sustainable Agriculture
by Andrea Visioni, Boris Basile, Ahmed Amri, Miguel Sanchez-Garcia and Giandomenico Corrado
Plants 2023, 12(18), 3186; https://doi.org/10.3390/plants12183186 - 6 Sep 2023
Cited by 11 | Viewed by 3160
Abstract
Barley is a very important crop particularly in marginal dry areas, where it often serves as the most viable option for farmers. Additionally, barley carries great significance in the Western world, serving not only as a fundamental crop for animal feed and malting [...] Read more.
Barley is a very important crop particularly in marginal dry areas, where it often serves as the most viable option for farmers. Additionally, barley carries great significance in the Western world, serving not only as a fundamental crop for animal feed and malting but also as a nutritious food source. The broad adaptability of barley and its ability to withstand various biotic and abiotic stresses often make this species the sole cereal that can be cultivated in arid regions. The collection and utilization of barley genetic resources are crucial for identifying valuable traits to enhance productivity and mitigate the adverse effects of climate change. This review aims to provide an overview of the management and exploitation of barley genetic resources. Furthermore, the review explores the relationship between gene banks and participatory breeding, offering insights into the diversity and utilization of barley genetic resources through some examples such as the initiatives undertaken by ICARDA. Finally, this contribution highlights the importance of these resources for boosting barley productivity, addressing climate change impacts, and meeting the growing food demands in a rapidly changing agriculture. The understanding and utilizing the rich genetic diversity of barley can contribute to sustainable agriculture and ensure the success of this vital crop for future generations globally. Full article
Show Figures

Figure 1

15 pages, 826 KiB  
Article
Optimization of the Use of Industrial Wastes in Anaerobic Soil Disinfestation for the Control of Fusarium Wilt in Strawberry
by Paloma Hernández-Muñiz, Celia Borrero, Javier Ordóñez-Martín, Ana M. Pastrana and Manuel Avilés
Plants 2023, 12(18), 3185; https://doi.org/10.3390/plants12183185 - 6 Sep 2023
Cited by 7 | Viewed by 1299
Abstract
Anaerobic soil disinfestation (ASD) is proposed as an alternative to the use of chemical fumigants against Fusarium wilt in strawberry crops. Different residual wastes (rice bran, fishmeal, and residual strawberry extrudate) were assessed as amendments for ASD. Two different concentrations and two incubation [...] Read more.
Anaerobic soil disinfestation (ASD) is proposed as an alternative to the use of chemical fumigants against Fusarium wilt in strawberry crops. Different residual wastes (rice bran, fishmeal, and residual strawberry extrudate) were assessed as amendments for ASD. Two different concentrations and two incubation durations were tested in growth chamber trials. The abundance of several microbial groups was noted before and after the treatments. Strawberry plants were grown in the treated soils to record Fusarium wilt disease severity. The population density of F. oxysporum increased after ASD in most amendments with rice bran and residual strawberry extrudate. Changes in Trichoderma spp., copiotrophic bacteria, and Streptomyces spp. populations were observed after anaerobiosis treatments and plant trials. A reduction in the disease severity was achieved in ASD-treated soils with 20 t/ha of rice bran at both 25 and 60 days of incubation, but not when using a 13.5 t/ha dose. Similarly, treatments using 19.3 t/ha of fishmeal for both incubation durations were able to reduce disease severity. In contrast, a severity reduction was only obtained in soils treated with 25.02 t/ha of the residual strawberry extrudate and incubated for 60 days in anaerobic conditions. Two of the three by-products tested were able to reduce Fusarium wilt symptoms in strawberry plants after an ASD-treatment period of only 25 days. Accordingly, the technique seems promising for strawberry growers in Huelva, Spain, and highly sustainable by giving value to residues produced in surrounding areas. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

21 pages, 4034 KiB  
Review
In Vitro Cultivation and Ginsenosides Accumulation in Panax ginseng: A Review
by Fengjiao Xu, Anjali Kariyarath Valappil, Ramya Mathiyalagan, Thi Ngoc Anh Tran, Zelika Mega Ramadhania, Muhammad Awais and Deok Chun Yang
Plants 2023, 12(17), 3165; https://doi.org/10.3390/plants12173165 - 3 Sep 2023
Cited by 6 | Viewed by 3339
Abstract
The use of in vitro tissue culture for herbal medicines has been recognized as a valuable source of botanical secondary metabolites. The tissue culture of ginseng species is used in the production of bioactive compounds such as phenolics, polysaccharides, and especially ginsenosides, which [...] Read more.
The use of in vitro tissue culture for herbal medicines has been recognized as a valuable source of botanical secondary metabolites. The tissue culture of ginseng species is used in the production of bioactive compounds such as phenolics, polysaccharides, and especially ginsenosides, which are utilized in the food, cosmetics, and pharmaceutical industries. This review paper focuses on the in vitro culture of Panax ginseng and accumulation of ginsenosides. In vitro culture has been applied to study organogenesis and biomass culture, and is involved in direct organogenesis for rooting and shooting from explants and in indirect morphogenesis for somatic embryogenesis via the callus, which is a mass of disorganized cells. Biomass production was conducted with different types of tissue cultures, such as adventitious roots, cell suspension, and hairy roots, and subsequently on a large scale in a bioreactor. This review provides the cumulative knowledge of biotechnological methods to increase the ginsenoside resources of P. ginseng. In addition, ginsenosides are summarized at enhanced levels of activity and content with elicitor treatment, together with perspectives of new breeding tools which can be developed in P. ginseng in the future. Full article
Show Figures

Figure 1

20 pages, 2757 KiB  
Article
Selection of Soybean and Cowpea Cultivars with Superior Performance under Drought Using Growth and Biochemical Aspects
by Rafael de Souza Miranda, Bruno Sousa Figueiredo da Fonseca, Davielson Silva Pinho, Jennyfer Yara Nunes Batista, Ramilos Rodrigues de Brito, Everaldo Moreira da Silva, Wesley Santos Ferreira, José Hélio Costa, Marcos dos Santos Lopes, Renan Henrique Beserra de Sousa, Larissa Fonseca Neves, José Antônio Freitas Penha, Amanda Soares Santos, Juliana Joice Pereira Lima, Stelamaris de Oliveira Paula-Marinho, Francisco de Alcântara Neto, Évelyn Silva de Aguiar, Clesivan Pereira dos Santos and Enéas Gomes-Filho
Plants 2023, 12(17), 3134; https://doi.org/10.3390/plants12173134 - 31 Aug 2023
Cited by 4 | Viewed by 1744
Abstract
Identifying cultivars of leguminous crops exhibiting drought resistance has become crucial in addressing water scarcity issues. This investigative study aimed to select soybean and cowpea cultivars with enhanced potential to grow under water restriction during the vegetative stage. Two parallel trials were conducted [...] Read more.
Identifying cultivars of leguminous crops exhibiting drought resistance has become crucial in addressing water scarcity issues. This investigative study aimed to select soybean and cowpea cultivars with enhanced potential to grow under water restriction during the vegetative stage. Two parallel trials were conducted using seven soybean (AS3810IPRO, M8644IPRO, TMG1180RR, NS 8338IPRO, BMX81I81IPRO, M8808IPRO, and BÔNUS8579IPRO) and cowpea cultivars (Aracê, Novaera, Pajeú, Pitiúba, Tumucumaque, TVU, and Xique-xique) under four water levels (75, 60, 45, and 30% field capacity—FC) over 21 days. Growth, water content, membrane damage, photosynthetic pigments, organic compounds, and proline levels were analyzed. Drought stress significantly impacted the growth of both crops, particularly at 45 and 30% FC for soybean and 60 and 45% FC for cowpea plants. The BÔNUS8579IPRO and TMG1180RR soybean cultivars demonstrated the highest performance under drought, a response attributed to increased amino acids and proline contents, which likely help to mitigate membrane damage. For cowpea, the superior performance of the drought-stressed Xique-xique cultivar was associated with the maintenance of water content and elevated photosynthetic pigments, which contributed to the preservation of the photosynthetic efficiency and carbohydrate levels. Our findings clearly indicate promising leguminous cultivars that grow under water restriction, serving as viable alternatives for cultivating in water-limited environments. Full article
(This article belongs to the Special Issue Molecular Basis of Crops and Fruit Plants in Response to Stress)
Show Figures

Graphical abstract

26 pages, 1115 KiB  
Article
Phytochemical Profile and Composition of Chickpea (Cicer arietinum L.): Varietal Differences and Effect of Germination under Elicited Conditions
by Iza Fernanda Pérez-Ramírez, Diana E. Escobedo-Alvarez, Magdalena Mendoza-Sánchez, Nuria E. Rocha-Guzmán, Rosalía Reynoso-Camacho, Jorge A. Acosta-Gallegos and Minerva Ramos-Gómez
Plants 2023, 12(17), 3093; https://doi.org/10.3390/plants12173093 - 29 Aug 2023
Cited by 4 | Viewed by 2517
Abstract
Germination is a simple process that improves the nutritional and medicinal values of seeds such as chickpeas. However, the detailed analysis of the phytochemical profile after chemical elicitation during chickpea germination is indispensable when making inferences about its biological properties. Therefore, an evaluation [...] Read more.
Germination is a simple process that improves the nutritional and medicinal values of seeds such as chickpeas. However, the detailed analysis of the phytochemical profile after chemical elicitation during chickpea germination is indispensable when making inferences about its biological properties. Therefore, an evaluation was made of the effect of the chemical inducers salicylic acid (SA, 1 and 2 mM), chitosan (CH, 3.3 and 7 μM), and hydrogen peroxide (H2O2, 20 and 30 mM) during germination at 25 °C with 70% RH for 4 days on the content of antinutritional and bioactive compounds, including phenolics, sterols, and saponins, in three Mexican chickpea varieties (Blanoro, Patron, and San Antonio) using UPLC-ELSD-ESI-QqQ-MS/MS, UPLC-DAD-ESI-QqQ-MS/MS, and HPLC-DAD-sQ-MS. The highest increase in phenolics and saponins was found in the Blanoro sprouts induced with SA 2 mM, whereas the highest phytosterol content was detected in San Antonio sprouts induced with CH 7 μM. In addition, significant increases in mono-, di-, and oligosaccharides and decreases in antinutritional contents were achieved after germination with most of the elicitation conditions. More importantly, we identified new compounds in chickpea sprouts, such as the lignans matairesinol and secoisolariciresinol, the phenolic compounds epicatechin gallate and methyl gallate, some phytosterols, and the saponin phaseoside 1, which further increased after chemical elicitation. Full article
Show Figures

Figure 1

Back to TopTop